

Supporting Information

for

Angew. Chem. Int. Ed. Z51613

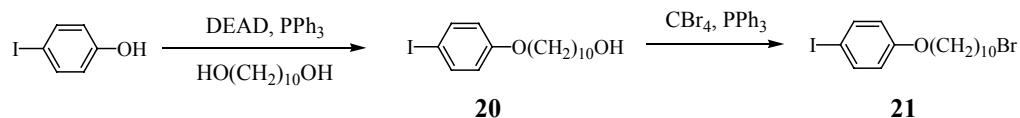
© Wiley-VCH 2003

69451 Weinheim, Germany

First Synthesis and Characterization of Dendritic Necklaces: A New Class of Outer Sphere–Outer Sphere Connected Dendronized Organoplatinum Polymers

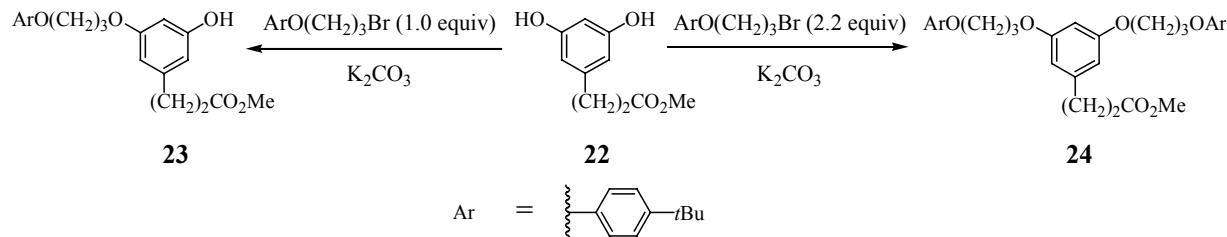
Hak-Fun Chow, Cham-Fai Leung, Wei Li, Kai-Wai Wong and Luan Xi

[*] Prof. Dr. H.-F. Chow, C.-F. Leung, W. Li
Department of Chemistry
The Chinese University of Hong Kong, Shatin, NT (Hong Kong SAR)
Fax: (+852)26035057
E-mail: hfchow@cuhk.edu.hk
Dr. K.-W. Wong, L. Xi
Department of Physics
The Chinese University of Hong Kong, Shatin, NT (Hong Kong SAR)


[**] We thank the Research Grants Council, HKSAR (CUHK4201/99P) for the financial support.

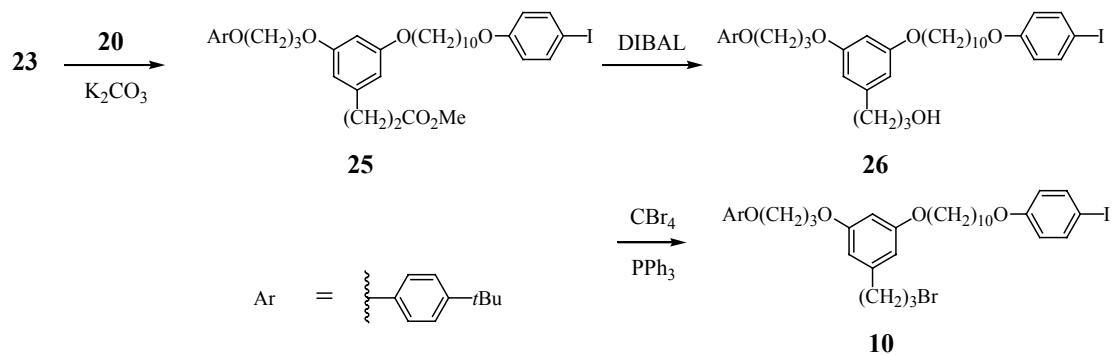
General Methods: All reagents were purchased from commercial suppliers (Acros or Aldrich) and used without further purification. Organic solvents were dried prior to use. All reactions were carried out under a nitrogen atmosphere. Thin layer chromatography (TLC) was performed on silica gel sheets 60 F₂₅₄ (E. Merck). Column chromatography was performed on silica gel (Macherey Nagel Kieselgel 60M 230-400 mesh). All nuclear magnetic resonance (NMR) spectra were recorded either on a Brüker Advance DPX300 spectrometer (¹H: 300 MHz; ¹³C: 75.5 MHz) or a Varian Unity INOVA400 spectrometer (³¹P: 161.9 MHz) and chloroform-*d* was used as solvent unless otherwise stated. Chemical shifts are reported as parts per million (ppm) downfield from signal of Me₄Si as internal standard for ¹H and ¹³C NMR or from signal of PPh₃ as external standard for ³¹P NMR. Mass spectra were obtained by electron impact (EI) ionization on a Hewlett Packard 5989B mass spectrometer or liquid secondary ionization mass spectrometry (L-SIMS) method on a Brüker APEX 47e FTMS spectrometer or matrix-assisted laser desorption/ionization time of flight mass spectroscopy (MALDI-TOF-MS) on a Brüker Biflex TOF mass spectrometer. The reported molecular mass (*m/z*) values were the most abundant monoisotopic mass. Elemental analyses were carried out at MEDAC Ltd. (Egham, Surrey, UK). Gel permeation chromatography (GPC) analyses were performed on Waters[®] Styragel columns (HR1, HR2,

HR3 and HR4 7.8 × 300 mm in serial) at 40 °C using THF as eluent (flow rate = 1.0 mL min⁻¹) on a Waters® HPLC 515 pump equipped with a Waters® 486 tunable UV absorbance detector. Molecular weights calculated from SEC measurements were based on a calibration curve derived from polystyrene (PS). Melting points were measured on an Electrothermal® 9100 digital melting point apparatus and are uncorrected.


Synthesis

20: Diethyl azodicarboxylate (6.3 mL, 32 mmol) was added dropwise to a solution of PPh_3 (8.30 g, 32 mmol) in THF (70 mL) at 0 °C. After 30 min, a mixture of 1,10-decanediol (9.20 g, 53 mmol) and 4-iodophenol (5.80 g, 26 mmol) in THF (70 mL) was added dropwise. The reaction was stirred at 25 °C for 6 h. Excess THF was then evaporated under reduced pressure and a mixture of hexane/Et₂O (1:1, 30 mL) was added. The precipitate was filtered off and washed with Et₂O (20 mL). The filtrate was then concentrated under reduced pressure to give an oil which was purified by column chromatography (eluent: hexane/EtOAc, 5:1) to give compound **20** (8.70 g, 87%) as a white solid: R_f 0.23 (hexane/EtOAc, 5:1); m.p. 59–60 °C; ¹H NMR: 1.20–1.50 (m, 13 H), 1.56 (quin, J = 6.6 Hz, 2 H), 1.76 (quin, J = 6.9 Hz, 2 H), 3.60–3.70 (m, 2 H), 3.90 (t, J = 6.6 Hz, 2 H), 6.68 (d, J = 6.9 Hz, 2 H), 7.53 (d, J = 6.9 Hz, 2 H); ¹³C NMR: 25.7, 25.9, 29.1, 29.3, 29.37, 29.44, 29.5, 32.8, 63.1, 68.1, 82.4, 116.9, 138.1, 159.0; MS(EI): m/z 376 (M^+ , 7); calcd (%) for $\text{C}_{16}\text{H}_{25}\text{O}_2\text{I}$: C, 51.07; H, 6.70; found: C, 50.89; H, 6.80.

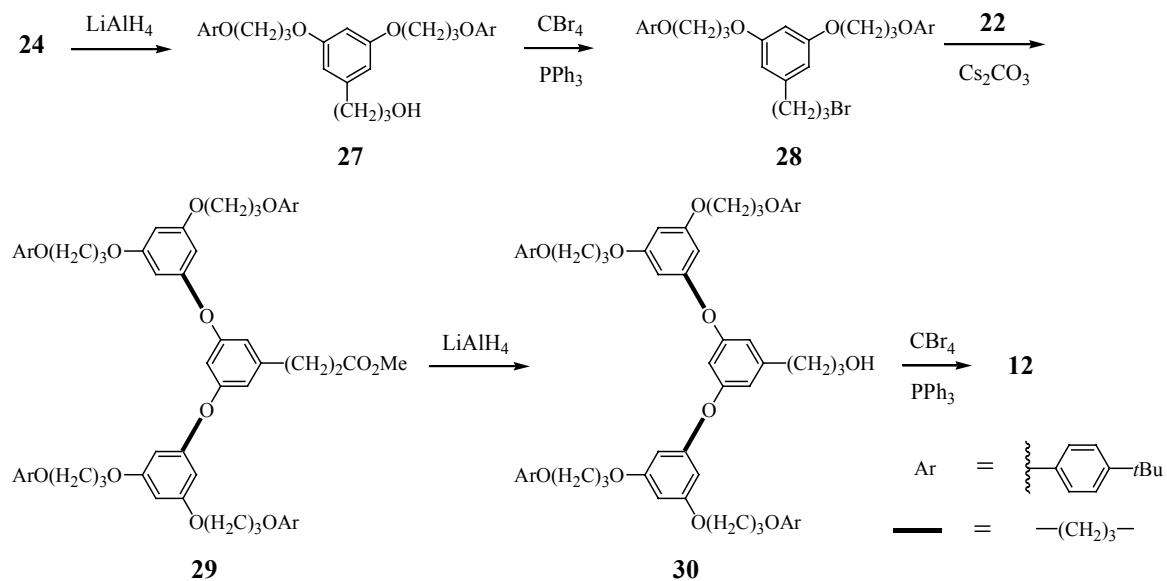
21: PPh₃ (4.2 g, 16 mmol) was added to a mixture of the alcohol **20** (3.0 g, 8.0 mmol) and CBr₄ (4.0 g, 12 mmol) in THF (60 mL). The mixture was stirred at 25 °C for 1.5 h and then diluted with hexane/Et₂O (1:1, 30 mL). The precipitate formed was filtered off and washed with Et₂O (10 mL). The filtrate was concentrated under reduced pressure and the residue was purified by column chromatography (eluent: hexane gradient to hexane/EtOAc, 10:1) to afford compound **21** (3.0 g, 86%) as a white solid; *R*_f 0.25.


(hexane); m.p. 58–59 °C; ^1H NMR: 1.25–1.50 (m, 12 H), 1.76 (quin, J = 6.9 Hz, 2 H), 1.85 (quin, J = 6.9 Hz, 2 H), 3.41 (t, J = 6.9 Hz, 2 H), 3.91 (t, J = 6.3 Hz, 2 H), 6.67 (d, J = 6.6 Hz, 2 H), 7.53 (d, J = 6.6 Hz, 2 H); ^{13}C NMR: 25.9, 28.1, 28.7, 29.1, 29.28, 29.32, 29.4, 32.8, 34.0, 68.1, 82.4, 116.9, 138.1, 159.0; MS(EI): m/z 441 [$\text{M}^+ ({}^{81}\text{Br})$, 17]; calcd (%) for $\text{C}_{16}\text{H}_{24}\text{OBrI}$: C, 43.76; H, 5.51; found: C, 43.44; H, 5.59.

23: 3-Bromo-1-(4-*tert*-butylphenoxy)propane^[1] (16.6 g, 60.0 mmol) was added dropwise to a mixture of methyl 3-(3,5-dihydroxyphenyl)propionate **22**^[2] (12.0 g, 60.0 mmol), 18-crown-6 (1.0 g, 3.8 mmol) and K_2CO_3 (25.0 g, 180 mmol) in acetone (250 mL) at 56 °C. The mixture was then heated at 56 °C for 6 h. The solution was filtered and the filtrate obtained was evaporated under reduced pressure and the crude product was purified by column chromatography (eluent: hexane/EtOAc, 5:1 gradient to 3:1) to afford compound **23** (19.6 g, 83%) as a white solid; R_f 0.10 (hexane/EtOAc, 5:1); m.p. 69–70 °C; ^1H NMR: 1.30 (s, 9 H), 2.22 (quin, J = 6.0 Hz, 2 H), 2.60 (t, J = 7.8 Hz, 2 H), 2.84 (t, J = 7.5 Hz, 2 H), 3.67 (s, 3 H), 4.10 (t, J = 6.3 Hz, 2 H), 4.12 (t, J = 6.3 Hz, 2 H), 5.10–5.25 (brs, 1 H), 6.27 (s, 2 H), 6.33 (s, 1 H), 6.85 (d, J = 8.7 Hz, 2 H), 7.29 (d, J = 8.7 Hz, 2 H); ^{13}C NMR: 29.9, 31.6, 32.1, 34.6, 36.2, 61.1, 64.9, 65.0, 100.4, 107.7, 108.4, 114.5, 126.8, 143.8, 144.0, 157.1, 157.3, 160.8, 173.6; MS(L-SIMS): m/z 386 (M^+ , 1); calcd (%) for $\text{C}_{23}\text{H}_{30}\text{O}_5$: C, 71.48; H, 7.82; found: C, 71.27; H, 7.84.

