

Supporting Information

for

Angew. Chem. Int. Ed. Z51345

© Wiley-VCH 2003

69451 Weinheim, Germany

A Flexible and Catalytic One-Pot Procedure for the Synthesis of Indoles

Holger Siebeneicher, Igor Bytschkov, and Sven Doye*

Institut für Organische Chemie der Universität Hannover
Schneiderberg 1B, D-30167 Hannover, Germany
Fax: (internat.) + 49-511/762-3011
E-mail: sven.doye@oci.uni-hannover.de

General Remarks: All reactions were performed under an inert atmosphere of argon in flame dried Duran glassware (e.g. Schlenk tubes equipped with Teflon stopcocks). Toluene was distilled from molten sodium under argon. 1,4-Dioxane was dried with molecular sieves (3 Å). $[\text{Cp}_2\text{TiMe}_2]$ was synthesized according to ref. ^[4a] Aminoalkynes **23-30** were synthesized according to ref. ^[8] 1,3-Bis(2,4,6-trimethylphenyl)imidazolium chloride was synthesized according to a literature procedure (A. J. Arduengo, III, R. Krafczyk, R. Schmutzler, H. A. Craig, J. R. Goerlich, W. J. Marshall, M. Unverzagt, *Tetrahedron* **1999**, *55*, 14523-14534). All other reagents were purchased from commercial sources and were used without further purification. Unless otherwise noted, yields refer to isolated yields of pure compounds as gauged by TLC and ^1H and ^{13}C NMR. All products were characterized by ^1H NMR, ^{13}C NMR, and infrared (IR) spectroscopy, and mass spectrometry (MS). New compounds were further characterized by high-resolution mass spectrometry (HRMS) or CHN elemental analysis. NMR spectra were recorded on a Bruker Avance 400 MHz spectrometer. All ^1H NMR spectra are reported in δ units ppm downfield from tetramethylsilane internal standard. All ^{13}C NMR spectra are reported in δ units ppm relative to the central line of the triplet for

CDCl_3 at 77.0 ppm. Infrared spectra were recorded on a Bruker Vector 22 spectrometer using an attenuated total reflection (ATR) method. Mass spectra were recorded on a Finnigan MAT 312 or a VG Autospec (EI) with an ionization potential of 70 eV or a Micromass LCT (ESI). Elemental analysis were carried out on an Elementar Vario EL machine. PE: light petroleum ether, b.p. 40-60°C.

Synthesis of Indoles. General Procedure A: A Schlenk tube equipped with a Teflon stopcock and a magnetic stirring bar was charged with amine (2.0 mmol), alkyne (2.0 mmol), and a solution of $[\text{Cp}_2\text{TiMe}_2]$ (0.21 mL, $c = 0.48 \text{ mol/L}$ in toluene, 0.1 mmol, 5.0 mol %). The mixture was heated to 110°C for 24 h (TLC monitoring). After the obtained brown liquid had been allowed to reach room temperature, $[\text{Pd}_2(\text{dba})_3]$ (92 mg, 0.1 mmol, 5.0 mol %), 1,3-Bis(2,4,6-trimethylphenyl)imidazolium chloride (68 mg, 0.2 mmol, 10.0 mol %), $\text{KO}t\text{Bu}$ (337 mg, 3.0 mmol), and 1,4-dioxane (5.0 mL) were added. The mixture was heated to 110°C for further 12 h (TLC monitoring). Then, the reaction mixture was filtered through SiO_2 . After the SiO_2 had been washed with CH_2Cl_2 , the organic layer was concentrated under vacuum. The residue was purified by flash chromatography (SiO_2).

Indole 11: General Procedure A was used to synthesize indole **11** from alkyne **1** and (*rac*)-1-phenylethylamine. 10.0 mol % $[\text{Cp}_2\text{TiMe}_2]$ and 3.0 mmol amine were used for the hydroamination step. After purification by flash chromatography (PE/EtOAc, 50:1), compound **11** (344 mg, 1.31 mmol, 65 %) was isolated as a colorless oil. ^1H NMR (400 MHz, CDCl_3): $\delta = 1.01$ (t, $J = 7.3 \text{ Hz}$, 3 H), 1.69-1.79 (m, 2 H), 1.93 (d, $J = 7.2 \text{ Hz}$, 3 H), 2.67 (ddd, $J = 15.5, 7.8, 7.7 \text{ Hz}$, 1 H), 2.74 (ddd, $J = 15.6, 7.7, 7.6 \text{ Hz}$, 1 H), 5.72 (q, $J = 7.2 \text{ Hz}$, 1 H), 6.31 (s, 1 H), 6.91 (d, $J = 3.5 \text{ Hz}$, 2 H), 6.97-7.01 (m, 1 H), 7.15 (d, $J = 8.0 \text{ Hz}$, 2 H), 7.20-7.30 (m, 3 H), 7.53 (d, $J = 7.8 \text{ Hz}$, 1 H) ppm. ^{13}C NMR (100.6 MHz, DEPT, CDCl_3): $\delta = 14.0$ (CH_3), 18.5 (CH_3), 22.1 (CH_2), 29.7 (CH_2), 52.2 (CH), 99.8 (CH), 111.6 (CH), 119.0 (CH), 119.8 (CH), 120.1 (CH), 126.2 (CH), 127.0 (CH), 128.5 (CH), 128.8 (C), 135.4 (C), 141.1 (C), 141.5 (C) ppm. IR: $\nu = 3029, 2959, 2932, 2871, 1604, 1544, 1456, 1403, 1376, 1309, 747, 732, 695 \text{ cm}^{-1}$. HRMS (ESI, CH_3CN): calcd.

