

Copyright WILEY-VCH Verlag GmbH, 69451 Weinheim (Germany), 2002.

Supporting Information for *Angew. Chem. Int. Ed.* Z18905

The First Method for Achieving Palladium-Catalyzed Cross-Couplings of Simple Alkyl Chlorides: Suzuki Reactions Catalyzed by $\text{Pd}_2(\text{dba})_3/\text{PCy}_3$

Jan H. Kirchhoff, Chaoyang Dai, and Gregory C. Fu

I. General

$\text{Pd}_2(\text{dba})_3$ (Johnson Matthey), PCy_3 (Strem), $\text{CsOH}\cdot\text{H}_2\text{O}$ (Aldrich), KOH (Alfa Aesar; ACS grade), 9-BBN dimer (Aldrich), 9-BBN (0.5 M solution in THF; Aldrich) and anhydrous dioxane (Aldrich) were used as received. 1-Chlorododecane (Avocado), 1-chloropentane (Aldrich), 1-chloro-3-methylbutane (Alfa Aesar), 4-chlorobutyraldehyde diethyl acetal (Avocado), 7-chloroheptanenitrile (Lancaster), 1-octene (Acros), 4-allylanisole (Alfa Aesar), and 4-vinylcyclohexene (Aldrich) were sparged with argon prior to use. 5-Benzylloxypent-1-ene^[1] [81518-74-3] and 1-(10-undecyl)piperidine^[2] [160279-32-3] were prepared according to literature procedures. 1-(*tert*-Butyldimethylsiloxy)-6-chlorohexane [59431-24-2]^[3] was prepared from 6-chlorohexan-1-ol.

II. Preparation of Substrates

6-Chlorohexyl pivalate. Under argon, 6-chlorohexan-1-ol (Avocado; 2.73 g, 20.0 mmol), NEt_3 (4.22 mL, 30.0 mmol, 1.5 equiv), and DMAP (61 mg, 0.40 mmol, 2.0%) were dissolved in dry CH_2Cl_2 (30 mL) and cooled to 0 °C. Pivaloyl chloride (2.95 mL, 24.0 mmol, 1.2 equiv) was added dropwise, leading to the formation of a white precipitate. The reaction mixture was allowed to warm to room temperature overnight, and then it was diluted with Et_2O (100 mL) and washed with water (2 \times 10 mL). The aqueous phase was extracted with Et_2O (10 mL), and the combined organic layers were washed with brine (10 mL), dried over MgSO_4 , filtered, and concentrated. The resulting orange residue was purified by flash chromatography (hexanes/EtOAc 20:1 \otimes 10:1), which afforded the title compound as a colorless liquid (3.58 g, 81%).

^1H NMR (CDCl_3 , 300 MHz): δ 4.04 (t, J = 6.5 Hz, 2H), 3.53 (t, J = 6.7 Hz, 2H), 1.77 (tt, J = 7.3, 6.6 Hz, 2H), 1.63 (tt, J = 7.0 Hz, 6.9 Hz, 2H), 1.52-1.30 (m, 4H), 1.18 (s, 9H). ^{13}C NMR (CDCl_3 , 75 MHz): 178.7, 64.3, 45.0, 38.8, 32.6, 28.6, 27.3, 26.6, 25.4. IR (thin film): 2958, 2938, 2869, 1728, 1540, 1480, 1461, 1398, 1365, 1285, 1157, 1034, 974, 887, 771, 730, 651 cm^{-1} . HRMS (ESI): Calcd for $\text{C}_{11}\text{H}_{21}\text{O}_2\text{ClNa}$ ($\text{M}+\text{Na}$) $^+$: 243.1122. Found: 243.1122.

III. Suzuki Cross-Couplings of Alkyl Chlorides (Table 2)

Cross-coupling reactions were carried out in a preheated oil bath in 3-mL vials with teflon-lined caps or teflon septum screw-caps. Each of the yields reported in Table 2 reflects the average of two runs, one with Procedure A and one with Procedure B.