24: A mixture of methyl 3-(3,5-dihydroxyphenyl)propionate **22**^[2] (7.1 g, 36 mmol), 3-bromo-1-(4-*tert*-butylphenoxy)propane^[1] (22.0 g, 80 mmol), 18-crown-6 (1.0 g, 3.8 mmol) and K_2CO_3 (25.0 g, 18 mmol) in acetone (200 mL) was heated at 56 °C for 6 h. The mixture was then filtered and the filtrate obtained was evaporated under reduced pressure. The residue was purified by column chromatography (eluent:

hexane/EtOAc, 8:1 gradient to 5:1) to afford compound **24** (16.5 g, 75%) as a white solid; R_f 0.68 (hexane/EtOAc, 5:1); m.p. 59–61 °C; ^1H NMR: 1.32 (s, 18 H), 2.25 (quin, J = 6.0 Hz, 4 H), 2.62 (t, J = 7.5 Hz, 2 H), 2.89 (t, J = 7.5 Hz, 2 H), 3.69 (s, 3 H), 4.13 (t, J = 6.0 Hz, 4 H), 4.15 (t, J = 6.0 Hz, 4 H), 6.34–6.40 (m, 3 H), 6.87 (d, J = 8.7 Hz, 4 H), 7.32 (d, J = 8.7 Hz, 4 H); ^{13}C NMR: 29.3, 31.2, 31.5, 34.0, 35.5, 51.6, 64.3, 64.4, 99.2, 107.0, 113.9, 126.2, 142.8, 143.3, 156.5, 160.1, 173.3; MS(L-SIMS): m/z 577 [(M+H) $^+$, 100]; calcd (%) for $\text{C}_{36}\text{H}_{48}\text{O}_6$: C, 74.97; H, 8.39; found: C, 75.25; H, 8.49.



25: A mixture of the phenol **23** (3.8 g, 9.9 mmol), the bromide **20** (5.2 g, 12 mmol), Cs_2CO_3 (6.5 g, 20 mmol) and dibenzo-24-crown-8 (0.9 g, 2.0 mmol) in DMF (60 ml) was stirred at 60 °C for 1.5 h. The reaction was then quenched with water and extracted with EtOAc (50 mL \times 2). The organic layers were combined, washed with saturated NaCl solution (50 mL), dried (MgSO_4) and concentrated under reduced pressure. The crude product obtained was purified by column chromatography (eluent: hexane/EtOAc, 9:1 gradient to 7:1) to yield compound **25** (6.2 g, 84%) as a white solid; R_f : 0.59 (hexane/EtOAc, 5:1); m.p. 49–50 °C; ^1H NMR: 1.25–1.50 (m, 12 H), 1.30 (s, 9 H), 1.76–1.82 (m, 4 H), 2.23 (quin, J = 6.0 Hz, 2 H), 2.60 (t, J = 7.5 Hz, 2 H), 2.84 (t, J = 7.5 Hz, 2 H), 3.67 (s, 3 H), 3.85–3.93 (m, 4 H), 4.10–4.20 (m, 4 H), 6.20–6.40 (m, 3 H), 6.67 (d, J = 6.9 Hz, 2 H), 6.85 (d, J = 6.9 Hz, 2 H), 7.29 (d, J = 6.9 Hz, 2 H), 7.54 (d, J = 6.9 Hz, 2 H); ^{13}C NMR: 25.96, 26.02, 29.1, 29.25, 29.34, 29.5, 31.2, 31.5, 34.0, 35.8, 60.4, 64.3, 64.4, 67.9, 68.1, 82.4, 99.1, 106.8, 107.0, 113.9, 116.9, 126.2, 138.1, 142.8, 143.4, 156.6, 159.0, 160.1, 160.3, 172.9; MS(L-SIMS): m/z 745 [(M+H) $^+$, 100]; calcd (%) for $\text{C}_{39}\text{H}_{53}\text{O}_6\text{I}$: C, 62.90; H, 7.17; found: C, 62.92; H, 7.18.

26: A mixture of the ester **25** (6.2 g, 8.3 mmol) in toluene (50 ml) was treated with DIBAL (1.0 M in hexane) (34 mL, 33 mmol) at -60°C to -10°C for 1.5 h. The reaction was then quenched with EtOAc (5 mL) and water (5 mL). The resulting mixture was acidified to pH 6 by adding HCl solution (2 M) and then extracted with EtOAc (40 mL \times 2). The combined organic layers were washed with brine (40 mL), dried (MgSO_4) and concentrated under reduced pressure. Chromatographic purification of the crude product (eluent: hexane/EtOAc, 4:1) afforded compound **26** (5.7 g, 96%) as a colorless oil; R_f 0.39 (hexane/EtOAc, 3:1); ^1H NMR: 1.20–1.50 (m, 13 H) 1.29 (s, 9 H), 1.70–1.80 (m, 4 H), 1.80–1.91 (m, 2 H), 2.23 (quin, J = 6.0 Hz, 2 H), 2.63 (t, J = 7.2 Hz, 2 H), 3.67 (q, J = 6.0 Hz, 2 H), 3.90 (t, J = 6.6 Hz, 4 H), 4.12 (t, J = 6.0 Hz, 2 H), 4.13 (t, J = 6.0 Hz, 2 H), 6.31 (t, J = 2.4 Hz, 1 H), 6.35 (d, J = 2.1 Hz, 2 H), 6.67 (d, J = 6.9 Hz, 2 H), 6.85 (d, J = 6.9 Hz, 2 H), 7.29 (d, J = 6.9 Hz, 2 H), 7.53 (d, J = 6.9 Hz, 2 H); ^{13}C NMR: 25.96, 26.03, 29.1, 29.3, 29.5, 31.5, 32.4, 33.9, 34.0, 62.3, 64.3, 64.4, 67.9, 68.1, 82.4, 98.7, 106.9, 107.2, 113.9, 116.9, 126.2, 138.1, 143.4, 144.1, 156.6, 159.0, 160.0, 160.3; MS(L-SIMS): m/z 717 [(M+H) $^+$, 100]; calcd (%) for $\text{C}_{38}\text{H}_{53}\text{O}_5\text{I}$: C, 63.68; H, 7.45; found: C, 63.77; H, 7.58.

10: A mixture of the alcohol **26** (1.9 g, 2.7 mmol), CBr_4 (1.4 g, 4.0 mmol) and PPh_3 (1.4 g, 5.3 mmol) in THF (25 ml) was stirred at 25°C for 1.5 h. The mixture was diluted with hexane/Et₂O (1:1, 6 mL) and the precipitate formed was filtered off and washed with Et₂O (10 mL). The filtrate was concentrated under reduced pressure. Chromatographic purification of the crude product (eluent: hexane/EtOAc, 100:1 gradient to 8:1) afforded compound **10** (2.0 g, 97%) as a colorless oil; R_f 0.70 (hexane/EtOAc, 5:1); ^1H NMR: 1.25–1.50 (m, 12 H), 1.32 (s, 9 H), 1.77 (quin, J = 6.9 Hz, 4 H), 2.15 (quin, J = 6.9 Hz, 2 H), 2.24 (quin, J = 6.0 Hz, 2 H), 2.70 (t, J = 7.2 Hz, 2 H), 3.39 (t, J = 6.6 Hz, 2 H), 3.91 (t, J = 6.3 Hz, 4 H), 4.13 (t, J = 6.0 Hz, 2 H), 4.14 (t, J = 6.0 Hz, 2 H), 6.30–6.40 (m, 3 H), 6.68 (d, J = 8.7 Hz, 2 H), 6.87 (d, J = 8.7 Hz, 2 H), 7.31 (d, J = 8.7 Hz, 2 H), 7.55 (d, J = 8.7 Hz, 2 H); ^{13}C NMR: 25.95, 26.02, 29.1, 29.25, 29.33, 29.4, 31.5, 33.1, 33.9, 34.0, 34.2, 64.3, 64.4, 67.9, 68.1, 82.4, 99.0, 107.0, 107.3,

113.9, 116.9, 126.3, 138.1, 142.7, 143.4, 156.5, 159.0, 160.1, 160.3; MS(L-SIMS): m/z 781 [(M+H)⁺ (⁸¹Br), 100]; calcd (%) for C₃₈H₅₂O₄BrI: C, 58.54; H, 6.72; found: C, 58.80; H, 6.57.

27: A mixture of the ester **24** (4.1 g, 7.1 mmol) and LiAlH₄ (0.4 g, 11 mmol) in THF (25 mL) was stirred from 0 °C to 25 °C for 1.5 h. The reaction was then quenched with EtOAc (5 mL) and water (5 mL). The mixture was acidified to pH 6 by adding HCl solution (2 M) and then extracted with EtOAc (35 mL × 2). The organic layers were combined, washed with brine (35 mL), dried (MgSO₄) and concentrated under reduced pressure. Chromatographic purification of the crude product (eluent: hexane/EtOAc, 3:1) afforded compound **27** (3.8 g, 99%) as a white solid; R_f : 0.32 (hexane/EtOAc, 3:1); m.p. 60–61 °C; ¹H NMR (OH signal not observed): 1.30 (s, 18 H), 1.86 (quin, J = 6.9 Hz, 2 H), 2.22 (quin, J = 6.0 Hz, 4 H), 2.62 (t, J = 7.2 Hz, 2 H), 3.66 (q, J = 4.8 Hz, 2 H), 4.12 (t, J = 6.0 Hz, 4 H), 4.13 (t, J = 6.0 Hz, 4 H), 6.32 (t, J = 2.1 Hz, 1 H), 6.36 (d, J = 1.8 Hz, 2 H), 6.85 (d, J = 8.7 Hz, 4 H), 7.30 (d, J = 8.7 Hz, 4 H); ¹³C NMR: 30.0, 32.1, 32.9, 34.5, 34.6, 62.9, 64.9, 65.1, 99.4, 107.8, 114.5, 126.8, 144.0, 144.8, 157.2, 160.7; MS(EI): m/z 549 [(M+H)⁺, 100]; calcd (%) for C₃₅H₄₈O₅: C, 76.61; H, 8.82; found: C, 76.31; H, 8.89.


28: A mixture of the alcohol **27** (3.8 g, 6.9 mmol), CBr₄ (3.5 g, 10 mmol) and PPh₃ (3.7 g, 14 mmol) in THF (50 mL) was stirred at 25 °C for 1.5 h. The mixture was diluted with hexane/Et₂O (1:1, 20 mL) and the precipitate formed was filtered off and washed with Et₂O (20 mL). The filtrate was concentrated under reduced pressure and the residue was purified by chromatography (eluent: hexane/EtOAc, 100:1 gradient to 5:1) to give compound **28** (4.1 g, 97%) as a colorless oil; *R*_f: 0.84 (hexane/EtOAc, 5:1); ¹H NMR: 1.30 (s, 18 H), 2.13 (quin, *J* = 6.9 Hz, 2 H), 2.23 (quin, *J* = 6.0 Hz, 4 H), 2.69 (t, *J* = 7.2 Hz, 2 H), 3.38 (t, *J* = 6.6 Hz, 2 H), 4.12 (t, *J* = 6.0 Hz, 4 H), 4.13 (t, *J* = 6.0 Hz, 4 H), 6.32–6.37 (m, 3 H), 6.87 (d, *J* = 8.7 Hz, 4 H), 7.29 (d, *J* = 8.7 Hz, 4 H); ¹³C NMR: 30.0, 32.1, 33.8, 34.5, 34.7, 34.8, 64.9, 65.1, 99.6, 107.9, 114.5, 126.8, 143.4, 144.0, 157.2, 160.7; MS(L-SIMS): *m/z* 612 [M⁺(⁸¹Br), 100]; calcd (%) for C₃₅H₄₇O₄Br: C, 68.73; H, 7.75; found: C, 68.54; H, 7.74.