(C₁₉H₂₁N+H) 264.1752; found 264.1764. C₁₉H₂₁N (263.4): calcd. C 86.65, H 8.04, N 5.32; found C 86.26, H 8.00, N 5.26.

Indole 12: General Procedure A was used to synthesize indole **12** from alkyne **2** and 4-methoxyaniline. After purification by flash chromatography (PE/EtOAc, 10:1), compound **12** (436 mg, 1.56 mmol, 78 %) was isolated as a brown solid. ¹H NMR (400 MHz, CDCl₃): δ = 0.85 (t, *J* = 7.4 Hz, 3 H), 1.31 (sex, *J* = 7.5 Hz, 2 H), 1.56 (quin, *J* = 7.2 Hz, 2 H), 2.58 (t, *J* = 7.5 Hz, 2 H), 3.87 (s, 3 H), 6.38 (d, *J* = 0.6 Hz, 1 H), 7.01 (d, *J* = 8.9 Hz, 2 H), 6.99-7.10 (m, 3 H), 7.23 (d, *J* = 8.9 Hz, 2 H), 7.57 (dd, *J* = 6.6, 2.2 Hz, 1 H) ppm. ¹³C NMR (100.6 MHz, DEPT, CDCl₃): δ = 13.8 (CH₃), 22.3 (CH₂), 26.7 (CH₂), 30.7 (CH₂), 55.5 (CH₃), 99.6 (CH), 109.9 (CH), 114.5 (CH), 119.5 (CH), 119.7 (CH), 120.8 (CH), 128.0 (C), 129.4 (CH), 130.7 (C), 138.6 (C), 142.2 (C), 159.0 (C) ppm. IR: ν = 3048, 2954, 2930, 2860, 1610, 1547, 1510, 1456, 1245, 1034, 829, 745 cm⁻¹. HRMS (ESI, CH₃CN): calcd. (C₁₉H₂₁NO+H) 280.1701; found 280.1715. C₁₉H₂₁NO (279.4): calcd. C 81.68, H 7.58, N 5.01; found C 81.64, H 7.69, N 5.45.

Indole 13: General Procedure A was used to synthesize indole **13** from alkyne **3** and 4-methylaniline. After purification by flash chromatography (PE), compound **13** (383 mg, 1.55 mmol, 77 %) was isolated as a grey solid. ¹H NMR (400 MHz, CDCl₃): δ = 0.74-0.78 (m, 2 H), 0.80-0.87 (m, 2 H), 1.64-1.71 (m, 1 H), 2.44 (s, 3 H), 6.17 (s, 1 H), 7.04-7.11 (m, 3 H), 7.30 (d, *J* = 8.8 Hz, 2 H), 7.33 (d, *J* = 8.8 Hz, 2 H), 7.51-7.55 (m, 1 H) ppm. ¹³C NMR (100.6 MHz, DEPT, CDCl₃): δ = 8.3 (CH₂), 8.3 (CH), 21.2 (CH₃), 96.9 (CH), 109.9 (CH), 119.7 (CH), 119.9 (CH), 121.0 (CH), 127.9 (CH), 127.9 (C), 129.9 (CH), 135.5 (C), 137.3 (C), 138.3 (C), 144.1 (C) ppm. IR: ν = 3043, 3010, 1550, 1515, 1456, 1397, 1309, 1298, 1211, 881, 839, 747, 733 cm⁻¹. HRMS (ESI, CH₃CN): calcd. (C₁₈H₁₇N+H) 248.1439; found 248.1446. C₁₈H₁₇N (247.3): calcd. C 87.41, H 6.93, N 5.66; found C 87.38, H 6.93, N 5.51.