Procedure A (with glove box). In a glove box, 9-BBN dimer (146 mg, 1.20 mmol, 1.20 equiv), dioxane (0.9 mL), and the olefin (1.20 mmol, 1.20 equiv) were introduced in turn into a vial equipped with a stir bar. The heterogeneous mixture was stirred for at least six hours at room temperature, during which time it became homogeneous. To a second vial equipped with a stir bar was added $\text{Pd}_2(\text{dba})_3$ (45.8 mg, 0.0500 mmol, 5%), PCy_3 (56.0 mg, 0.200 mmol, 20%), $\text{CsOH}\cdot\text{H}_2\text{O}$ (185 mg, 1.10 mmol, 1.10 equiv), and dioxane (0.3 mL). The alkyl-9-BBN solution was then introduced by syringe from the first vial, with dioxane washings (2 \times 0.3 mL). The alkyl chloride (1.00 mmol, 1.00 equiv) was added to the resulting homogeneous brown mixture, and the vial was then closed with a septum screw-cap, removed from the glove box, and stirred vigorously in an oil bath at 90 °C for 48 hours. At the conclusion of the coupling, the now-heterogeneous reaction mixture was cooled to room temperature, diluted with Et_2O (5 mL), and filtered through a short plug of silica gel with Et_2O washings (30 mL). The solvent was evaporated, and the resulting yellow residue was purified by flash chromatography.

Procedure B (without glove box). A vial equipped with a

septum screw-cap and a stir bar was purged with argon. The olefin (1.20 mmol, 1.20 equiv) and then a solution of 9-BBN (0.50 M in THF; 2.40 mL, 1.20 mmol, 1.20 equiv) were introduced to the vial, and the resulting homogeneous solution was stirred for at least 6 hours at room temperature. After that time, the THF was removed under vacuum and replaced with dioxane (0.9 mL).^[4] In air, a stir bar, Pd₂(dba)₃ (45.8 mg, 0.0500 mmol, 5%), PCy₃ (56.0 mg, 0.200 mmol, 20%), and CsOH•H₂O (185 mg, 1.10 mmol, 1.10 equiv) were placed into a second vial, which was then capped with a septum screw-cap and purged with argon for 10 minutes. Dioxane (0.3 mL) was added by syringe, and then the solution of the alkyl-9-BBN was added via cannula (complete transfer of the alkyl-9-BBN was achieved by rinsing the first vial with dioxane (2 \approx 0.3 mL)). The alkyl chloride (1.00 mmol, 1.00 equiv) was introduced to this homogeneous brown solution, and the resulting mixture was stirred vigorously under argon for 48 hours at 90 °C. At the conclusion of the coupling, the now-heterogeneous reaction mixture was cooled to room temperature, diluted with Et₂O (5 mL), and filtered through a short plug of silica gel with Et₂O washings (30 mL). The solvent was evaporated, and the resulting yellow residue was purified by flash chromatography.

n-Eicosane [112-95-8] (Table 2, entry 1). Solvent for chromatography: hexanes. White solid (Procedure A: 230 mg, 81%; Procedure B: 239 mg, 85%), identical to an authentic sample (Alfa Aesar) with respect to ¹H NMR, ¹³C NMR, GC, and melting point.

1-(4-Methoxyphenyl)octane^[5] [3307-19-5] (Table 2, entry 2). Solvent for chromatography: hexanes/EtOAc 75:1. Colorless oil

(Procedure A: 180 mg, 82%; Procedure B: 181 mg, 82%).

¹H NMR (CDCl₃, 300 MHz): δ 7.15 (ddd, J = 8.8, 2.8, 2.2 Hz, 2H), 6.88 (ddd, J = 8.8, 2.8, 2.2 Hz, 2H), 3.83 (s, 3H), 2.59 (t, J = 7.7 Hz, 2H), 1.63 (m, 2H), 1.45–1.26 (m, 10H), 0.94 (t, J = 6.7 Hz, 3H). ¹³C NMR (CDCl₃, 75 MHz): δ 157.8, 135.2, 129.4, 113.8, 55.4, 35.3, 32.1, 32.0, 29.7, 29.5 (2 coincident resonances), 22.9, 14.3.

Benzyl(8-methylnonyl)ether (Table 2, entry 3). Solvent for chromatography: hexanes/EtOAc 35:1. Pale-yellow oil (Procedure A: 181 mg, 73%; Procedure B: 184 mg, 74%).