29: A mixture of compound **22** (2.1 g, 11 mmol), the bromide **28** (14.0 g, 23 mmol), dibenzo-24-crown-8 (1.4 g, 3.1 mmol) and Cs₂CO₃ (10.0 g, 31 mmol) in DMF (20 mL) was stirred at 60 °C for 1.5 h. The reaction mixture was then quenched with water and extracted with EtOAc (50 mL × 2). The organic layers were combined, washed with brine (50 mL), dried (MgSO₄) and concentrated under reduced pressure. Chromatographic purification of the crude product (eluent: hexane/EtOAc, 8:1 gradient to 3:1) gave compound **29** (10.0 g, 74%) as a colorless oil; *R*_f: 0.66 (hexane/EtOAc, 3:1); ¹H NMR: 1.29 (s, 36 H), 2.05 (quin, *J* = 5.4 Hz, 4 H), 2.21 (quin, *J* = 6.0 Hz, 8 H), 2.59 (t, *J* = 7.5 Hz, 2 H), 2.70 (t, *J* = 7.2 Hz, 4 H), 2.86 (t, *J* = 7.5 Hz, 2 H), 3.66 (s, 3 H), 3.90 (t, *J* = 6.0 Hz, 4 H), 4.09 (t, *J* = 6.3 Hz, 8 H), 4.11 (t, *J* = 6.3 Hz, 8 H), 6.31 (t, *J* = 2.1 Hz, 3 H), 6.36 (d, *J* = 1.8 Hz, 6 H), 6.85 (d, *J* = 8.7 Hz, 8 H), 7.29 (d, *J* = 8.7 Hz, 8 H); ¹³C NMR: 29.3, 30.6, 31.2, 31.5, 32.4, 34.0, 35.5, 51.6, 64.3, 64.4, 66.9, 98.9, 99.2, 106.8, 107.2, 113.9, 126.2, 142.7, 143.3, 143.8, 156.5, 160.0, 160.3, 173.3; MS(L-SIMS): *m/z* 1258 (M⁺, 100); calcd (%) for C₈₀H₁₀₄O₁₂: C, 76.39; H, 8.35; found: C, 76.54; H, 8.41.

30: A mixture of the ester **29** (9.90 g, 7.9 mmol) and LiAlH₄ (0.50 g, 12 mmol) in THF (60 mL) was stirred from 0 °C to 25 °C for 1.5 h. The reaction was then quenched with EtOAc (5 mL) and water (5

mL). The resulting mixture was acidified to pH 6 by adding HCl solution (2 M) and extracted with EtOAc (40 mL \times 2). The organic layers were combined, washed with brine (40 mL), dried (MgSO_4) and concentrated under reduced pressure. Chromatographic purification of the crude product (eluent: hexane/EtOAc, 3:1 gradient to 2:1) afforded compound **30** (8.90 g, 92%) as a colorless oil; R_f 0.25 (hexane/EtOAc, 3:1); ^1H NMR (OH signal not observed): 1.29 (s, 36 H), 1.86 (quin, J = 6.6 Hz, 2 H), 2.05 (quin, J = 5.7 Hz, 4 H), 2.21 (quin, J = 6.0 Hz, 8 H), 2.61 (t, J = 7.2 Hz, 2 H), 2.71 (t, J = 7.2 Hz, 4 H), 3.65 (q, J = 5.4 Hz, 2 H), 3.91 (t, J = 6.0 Hz, 4 H), 4.09 (t, J = 6.3 Hz, 8 H), 4.10 (t, J = 6.3 Hz, 8 H), 6.25–6.40 (m, 9 H), 6.84 (d, J = 8.7 Hz, 8 H), 7.29 (d, J = 8.7 Hz, 8 H); ^{13}C NMR: 29.3, 30.6, 31.5, 32.3, 32.4, 33.96, 34.03, 62.2, 64.35, 64.44, 66.8, 98.9, 107.1, 107.2, 113.9, 126.2, 143.4, 143.9, 144.1, 156.6, 160.0, 160.2; MS(L-SIMS): m/z 1230 (M^+ , 100); calcd (%) for $\text{C}_{79}\text{H}_{104}\text{O}_{11}$: C, 77.16; H, 8.52; found: C, 76.90; H, 8.52.

12: A mixture of the alcohol **30** (3.0 g, 2.4 mmol), CBr_4 (1.2 g, 3.7 mmol) and PPh_3 (1.3 g, 4.9 mmol) in THF (30 mL) was stirred at 25 °C for 1.5 h. The reaction mixture was diluted with hexane/Et₂O (1:1, 5 mL) and the precipitate formed was filtered off and washed with Et₂O (10 mL). The filtrate was concentrated under reduced pressure and the residue was purified by chromatography (eluent: hexane/EtOAc, 100:1 gradient to 5:1) to furnish compound **12** (2.9 g, 93%) as a colorless oil; R_f 0.73 (hexane/EtOAc, 3:1); ^1H NMR: 1.30 (s, 36 H), 2.06 (quin, J = 6.9 Hz, 4 H), 2.13 (quin, J = 6.0 Hz, 2 H), 2.22 (quin, J = 6.0 Hz, 8 H), 2.64–2.77 (m, 6 H), 3.38 (t, J = 6.3 Hz, 2 H), 3.93 (t, J = 6.0 Hz, 4 H), 4.10 (t, J = 7.8 Hz, 8 H), 4.13 (t, J = 7.8 Hz, 8 H), 6.30–6.40 (m, 9 H), 6.86 (d, J = 8.7 Hz, 8 H), 7.30 (d, J = 8.7 Hz, 8 H); ^{13}C NMR: 29.3, 30.6, 31.5, 32.4, 33.1, 33.9, 34.0, 34.2, 64.3, 64.4, 66.9, 98.9, 99.1, 107.2, 113.9, 126.2, 142.8, 143.3, 143.8, 156.5, 160.0, 160.3; MS(FAB): m/z 1294 [$\text{M}^+(\text{Br})$, 100]; calcd (%) for $\text{C}_{79}\text{H}_{103}\text{O}_{10}\text{Br}$: C, 73.41; H, 8.03; found: C, 73.46; H, 7.95.

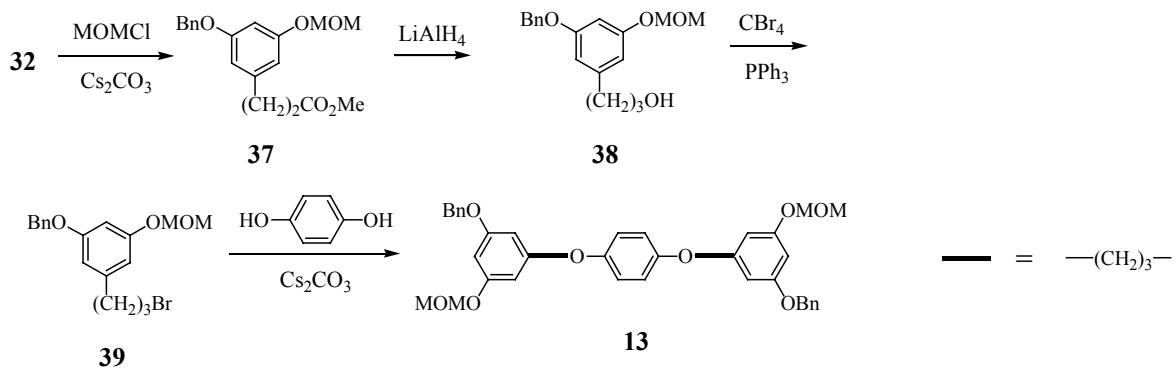
31: A mixture of compound **22** (9.1 g, 46 mmol), benzyl bromide (12.0 mL, 97 mmol) and K_2CO_3 (19.2 g, 0.14 mol) in acetone (150 mL) was heated at 56 °C for 6 h. The solution was allowed to cool to room temperature and filtered. The filtrate was evaporated under reduced pressure and the residue was purified by column chromatography (eluent: hexane/EtOAc, 4:1) to afford compound **31** (17.0 g, 97%) as a colorless oil; R_f : 0.36 (hexane/EtOAc, 5:1); ^1H NMR: 2.62 (t, J = 7.2 Hz, 2 H), 2.90 (t, J = 7.5 Hz, 2 H), 3.68 (s, 3 H), 5.02 (s, 4 H), 6.42–6.52 (m, 3 H), 7.30–7.50 (m, 10 H); ^{13}C NMR: 31.2, 35.4, 51.7, 70.0, 99.9, 107.5, 127.5, 128.0, 136.9, 142.9, 160.0, 173.2; MS(EI): m/z 376 (M^+ , 100); calcd (%) for $\text{C}_{24}\text{H}_{24}\text{O}_4$: C, 76.57; H, 6.43; found: C, 76.57; H, 6.45.

32: A mixture of the dibenzyl ether **31** (8.3 g, 22 mmol) and 10% palladium on charcoal (0.8 g) in EtOH/EtOAc (1:1, 100 mL) was stirred under hydrogen atmosphere (1 atm) at 25 °C for 2 h. The mixture was then filtered and the filtrate obtained was evaporated under reduced pressure. Chromatographic purification (eluent: hexane/EtOAc, 4:1) of the residue afforded compound **32** (3.0 g, 47%) as a colorless oil; R_f : 0.22 (hexane/EtOAc, 3:1); ^1H NMR (OH signal not observed): 2.61 (t, J = 7.8 Hz, 2 H), 2.86 (t, J = 7.5 Hz, 2 H), 3.68 (s, 3 H), 5.01 (s, 2 H), 6.29 (s, 1 H), 6.34 (s, 1 H), 6.42 (s, 1

H), 7.30–7.50 (m, 5 H); ^{13}C NMR: 30.9, 35.3, 51.7, 70.0, 100.2, 107.4, 108.0, 127.5, 128.0, 128.6, 136.8, 143.2, 156.7, 160.2, 173.4; MS(EI): m/z 286 (M^+ , 46); calcd (%) for $\text{C}_{17}\text{H}_{18}\text{O}_4$: C, 71.31; H, 6.34; found: C, 71.44; H, 6.29.

33: A mixture of the phenol **32** (1.6 g, 5.6 mmol), the bromide **28** (4.1 g, 6.7 mmol), Cs_2CO_3 (3.7 g, 11 mmol) and dibenzo-24-crown-8 (0.5 g, 1.1 mmol) in DMF (40 mL) was stirred at 60 °C for 1.5 h. The mixture was then quenched with water and extracted with EtOAc (80 mL \times 2). The combined extracts were washed with brine (80 mL), dried (MgSO_4) and evaporated under reduced pressure. Column chromatographic purification of the crude product (eluent: hexane/EtOAc, 4:1) yielded compound **33** (4.0 g, 88%) as a colorless oil; R_f : 0.43 (hexane/EtOAc, 5:1); ^1H NMR: 1.29 (s, 18 H), 2.05 (quin, J = 6.6 Hz, 2 H), 2.21 (quin, J = 6.0 Hz, 4 H), 2.61 (t, J = 7.5 Hz, 2 H), 2.70 (t, J = 7.2 Hz, 2 H), 2.88 (t, J = 7.5 Hz, 2 H), 3.67 (s, 3 H), 3.91 (t, J = 6.3 Hz, 2 H), 4.09 (t, J = 6.3 Hz, 4 H), 4.12 (t, J = 6.3 Hz, 4 H), 5.01 (s, 2 H), 6.30–6.50 (m, 6 H), 6.83 (d, J = 8.7 Hz, 4 H), 7.28 (d, J = 8.7 Hz, 4 H), 7.30–7.45 (m, 5 H); ^{13}C NMR: 29.3, 30.5, 31.2, 31.5, 32.4, 34.0, 35.5, 51.6, 64.35, 64.45, 66.9, 70.0, 98.9, 99.5, 107.1, 107.2, 107.3, 113.9, 126.2, 127.5, 127.9, 128.6, 136.9, 142.8, 143.4, 143.8, 156.6, 160.0, 160.3, 173.3; MS(L-SIMS): m/z 817 [$(\text{M}+\text{H})^+$, 100]; calcd (%) for $\text{C}_{52}\text{H}_{64}\text{O}_8$: C, 76.44; H, 7.90; found: C, 76.27; H, 7.88.

