

Supporting Information

for

Angew. Chem. Int. Ed. Z50341

© Wiley-VCH 2003

69451 Weinheim, Germany

Highly Enantioselective Organocatalysed Conjugate Addition of Malonate to Acyclic α,β Unsaturated Enones

Nis Halland, Pompiliu S. Aburel and Karl Anker Jørgensen*

[*] Danish National Research Foundation: Center for Catalysis

Department of Chemistry

Aarhus University

DK-8000 Aarhus C, Denmark

Fax (45) 8919 6199

E-mail: kaj@chem.au.dk

General Methods. The 1 H NMR and 13 C NMR spectra were recorded at 400 MHz and 100 MHz, respectively. The chemical shifts are reported in ppm downfield to TMS (δ =0) for 1 H and relative to the central CDCl₃ resonance (δ =77) for 13 C NMR. Flash chromatography (FC) was carried out using Merck silica gel 60 (230-400 mesh). Optical rotations were measured on Perkin-Elmer 241 polarimeter. The enantiomeric excess (ee) of the products were determined by chiral HPLC using Daicel Chiralpak AS/AD or Daicel Chiralcel OD columns with hexane/2-propanol as eluent.

4-hydroxybenzylideneacetone, Materials. Furfurylideneacetone (cis+trans mixture), chlorobenzylideneacetone, 3-octen-2-one, dibenzyl malonate were purchased from Lancaster and Methyl *trans*-4-oxo-2-pentenoate, used received. 4-methyl-1-phenyl-pent-1-en-3-one, benzylideneacetone, 5-methyl-3-hexen-2-one, trans-4-(2-thienyl)-3-butene-2-one, 2-cyclohexen-1one, dimethyl malonate, diethyl malonate, benzyl ethyl malonate, benzyl methyl malonate and diisopropyl malonate were purchased from Aldrich and used as received. Diallyl malonate was purchased from ABCR GmbH KG and used as received. 4-(4-Dimethylamino-phenyl)-3-butene-2one were purchased from Maybridge Chemicals and used as received. 2-Nitro-benzylidenacetone, 1 4-nitro-benzylideneacetone. 4-pyridin-2-yl-buten-3-en-2-one. 4-naphthalen-2-yl-3-buten-2-one. 4 1-phenyl-pent-1-en-3-one⁵ were prepared according to literature procedures.

General procedure for catalytic addition of dialkyl malonate α,β -unsaturated enones.

To a glass tube with a magnetic stirring bar is added 7 mmol of malonate (3), 1 mmol of enone (2), 0.1 mmol of catalyst (1) and stirred at ambient temperature for the time indicated in the table. The reaction mixture was purified by flash chromatography (FC).

MeO₂C CO₂Me

2-(3-Oxo-1-phenyl-butyl)-malonic acid dimethyl ester (4a). Purified by FC using EtOAc/pentane and isolated as a colorless solid, mp. 44-46 °C. The enantiomers were separated by HPLC using a Daicel Chiralpak AS chiral stationary phase in hexane/2-propanol 90/10; $[\alpha]^{rt}_{D} = -9.7^{\circ}$ (c = 1.0

g/100mL, CHCl₃, 73% ee); ¹H NMR (CDCl₃) δ 1.95 (s, 3H, C**H**₃CO), 2.81-2.93 (m, 2H, COC**H**₂), 3.42 (s, 3H, CO₂C**H**₃), 3.64 (s, 3H, CO₂C**H**₃), 3.67 (d, J = 2.0 Hz, 1H, CO₂C**H**CO₂), 3.87-3.93 (m, 1H, C***H**), 7.10-7.22 (m, 5H, Ar**H**); ¹³C NMR (CDCl₃) δ , 30.2, 40.3, 47.0, 52.3, 52.6, 57.0, 127.2, 127.9, 128.5, 140.3, 167.9, 168.5, 205.9; HRMS m/z 301.1050 (M+Na⁺), calc. for C₁₅H₁₈O₅Na⁺ 301.1052.

EtO₂C CO₂Et

2-(3-Oxo-1-phenyl-butyl)-malonic acid diethyl ester (4b). Purified by FC using Et₂O/pentane and isolated as a colorless solid, mp. 42-43 °C. The enantiomers were separated by HPLC using a Daicel Chiralpak AS chiral stationary phase in hexane/2-propanol 90/10; $[\alpha]^{rt}_{D} = -12.1^{\circ}$ (c = 1.0)

g/100mL, CHCl₃, 91% ee); ¹H NMR (CDCl₃) δ 0.92 (t, J = 7.0 Hz, 3H, OCH₂C**H**₃), 1.17 (t, J = 7.0 Hz, 3H, OCH₂C**H**₃), 1.94 (s, 3H, C**H**₃CO), 2.84-2.87 (m, 2H, COC**H**₂), 3.62 (d, J = 10.1 Hz, 1H, CO₂C**H**CO₂), 3.83-3.89 (m, 3H, 1H, from C***H**, 2H from OC**H**₂CH₃), 4.11 (q, J = 7 Hz, 2H, OC**H**₂CH₃), 7.11-7.20 (m, 5H, Ar**H**); ¹³C NMR (CDCl₃) δ 13.7, 13.9, 30.2, 40.4, 47.3, 57.3, 61.2, 61.6, 127.1, 128.3, 140.3, 167.6, 168.1, 206.0; HRMS m/z 329.1367 (M+Na⁺), calc. for C₁₇H₂₂O₅ Na⁺ 329.1365.

i-PrO₂C CO₂i-Pr

2-(3-Oxo-1-phenyl-butyl)-malonic acid isopropyl ester (4c). Purified by FC using EtOAc/pentane and isolated as a colorless oil. The enantiomers were separated by HPLC using a Daicel Chiralpak AS chiral stationary phase in hexane/2-propanol 95/5; $[\alpha]^{rt}_{D} = -13.6^{\circ}$ (c = 1.0 g/100mL, CHCl₃, 71%

ee); ¹H NMR (CDCl₃) δ 0.89 (d, J = 6 Hz, 3H, C**H**₃CH), 0.96 (d, J = 6.0 Hz, 3H, C**H**₃CH), 1.16