Indole 14: General Procedure A was used to synthesize indole **14** from alkyne **4** and *tert*-butylamine. After purification by flash chromatography (PE), compound **14** (197 mg, 0.78 mmol, 39 %) was isolated as a brown solid. ¹H NMR (400 MHz, CDCl₃): δ =

1.65-1.82 (m, 4 H), 1.77 (s, 9 H), 2.15-2.19 (m, 2 H), 2.25-2.27 (m, 2 H), 5.79 (quin, J = 1.9 Hz, 1 H), 6.16 (d, J = 0.6 Hz, 1 H), 7.03 (td, J = 7.5, 0.7 Hz, 1 H), 7.09 (td, J = 8.4, 1.4 Hz, 1 H), 7.51 (dd, J = 7.7, 0.7 Hz, 1 H), 7.63 (dd, J = 8.4, 0.6 Hz, 1 H) ppm. ^{13}C NMR (100.6 MHz, DEPT, CDCl_3): δ = 21.9 (CH_2), 22.8 (CH_2), 25.5 (CH_2), 30.9 (CH_3), 32.6 (CH_2), 58.4 (C), 103.4 (CH), 114.7 (CH), 118.9 (CH), 120.0 (CH), 120.2 (CH), 128.1 (CH), 129.2 (C), 134.7 (C), 136.9 (C), 144.6 (C) ppm. IR: ν = 2992, 2934, 2836, 1530, 1473, 1455, 1397, 1370, 1319, 1291, 1199, 784, 752, 735 cm^{-1} . MS (25°C): m/z (%) = 254 (87) [M^+], 197 (100), 169 (60), 154 (16), 130 (21), 117 (38), 103 (2), 79 (8). HRMS: calcd. ($\text{C}_{18}\text{H}_{23}\text{N}$) 253.1831; found 253.1828. $\text{C}_{18}\text{H}_{23}\text{N}$ (253.4): calcd. C 85.32, H 9.15, N 5.53; found C 84.75, H 8.79, N 5.01.

Indole 15: General Procedure A was used to synthesize indole **15** from alkyne **5** and *tert*-butylamine. After purification by flash chromatography (PE/EtOAc, 10:1), compound **15** (470 mg, 1.40 mmol, 70 %) was isolated as a grey solid. ^1H NMR (400 MHz, CDCl_3): δ = 1.66-1.88 (m, 4 H), 1.82 (s, 9 H), 2.97 (t, J = 6.2 Hz, 2 H), 3.52 (t, J = 6.2 Hz, 2 H), 4.50 (s, 2 H), 6.28 (s, 1 H), 7.01 (td, J = 7.3, 1.0 Hz, 1 H), 7.06 (td, J = 8.3, 1.5 Hz, 1 H), 7.25-7.34 (m, 5 H), 7.48 (dd, J = 7.5, 1.1 Hz, 1 H), 7.66 (dd, J = 8.3, 0.3 Hz, 1 H) ppm. ^{13}C NMR (100.6 MHz, DEPT, CDCl_3): δ = 21.2 (CH_2), 29.7 (CH_2), 31.3 (CH_2), 31.5 (CH_3), 58.8 (C), 70.1 (CH_2), 72.9 (CH_2), 102.8 (CH), 114.5 (CH), 118.6 (CH), 119.8 (CH), 127.5 (CH), 127.6 (CH), 128.3 (CH), 129.1 (C), 137.2 (C), 138.6 (C), 142.6 (C) ppm. IR: ν = 2932, 2857, 1604, 1538, 1454, 1400, 1368, 1288, 1202, 1103, 777, 732, 696 cm^{-1} . HRMS (ESI, CH_3CN): calcd. ($\text{C}_{23}\text{H}_{29}\text{NO}+\text{H}$) 336.2327; found 336.2312. $\text{C}_{23}\text{H}_{29}\text{NO}$ (335.5): calcd. C 82.34, H 8.71, N 4.18; found C 82.44, H 8.59, N 4.65.

Indole 16: General Procedure A was used to synthesize indole **16** from alkyne **6** and *tert*-butylamine. After purification by flash chromatography (PE), compound **16** (320 mg, 1.30 mmol, 65 %) was isolated as a bright yellow oil. ^1H NMR (400 MHz, CDCl_3): δ = 1.03 (t, J = 7.3 Hz, 3 H), 1.74 (sex, J = 7.5 Hz, 2 H), 1.81 (s, 9 H), 2.90 (t, J = 7.5 Hz, 2 H), 3.82 (s, 3 H), 6.20 (d, J = 0.5 Hz, 1 H), 6.71 (dd, J = 9.2, 2.6 Hz, 1 H), 6.96 (d, J = 2.6 Hz, 1 H), 7.54 (d, J = 9.2 Hz, 1 H) ppm. ^{13}C NMR (100.6 MHz, DEPT, CDCl_3):