34: A mixture of the benzyl ether **33** (4.5 g, 5.5 mmol) and 10% palladium on charcoal (0.4 g) in EtOH/EtOAc (1:1, 30 mL) was stirred at 25 °C for 2 h under hydrogen atmosphere (1 atm). The reaction mixture was filtered and the filtrate was evaporated under reduced pressure. The crude product was purified by column chromatography (eluent: hexane/EtOAc = 4:1) to afford compound **34** (3.8 g, 96%) as a colorless oil; R_f : 0.25 (hexane/EtOAc, 3:1); ^1H NMR: 1.31 (s, 18 H), 2.05 (quin, J = 6.9 Hz, 2 H), 2.22 (quin, J = 6.0 Hz, 4 H), 2.60 (t, J = 7.8 Hz, 2 H), 2.71 (t, J = 7.5 Hz, 2 H), 2.85 (t, J = 7.8 Hz, 2 H), 3.68 (s, 3 H), 3.89 (t, J = 6.3 Hz, 2 H), 4.10 (t, J = 6.0 Hz, 4 H), 4.13 (t, J = 6.0 Hz, 4 H), 5.25 (s, 1 H), 6.25 (s, 2 H), 6.33 (s, 2 H), 6.37 (s, 2 H), 6.85 (d, J = 8.7 Hz, 4 H), 7.29 (d, J = 8.7 Hz, 4 H); ^{13}C NMR:

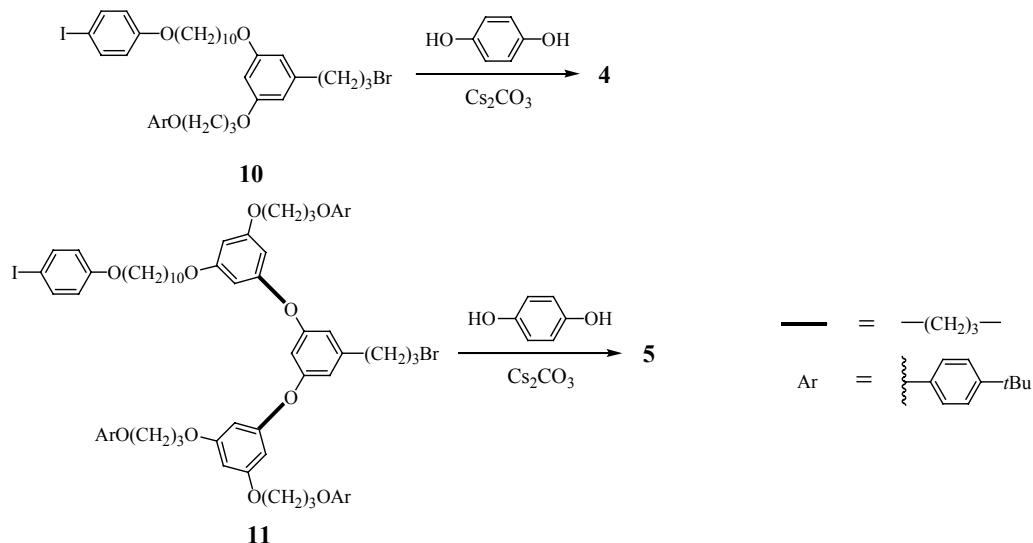

29.3, 30.5, 30.9, 31.5, 32.3, 34.0, 35.4, 51.7, 64.37, 64.44, 66.8, 99.0, 99.9, 107.2, 107.3, 107.6, 113.9, 126.2, 143.0, 143.4, 143.8, 156.6, 156.8, 160.0, 160.4, 173.5; MS(L-SIMS): m/z 727 [(M+H)⁺, 100]; calcd (%) for C₄₅H₅₈O₈: C, 74.35; H, 8.04; found: C, 74.53; H, 8.13.

35: A mixture of the bromide **10** (2.9 g, 3.6 mmol), the phenol **34** (2.2 g, 3.0 mmol), Cs₂CO₃ (2.0 g 6.0 mmol) and dibenzo-24-crown-8 (0.3 g, 0.6 mmol) in DMF (30 ml) was stirred at 60 °C for 1.5 h. The reaction was then quenched with water, and extracted with EtOAc (20 mL × 2). The organic layers were combined, washed with brine (20 mL), dried (MgSO₄) and concentrated under reduced pressure. Chromatographic purification of the crude product (eluent: hexane/EtOAc, 8:1) yielded compound **35** (4.2 g, 97%) as a colorless oil; R_f : 0.47 (hexane/EtOAc, 5:1); ¹H NMR: 1.25–1.50 (m, 12 H), 1.30 (s, 27 H), 1.70–1.80 (m, 4 H), 2.05 (quin, J = 6.6 Hz, 4 H), 2.22 (quin, J = 6.0 Hz, 6 H), 2.63 (t, J = 7.5 Hz, 2 H), 2.71 (t, J = 7.2 Hz, 4 H), 2.87 (t, J = 7.5 Hz, 2 H), 3.67 (s, 3 H), 3.80–4.00 (m, 8 H), 4.10 (t, J = 6.0 Hz, 6 H), 4.12 (t, J = 6.0 Hz, 6 H), 6.20–6.40 (m, 9 H), 6.67 (d, J = 8.7 Hz, 2 H), 6.85 (d, J = 8.4 Hz, 6 H), 7.30 (d, J = 8.7 Hz, 6 H), 7.54 (d, J = 8.4 Hz, 2 H); ¹³C NMR: 25.96, 26.03, 29.1, 29.4, 29.5, 30.6, 31.2, 31.5, 32.5, 34.0, 35.5, 51.6, 64.4, 64.5, 66.9, 67.9, 68.1, 82.4, 98.9, 99.3, 106.9, 107.2, 113.9, 116.9, 126.2, 138.1, 142.8, 143.4, 143.8, 156.6, 160.0, 160.3, 173.3; MS(FAB): m/z 1425.5 (M⁺, 100); calcd (%) for C₈₃H₁₀₉O₁₂I: C, 69.93; H, 7.71; found: C, 70.24; H, 7.89.

36: A solution of the ester **35** (2.0 g, 1.4 mmol) in toluene (20 ml) was treated with DIBAL (1.0 M in hexane) (5.6 mL, 5.6 mmol) at –60 °C. The reaction mixture was stirred for 1.5 h and allowed to warm to –10 °C. The reaction was then quenched with EtOAc (5 mL) and water (5 mL). The resulting mixture was acidified to pH 6 by adding HCl solution (2 M) and then extracted with EtOAc (10 mL × 2). The combined organic layers were washed with brine (10 mL), dried (MgSO₄) and concentrated under reduced pressure. Chromatographic purification of the crude product (eluent: hexane/EtOAc, 3:1) yielded compound **36** (1.6 g, 81%) as a colorless oil; R_f : 0.36 (hexane/EtOAc, 3:1) ¹H NMR (OH signal not observed): 1.20–1.50 (m, 12 H), 1.29 (s, 27 H), 1.70–1.80 (m, 4 H), 1.87 (quin, J = 7.5 Hz, 2 H),

2.05 (quin, J = 6.9 Hz, 4 H), 2.21 (quin, J = 6.0 Hz, 6 H), 2.62 (t, J = 7.5 Hz, 2 H), 2.71 (t, J = 6.3 Hz, 4 H), 3.66 (q, J = 5.4 Hz, 2 H), 3.80–3.95 (m, 8 H), 4.09 (t, J = 6.6 Hz, 6 H), 4.12 (t, J = 6.6 Hz, 6 H), 6.25–6.40 (m, 9 H), 6.67 (d, J = 8.7 Hz, 2 H), 6.85 (d, J = 8.7 Hz, 6 H), 7.30 (d, J = 8.7 Hz, 6 H), 7.54 (d, J = 8.7 Hz, 2 H); ^{13}C NMR: 25.96, 26.03, 29.1, 29.3, 29.5, 30.6, 31.5, 32.35, 32.44, 33.96, 34.03, 62.2, 64.35, 64.44, 66.9, 67.9, 68.1, 82.4, 98.9, 107.0, 107.1, 107.2, 113.9, 116.9, 126.2, 138.1, 143.4, 143.8, 144.1, 156.6, 159.0, 160.0, 160.2, 160.3; MS(L-SIMS): m/z 1397.8 $[(\text{M}+\text{H})^+, 100]$; calcd (%) for $\text{C}_{82}\text{H}_{109}\text{O}_{11}\text{I}$: C, 70.47; H, 7.86; found: C, 70.99; H, 8.00.

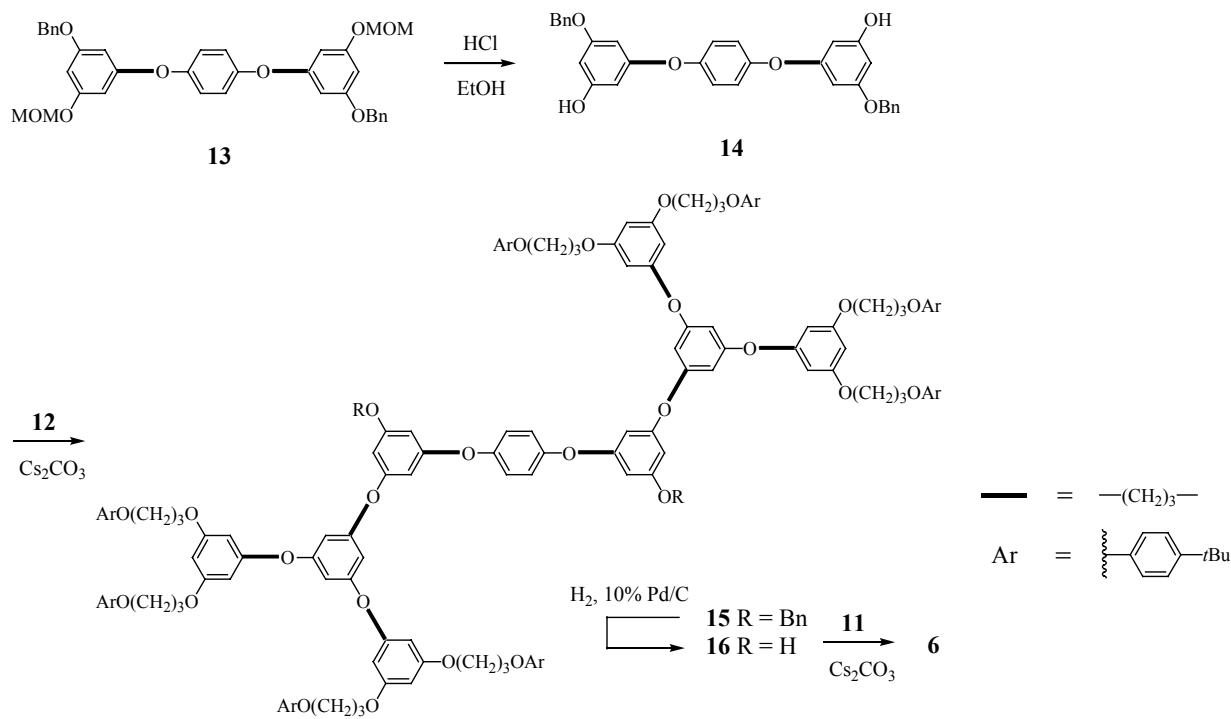
11: A mixture of the alcohol **36** (1.50 g, 1.0 mmol), CBr_4 (0.60 g, 1.6 mmol) and PPh_3 (0.6 g, 2.2 mmol) in THF (15 ml) was stirred at 25 °C for 1.5 h. The reaction mixture was diluted with hexane/ Et_2O (1:1, 2 mL) and the precipitate formed was filtered off and washed with Et_2O (3 mL). The filtrate was concentrated under reduced pressure. Chromatographic purification of the crude product (eluent: hexane gradient to hexane/ EtOAc , 10:1) gave compound **11** (1.40 g, 89%) as a colorless oil; R_f : 0.61 (hexane/ EtOAc , 5:1); ^1H NMR: 1.20–1.50 (m, 12 H), 1.29 (s, 27 H), 1.70–1.80 (m, 4 H), 2.05 (quin, J = 6.9 Hz, 4 H), 2.10–2.17 (m, 2 H), 2.21 (quin, J = 6.0 Hz, 6 H), 2.62–2.76 (m, 6 H), 3.37 (t, J = 6.6 Hz, 2 H), 3.83–3.93 (m, 8 H), 4.09 (t, J = 6.3 Hz, 6 H), 4.11 (t, J = 6.3 Hz, 6 H), 6.30–6.40 (m, 9 H), 6.67 (d, J = 8.7 Hz, 2 H), 6.85 (d, J = 8.7 Hz, 6 H), 7.29 (d, J = 8.7 Hz, 6 H), 7.53 (d, J = 8.7 Hz, 2 H); ^{13}C NMR: 25.95, 26.02, 29.1, 29.3, 29.4, 30.6, 31.5, 32.4, 33.1, 33.9, 34.0, 34.2, 64.3, 64.4, 66.9, 67.9, 68.1, 82.4, 98.9, 99.1, 106.9, 107.2, 113.9, 116.9, 126.2, 138.1, 142.8, 143.3, 143.8, 156.5, 159.0, 160.0, 160.3; MS(FAB): m/z 1461.4 $[\text{M}^+({}^{81}\text{Br}), 100]$; calcd (%) for $\text{C}_{82}\text{H}_{108}\text{O}_{10}\text{BrI}$: C, 67.43; H, 7.45; found: C, 67.45; H, 7.54.