(dd, J = 2.3, 6.2, H, 2 CH₃CH), 1.94 (s, 3H, CH₃CO), 2.77-2.90 (m, 2H, COCH₂), 3.56 (d, J = 10.1 Hz, 1H CO₂CHCO₂), 3.84-3.90 (m, 1H, C*H), 4.67-4.73 (m, 1H, CH₃CH), 4.94-5.01 (m, 1H, CH₃CH), 7.09-7.20 (m, 5H, ArH); ¹³C NMR (CDCl₃) δ 21.2, 21.3, 21.5, 21.6, 30.3, 40.4, 47.7, 57.7, 68.8, 69.2, 127.1, 128.2, 128.4, 140.4, 167.1, 167.7, 206.2; HRMS m/z 357.1671 (M+Na⁺), calc. for C₁₉H₂₆O₅ Na⁺ 357.1678.

AllylO₂C CO₂Allyl Me

2-(3-Oxo-1-phenyl-butyl)-malonic acid diallyl ester (4e). Purified by FC using Et₂O/pentane and isolated as a colorless oil. The enantiomers were separated by HPLC using a Daicel Chiralpak AS chiral stationary phase in hexane/2-propanol 95/5; $[\alpha]^{rt}_{D} = -12.0^{\circ}$ (c = 1.0 g/100mL, CHCl₃, 89% ee); ¹H

NMR (CDCl₃) δ 1.99 (s, 3H, C**H**₃CO), 2.86-3.74 (m, 2H, COC**H**₂), 3.75 (d, J = 9.8 Hz, 1H, CO₂C**H**CO₂), 3.93-3.99 (m, 1H, C***H**), 4.34 (dt, J = 2.0, 6.0 Hz, 2H, CH₂=CHC**H**₂), 4.59 (d, J = 6.0 Hz, 2H, CH₂=CHC**H**₂), 5.07-5.12 (m, 2H, C**H**₂=CH), 5.19-5.30 (m, 2H, C**H**₂=CH), 5.55-5.64 (m, 1H, CH₂=C**H**), 5.79-5.89 (m, 1H, CH₂=C**H**), 7.14-7.25 (m, 5H, Ar**H**); ¹³C NMR (CDCl₃) δ 30.2, 40.4, 47.1, 57.2, 65.8, 66.1, 118.5, 118.8, 127.2, 128.0, 128.4, 131.2, 131.3, 140.2, 167.1, 167.6, 205.9; HRMS m/z 353.1368 (M+Na⁺), calc. for C₁₉H₂₂O₅Na⁺ 353.1365.

2-(3-Oxo-1-phenyl-butyl)-malonic acid dibenzyl ester (4f). Purified by FC using Et₂O/pentane and isolated as a colorless solid mp. 84-86 °C The enantiomers were determined by HPLC using a Daicel Chiralpak AS chiral stationary phase hexane/2-propanol 95/5; $[\alpha]^{rt}_{D} = -7.1^{\circ}$ (c = 1.0 g/100mL,

CHCl₃, 99% ee); ¹H NMR (CDCl₃) δ 1.88 (s, 3H, C**H**₃CO), 2.80 (d, J =6.6 Hz, 2H, COC**H**₂), 3.75 (d, J = 9.8 Hz, 1H, CO₂C**H**CO₂), 3.90-3.96 (m, 1H, C***H**), 4.81 (s, 2H, OC**H**₂), 5.06 (d, J = 2.7 Hz, 2H, OC**H**₂), 6.97-7.30 (m, 15H, Ar**H**); ¹³C NMR (CDCl₃) δ 30.2, 40.4, 47.0, 57.3, 67.1, 67.2, 126.9, 127.2, 128.0, 128.1, 128.18, 128.2, 128.4, 128.5, 134.9, 135.1, 140.2, 167.3, 167.8, 205.9; HRMS m/z 453.1682 (M+Na⁺) calc. for C₂₇H₂₆O₅Na 453.1678.

2-(3-Oxo-1-phenyl-butyl)-malonic acid benzyl ester methyl ester (4g). Purified by FC using Et₂O/pentane and isolated as a colorless oil. The diastereomeric ratio was determined to be 1:1.5 by NMR. Major diastereomer 1 H NMR (CDCl₃) δ 1.98 (s, 3H, CH₃CO), 2.83-2.94 (m, 2H,

 $COCH_2$), 3.67 (s, 3H, CO_2CH_3), 3.76 (d J = 9.7, 1H, CO_2CHCO_2), 3.94-4.00 (m, 1H, C*H), 4.89

(s, 2H, OCH₂), 7.05-7.35 (m, 10H, ArH); 13 C NMR (CDCl₃) δ 30.2, 40.4, 47.2, 52.5, 57.1, 67.0, 127.24, 128.0, 128.1, 128.39, 128.53, 134.9, 140.21, 167.4, 168.4, 205.95. Minor diastereomer: 1 H NMR (CDCl₃) δ 1.94 (s, 3H, CH₃CO), 2.83-2.94 (m, 2H, COCH₂), 3.45 (s, 3H, CO₂CH₃), 3.74 (d, J = 9.4, 1H, CO₂CHCO₂), 3.94-4.00 (m, 1H, C*H), 5.14 (s, 2H, OCH₂), 7.05-7.35 (m, 10H, ArH); 13 C NMR (CDCl₃) δ 30.1, 40.3, 46.8, 52.3, 57.2, 67.2, 127.21, 127.94, 128.20, 128.25, 128.50, 135.1, 140.26, 167.8, 168.3, 205.90; HRMS m/z 377.1364 (M+Na⁺), calc. for C₂₁H₂₂O₅Na⁺ 377.1365. After decarboxylation of the diastereomeric mixture of **4g**, the enantiomers were separated by HPLC using a Daicel Chiralcel OD chiral stationary phase in hexane/2-propanol 95/5, 96% ee. **Decarboxylation procedure**: To a solution of **4g** (0.354 g, 1 mmol) in 5 mL of MeOH was added 47 mg of 10% of Pd/C and the mixture was stirred under H₂ atmosphere at room temperature for 2.5 hrs. Filtration and concentration gave the crude acid which was used directly in the following reaction without further purification. The crude acid was dissolved in 3 mL of MeOH, 3 drops of TEA were added and heated over night at 60 °C. The final product **6** was purified by FC using Et₂O/CH₂Cl₂ and isolated as a colorless oil (50% yield over two steps).