¹H NMR (CDCl₃, 300 MHz): δ 7.40–7.28 (m, 5H), 4.53 (s, 2H), 3.49 (t, J = 6.6 Hz, 2H), 1.65 (m, 2H), 1.54 (septet, J = 6.6 Hz, 1H), 1.45–1.26 (m, 8H), 1.18 (m, 2H), 0.89 (d, J = 6.6 Hz, 6H). ¹³C NMR (CDCl₃, 75 MHz): δ 138.9, 128.5, 127.8, 127.7, 73.0, 70.7, 39.2, 30.1, 30.0, 29.7, 28.2, 27.6, 26.4, 22.9. IR (thin film): 3088, 3064, 3030, 2953, 2927, 2854, 1723, 1495, 1466, 1454, 1383, 1364, 1307, 1272, 1203, 1103, 1028, 732, 696 cm^{−1}. HRMS (ESI): Calcd for C₁₇H₂₈ONa (M+Na)⁺: 271.2032. Found: 271.2036.

1-(9,9-Diethoxynonyloxymethyl)benzene (Table 2, entry 4). Solvent for chromatography: hexanes/EtOAc 20:1 to 10:1. Pale-yellow oil (Procedure A: 220 mg, 68%; Procedure B: 231 mg, 72%).

¹H NMR (CDCl₃, 300 MHz): δ 7.40–7.26 (m, 5H), 4.52 (s, 2H), 4.50 (t, J = 5.8 Hz, 1H), 3.66 (m, 2H), 3.52 (q, J = 7.2 Hz, 2H), 3.49 (q, J = 7.0 Hz, 2H), 1.63 (m, 4H), 1.47–1.28 (m, 10H), 1.22 (t, J = 7.0 Hz, 6H). ¹³C NMR (CDCl₃, 75 MHz): δ 138.8, 128.5, 127.8, 127.6, 103.1, 73.0, 70.6, 60.9, 33.7, 29.9, 29.7, 29.6, 29.5, 26.3, 24.9, 15.5. IR (thin film): 3030, 2974, 2929, 2856,

1653, 1558, 1540, 1496, 1455, 1372, 1114, 1062, 999, 734, 697 cm^{-1} . HRMS (ESI): Calcd for $\text{C}_{20}\text{H}_{34}\text{O}_3\text{Na}$ ($\text{M}+\text{Na}$) $^+$: 345.2400. Found: 345.2394.

4-[8-(*tert*-Butyldimethylsiloxy)octyl]-1-cyclohexene (Table 2, entry 5). Solvent for chromatography: hexanes \varnothing hexanes/EtOAc 50:1. Colorless oil (Procedure A: 242 mg, 74%; Procedure B: 232 mg, 71%).

^1H NMR (CDCl_3 , 300 MHz): δ 5.67 (m, 1H), 5.66 (m, 1H), 3.61 (t, J = 6.6 Hz, 2H), 2.14 (m, 1H), 2.04 (m, 2H), 1.79-1.42 (m, 6H), 1.38-1.10 (m, 12H), 0.90 (s, 9H), 0.05 (s, 6H). ^{13}C NMR (CDCl_3 , 75 MHz): δ 127.2, 127.0, 63.5, 37.0, 33.7, 33.1, 32.2, 30.1, 29.9, 29.7, 29.3, 27.1, 26.2, 26.0, 25.6, 18.6, -5.1. IR (thin film): 3022, 2927, 2855, 1653, 1558, 1540, 1472, 1387, 1361, 1254, 1100, 835, 774, 653 cm^{-1} . HRMS (ESI): Calcd for $\text{C}_{20}\text{H}_{40}\text{OSiNa}$ ($\text{M}+\text{Na}$) $^+$: 347.2741. Found: 347.2746.

1-[17-(*tert*-Butyldimethylsiloxy)heptadecyl)piperidine (Table 2, entry 6). Solvent for chromatography: $\text{CH}_2\text{Cl}_2/\text{MeOH}$ 20:1, 1% NET_3 . Yellow oil (Procedure A: 335 mg, 74%; Procedure B: 325 mg, 72%).