δ = 14.2 (CH₃), 23.7 (CH₂), 31.5 (CH₃), 33.7 (CH₂), 55.7 (CH₃), 58.6 (C), 101.5 (CH), 102.4 (CH), 109.5 (CH), 115.1 (CH), 129.6 (C), 132.3 (C), 143.5 (C), 153.1 (C) ppm. IR: ν = 2958, 2872, 2829, 1615, 1577, 1472, 1434, 1368, 1210, 1176, 1130, 1040, 833 cm⁻¹. HRMS (ESI, CH₃CN): calcd. (C₁₆H₂₃NO+H) 246.1858; found 246.1869. C₁₆H₂₃NO (245.4): calcd. C 78.32, H 9.45, N 5.71; found C 78.13, H 9.14, N 6.03.

Indole 17: General Procedure A was used to synthesize indole **17** from alkyne **7** and 4-methoxyaniline. After purification by flash chromatography (PE/EtOAc, 10:1), compound **17** (674 mg, 1.62 mmol, 81 %) was isolated as a brown solid. ¹H NMR (400 MHz, CDCl₃): δ = 1.57-1.70 (m, 4 H), 2.59 (t, *J* = 7.3 Hz, 2 H), 3.41 (t, *J* = 6.2 Hz, 2 H), 3.84 (s, 3 H), 3.85 (s, 3 H), 4.44 (s, 2 H), 6.31 (s, 1 H), 6.72 (dd, *J* = 8.9, 2.5 Hz, 1 H), 6.90 (d, *J* = 8.9 Hz, 1 H), 6.98 (d, *J* = 8.9 Hz, 2 H), 7.04 (d, *J* = 2.4 Hz, 1 H), 7.20 (d, *J* = 8.9 Hz, 2 H), 7.24-7.35 (m, 5 H) ppm. ¹³C NMR (100.6 MHz, DEPT, CDCl₃): δ = 25.4 (CH₂), 26.8 (CH₂), 29.3 (CH₂), 55.5 (CH₃), 55.9 (CH₃), 70.0 (CH₂), 72.8 (CH₂), 99.6 (CH), 101.8 (CH), 110.6 (CH), 110.7 (CH), 114.5 (CH), 127.4 (CH), 127.5 (CH), 128.2 (C), 128.3 (CH), 129.3 (CH), 130.7 (C), 133.9 (C), 138.6 (C), 142.4 (C), 154.3 (C), 158.9 (C) ppm. IR: ν = 3011, 2937, 2867, 2799, 1614, 1578, 1511, 1477, 1448, 1247, 1212, 1166, 1099, 1084, 1033, 836, 802, 759, 703 cm⁻¹. HRMS (ESI, CH₃CN): calcd. (C₂₇H₂₉NO₃+H) 416.2226; found 416.2245. C₂₇H₂₉NO₃ (415.5): calcd. C 78.04, H 7.03, N 3.37; found C 77.94, H 6.93, N 3.18.

Indole 18: General Procedure A was used to synthesize indole **18** from alkyne **8** and 4-methylaniline. After purification by flash chromatography (PE/EtOAc, 40:1), compound **18** (428 mg, 1.36 mmol, 68 %) was isolated as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 0.76-0.80 (m, 2 H), 0.82-0.91 (m, 2 H), 1.63-1.70 (m, 1 H), 2.46 (s, 3 H), 6.23 (s, 1 H), 7.12 (d, *J* = 8.5 Hz, 1 H), 7.27-7.35 (m, 5 H), 7.82 (s, 1 H) ppm. ¹³C NMR (100.6 MHz, DEPT, CDCl₃): δ = 8.3 (CH), 8.5 (CH₂), 21.2 (CH₃), 97.6 (CH), 110.0 (CH), 117.3 (CH, q, *J* = 4 Hz), 117.7 (CH, q, *J* = 4 Hz), 122.3 (C, q, *J* = 32 Hz), 125.5 (CF₃, q, *J* = 271 Hz), 127.3 (C), 127.8 (CH), 130.1 (CH), 134.8 (C), 138.1 (C), 139.6 (C), 146.2 (C) ppm. IR: ν = 3012, 2925, 1613, 1557, 1515, 1452, 1328, 1275, 1151, 1106, 1054, 806 cm⁻¹. HRMS (ESI, CH₃CN): calcd. (C₁₉H₁₆NF₃+H) 316.1313; found

316.1321. $C_{19}H_{16}NF_3$ (315.3): calcd. C 72.37, H 5.11, N 4.44; found C 72.47, H 5.00, N 4.32.