2-(3-Oxo-1-phenyl-butyl)-malonic acid benzyl ester ethyl ester (4h). Purified by FC using Et₂O/pentane and isolated as a colorless oil. The diastereomeric ratio was determined to be 1:1 by NMR; ¹H NMR (CDCl₃) δ 0.95, 1.18 (t,t, J = 7.0 Hz, J = 7.0 Hz, 3H, C**H**₃CH₂O), 1.96, 1.99 (s,s, 3H,

CH₃CO), 2.84-2.92 (m, 2H, COCH₂), 3.74, 3.76 (d,d, J = 4.7 Hz J = 4.7 Hz, 1H, CO₂CHCO₂), 3.91, 4.15(q,q, J = 7.0 Hz, J = 7.0 Hz, 2H, CH₃CH₂O), 3.93-3.99 (m, 1H, C*H), 4.91, 5.17 (s, d, J = 3.0 Hz, 2H, OCH₂), 7.01-7.29 (m, 10H, ArH); ¹³C NMR (CDCl₃) δ 13.6, 13.9, 30.2, 30.3, 40.3, 40.4, 47.1,47.2, 57.3, 61.3, 61.6, 67.0, 67.2, 127.17, 127.19, 128.04, 128.07, 128.13, 128.18, 128.2, 128.37, 128.43, 128.50, 135.1, 135.2, 140.3, 167.4, 167.5, 168.0, 205.91, 205.97. HRMS m/z 391.1523 (M+Na⁺), calc. for C₂₂H₂₄O₅Na⁺ 391.1521. After decarboxylation of the diastereomeric mixture of **4h**, the enantiomers were separated by HPLC using Daicel Chiralcel OD chiral stationary phase in hexane/2-propanol 95/5. **Decarboxylation procedure**: To a solution of **4h** (0.368 g, 1 mmol) in 5 mL of MeOH was added 47 mg of 10% of Pd/C and the mixture was stirred under H₂ atmosphere at room temperature for 2.5 hrs. Filtration and concentration gave the crude acid which was used directly in the following reaction without further purification. The crude acid was dissolved in 3 mL of MeOH, 3 drops of TEA were added and heated over night at 80 °C. The final product was purified by FC using Et₂O/CH₂Cl₂, and isolated as a colorless oil (78% yield over

two steps). $[\alpha]^{\text{rt}}_{D} = +5.7^{\circ} \ (c = 1.0 \text{ g/100mL}, \text{CHCl}_{3}, 90\% \text{ ee}); ^{1}\text{H NMR (CDCl}_{3}) \delta 1.30 \ (t, J = 7.4 \text{ Hz}, 3\text{H, CH}_{3}\text{CH}_{2}\text{O}), 2.04 \ (s, 3\text{H, CH}_{3}\text{CO}), 2.54-2.68 \ (\text{octet}, J = 7.8 \text{ Hz}, 2\text{H, COCH}_{2}), 2.77-2.82 \ (\text{m}, 2\text{H, CH}_{2}\text{CO}_{2}\text{Et}), 3.64-3.69 \ (\text{m}, 1\text{H, C*H}), 4.02 \ (\text{q}, J = 7.2 \text{ Hz}, 2\text{H, CH}_{3}\text{CH}_{2}\text{O}), 7.17-7.29 \ (\text{m}, 5\text{H}, 2\text{H}); ^{13}\text{C NMR (CDCl}_{3}) \delta 14.0, 30.3, 37.3, 40.8, 49.4, 60.3, 126.8, 127.2, 128.5, 143.0, 172.0, 206.8, HRMS m/z 257.1149 \ (\text{M+Na}^{+}), calc. for C₁₄H₁₈O₃Na⁺ 257.1154.$

2-(1-Naphthalen-2-yl-3-oxo-butyl)-malonic acid dibenzyl ester (4j). Purified by FC using Et₂O/CH₂Cl₂ and isolated as a colorless solid. The enantiomers were separated by HPLC using a Chiralpak AD chiral

stationary phase in hexane/2-propanol 90/10; $\left[\alpha\right]^{rt}_{D} = -5.3^{\circ}$ (c = 1.0

g/100mL, CHCl₃, 90% ee); ¹H-NMR (CDCl₃) δ 1.95 (s, 3H, C**H**₃), 2.91-3.04 (m, 2H, C**H**₂), 3.95 (d, J = 10.0 Hz, 1H, CO₂C**H**CO₂), 4.16-4.22 (m, 1H, C***H**), 4.85 (s, 2H, OC**H**₂), 5.16 (d, J = 2.0 Hz, 2H, OC**H**₂), 6.91 (dd, J = 1.2, 7.6 Hz, 2H, Ar**H**), 7.10 (t, J = 7.6 Hz, 2H, Ar**H**), 7.17-7.20 (m, 1H, Ar**H**), 7.25-7.36 (m, 6H, Ar**H**), 7.43-7.48 (m, 2H, Ar**H**), 7.65 (d, J = 1.2 Hz, 1H, Ar**H**), 7.71-7.79 (m, 3H, Ar**H**); ¹³C-NMR (CDCl₃) δ 30.2, 40.5, 47.1, 57.3, 67.1, 67.3, 125.8, 126.0, 126.1, 127.0, 127.6, 127.9, 128.0, 128.1, 128.2, 128.3, 128.4, 128.5, 128.6, 132.6, 133.3, 134.8, 135.1, 137.7, 167.4, 167.8, 205.8; HRMS m/z 503.1842 (M+Na⁺), calc. for C₃₁H₂₈O₅Na⁺ 503.1834.