37: Chloromethyl methyl ether (1.7 mL, 22 mmol) was added dropwise to a mixture of compound **32** (3.1 g, 11 mmol), dibenzo-24-crown-8 (1.0 g, 2.2 mmol) and cesium carbonate (7.1 g, 22 mmol) in DMF (40 mL) at 25 °C. After 2 h, the mixture was quenched with water and extracted with dichloromethane (80 mL × 2). The combined extracts were washed with brine (80 mL), dried (MgSO_4) and evaporated to dryness under reduced pressure followed by chromatographic purification of the crude product (eluent: hexane/EtOAc, 4:1) to afford compound **37** (2.1 g, 58%) as a colorless oil; R_f : 0.59 (hexane/EtOAc, 3:1); ^1H NMR: 2.62 (t, J = 7.5 Hz, 2 H), 2.90 (t, J = 7.5 Hz, 2 H), 3.47 (s, 3 H), 3.68 (s, 3 H), 5.02 (s, 2 H), 5.12 (s, 2 H), 6.50 (d, J = 2.1 Hz, 2 H), 6.56 (t, J = 2.1 Hz, 1 H), 7.30–7.50 (m, 5 H); ^{13}C NMR: 31.1, 35.4, 51.6, 56.0, 70.0, 94.5, 101.2, 108.4, 108.8, 127.5, 127.9, 128.5, 136.8, 142.9, 158.4, 159.9, 173.2; MS(EI): m/z 330 (M^+ , 17); calcd (%) for $\text{C}_{19}\text{H}_{22}\text{O}_5$: C, 69.07; H, 6.71; found: C, 68.93; H, 6.78.

38: A solution of the ester **37** (2.0 g, 6.1 mmol) in THF (5 mL) was added dropwise to a slurry of LiAlH₄ (0.4 g, 9.1 mmol) in THF (10 mL) at 0 °C. The mixture was stirred at 25 °C for 1.5 h and then quenched with EtOAc and water. The mixture was extracted with EtOAc (30 mL × 2). The combined extracts were washed with brine (30 mL), dried (MgSO_4) and evaporated under reduced pressure. Chromatographic purification of the crude product (eluent: hexane/EtOAc, 2:1) afforded compound **38** (1.8 g, 97%) as a colorless oil; R_f : 0.16 (hexane/EtOAc, 3:1); ^1H NMR: 1.31 (brs, 1 H), 1.88 (quin, J = 6.3 Hz, 2 H), 2.65 (t, J = 7.2 Hz, 2 H), 3.50 (s, 3 H), 3.66 (t, J = 5.7 Hz, 2 H), 5.03 (s, 2 H), 5.17 (s, 2 H), 6.49–6.57 (m, 3 H), 7.30–7.50 (m, 5 H); ^{13}C NMR: 32.3, 33.9, 56.0, 62.2, 70.0, 94.5, 100.8, 108.6, 108.9,

127.5, 127.9, 128.5, 136.9, 144.3, 158.4, 159.8; MS(EI): m/z 302 (M^+ , 5); calcd (%) for $C_{18}H_{22}O_4$: C, 71.50; H, 7.33; found: C, 71.22; H, 7.09.

39: A mixture of the alcohol **38** (1.7 g, 5.6 mmol), CBr_4 (2.8 g, 8.4 mmol) and PPh_3 (3.0 g, 11 mmol) in THF (40 mL) was stirred at 25 °C for 1.5 h. The reaction mixture was diluted with hexane/Et₂O (1:1, 20 mL) and the precipitate formed was filtered off and washed with Et₂O (10 mL). The filtrate was evaporated under reduced pressure and the residue was purified by chromatography (eluent: hexane/EtOAc, 100:1 gradient to 10:1) to produce compound **39** (1.7 g, 82%) as a colorless oil; R_f : 0.73 (hexane/EtOAc, 3:1); ¹H NMR: 2.14 (quin, J = 6.6 Hz, 2 H), 2.71 (t, J = 7.2 Hz, 2 H), 3.39 (t, J = 6.6 Hz, 2 H), 3.48 (s, 3 H), 5.03 (s, 2 H), 5.15 (s, 2 H), 6.51 (d, J = 2.4 Hz, 2 H), 6.56 (t, J = 2.1 Hz, 1 H), 7.30–7.50 (m, 5 H); ¹³C NMR: 33.0, 33.9, 34.2, 56.0, 70.0, 94.5, 101.1, 108.8, 109.1, 127.6, 128.0, 128.6, 136.8, 143.0, 158.5, 159.9; MS(L-SIMS): m/z 366 [$M^+(^{81}Br)$, 100]; calcd (%) for $C_{18}H_{21}O_3Br$: C, 59.19; H, 5.79; found: C, 59.25; H, 5.88.

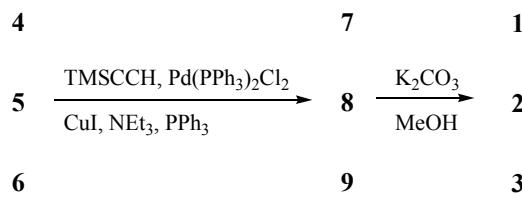

13: A mixture of the bromide **39** (1.70 g, 4.6 mmol), hydroquinone (0.23 g, 2.1 mmol), dibenzo-24-crown-8 (0.3 g, 0.62 mmol) and Cs_2CO_3 (2.0 g, 6.2 mmol) in DMF (20 mL) was heated at 110 °C for 1 h. The reaction was then quenched with water and extracted with EtOAc (40 mL × 2). The combined extracts were washed with brine (40 mL), dried ($MgSO_4$) and evaporated to dryness under reduced pressure. Chromatographic purification of the crude product (eluent: hexane/EtOAc, 4:1) afforded compound **13** (0.84 g, 59%) as a colorless oil; R_f : 0.59 (hexane/EtOAc, 3:1); ¹H NMR: 2.05 (quin, J = 6.6 Hz, 4 H), 2.74 (t, J = 7.2 Hz, 4 H), 3.46 (s, 6 H), 3.89 (t, J = 6.0 Hz, 4 H), 4.98 (s, 4 H), 5.12 (s, 4 H), 6.45–6.55 (m, 6 H), 6.82 (s, 4 H), 7.30–7.50 (m, 10 H); ¹³C NMR: 30.6, 32.4, 56.0, 67.4, 69.9, 94.4, 101.0, 108.6, 109.0, 115.4, 127.5, 127.9, 128.5, 136.9, 144.0, 153.1, 158.3, 159.8; MS(L-SIMS): m/z 678 (M^+ , 100); calcd (%) for $C_{42}H_{46}O_8$: C, 74.31; H, 6.83; found: C, 74.34; H, 6.95.

4: A mixture of hydroquinone (0.45 g, 4.0 mmol), the bromide **10** (6.8 g, 8.7 mmol), Cs₂CO₃ (3.9 g, 12 mmol) and dibenzo-24-crown-8 (0.5 g, 1.2 mmol) in DMF (40 mL) was heated at 110 °C for 2 h. The mixture was then quenched with water and extracted with EtOAc (50 mL × 2). The combined extracts were washed with brine (50 mL), dried (MgSO₄) and evaporated under reduced pressure. Chromatographic purification of the crude product (eluent: hexane/EtOAc, 7:1) afforded compound **4** (4.8 g, 78%) as a white solid; *R*_f: 0.41 (hexane/EtOAc, 5:1); m.p. 89–93 °C; ¹H NMR: 1.20–1.50 (m, 24 H), 1.29 (s, 18 H), 1.70–1.80 (m, 8 H), 2.05 (quin, *J* = 7.5 Hz, 4 H), 2.21 (quin, *J* = 6.0 Hz, 4 H), 2.71 (t, *J* = 6.9 Hz, 4 H), 3.82–3.92 (m, 12 H), 4.09 (t, *J* = 6.0 Hz, 4 H), 4.11 (t, *J* = 6.0 Hz, 4 H), 6.31 (t, *J* = 2.1 Hz, 2 H), 6.35 (d, *J* = 2.1 Hz, 4 H), 6.69 (d, *J* = 8.7 Hz, 4 H), 6.81 (s, 4 H), 6.85 (d, *J* = 6.9 Hz, 4 H), 7.29 (d, *J* = 6.9 Hz, 4 H), 7.54 (d, *J* = 9.0 Hz, 4 H); ¹³C NMR: 25.97, 26.03, 29.1, 29.4, 29.5, 29.9, 30.7, 31.5, 32.5, 34.0, 64.36, 64.43, 67.5, 67.9, 68.1, 82.4, 98.9, 107.0, 107.2, 113.9, 115.4, 116.9, 126.2, 138.1, 143.4, 143.9, 153.2, 156.6, 159.0, 160.0, 160.3; MS(L-SIMS): *m/z* 1506.7 (M⁺, 100); calcd (%) for C₈₂H₁₀₈O₁₀I₂: C, 65.33; H, 7.22; Found: C, 65.15; H, 7.29.

5: A mixture of hydroquinone (60 mg, 0.50 mmol), the bromide **11** (1.60 g, 1.1 mmol), Cs₂CO₃ (0.5 g, 1.5 mmol) and dibenzo-24-crown-8 (0.07 g, 0.15 mmol) in DMF (10 mL) was heated at 110 °C for 2 h. The mixture was then quenched with water and extracted with EtOAc (30 mL × 2). The combined

extracts were washed with brine (30 mL), dried (MgSO_4) and evaporated under reduced pressure. Chromatographic purification of the crude product (eluent: hexane/EtOAc, 8:1 gradient to 5:1) afforded compound **5** (0.60 g, 42%) as a colorless oil; R_f : 0.80 (hexane/EtOAc, 3:1); ^1H NMR: 1.20–1.50 (m, 24 H), 1.29 (s, 54 H), 1.70–1.80 (m, 8 H), 2.04 (quin, J = 6.9 Hz, 12 H), 2.20 (quin, J = 6.0 Hz, 12 H), 2.70 (t, J = 7.5 Hz, 12 H), 3.80–4.00 (m, 20 H), 4.09 (t, J = 6.0 Hz, 12 H), 4.11 (t, J = 6.0 Hz, 12 H), 6.30–6.40 (m, 18 H), 6.65 (d, J = 9.0 Hz, 4 H), 6.80 (s, 4 H), 6.84 (d, J = 8.7 Hz, 12 H), 7.28 (d, J = 8.7 Hz, 12 H), 7.53 (d, J = 8.7 Hz, 4 H); ^{13}C NMR: 25.97, 26.04, 29.1, 29.4, 29.5, 30.7, 30.8, 31.5, 32.5, 34.0, 64.36, 64.45, 66.9, 67.3, 67.6, 67.9, 68.1, 82.4, 98.9, 107.0, 107.1, 107.2, 113.9, 115.4, 116.9, 126.2, 138.1, 143.4, 143.9, 153.2, 156.6, 159.0, 160.0, 160.2, 160.3; MS(MALDI-TOF): m/z 2890.7 [(M+Na) $^+$, 100]; calcd (%) for $\text{C}_{170}\text{H}_{220}\text{O}_{22}\text{I}_2$: C, 71.16; H, 7.73; found: C, 71.31; H, 7.94.

14: A solution of hydrogen chloride in ethanol (2.0 M, 10 mL) was added dropwise to a solution of compound **13** (0.80 g, 1.2 mmol) in THF (5 mL) at 0 °C. After 1 h, the mixture was quenched with water and extracted with EtOAc (10 mL \times 2). The combined extracts were washed with brine (10 mL), dried (MgSO_4) and evaporated to dryness under reduced pressure. Chromatographic purification of the


crude product (eluent: hexane/EtOAc, 2:1) afforded compound **14** (0.58 g, 83%) as a white solid; R_f : 0.27 (hexane/EtOAc, 2:1); m.p. 92–94 °C; ^1H NMR: 2.04 (quin, J = 6.6 Hz, 4 H), 2.71 (t, J = 7.2 Hz, 4 H), 3.88 (t, J = 6.0 Hz, 4 H), 4.84 (s, 2 H), 4.97 (s, 4 H), 6.25–6.35 (m, 4 H), 6.43 (s, 2 H), 6.81 (s, 4 H), 7.30–7.50 (m, 10 H); ^{13}C NMR: 31.1, 32.8, 67.9, 70.5, 100.5, 108.3, 108.9, 116.0, 128.1, 128.5, 129.2, 137.5, 144.9, 153.7, 157.2, 160.7; MS(L-SIMS): m/z 590 (M^+ , 100); calcd (%) for $\text{C}_{38}\text{H}_{38}\text{O}_6$: C, 77.27; H, 6.48; found: C, 77.04; H, 6.64.