Indole 19: General Procedure A was used to synthesize indole **19** from alkyne **9** and 4-methylaniline. After purification by flash chromatography (PE/EtOAc, 20:1), compound **19** (640 mg, 1.50 mmol, 75 %) was isolated as a bright yellow oil. 1H NMR (400 MHz, $CDCl_3$): δ = 0.70-0.83 (m, 4 H), 1.59-1.66 (m, 1 H), 2.40 (s, 3 H), 6.05 (s, 1 H), 6.46 (d, J = 1.8 Hz, 1 H), 6.64 (dd, J = 8.2, 1.8 Hz, 1 H), 7.06 (d, J = 8.3 Hz, 2 H), 7.11 (dd, J = 7.8, 1.6 Hz, 2 H), 7.19-7.42 (m, 9 H), 7.68-7.70 (m, 2 H) ppm. ^{13}C NMR (100.6 MHz, DEPT, $CDCl_3$): δ = 8.2 (CH₂), 8.4 (CH), 21.1 (CH₃), 96.9 (CH), 103.2 (CH), 115.9 (CH), 119.3 (CH), 124.4 (C), 127.6 (CH), 127.9 (CH), 128.0 (CH), 128.1 (CH), 129.1 (CH), 130.2 (CH), 135.4 (C), 137.0 (C), 137.2 (C), 138.4 (C), 140.4 (C), 143.8 (C), 145.4 (C), 166.9 (C) ppm. IR: ν = 3024, 1659, 1595, 1567, 1514, 1444, 1296, 811, 693 cm⁻¹. HRMS (ESI, CH₃CN): calcd. ($C_{31}H_{26}N_2+H$) 427.2174; found 427.2190.

Indole 20: General Procedure A was used to synthesize indole **20** from alkyne **10** and 4-methoxyaniline. After purification by flash chromatography (PE/EtOAc, 10:1), compound **20** (586 mg, 1.28 mmol, 64 %) was isolated as a bright yellow oil. 1H NMR (400 MHz, $CDCl_3$): δ = 0.84 (t, J = 7.3 Hz, 3 H), 1.25-1.34 (m, 2H), 1.49-1.57 (m, 2 H), 2.52 (t, J = 7.5 Hz, 2 H), 3.84 (s, 3 H), 6.25 (d, J = 0.6 Hz, 1 H), 6.40 (d, J = 1.6 Hz, 1 H), 6.62 (dd, J = 8.3, 1.9 Hz, 1 H), 6.91 (d, J = 8.9 Hz, 2 H), 6.99 (d, J = 8.9 Hz, 2 H), 7.08-7.13 (m, 2 H), 7.21-7.29 (m, 3 H), 7.32 (d, J = 8.2 Hz, 1 H), 7.34-7.41 (m, 3 H), 7.69 (dd, J = 8.3, 1.3 Hz, 2 H) ppm. ^{13}C NMR (100.6 MHz, DEPT, $CDCl_3$): δ = 13.8 (CH₃), 22.4 (CH₂), 26.7 (CH₂), 30.6 (CH₂), 55.5 (CH₃), 99.3 (CH), 103.4 (CH), 114.4 (CH), 115.7 (CH), 119.1 (CH), 124.5 (C), 127.9 (CH), 128.0 (CH), 128.1 (CH), 129.1 (CH), 129.1 (CH), 129.6 (CH), 130.2 (CH), 130.5 (C), 137.1 (C), 138.7 (C), 140.4 (C), 142.0 (C), 145.1 (C), 158.7 (C), 166.8 (C) ppm. IR: ν = 3056, 2954, 2929, 2859, 1607, 1511, 1444, 1244, 1032, 833, 815, 766, 693 cm⁻¹. MS (180°C): m/z (%) = 458 (100) [M^+], 415 (24), 287 (16), 272 (12), 210 (9), 204 (9), 91 (9). HRMS: calcd. ($C_{32}H_{30}N_2O$) 458.2358; found 458.2356.

Cleavage of the Benzophenone Imine. General Procedure B: A round-bottomed flask equipped with a magnetic stirring bar was charged with indole (1.0 mmol), THF (3.5 mL), and HCl (2 N, 0.35 mL). After this had stirred at 25°C for 30 min (TLC monitoring), KOH (2 N) and *tert*-butyl methyl ether were added. The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (3×). The combined organic layers were dried with Na₂SO₄ and concentrated under vacuum. The residue was purified by flash chromatography (SiO₂).