(*R*)-2-[1-(4-Chloro-phenyl)-3-oxo-butyl]-malonic acid dibenzyl ester (4k). Purified by FC using Et₂O/pentane and isolated as a colorless solid, mp. 83-85° C. The enantiomers were separated by HPLC using a Daicel Chiralpak AS chiral stationary phase in hexane/2-propanol 95/5; $[\alpha]_D^{rt} = -$

8.1° (c = 1.0 g/100mL, CHCl₃, 98% ee); ¹H NMR (CDCl₃) δ 1.93 (s, 3H, C**H**₃CO), 2.81 (d, J = 6.2 Hz, 2H, COC**H**₂), 3.75 (d, J = 9.4 Hz, 1H, CO₂C**H**CO₂), 3.91-3.97 (m, 1H, C***H**), 4.90 (d, J = 2 Hz, 2H, C**H**₂O), 5.11 (s, 2H C**H**₂O), 7.02-7.33 (m, 14H, Ar**H**); ¹³C NMR (CDCl₃) δ 30.2, 39.7, 46.8, 57.0, 67.2, 67.3, 128.26, 128.28, 128.3, 128.4, 128.5, 128.6, 129.5, 132.9, 134.8, 135.0, 138.7, 167.2, 167.6, 205.4; HRMS m/z 487.1280 (M+Na⁺), calc. for C₂₇H₂₅ClO₅Na⁺ 487.1288.

2-[1-(4-Hydroxy-phenyl)-3-oxo-butyl]-malonic acid dibenzyl ester (41).

Purified by FC using Et₂O/CH₂Cl₂ and isolated as a colorless solid, mp. 118-119 °C. The enantiomers were separated by HPLC using a Daicel

Chiralcel OD chiral stationary in hexane/2-propanol 80/20; $[\alpha]^{rt}_{D} = -13.5^{\circ}$ (c = 1.0 g/100mL, CHCl₃, 93% ee); ¹H NMR (CDCl₃) δ 1.93 (s, 3H, C**H**₃CO), 2.80 (d, J = 7.0 Hz, 2H, COC**H**₂), 3.72 (d, 9.7 Hz, 1H, CO₂C**H**CO₂), 3.85-3.91 (m, 1H, C***H**), 4.87 (s, 2H OC**H**₂), 5.11 (d, J = 5.0 Hz, 2H, OC**H**₂), 6.05 (s, 1H, **H**O), 6.50 (d, J = 8.6 Hz, 2H, Ar**H**), 6.95 (d, J = 8.6 Hz, 2H, Ar**H**), 7.01-7.31 (m, 10H, Ar**H**); ¹³C NMR (CDCl₃) δ 30.1, 40.0, 47.4, 57.6, 67.2, 67.3, 115.5, 128.1, 128.2, 128.3, 128.4, 128.6, 129.1, 134.9, 135.0, 155.1, 167.5, 167.8, 207.4; HRMS m/z 469.1628 (M+Na⁺), calc. for C₂₇H₂₆O₇Na⁺ 469.1627.

$$O_2N$$
 O_2N O_2N

2-[1-(4-Nitro-phenyl)-3-oxo-butyl]-malonic acid dibenzyl ester (4m).

Purified by FC using Et₂O/EtOAc/pentane and isolated as a yellow solid mp. 68-70 °C. The enantiomers were separated by HPLC using a Daicel Chiralcel OD chiral stationary phase in hexane/2-propanol 80/20; $[\alpha]_D^{rt} =$

-9.3° (c = 1.0 g/100mL, CHCl₃, 89% ee); ¹H NMR (CDCl₃) δ 1.94 (s, 3H, C**H**₃CO), 2.84-2.91 (m, 2H, COC**H**₂), 3.80 (d, J = 9.7 Hz, 1H, CO₂C**H**CO₂), 4.02-4.09 (m, 1H, C***H**), 4.91 (d, J = 2.3 Hz, 2H, OC**H**₂), 5.13 (s, 2H, OC**H**₂), 7.07 (d, J = 8.6 Hz, 2H, Ar**H**), 7.21-7.35 (m, 10H, Ar**H**), 7.93 (d, J = 8.6 Hz, 2H, Ar**H**); ¹³C NMR (CDCl₃) δ 30.1, 39.8, 46.5, 56.4, 67.3, 67.5, 123.5, 128.4, 128.43, 128.5, 128.6, 129.1, 134.6, 134.9, 146.8, 147.8, 166.9, 167.3, 204.8; HRMS m/z 498.1514 (M+Na⁺), calc. for C₂₇H₂₅NO₇Na⁺ 498.1529.

$$CO_2Bn$$
 CO_2Bn
 CO_2Bn

2-[1-(2-Nitro-phenyl)-3-oxo-butyl]-malonic acid dibenzyl ester (4n).