15: A mixture of the bisphenol **14** (0.80 g, 1.4 mmol), the bromide **12** (3.70 g, 3.0 mmol), dibenzo-24-crown-8 (0.20 g, 0.41 mmol) and Cs_2CO_3 (1.4 g, 4.1 mmol) in DMF (25 mL) was stirred at 60 °C for 3 h. The mixture was then quenched with water and extracted with EtOAc (50 mL × 2). The combined extracts were washed with brine (50 mL), dried (MgSO_4) and evaporated to dryness under reduced pressure. Chromatographic purification of the crude product (eluent: hexane/EtOAc, 6:1 gradient to 4:1) afforded compound **15** (3.30 g, 81%) as a colorless oil; R_f : 0.40 (hexane/EtOAc, 3:1); ^1H NMR: 1.30 (s, 72 H), 2.00–2.15 (m, 16 H), 2.22 (quin, J = 6.0 Hz, 16 H), 2.67–2.78 (m, 16 H), 3.85–3.93 (m, 16 H), 4.09 (t, J = 7.8 Hz, 16 H), 4.12 (t, J = 7.8 Hz, 16 H), 4.97 (s, 4 H), 6.30–6.50 (m, 24 H), 6.82 (s, 4 H), 6.86 (d, J = 6.9 Hz, 16 H), 7.27 (d, J = 6.9 Hz, 16 H), 7.30–7.50 (m, 10 H); ^{13}C NMR: 29.3, 30.7, 31.5, 32.5, 34.0, 64.3, 64.4, 66.9, 67.5, 69.9, 98.9, 99.3, 107.2, 107.6, 113.9, 115.4, 126.2, 127.5, 127.9, 128.5, 137.0, 143.3, 143.9, 153.2, 156.6, 160.0, 160.2; MS(MALDI-TOF) m/z 3038 [$(\text{M}+\text{Na})^+$, 100]; calcd (%) for $\text{C}_{196}\text{H}_{242}\text{O}_{26}$: C, 78.11; H, 8.09; found: C, 77.98; H, 8.16.

16: A mixture of compound **15** (2.00 g, 0.66 mmol) and 10% palladium on charcoal (0.2 g) in EtOAc/EtOH (1:1, 20 mL) was stirred under hydrogen atmosphere (1 atm) at 25 °C for 6 h. The mixture was then filtered and the filtrate was evaporated under reduced pressure. Chromatographic purification of the crude product (eluent: hexane/EtOAc, 3:1) afforded compound **16** (1.70 g, 90%) as a colorless oil; R_f : 0.27 (hexane/EtOAc, 3:1); ^1H NMR: 1.29 (s, 72 H), 1.95–2.10 (m, 16 H), 2.22 (quin, J = 6.0 Hz, 16 H), 2.60–2.80 (m, 16 H), 3.80–4.00 (m, 16 H), 4.08 (t, J = 5.7 Hz, 16 H), 4.11 (t, J = 5.7 Hz, 16 H), 5.06

(s, 2 H), 6.20–6.40 (m, 24 H), 6.79 (s, 4 H), 6.84 (d, J = 7.8 Hz, 16 H), 7.28 (d, J = 7.8 Hz, 16 H); ^{13}C NMR: 29.3, 30.6, 31.5, 32.2, 32.4, 34.0, 64.4, 64.5, 66.7, 66.9, 67.4, 98.9, 99.5, 107.3, 107.4, 107.9, 113.9, 115.4, 126.2, 143.4, 143.7, 143.9, 144.2, 153.1, 156.5, 156.7, 160.0, 160.2; MS(MALDI-TOF) m/z 2830.5 (M^+ , 100); calcd (%) for $\text{C}_{182}\text{H}_{230}\text{O}_{26}$: C, 77.14; H, 8.18; found: C, 77.25; H, 8.25.

6: A mixture of the bromide **11** (1.50 g, 1.0 mmol), the bisphenol **16** (1.30 g, 0.47 mmol), Cs_2CO_3 (1.0 g, 2.8 mmol) and dibenzo-24-crown-8 (70 mg, 0.14 mmol) in DMF (15 ml) was stirred at 60 °C for 3 h. The reaction was then quenched with water and extracted with EtOAc (30 mL \times 2). The organic extracts were combined, washed with brine (30 mL), dried (MgSO_4) and concentrated under reduced pressure. Column chromatographic purification of the crude product (eluent: hexane/EtOAc, 8:1 gradient to 2:1) afforded compound **6** (2.50 g, 97%) as a colorless oil; R_f : 0.64 (hexane/EtOAc, 3:1); ^1H NMR: 1.20–1.50 (m, 24 H), 1.28 (s, 126 H), 1.65–1.80 (m, 8 H), 1.95–2.05 (m, 28 H), 2.20 (quin, J = 6.0 Hz, 28 H), 2.69 (t, J = 6.9 Hz, 28 H), 3.80–3.95 (m, 36 H), 4.07 (t, J = 6.3 Hz, 28 H), 4.09 (t, J = 6.3 Hz, 28 H), 6.31 (brs, 14 H), 6.35 (brs, 28 H), 6.65 (d, J = 8.7 Hz, 4 H), 6.80 (s, 4 H), 6.83 (d, J = 7.8 Hz, 28 H), 7.27 (d, J = 7.8 Hz, 28 H), 7.52 (d, J = 8.7 Hz, 4 H); ^{13}C NMR: 25.96, 26.03, 29.1, 29.3, 29.5, 29.7, 30.7, 30.9, 31.5, 32.5, 34.0, 64.3, 64.4, 66.9, 67.7, 67.9, 68.1, 82.4, 98.9, 107.0, 107.2, 113.9, 115.4, 116.9, 126.2, 138.1, 143.3, 143.9, 153.2, 156.6, 159.0, 160.0, 160.3; MS(MALDI-TOF): m/z 5617.6 [$(\text{M}+\text{Na})^+$, 100]; calcd (%) for $\text{C}_{346}\text{H}_{444}\text{O}_{46}\text{I}_2$: C, 74.30; H, 8.00; found: C, 74.37; H, 8.19.

7: A mixture of the diiodide **4** (160 mg, 0.11 mmol), TMSC≡CH (0.2 mL, 1.1 mmol), $\text{Pd}(\text{PPh}_3)_2\text{Cl}_2$ (40 mg, 53 μmol), PPh_3 (10 mg, 21 μmol), CuI (10 mg, 21 μmol) and NEt_3 (0.2 mL, 1.1 mmol) in toluene (4.0 mL) was placed inside a sealed tube equipped with a stirrer bar. The reaction mixture was degassed

and stirred at 60 °C for 24 h. The mixture was filtered and then washed with Et₂O (10 mL). The combined filtrates were concentrated under reduced pressure. Chromatographic purification of the crude product (eluent: hexane gradient to hexane/EtOAc, 10:1) afforded compound **7** (120 mg, 78%) as a yellow oil; *R*_f: 0.34 (hexane/EtOAc, 8:1); ¹H NMR: 0.24 (s, 18 H), 1.20–1.50 (m, 24 H), 1.30 (s, 18 H), 1.70–1.82 (m, 8 H), 2.05 (quin, *J* = 6.6 Hz, 4 H), 2.21 (quin, *J* = 5.7 Hz, 4 H), 2.71 (t, *J* = 7.5 Hz, 4 H), 3.80–4.00 (m, 12 H), 4.09 (t, *J* = 6.3 Hz, 4 H), 4.11 (t, *J* = 6.3 Hz, 4 H), 6.29–6.37 (m, 6 H), 6.70–6.90 (m, 12 H), 7.29 (d, *J* = 8.4 Hz, 4 H), 7.39 (d, *J* = 8.4 Hz, 4 H); ¹³C NMR: 0.1, 25.99, 26.04, 29.2, 29.3, 29.4, 29.5, 30.7, 31.5, 32.5, 34.0, 64.38, 64.43, 67.6, 67.9, 68.0, 92.3, 98.8, 105.3, 107.0, 107.3, 113.9, 114.3, 115.0, 115.4, 126.2, 133.4, 143.4, 143.9, 153.1, 156.6, 159.3, 160.0, 160.3; MS(MALDI-TOF): *m/z* 1470 [(M+Na)⁺, 100]; calcd (%) for C₉₂H₁₂₆O₁₀Si₂: C, 76.30; H, 8.77; found: C, 76.35; H, 8.55.

8: A mixture of the diiodide **5** (0.50 g, 0.17 mmol), TMSC≡CH (0.3 mL, 1.7 mmol), Pd(PPh₃)₂Cl₂ (70 mg, 87 µmol), PPh₃ (10 mg, 35 µmol), CuI (10 mg, 35 µmol) and NEt₃ (0.3 mL, 1.7 mmol) in toluene (15 mL) was placed inside a sealed tube equipped with a stirrer bar. The reaction mixture was degassed, and stirred at 60 °C for 24 h. The mixture was filtered and then washed with Et₂O (10 mL). The combined filtrates were concentrated under reduced pressure. Chromatographic purification of the crude product (eluent: hexane gradient to hexane/EtOAc, 5:1) afforded compound **8** (0.43 g, 88%) as a yellow oil; *R*_f: 0.50 (hexane/EtOAc, 5:1); ¹H NMR: 0.23 (s, 18 H), 1.20–1.50 (m, 24 H), 1.28 (s, 54 H), 1.70–1.80 (m, 8 H), 2.04 (quin, *J* = 6.9 Hz, 12 H), 2.20 (quin, *J* = 6.0 Hz, 12 H), 2.69 (t, *J* = 7.2 Hz, 12 H), 3.80–4.00 (m, 20 H), 4.08 (t, *J* = 6.3 Hz, 12 H), 4.10 (t, *J* = 6.3 Hz, 12 H), 6.29–6.38 (m, 18 H), 6.78–6.85 (m, 20 H), 7.28 (d, *J* = 8.4 Hz, 12 H), 7.38 (d, *J* = 8.4 Hz, 4 H); ¹³C NMR:^[3] 0.1, 26.0, 26.1, 29.2, 29.4, 29.5, 30.7, 30.8, 31.5, 32.5, 34.0, 64.37, 64.45, 66.9, 67.6, 67.9, 68.0, 98.9, 107.1, 107.2, 113.9, 114.3, 115.4, 126.2, 133.4, 143.4, 143.9, 153.2, 156.6, 160.0, 160.2, 160.3; MS(MALDI-TOF): *m/z* 2833.6 [(M+Na)⁺, 100]; calcd (%) for C₁₈₀H₂₃₈O₂₂Si₂: C, 76.94; H, 8.54; found: C, 76.87; H, 8.39.

9: A mixture of the diiodo compound **6** (0.90 g, 0.16 mmol), TMSC≡CH (0.3 mL, 1.6 mmol), Pd(PPh₃)₂Cl₂ (0.10 g, 0.16 mmol), PPh₃ (10 mg, 32 μmol), copper(I) iodide (10 mg, 32 μmol) and NEt₃ (0.3 mL, 1.6 mmol) in toluene (10 mL) was placed inside a sealed tube equipped with a stirrer bar. The reaction mixture was degassed and stirred at 60 °C for 24 h. The mixture was filtered and then washed with Et₂O (10 mL). The combined filtrates were concentrated under reduced pressure. Chromatographic purification of the crude product (eluent: hexane/EtOAc, 8:1 gradient to 5:1) gave compound **9** (0.63 g, 71%) as a yellow oil; *R*_f: 0.34 (hexane/EtOAc, 5:1); ¹H NMR: 0.22 (s, 18 H), 1.20–1.50 (m, 24 H), 1.28 (s, 126 H), 1.70–1.80 (m, 8 H), 2.00–2.10 (br, 28 H), 2.21 (quin, *J* = 6.0 Hz, 28 H), 2.69 (t, *J* = 6.9 Hz, 28 H), 3.80–4.00 (m, 36 H), 4.07 (t, *J* = 6.6 Hz, 28 H), 4.10 (t, *J* = 6.6 Hz, 28 H), 6.31, (t, *J* = 2.1 Hz, 14 H), 6.36 (d, *J* = 2.1 Hz, 28 H), 6.70–6.90 (m, 36 H), 7.28 (d, *J* = 8.4 Hz, 28 H), 7.38 (d, *J* = 8.7 Hz, 4 H); ¹³C NMR:^[4] 0.1, 26.0, 29.2, 29.3, 29.5, 30.7, 31.5, 32.5, 34.0, 64.3, 64.4, 66.9, 67.0, 67.7, 67.9, 68.0, 98.9, 105.3, 107.1, 107.2, 113.9, 114.3, 115.4, 126.2, 133.4, 143.3, 143.9, 153.2, 156.6, 159.3, 160.0, 160.2; MS(MALDI-TOF): *m/z* 5558.0 [(M+Na)⁺, 100]; calcd (%) for C₃₅₆H₄₆₂O₄₆Si₂: C, 77.27; H, 8.41; found: C, 77.24; H, 7.99.