Indole 21: General Procedure B was used to synthesize indole **21** from indole **19**. After purification by flash chromatography (PE/EtOAc, 3:1), compound **21** (226 mg, 0.86 mmol, 86 %) was isolated as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 0.67-0.83 (m, 4 H), 1.58-1.65 (m, 1 H), 2.44 (s, 3 H), 3.47 (br. s, 2 H), 6.06 (br. s, 1 H), 6.42 (d, *J* = 1.8 Hz, 1 H), 6.52 (dd, *J* = 8.3, 2.0 Hz, 1 H), 7.30 (d, *J* = 7.3 Hz, 1 H), 7.31 (br. s, 4 H) ppm. ¹³C NMR (100.6 MHz, DEPT, CDCl₃): δ = 7.9 (CH₂), 8.3 (CH), 21.2 (CH₃), 95.9 (CH), 97.1 (CH), 110.5 (CH), 120.3 (CH), 121.1 (C), 127.9 (CH), 129.8 (CH), 135.8 (C), 137.1 (C), 139.4 (C), 141.5 (C), 142.1 (C) ppm. IR: ν = 3429, 3351, 3006, 2919, 1623, 1513, 1492, 1453, 1399, 1241, 1124, 1020, 804 cm⁻¹. HRMS (ESI, CH₃CN): calcd. (C₁₈H₁₈N₂+H) 263.1548; found 263.1546.

Indole 22: General Procedure B was used to synthesize indole **22** from indole **20**. After purification by flash chromatography (PE/EtOAc, 1:1), compound **22** (250 mg, 0.85 mmol, 85 %) was isolated as a yellow oil. ¹H NMR (400 MHz, CDCl₃): δ = 0.84 (t, *J* = 7.3 Hz, 3 H), 1.23-1.34 (m, 2 H), 1.52 (quin, *J* = 7.6 Hz, 2 H), 2.51 (t, *J* = 7.4 Hz, 2 H), 3.43 (br. s, 2 H), 3.86 (s, 3 H), 6.24 (d, *J* = 0.8 Hz, 1 H), 6.32 (d, *J* = 2.0 Hz, 1 H), 6.52 (dd, *J* = 8.3, 2.0 Hz, 1 H), 7.00 (d, *J* = 8.9 Hz, 2 H), 7.21 (d, *J* = 8.8 Hz, 2 H), 7.32 (d, *J* = 8.3 Hz, 1 H) ppm. ¹³C NMR (100.6 MHz, DEPT, CDCl₃): δ = 13.8 (CH₃), 22.3 (CH₂), 26.6 (CH₂), 30.7 (CH₂), 55.4 (CH₃), 96.0 (CH), 99.4 (CH), 110.3 (CH), 114.5 (CH), 120.1 (CH), 121.2 (C), 129.4 (CH), 130.9 (C), 139.7 (C), 140.1 (C), 141.3 (C), 158.8 (C) ppm. IR: ν = 3435, 3353, 2954, 2929, 2859, 1622, 1510, 1493, 1455, 1243, 1032, 805 cm⁻¹. HRMS (ESI, CH₃CN): calcd. (C₁₉H₂₂N₂O+H+CH₃CN) 336.2076; found

336.2073. $C_{19}H_{22}N_2O$ (294.4): calcd. C 77.52, H 7.53, N 9.52; found C 76.98, H 7.43, N 9.89.

Synthesis of Indoles. General Procedure C: A Schlenk tube equipped with a Teflon stopcock and a magnetic stirring bar was charged with aminoalkyne (1.0 mmol) and a solution of $[Cp_2TiMe_2]$ (0.10 mL, $c = 0.48$ mol/L in toluene, 0.05 mmol, 5.0 mol %). The mixture was heated to 110°C for 4-48 h (TLC monitoring). After the obtained brown liquid had been allowed to reach room temperature, $[Pd_2(dbu)_3]$ (46 mg, 0.05 mmol, 5.0 mol %), 1,3-Bis(2,4,6-trimethylphenyl)imidazolium chloride (34 mg, 0.1 mmol, 10.0 mol %), $KOtBu$ (168 mg, 1.5 mmol), and 1,4-dioxane (2.5 mL) were added. After this had stirred at 110°C for 12 h (TLC monitoring), water and *tert*-butyl methyl ether were added. The organic layer was separated and the aqueous layer was extracted with *tert*-butyl methyl ether (3×). The combined organic layers were dried with Na_2SO_4 and concentrated under vacuum. The residue was purified by flash chromatography (SiO_2).