Purified by FC using Et_2O/CH_2Cl_2 and isolated as a colorless solid. The enantiomers were separated by HPLC using a Chiralpak AS chiral stationary phase in hexane/2-propanol 90/10; $[\alpha]_D^{tt} = -9.8^{\circ}$ (c = 1.0 g/100mL, CHCl₃, 86% ee); ¹H-NMR (CDCl₃) δ 1.98 (s, 3H, COC**H**₃), 3.02 (s, 1H, COC**H**H),

3.04 (d, J = 1.6 Hz, 1H, COCH**H**), 4.13 (d, J = 8.0 Hz, 1H, CO₂C**H**CO₂), 4.49 (br q, J = 8.0 Hz, 1H, C***H**), 5.01 (d, J = 4.4 Hz, 2H, OC**H**₂), 5.11 (s, 2H, OC**H**₂), 7.14-7.17 (m, 2H, Ar**H**), 7.23-7.39 (m, 11H, Ar**H**), 7.53 (dd, J = 1.2, 8.0 Hz, 1H, Ar**H**); ¹³C-NMR (CDCl₃) δ 29.6, 34.5, 45.5, 55.3, 67.1, 67.2, 124.5, 127.7, 128.0, 128.1, 128.2, 128.3, 128.4, 128.8, 132.5, 134.7, 134.8, 135.0, 149.9, 167.1, 167.5, 205.3; HRMS m/z 419.1526 (M+Na⁺), calc. for C₂₇H₂₅O₇NNa⁺ 419.1529.

2-[1-(4-Dimethylamino-phenyl)-3-oxo-butyl]-malonic acid dibenzyl **ester (40).** Purified by FC using Et₂O/CH₂Cl₂ and isolated as a colorless solid. The enantiomers were separated by HPLC using a Chiralpak AD chiral stationary phase in hexane/2-propanol 80/20; $[\alpha]^{rt}_{D} = -2.9^{\circ}$ (c = 1.0

g/100mL, CHCl₃, 77% ee); ¹H-NMR (CDCl₃) δ 1.95 (s, 3H, COC**H**₃), 2.82 (s, 1H, COC**H**H), 2.84 (d, J = 1.6 Hz, 1H, COCH**H**), 2.91 (s, 6H, (C**H**₃)₂N), 3.77 (d, J = 9.6 Hz, 1H, CO₂C**H**CO₂), 3.88-3.94 (m, 1H, C***H**), 4.91 (d, J = 2.4 Hz, 2H, OC**H**₂), 5.14 (d, J = 2.4 Hz, 2H, OC**H**₂), 6.58 (d, J = 9.2 Hz, 2H, Ar**H**), 7.04-7.08 (m, 4H, Ar**H**), 7.23-7.33 (m, 8H, Ar**H**); ¹³C-NMR (CDCl₃) δ 30.1, 39.8, 40.4, 47.3, 57. 7, 66.9, 67.1, 112.4, 126.9, 127.4, 128.0, 128.1, 128.2, 128.3, 128.4, 128.5, 128.6, 135.1, 135.2, 149.5, 167.5, 168.0, 206.4; HRMS m/z 496.2086 (M+Na⁺), calc. for C₂₉H₃₁O₅NNa⁺ 496.2100.

2-(1-Furan-2-yl-3-oxo-butyl)-malonic acid dibenzyl ester (4p). Purified by FC using Et₂O/pentane and isolated as a colorless oil. The enantiomers were separated by HPLC using a Daicel Chiralpak AD chiral stationary phase in hexane/2-propanol 95/5; $[\alpha]^{\text{rt}}_{\text{D}} = -6.3^{\circ}$ (c = 1.0 g/100mL, CHCl₃,

92% ee); ¹H NMR (CDCl₃) δ 2.03 (s, 3H, C**H**₃CO), 2.85 (dd, J = 4.7, 17.5, Hz, 1H, COC**H**H), 2.97 (dd, J = 9.0, 17.5, Hz, 1H, COCH**H**), 3.92 (d, J = 7.8 Hz, 1H, CO₂C**H**CO₂), 4.12-4.17 (m, 1H, C***H**), 5.05 (s, 2H, OC**H**₂), 5.13 (d, J = 1.6 Hz, 2H, OC**H**₂), 6.03 (d, J = 3.1 Hz, 1H, C₄**H**₃O), 6.20 (dd, J = 2.0, 3.1 Hz, 1H, C₄**H**₃O), 7.21-7.34 (m, 11H, Ar**H**, C₄**H**₃O); ¹³C NMR (CDCl₃) δ 29.9, 33.8, 44.2, 54.7, 67.1, 67.2, 106.9, 110.2, 128.2, 128.21, 128.26, 128.3, 128.4, 128.5, 134.9, 135.0, 141.6, 153.1, 167.3, 167.5, 205.6, ; HRMS m/z 4431478, calc. for C₂₅H₂₄O₆Na⁺ 443.1471.

2-(3-Oxo-1-thiophen-2-yl-butyl)-malonic acid dibenzyl ester (4q). Purified by FC using Et₂O/pentane and isolated as a colorless solid, mp. 39-40 °C. The enantiomers were separated by HPLC using a Daicel Chiralpak AD chiral stationary phase in hexane/2-propanol 95/5; $[\alpha]^{rt}_{D} = -6.6^{\circ}$ (c = 1.0

g/100mL, CHCl₃, 92% ee); ¹H NMR (CDCl₃) δ 2.01 (s, 3H, C**H**₃CO), 2.90-2.96 (m, 2H, COC**H**₂), 3.87 (d, J = 8.6 Hz, 1H, CO₂C**H**CO₂), 4.31-4.37 (m, 1H, C***H**), 5.00 (s, 2H, OC**H**₂), 5.13 (d, J = 4.3 Hz, 2H, OC**H**₂), 6.84 (d, J = 3.5 Hz, 2H, C₄**H**₃S), 7.12 (t, J = 3.5 Hz, 1H, C₄**H**₃S), 7.14-34 (m, 10H, Ar**H**); ¹³C NMR (CDCl₃) δ 30.2, 35.6, 47.6, 57.6, 67.2, 67.3, 124.2, 125.8, 126.6, 128.2, 128.24,

128.26, 128.3, 128.4, 128.5, 134.9, 135.0, 143.3, 167.2, 167.5, 205.5; HRMS m/z 459.1248 $(M+Na^+)$, calc. for $C_{25}H_{24}O_5SNa^+$ 459.1242.