^1H NMR (CDCl_3 , 500 MHz): δ 3.57 (t, J = 6.6 Hz, 2H), 2.37 (br s, 4H), 2.27 (m, 2H), 1.58 (tt, J = 5.8, 5.5 Hz, 4H), 1.47 (m, 4H), 1.41 (m, 2H), 1.31-1.19 (m, 26H), 0.87 (s, 9H), 0.02 (s, 6H). ^{13}C NMR (CDCl_3 , 125 MHz): δ 63.5, 59.8, 54.7, 33.1, 29.85 (3 coincident resonances), 29.84 (2 coincident resonances), 29.82 (2 coincident resonances), 29.77 (2 coincident resonances), 29.76 (2 coincident resonances), 29.6, 27.9, 27.0, 26.1, 26.0, 24.6, 18.5, -5.1. IR (thin film): 2926, 2854, 2800, 2726, 2494, 1469, 1387,

1360, 1306, 1255, 1155, 1102, 1040, 1005, 938, 836, 812, 775, 736, 661 cm^{-1} . HRMS (ESI): Calcd for $\text{C}_{28}\text{H}_{60}\text{NOSi}$ ($\text{M}+\text{H}$) $^+$: 454.4439. Found: 454.4431.

Pentadecanonitrile^[6] [18300-91-9] (Table 2, entry 7). Solvent for chromatography: hexanes/EtOAc 20:1. Colorless oil (Procedure A: 165 mg, 74%; Procedure B: 154 mg, 69%).

^1H NMR (CDCl_3 , 300 MHz): δ 2.32 (t, J = 7.0 Hz, 2H), 1.64 (apparent quintet, J = 7.3 Hz, 2H), 1.43 (m, 2H), 1.36-1.21 (m, 20H), 0.87 (t, J = 6.7 Hz, 3H). ^{13}C NMR (CDCl_3 , 75 MHz): δ 120.0, 32.1, 29.81, 29.78 (2 coincident resonances), 29.74, 29.6, 29.50, 29.45, 28.9, 28.8, 25.5, 22.8, 17.2, 14.3.

11-Benzylxyundecyl pivalate (Table 2, entry 8). KOH was used instead of $\text{CsOH}\cdot\text{H}_2\text{O}$. Solvent for chromatography: hexanes/EtOAc 50:1 \varnothing 20:1. Colorless oil (Procedure A: 238 mg, 66%; Procedure B: 232 mg, 64 %).

^1H NMR (CDCl_3 , 300 MHz): δ 7.38-7.24 (m, 5H), 4.53 (s, 2H), 4.05 (t, J = 6.6 Hz, 2H), 3.47 (t, J = 6.6 Hz, 2H), 1.62 (m, 4H), 1.43-1.26 (m, 14H), 1.21 (s, 9H). ^{13}C NMR (CDCl_3 , 75 MHz): δ 178.7, 138.8, 128.4, 127.7, 127.6, 73.0, 70.6, 64.6, 38.8, 29.9, 29.7, 29.61 (2 coincident resonances), 29.60, 29.3, 28.7, 27.3, 26.3, 26.0. IR (thin film): 3438, 3064, 3030, 2929, 2855, 1729, 1605, 1495, 1480, 1454, 1397, 1364, 1284, 1156, 1102, 1029, 771, 734, 697 cm^{-1} . HRMS (ESI): Calcd for $\text{C}_{23}\text{H}_{38}\text{O}_3\text{Na}$ ($\text{M}+\text{Na}$) $^+$: 385.2713. Found: 385.2704.

References

[¹]

R. E. Dolle, D. McNair, *Tetrahedron Lett.* **1993**, *34*, 133-136.

[²]

S. B. Coan, D. Papa, *J. Am. Chem. Soc.* **1955**, *77*, 2402-2404.

[³]

M. E. Kobierski, S. Kim, K. K. Murthi, R. S. Iyer, R. G. Salomon, *J. Org. Chem.* **1994**, *59*, 6044-6050.

[⁴]

If desired, the synthesis of the alkyl-9-BBN can be conducted directly in dioxane by hydroborating the olefin with solid 9-BBN dimer, rather than a solution of 9-BBN in THF (both are commercially available).

[⁵]

J.-i. Tateiwa, E. Hayama, T. Nishimura, S. Uemura, *J. Chem. Soc., Perkin Trans. 1* **1997**, 1923-1928.

[⁶]

J. Boivin, L. E. Kaim, S. Z. Zard, *Tetrahedron* **1995**, *51*, 2573-2584.