Indole 31: General Procedure C was used to synthesize indole **31** from aminoalkyne **23**. The reaction time of the hydroamination step was 6 h. After purification by flash chromatography (PE/EtOAc, 20:1), compound **31** (116 mg, 0.68 mmol, 68 %) was isolated as a bright yellow oil. 1H NMR (400 MHz, $CDCl_3$): $\delta = 1.81$ -1.90 (m, 2 H), 2.01-2.10 (m, 2 H), 2.95 (t, $J = 6.2$ Hz, 2 H), 4.00 (t, $J = 6.2$ Hz, 2 H), 6.17 (s, 1 H), 7.06 (td, $J = 7.0, 1.1$ Hz, 1 H), 7.11 (td, $J = 7.2, 1.2$ Hz, 1 H), 7.23 (d, $J = 8.2$ Hz, 1 H), 7.51 (d, $J = 7.4$ Hz, 1 H) ppm. ^{13}C NMR (100.6 MHz, DEPT, $CDCl_3$): $\delta = 21.2$ (CH_2), 23.4 (CH_2), 24.2 (CH_2), 42.3 (CH_2), 97.5 (CH), 108.5 (CH), 119.5 (CH), 119.5 (CH), 120.1 (CH), 128.2 (C), 136.3 (C), 137.1 (C) ppm. IR: $\nu = 3044, 2945, 2861, 2835, 1609, 1574, 1476, 1454, 1414, 1360, 1329, 1317, 1303, 1269, 1250, 1229, 1162, 1132, 1109, 1088, 1065, 1011, 992, 962, 918, 901, 866, 822, 767, 742, 729, 701, 667$ cm^{-1} . MS (25°C): m/z (%) = 171 (100) [M^+], 154 (20), 143 (36), 130 (17), 128 (15), 117 (18), 115 (22), 90 (14). HRMS: calcd. ($C_{12}H_{13}N$) 171.1048; found 171.1048. $C_{12}H_{13}N$ (171.2): calcd. C 84.17, H 7.65, N 8.18; found C 84.35, H 7.28, N 8.10.

Indole 32: General Procedure C was used to synthesize indole **32** from aminoalkyne **24**. The reaction time of the hydroamination step was 48 h. After purification by flash chromatography (PE/EtOAc, 20:1), compound **32** (98 mg, 0.53 mmol, 53 %) was isolated as a bright yellow oil. ¹H NMR (400 MHz, CDCl₃): δ = 1.82-1.90 (m, 2 H), 2.02-2.10 (m, 2 H), 2.50 (s, 3 H), 2.97 (t, *J* = 6.3 Hz, 2 H), 4.01 (t, *J* = 6.1 Hz, 2 H), 6.19 (d, *J* = 0.8 Hz, 1 H), 6.87 (d, *J* = 6.9 Hz, 1 H), 7.04 (t, *J* = 7.0 Hz, 1 H), 7.10 (d, *J* = 8.0 Hz, 1 H) ppm; ¹³C NMR (100.6 MHz, DEPT, CDCl₃): δ = 18.7 (CH₃), 21.3 (CH₂), 23.5 (CH₂), 24.3 (CH₂), 42.4 (CH₂), 96.0 (CH), 106.2 (CH), 119.8 (CH), 120.3 (CH), 127.9 (C), 128.9 (C), 135.9 (C), 136.5 (C) ppm. IR: ν = 3047, 2938, 2863, 1584, 1538, 1493, 1476, 1427, 1414, 1363, 1319, 1286, 1255, 1236, 1193, 1153, 1135, 1090, 1078, 1065, 959, 939, 862, 827, 787, 745, 713 cm⁻¹. MS (25°C): *m/z* (%) = 185 (100) [M⁺], 184 (91), 177 (14), 170 (22), 157 (24), 156 (31), 149 (18), 142 (37), 128 (19), 115 (32), 77 (9). HRMS: calcd. (C₁₃H₁₅N) 185.1204; found 185.1204. C₁₃H₁₅N (185.3): calcd. C 84.28, H 8.16, N 7.56; found C 83.89, H 7.91, N 7.27.

Indole 33: General Procedure C was used to synthesize indole **33** from aminoalkyne **25**. The reaction time of the hydroamination step was 6 h. After purification by flash chromatography (PE/EtOAc, 20:1), compound **33** (151 mg, 0.75 mmol, 75 %) was isolated as a bright yellow oil. ¹H NMR (400 MHz, CDCl₃): δ = 1.82-1.90 (m, 2 H), 2.02-2.06 (m, 2 H), 2.93 (t, *J* = 6.3 Hz, 2 H), 3.83 (s, 3 H), 3.97 (t, *J* = 6.2 Hz, 2 H), 6.10 (s, 1 H), 6.77 (dd, *J* = 8.6, 2.4 Hz, 1 H), 7.00 (d, *J* = 2.4 Hz, 1 H), 7.11 (d, *J* = 8.6 Hz, 1 H) ppm. ¹³C NMR (100.6 MHz, DEPT, CDCl₃): δ = 21.2 (CH₂), 23.4 (CH₂), 24.2 (CH₂), 42.3 (CH₂), 55.9 (CH₃), 97.2 (CH), 102.0 (CH), 109.1 (CH), 109.9 (CH), 128.6 (C), 131.7 (C), 137.8 (C), 154.3 (C) ppm. IR: ν = 2958, 2929, 2830, 1613, 1578, 1483, 1474, 1437, 1419, 1364, 1346, 1327, 1316, 1285, 1268, 1237, 1204, 1157, 1129, 1110, 1035, 992, 961, 940, 884, 842, 822, 795, 767, 739, 688 cm⁻¹. MS (80°C): *m/z* (%) = 201 (100) [M⁺], 186 (54), 170 (15), 158 (39), 156 (16), 143 (9), 130 (52), 116 (17), 101 (6), 91 (7), 77 (7), 65 (4). HRMS: calcd. (C₁₃H₁₅NO) 201.1153; found 201.1153. C₁₂H₁₅NO (201.1): calcd. C 77.58, H 7.51, N 6.96; found C 77.05, H 7.07, N 7.80.