2-(3-Oxo-1-pyridin-2-yl-butyl)-malonic acid dibenzyl ester (4r). Purified by FC using Et₂O/pentane and isolated as a dark color oil. The enantiomers were separated by HPLC using a Daicel Chiralpak AD chiral stationary phase in hexane/2-propanol 80/20; $[\alpha]^{rt}_{D} = -1.5^{\circ}$ (c = 1.0 g/100mL, EtOH,

79% ee); ¹H NMR (CDCl₃) δ 1.86 (s, 3H, C**H**₃CO), 2.72 (dd, J = 3.5, 17.5 Hz, 1H, COC**H**H), 3.06 (dd, J = 8.6, 17.5 Hz, 1H, COCH**H**), 3.97-4.04 (m, 2H, CO₂C**H**CO₂, C***H**), 4.85 (s, 2H, OC**H**₂), 5.06 (d, J = 1.6 Hz, 2H, OC**H**₂), 6.93-6.93 (m, 1H C₅**H**₄N), 7.01-7.25 (m, 11H, C₅**H**₄N, Ar**H**), 7.36-7.41 (m, 1H, C₅**H**₄N), 8.31 (d, J = 2.0 Hz, 1H, C₅**H**₄N); ¹³C NMR (CDCl₃) δ 30.0, 41.2, 45.8, 55.7, 66.8, 67.1, 121.8, 124.6, 128.0, 128.09, 128.1, 128.2, 128.3, 128.4, 135.0, 135.2, 136.1, 148.9, 160.0, 167.5, 168.0, 206.0; HRMS m/z 454.1629 (M+Na⁺), calc. for C₂₆H₂₅NO₅Na⁺ 454.1630.

BnO₂C CO₂Bn **2-[1-(2-Oxo-propyl)-pentyl]-malonic acid dibenzyl ester (4s).** Purified by FC using Et₂O/pentane and isolated as a colorless oil. The enantiomers were separated by HPLC using a Chiralcel OD chiral stationary phase in hexane/2-propanol 99/1; $[\alpha]^{\text{rt}}_{D} = -7.1^{\circ}$ (c = 0.45 g/100mL, CHCl₃, 91% ee); ¹H-NMR (CDCl₃) δ0.79-84 (m, 3H, CH₃), 1.15-1.36 (m, 6H, 3 CH₂), 2.03 (s, 3H, CH₃CO), 2.45 (dd, J = 6.4, 17.6 Hz, 1H, COCHH), 2.61-2.70 (m, 2H, COCHH and C*H), 3.65 (d, J = 5.6 Hz, 1H, CO₂CHCO₂), 5.11-5.14 (m, 4H, 2 OCH₂), 7.28-7.34 (m, 5H, ArH); ¹³C-NMR (CDCl₃) δ 13.9, 22.6, 29.1, 30.2, 31.8, 33.7, 45.1, 53.9, 66.9, 67.0, 128.2, 128.3, 128.4, 128.5, 135.3, 135.4, 168.4, 168.7, 207.4; HRMS m/z 433.2000 (M+Na⁺), calc. for C₂₅H₃₀O₅Na⁺ 433.1991.

2-(1-Isopropyl-3-oxo-butyl)-malonic acid dibenzyl ester (4t). Purified by FC using Et₂O/pentane and isolated as a colorless oil. The enantiomers were separated by HPLC using a Chiralpak AD chiral stationary phase in hexane/2-propanol 98/2; $[\alpha]^{\text{rt}}_{D} = -9.7^{\circ}$ (c = 1.0 g/100mL, CHCl₃, 84% ee); ¹H-NMR (CDCl₃) δ 0.79 (d, J = 7.2 Hz, 3H, CH₃CH), 0.87 (d, J = 7.2 Hz, 3H, CH₃CH), 1.68 (octet, J = 6.4 Hz, 1H, (CH₃)₂CH), 2.07 (s, 3H, COCH₃), 2.48 (dd, J = 5.6, 18.0 Hz, 1H, COCHH), 2.66 (dd, J = 5.6, 18.0 Hz, 1H, COCHH), 2.73 (quintet, J = 6.4 Hz, 1H, C*H), 3.63 (d, J = 6.4 Hz, 1H, CO₂CHCO₂), 5.10 (d, J = 3.6 Hz, 4H, 2 OCH₂), 7.26-7.34 (m, 10H, ArH); ¹³C-NMR (CDCl₃)

δ18.8, 20.5, 29.8, 30.1, 38.9. 42.8, 53.5, 67.0, 67.1, 128.2, 128.3, 128.4, 128.5, 128.6, 135.2, 135.3, 168.6, 168.9, 207.2; HRMS m/z 419.1834 (M+Na⁺), calc. for C₂₄H₂₈O₅Na⁺ 419.1834.

$$CO_2Bn$$

2-(3-Oxo-cyclohexyl)-malonic acid dibenzyl ester (4u). Purified by FC using EtOAc/pentane and isolated as a colorless solid, mp. 42-44 °C. The enantiomers were separated by HPLC using a Daicel Chiralpak AS chiral stationary phase in hexane/2-propanol 95/5; $[\alpha]^{\text{rt}}_{\text{D}} = -1.4^{\circ}$ (c = 1.0 g/100mL, MeOH, 83% ee); ¹H NMR (CDCl₃) δ 1.24-16.3 (m, 2H, C**H**₂), 1.84-2.02 (m,

2H, C**H**₂), 2.13-2.25 (m, 2H, C**H**₂), 2.32-2.44 (m, 2H, C**H**₂), 2.50-2.55 (m, 1H, C***H**), 3.39 (d, J = 8.6 Hz, 1H, CO₂C**H**CO₂), 5.12 (s, 3H, OC**H**₂), 5.13 (s, 2H, OC**H**₂), 7.24-7.35 (m, 10H Ar**H**); ¹³C NMR (CDCl₃) δ 24.4, 28.6, 38.1, 40.9, 45.0, 56.7, 67.2, 67.3, 128.2, 128.4, 128.6, 135.0, 135.1, 167.4, 167.5, 209.4; HRMS m/z 403.1513 (M+Na⁺), calc. for C₂₃H₂₄O₅Na⁺ 403.1521.