General synthetic procedure for bis(ethynyl) Gn-dendrimers (n = 1–3) **1–3**: Anhydrous K₂CO₃ (5.0 equiv) was added to a solution of bis(trimethylsilylethynyl) surface functionalized Gn-dendrimers **7–9** (1.0 equiv) in methanol/THF (1:1) (2 mL/mmol). The mixture was stirred at 25 °C for 1.5 h and then quenched with water and extracted with ethyl acetate (25 mL × 2). The combined organic layers were washed with brine, dried (MgSO₄) and concentrated under reduced pressure. The residue was purified by silica column chromatography eluting with hexane/EtOAc = 8/1.

1: Starting from compound **7** (100 mg, 69 μmol) and after chromatographic purification, compound **1** was obtained (90 mg, 98%) as a white solid; *R*_f: 0.50 (hexane/EtOAc, 5:1); m.p. 86–89 °C; ¹H NMR: 1.20–1.50 (m, 24 H), 1.29 (s, 18 H), 1.70–1.80 (m, 8 H), 2.04 (quin, *J* = 6.6 Hz, 4 H), 2.21 (quin, *J* = 6.3 Hz, 4 H), 2.71 (t, *J* = 7.2 Hz, 4 H), 2.98 (s, 2 H), 3.80–4.00 (m, 12 H), 4.09 (t, *J* = 6.3 Hz, 4 H), 4.11 (t, *J*

= 6.3 Hz, 4 H), 6.30 (s, 2 H), 6.35 (s, 4 H), 6.80–6.90 (m, 12 H), 7.29 (d, J = 8.7 Hz, 4 H); ^{13}C NMR: 25.96, 26.01, 29.1, 29.26, 29.33, 29.5, 30.7, 31.5, 32.4, 34.0, 64.4, 67.5, 67.9, 68.0, 75.6, 77.2, 83.7, 98.8, 106.9, 107.2, 113.9, 114.4, 115.4, 126.2, 133.5, 143.3, 143.8, 153.1, 156.6, 159.5, 160.0, 160.3; MS(MALDI-TOF): m/z 1326.1 [(M+Na) $^+$, 100]; calcd (%) for $\text{C}_{86}\text{H}_{110}\text{O}_{10}$: C, 79.22; H, 8.50; found: C, 79.05; H, 8.52.

2: Starting from compound **8** (60 mg, 21 μmol) and after chromatographic purification, compound **2** (50 mg, 88%) was obtained as a colorless oil; R_f : 0.41 (hexane/EtOAc, 5:1); ^1H NMR: 1.20–1.50 (m, 24 H), 1.28 (s, 54 H), 1.70–1.80 (m, 8 H), 2.04 (quin, J = 6.9 Hz, 12 H), 2.20 (quin, J = 6.0 Hz, 12 H), 2.69 (t, J = 7.5 Hz, 12 H), 2.98 (s, 2 H), 3.80–4.00 (m, 20 H), 4.09 (t, J = 6.0 Hz, 12 H), 4.11 (t, J = 6.0 Hz, 12 H), 6.30–6.40 (m, 18 H), 6.80–6.90 (m, 20 H), 7.28 (d, J = 8.7 Hz, 12 H), 7.41 (d, J = 8.7, 4 H); ^{13}C NMR: 26.0, 29.1, 29.4, 29.5, 30.7, 31.5, 32.5, 34.0, 64.36, 64.44, 66.9, 67.6, 67.9, 68.0, 75.6, 77.2, 83.9, 98.9, 107.1, 107.2, 113.9, 114.4, 115.4, 126.2, 133.5, 143.3, 143.9, 153.2, 156.6, 159.5, 160.0, 160.2; MS(MALDI-TOF): m/z 2689.5 [(M+Na) $^+$, 100]; calcd (%) for $\text{C}_{174}\text{H}_{222}\text{O}_{22}$: C, 78.40; H, 8.39; found: C, 78.21; H, 8.25.

3: Starting from compound **9** (0.25 g, 45 μmol) and after chromatographic purification, compound **3** (0.16 g, 66%) was obtained as a colorless oil; R_f : 0.27 (hexane/EtOAc, 5:1); ^1H NMR: 1.20–1.50 (m, 24 H), 1.28 (s, 126 H), 1.70–1.80 (m, 8 H), 2.00–2.10 (m, 28 H), 2.20 (quin, J = 6.0 Hz, 28 H), 2.69 (t, J = 6.6 Hz, 28 H), 2.98 (s, 2 H), 3.80–4.00 (m, 36 H), 4.08 (t, J = 6.6 Hz, 28 H), 4.10 (t, J = 6.6 Hz, 28 H), 6.31 (brs, 14 H), 6.36 (brs, 28 H), 6.75–6.90 (m, 36 H), 7.25–7.30 (m, 28 H), 7.42 (d, J = 8.7 Hz, 4 H); ^{13}C NMR: 26.0, 29.2, 29.3, 30.7, 30.9, 31.5, 32.5, 34.0, 64.3, 64.4, 66.9, 67.7, 67.9, 68.0, 68.1, 75.7, 77.2, 82.9, 98.9, 107.1, 107.2, 113.9, 114.4, 114.6, 115.4, 126.2, 128.4, 128.6, 133.5, 134.0, 143.3, 143.9, 153.2, 156.6, 159.8, 160.0, 160.2; MS(MALDI-TOF): m/z 5415.3 [(M+Na) $^+$, 100]; calcd (%) for $\text{C}_{350}\text{H}_{446}\text{O}_{46}$: C, 77.92; H, 8.38; found: C, 77.72; H, 8.33.

General synthetic procedure for Gn-dendritic necklaces (n = 1–3) **17–19**. A catalytic amount of CuI (5 mg) was added to a mixture of the bis(ethynyl) surface-functionalized Gn-dendrimer **1–3** (1.0 equiv) and *trans*-[(Et₃P)₂PtCl₂] (1.0 equiv) in CH₂Cl₂/diisopropylamine (1:1) (20 mL/mmol) at 25 °C. The mixture was stirred for 12 h and the solvent was evaporated under reduced pressure. The residue was redissolved in dichloromethane and filtered through a short pad of alumina. The filtrate collected was concentrated to about 1 mL under reduced pressure and then precipitated successively to acetone and to methanol (200 mL each). The dendritic polymer was collected by filtration.

G1-dendritic necklace 17: Starting from compound **1** (500 mg, 77 μmol) and *trans*-[(Et₃P)₂PtCl₂] (190 mg, 38 μmol), the dendritic polymer **17** (600 mg, 88%) was obtained as a yellow solid; T_d: 500 °C; ¹H NMR: 1.10–1.20 (m, 18 H), 1.20–1.50 (m, 24 H), 1.29 (s, 18 H), 1.65–1.80 (m, 8 H), 1.98–2.20 (m, 20 H), 2.60–2.80 (m, 4 H), 3.80–4.00 (m, 12 H), 4.09 (t, *J* = 6.6 Hz, 4 H), 4.11 (t, *J* = 6.6 Hz, 4 H), 6.30 (s, 2 H), 6.35 (s, 4 H), 6.74 (d, *J* = 8.7 Hz, 4 H), 6.81 (s, 4 H), 6.84 (d, *J* = 8.7 Hz, 4 H), 7.19 (d, *J* = 8.7 Hz, 4 H), 7.29 (d, *J* = 8.7 Hz, 4 H); ¹³C NMR^[5]: 8.4 (PCH₂CH₃), 16.3 (pseudo quin, *J* = 17 Hz; PCH₂), 26.0, 29.1, 29.4, 29.5, 30.7, 31.5, 32.5, 34.0, 64.4, 67.6, 67.9, 98.8, 107.0, 107.2, 108.7 (s, C≡CPt), 113.9, 114.1, 114.5, 115.4, 126.2, 131.9, 143.3, 143.9, 153.2, 156.6, 156.8, 160.0, 160.3; ³¹P{¹H} NMR: 17.58 [¹J(Pt,P) = 2375 Hz]; UV (CH₂Cl₂, 25 °C): $\lambda_{\text{max}} (\log \epsilon) = 268 (4.05), 344 \text{ nm (3.93)}$.

G2-dendritic necklace 18: Starting from compound **2** (380 mg, 0.14 mmol) and *trans*-[(Et₃P)₂PtCl₂] (72 mg, 0.14 mmol), the dendritic polymer **18** (350 mg, 78%) was obtained as a yellow solid; T_d: 500 °C; ¹H NMR: 1.10–1.30 (m, 18 H), 1.20–1.50 (m, 24 H), 1.28 (s, 54 H), 1.65–1.80 (m, 8 H), 1.95–2.30 (m, 36 H), 2.60–2.80 (m, 12 H), 3.80–4.00 (m, 20 H), 4.08 (t, *J* = 6.6 Hz, 12 H), 4.10 (t, *J* = 6.6 Hz, 12 H), 6.30 (s, 6 H), 6.35 (s, 12 H), 6.75 (d, *J* = 8.7 Hz, 4 H), 6.80 (s, 4 H), 6.84 (d, *J* = 8.7 Hz, 12 H), 7.17 (d, *J* = 8.7 Hz, 4 H), 7.28 (d, *J* = 8.7 Hz, 12 H); ¹³C NMR^[5]: 8.4 (PCH₂CH₃), 16.3 (pseudo quin, *J* = 17 Hz; PCH₂), 26.1, 29.4, 30.7, 31.5, 32.5, 34.0, 64.3, 64.4, 66.9, 68.0, 98.9, 107.2, 113.9, 114.1, 115.4, 126.2,

131.9, 143.3, 143.9, 156.6, 160.0, 160.2; $^{31}\text{P}\{\text{H}\}$ NMR: 17.51 [$^1\text{J}(\text{Pt},\text{P}) = 2381$ Hz]; UV (CH₂Cl₂, 25 °C): $\lambda_{\text{max}} (\log \varepsilon) = 272$ (3.94), 343 nm (3.83).