Indole 34: General Procedure C was used to synthesize indole **34** from aminoalkyne **26**. The reaction time of the hydroamination step was 6 h. After purification by flash chromatography (PE/EtOAc, 20:1), compound **34** (185 mg, 0.77 mmol, 77 %) was isolated as a brown oil. ¹H NMR (400 MHz, CDCl₃): δ = 1.82-1.92 (m, 2 H), 2.02-2.11 (m, 2 H), 3.00 (t, *J* = 6.3 Hz, 2 H), 4.03 (t, *J* = 6.1 Hz, 2 H), 6.25 (s, 1 H), 7.27 (d, *J* = 8.6 Hz, 1 H), 7.34 (d, *J* = 8.6 Hz, 1 H), 7.80 (s, 1 H) ppm. ¹³C NMR (100.6 MHz, DEPT, CDCl₃): δ = 20.9 (CH₂), 23.2 (CH₂), 24.2 (CH₂), 42.5 (CH₂), 98.5 (CH), 108.6 (CH), 116.8 (CH, *q*, *J* = 4 Hz), 117.1 (CH, *q*, *J* = 4 Hz), 121.9 (C, *q*, *J* = 32 Hz), 125.6 (CF₃, *q*, *J* = 270 Hz), 127.5 (C), 137.5 (C), 139.0 (C) ppm. IR: ν = 2958, 2875, 1618, 1543, 1450, 1412, 1373, 1343, 1319, 1265, 1220, 1153, 1133, 1098, 1052, 963, 920, 896, 885, 844, 824, 805, 781, 750, 712, 679, 657 cm⁻¹; MS (25°C): *m/z* (%) = 239 (91) [M⁺], 238 (64), 220 (34), 221 (41), 198 (38), 171 (61), 170 (100), 143 (48), 142 (45), 115 (41). HRMS: calcd. (C₁₃H₁₂NF₃) 239.0921; found 239.0921. C₁₃H₁₂NF₃ (239.2): calcd. C 65.27, H 5.06, N 5.85; found C 65.85, H 4.94, N 5.62.

Indole 36: General Procedure C was used to synthesize indole **36** from aminoalkyne **28**. The reaction time of the hydroamination step was 4 h. After purification by flash chromatography (PE/EtOAc, 30:1), compound **36** (90 mg, 0.53 mmol, 53 %) was isolated as a bright yellow oil. ¹H NMR (400 MHz, CDCl₃): δ = 2.51 (s, 3 H), 2.57 (quin, *J* = 7.2 Hz, 2 H), 3.00 (t, *J* = 7.3 Hz, 2 H), 4.02 (t, *J* = 7.0 Hz, 2 H), 6.16 (d, *J* = 0.9 Hz, 1 H), 6.85 (d, *J* = 6.6 Hz, 1 H), 7.02 (t, *J* = 6.9 Hz, 1 H), 7.07 (d, *J* = 8.0 Hz, 1 H) ppm. ¹³C NMR (100.6 MHz, DEPT, CDCl₃): δ = 18.8 (CH₃), 24.3 (CH₂), 27.8 (CH₂), 43.6 (CH₂), 90.7 (CH), 107.0 (CH), 119.3 (CH), 120.2 (CH), 129.6 (C), 132.3 (C), 133.0 (C), 143.8 (C) ppm. IR: ν = 3048, 2975, 2899, 1605, 1575, 1542, 1494, 1454, 1429, 1407, 1369, 1346, 1299, 1280, 1233, 1164, 1148, 1116, 1071, 1034, 998, 975, 938, 745 cm⁻¹. MS (25°C): *m/z* (%) = 171 (100) [M⁺], 156 (22), 142 (28), 128 (25), 115 (29), 77 (17). HRMS: calcd. (C₁₂H₁₃N) 171.1048; found 171.1048. C₁₂H₁₃N (171.2): calcd. C 84.17, H 7.65, N 8.18; found C 84.04, H 8.00, N 8.21.