2-(3-Oxo-1-phenyl-pentyl)-malonic acid dibenzyl ester (4v). Purified by FC using Et₂O/CH₂Cl₂ and isolated as a colorless solid. The enantiomers were separated by HPLC using a Chiralpak AD chiral stationary phase in hexane/2-propanol 90/10; $[\alpha]^{\text{rt}}_{\text{D}} = +1.5^{\circ}$ (c = 1.0 g/100mL, EtOH, 95% ee). ¹H-NMR

(CDCl₃) δ 0.88 (t, J = 7.6 Hz, 3H, C**H**₃CH₂), 2.20 (qq, J = 7.6, 22.4 Hz, 2H, CH₃C**H**₂), 2.79-2.91 (m, 2H, COC**H**₂), 3.84 (d, J = 10.0 Hz, 1H, CO₂C**H**CO₂), 3.99-4.05 (m, 1H, C***H**), 4.89 (s, 2H, OC**H**₂), 5.13 (d, J = 2.8 Hz, 2H, OC**H**₂), 7.04-7.07 (m, 2H, Ar**H**), 7.17-7.33 (m, 13H, Ar**H**); ¹³C-NMR (CDCl₃) δ 7.4, 36.2, 40.5, 45.8, 57.3, 67.1, 67.2, 127.2, 128.0, 128.1, 128.2, 128.3, 128.4, 128.5, 128.6, 135.0, 135.1, 140.3, 167.4, 167.9, 208.6; HRMS m/z 467.1836 (M+Na⁺), calc. for C₂₈H₂₈O₅Na⁺ 467.1834.

2-(4-Methyl-3-oxo-1-phenyl-pentyl)-malonic acid dibenzyl ester (4w). Purified by FC using Et₂O/CH₂Cl₂ and isolated as a colorless solid. The enantiomers were separated by HPLC using a Chiralpak AD chiral stationary

phase in hexane/2-propanol 95/5; $[\alpha]^{rt}_{D} = +3.3^{\circ}$ (c = 0.58 g/100mL, $CH_{2}Cl_{2}$,

94% ee); ¹H-NMR (CDCl₃) δ 0.78 (d, J = 6.8 Hz, 3H, C**H**₃CH), 0.84 (d, J = 6.8 Hz, 3H, C**H**₃CH), 2.92 (septet, J = 6.8 Hz, 1H, C**H**(CH₃)₂), 2.77 (dd, J = 4.8, 16.8 Hz, 1H, COC**H**H), 2.87 (dd, J = 9.6, 16.8 Hz, 1H, COC**H**H), 3.78 (d, J = 9.6 Hz, 1H, CO₂C**H**CO₂), 3.92-3.99 (m, 1H, C***H**), 4.82 (s, 2H, OC**H**₂), 5.06 (d, J = 2.0 Hz, 2H, OC**H**₂), 6.98-7.00 (m, 2H, Ar**H**), 7.10-7.29 (m, 13H, Ar**H**);

¹³C-NMR (CDCl₃) δ 17.7, 17.8, 40.4, 41.0, 43.9, 57.2, 67.1, 67.2, 127.1, 128.0, 128.1, 128.2, 128.3, 128.4, 128.5, 128.6, 128.7, 135.0, 135.2, 140.5, 167.5, 167.9, 211.7; HRMS m/z 481.1993 (M+Na⁺), calc. for $C_{29}H_{30}O_5Na^+$ 481.1991.

$$\begin{array}{c|c} \mathsf{BnO}_2\mathsf{C} & \mathsf{CO}_2\mathsf{Bn} \\ \mathsf{MeO}_2\mathsf{C} & \\ & \mathsf{Me} & \mathsf{O} \end{array}$$

2-Benzyloxycarbonyl-3-(2-oxo-propyl)-succinic acid 1-benzyl ester 4-methyl ester (4x). Purified by FC using Et_2O/CH_2Cl_2 and isolated as a colorless oil The enantiomers were separated by HPLC using a Daicel Chiralcel OD chiral stationary phase in hexane/2-propanol 90/10; $[\alpha]^{rt}_D = -$

2.9° (c = 1.0 g/100mL, CHCl₃, 59% ee). ¹H NMR (CDCl₃) δ 2.05 (s, 3H, C**H**₃CO), 2.72 (dd, J = 4.7, 18.3 Hz, 1H, COC**H**₂), 2.94 (dd, J = 7.4, 18.3 Hz, 1H, COC**H**₂), 3.53 (s, 3H, CO₂C**H**₃), 3.61-3.66 (m, 1H, C***H**), 3.99 (d, J = 6.6 Hz 1H, CO₂C**H**CO₂), 5.12 (d, J = 1.6 Hz, 4H OC**H**₂), 7.24-7.33 (m, 10H, Ar**H**); ¹³C NMR (CDCl₃) δ 29.7, 39.1, 41.7, 52.0, 52.3, 67.4, 67.5, 128.32, 128.36, 128.4, 128.44, 128.5, 134.9, 167.5, 167.7, 172.3, 205.4; HRMS m/z 435.1413 (M+Na⁺), calc for C₂₃H₂₄O₇Na⁺ 435.1420.

$$\begin{array}{c} \mathsf{O} \\ \mathsf{Me} \\ & \mathsf{CO}_2\mathsf{Me} \\ \mathsf{NO}_2 \\ \end{array}$$

2-[1-(2-Nitro-phenyl)-3-oxo-butyl]-malonic acid dimethyl ester (4y). Prepared by transesterfication of **4n**. To a solution of 110.0 mg of the dibenzylester **4n** in 10 mL MeOH was added 1.0 mL of conc. HCl and the mixture was refluxed for 60 hrs or until all the starting material were consumed (TLC or GC). The solvent was evaporated and the mixture was

diluted with water and extracted with CH_2Cl_2 . After evaporation of the CH_2Cl_2 the crude product was purified by FC using Et_2O/CH_2Cl_2 and isolated as a colorless oil. The enantiomers were separated by HPLC using a Daicel Chiralpak AS chiral stationary phase in hexane/2-propanol 97/3; 1H NMR (CDCl₃) δ 2.08 (s, CH_3CO), 3.05-3.18 (m, 2H, CH_2CO), 5.58 (s, 3H, CO_2CH_3), 3.69 (s, 3H, CO_2CH_3), 4.01 (d, J = 8.2 Hz, 1H, CO_2CHCO_2), 4.43-4.49 (m, 1H, C*H), 7.33-7.42 (m, 2H, C*H), 7.51 (t, C*H), 7.51 (t, C*H), 7.79 (d, C*H), 7.79 (d, C*H), 7.51 (t, C*H), 7.51 (t, C*H), 7.51, 128.0, 128.9, 132.6, 135.2, 150.2, 167.8, 168.4, 205.5; HRMS m/z 346.0901, (M+Na+) calc for $C*H_1$ 07Na+ 346.0903.

5-Oxo-3-phenyl-hexanoic acid methyl ester 6. Prepared by the decarboxylation-transesterfication procedure of **4f** as shown in Scheme 2. To a solution of 120.4 mg of **4f** in MeOH was added 10 mg 10% Pd/C and the

mixture was stirred for 2.5 hrs at ambient temperature under a H_2 atmosphere to afford the crude diacid. After filtering off the catalyst, the solution was refluxed in H_2O overnight to afford the crude monoacid after evaporation of the solvent. The monoacid was redissolved in MeOH and toluene was added to give a 5/2 MeOH-toluene solution to which trimethylsilyldiazomethane (2.0 M in hexane) was added dropvise until the yellow color persisted and no more N_2 was evolved. After 5 minutes of stirring a drop of CH_3COOH was added to quench the excess of trimethylsilyldiazomethane and the mixture was stirred for another 5 minutes. After removal of the solvents the crude reaction mixture was purified by FC using Et_2O /pentane and 41.5 mg (67%) of 6 was isolated as a colorless oil. The enantiomers were separated by HPLC using a Daicel Chiralcel OD chiral stationary phase in hexane/2-propanol 95/5; $[\alpha]^{rt}_D = +6.8^o$ (c = 1.0 g/100mL, CHCl₃, 96% ee); ¹H NMR (CDCl₃) δ 2.01 (s, 3H, CH_3CO), 2.65 (octet, J = 7.8 Hz, 2H, $COCH_2$), 2.75-2.85(m, 2H, $CH_2CO_2CH_3$), 3.57 (s, 3H, CO_2CH_3), 3.65-3.71 (m, 1H, $C*H_1$), 7.23 (m, 5H, ArH_1); ¹³C NMR (CDCl₃) δ 30.4, 37.2, 40.5, 49.3, 51.6, 126.8, 127.2, 128.6, 143.0, 172.2, 206.8; HRMS m/z 243.0990 (M+Na⁺), calc. for $C_{13}H_{16}O_3Na^+$ 243.0997.

MeO₂C CO₂Me (2R,4R,)-2-(2-Methyl-1,2,3,4-tetrahydro-quinolin-4-yl)-malonic acid dimethyl ester 7. Prepared by reductive amination of 4y (unoptimised). To 16.2 mg of 4y in EtOH (10 mL) was added 15 mg 10% Pd/C and 1.0 mL acetic acid and the reaction mixture was stirred under a H₂ atmosphere (5 bar) for 30 min.

After filtering off the catalyst and evaporating the solvent, the residue was dissolved in saturated NaHCO₃ and extracted with CH₂Cl₂. After removal of the solvent the product **7** was purified from the by products 2-methyl-quinoline and 2-methyl-quinoline-*N*-oxide by FC using Et₂O/pentane. This reductive amination was very sensitive to the conditions, for instance using MeOH instead of EtOH afforded no product, and longer reaction times at lower pressure also afforded decreased yields. The enantiomeric excess was determined by GC using a Chrompack Chirasil Dex-CB chiral stationary phase. [α]^{rt}_D = +1.1° (c = 1.0 g/100mL, CHCl₃, 86% ee).; ¹H NMR (CDCl₃) δ 1.15 (d, J = 6.8 Hz, 3H, CH₃CH), 1.84 (m, 2H, CH₂), 3.32-3.44 (m, 1H), 3.57 (s, 3H, CO₂CH₃), 3.60-3.68 (m, 1H), 3.71 (s, 3H, CO₂CH₃), 4.03 (d, J = 6.0 Hz, 1H, CH(CO)₂), 6.41 (dd, J = 0.8, 8.0 Hz, 1H, ArH), 6.54 (t, J = 7.4 Hz, 1H, ArH), 6.87-6.93 (m, 2H, ArH); ¹³C NMR (CDCl₃) δ 22.9, 33.6, 36.7, 47.6, 52.5, 52.9, 54.6, 110.0, 114.8, 117.6, 126.3, 127.7, 145.8, 168.8, 169.8; HRMS m/z 300.1194 (M+Na⁺), calc. for C₁₅H₁₉O₄NNa⁺ 300.1212.

References:

- 1. M. Adeva, F. Buono, E. Caballero, M. Medarde, F. Tome, Syn. Lett. 2000, 832.
- 2. V. L. Boulair, R. Gree, Chem. Commun. 2000, 2195.
- 3. C. N. Robinson, L. J. Wiseman, C. D. Slater, Terahedron 1989, 45, 4103.
- 4. A. L. Wilds, R. H. Zeitschel, R. E. Sutton, J. A. Johnson Jr. J. Org. Chem. 1954, 19, 255.
- 5. J. R. Dimmock, S. S. Jonnalagadda, S. Hussein, S. Tewari, J. W. Quail, et al, *Eur. J. Med. Chem. Chim. Ther.* **1990**, 25, 581.