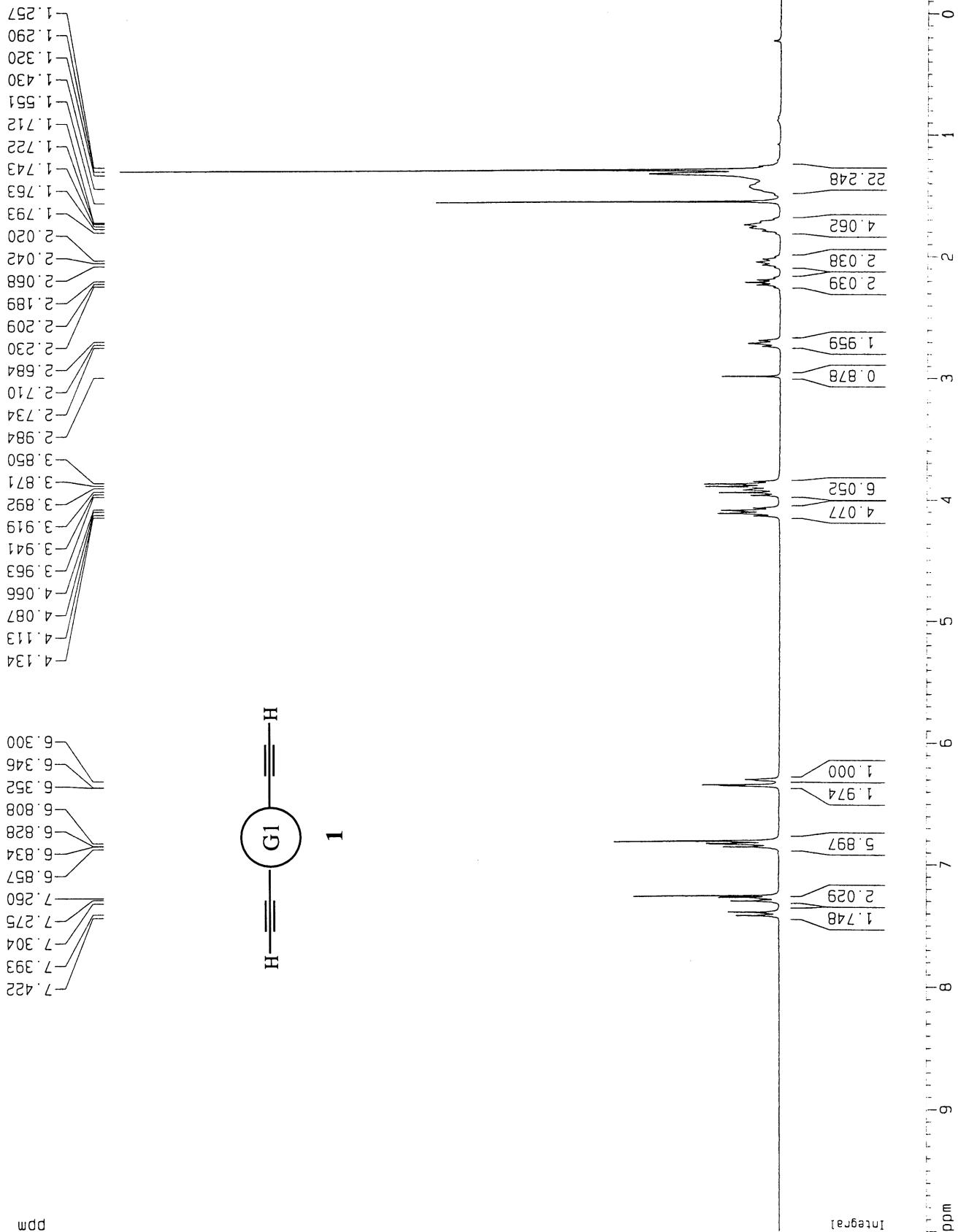
G3-dendritic necklace **19:** Starting from compound **3** (400 mg, 0.074 mmol) and *trans*-[(Et₃P)₂PtCl₂] (37 mg, 0.074 mmol), the dendritic polymer **19** (250 mg, 58%) was obtained as a yellowish green solid; T_d: 500 °C; ^1H NMR: 1.10–1.30 (m, 18 H), 1.20–1.50 (m, 24 H), 1.27 (s, 126 H), 1.65–1.80 (m, 8 H), 1.95–2.30 (m, 68 H), 2.60–2.80 (m, 28 H), 3.80–4.00 (m, 36 H), 4.07 (t, $J = 6.6$ Hz, 28 H), 4.09 (t, $J = 6.6$ Hz, 28 H), 6.30 (s, 14 H), 6.35 (s, 28 H), 6.71 (d, $J = 8.7$ Hz, 4 H), 6.80 (s, 4 H), 6.83 (d, $J = 8.7$ Hz, 28 H), 7.20 (d, $J = 8.7$ Hz, 4 H), 7.27 (d, $J = 8.7$ Hz, 28 H); ^{13}C NMR^[5]: 8.4 (PCH₂CH₃), 16.3 (pseudo quin, $J = 17$ Hz; PCH₂), 26.1, 29.3, 30.7, 30.9, 31.5, 32.5, 34.0, 64.3, 64.4, 66.9, 67.7, 67.9, 98.9, 107.1, 107.2, 113.9, 114.1, 115.4, 126.2, 131.9, 143.3, 143.9, 153.2, 156.6, 160.0, 160.2; $^{31}\text{P}\{\text{H}\}$ NMR: 16.28 [$^1\text{J}(\text{Pt},\text{P}) = 2393$ Hz]; UV (CH₂Cl₂, 25 °C): $\lambda_{\text{max}} (\log \varepsilon) = 276$ (3.93), 343 nm (3.56).

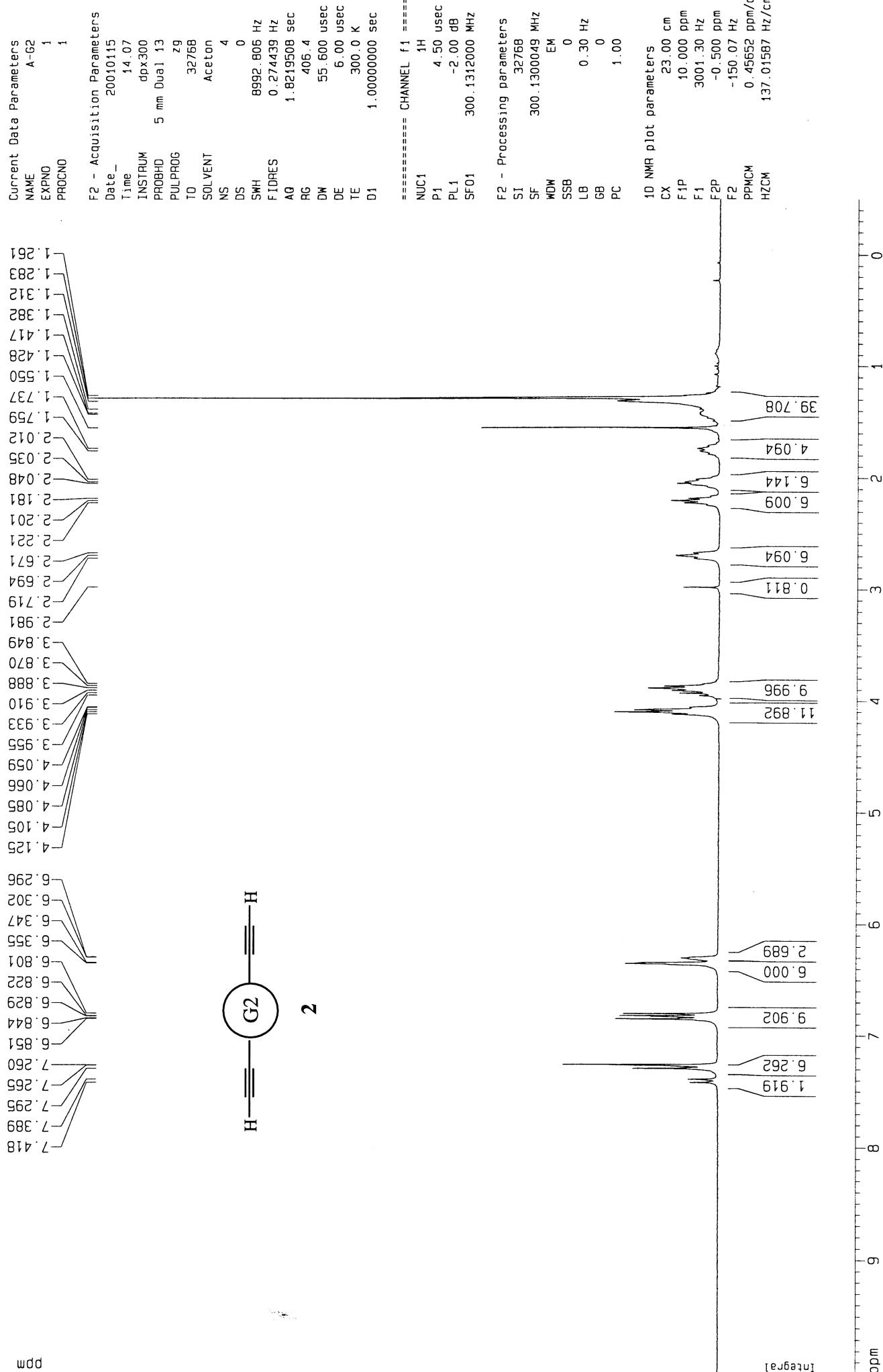
References:

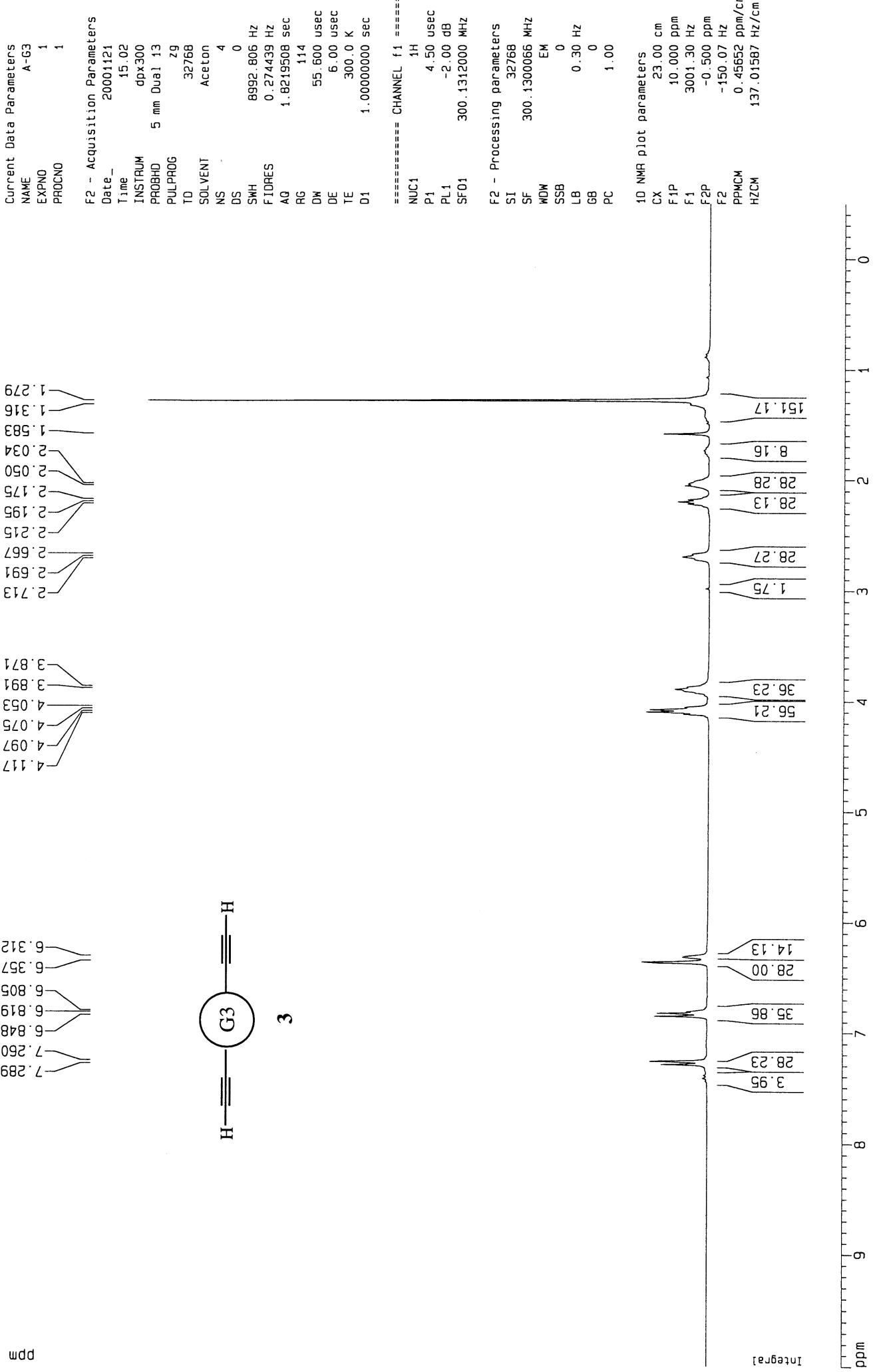
- [1] H.-F. Chow, I. Y.-K. Chan, C. C. Mak, M.-K. Ng, *Tetrahedron* **1996**, *52*, 4277–4290.
- [2] F. Lotz, U. Kraatz, F. Korte, *Liebigs Ann. Chem.* **1977**, 1132–1140.
- [3] The intensities of the ^{13}C signals ($\delta \sim 92$ and 105) of the two acetylenic carbons were too weak to be observed.
- [4] One of the ^{13}C signals of the acetylenic carbons ($\delta \sim 92$) was too weak to be observed.
- [5] One of the ^{13}C signals of the acetylenic carbons of the G1- **17** dendritic necklace and both the ^{13}C signals of the two acetylenic carbons of the G2- **18** and G3- **19** dendritic necklaces are too weak to be observed.

Current Data Parameters	
NAME	A-G1
EXPNO	1
PROCNO	1

F2 - Acquisition Parameters
Date 20010110


11.03	11.03
dpt300	dpt300
5 mm	Dua1 13
zg	
32768	
CC13	
8	8
0	0
8992	8992 806 Hz
0.274439	0.274439 Hz
1.8821500	1.8821500 sec
512	512
55.600	55.600 usec
6.00	6.00 usec
300.0	300.0 K
1.00000000	1.00000000 sec


```
===== CHANNEL f1 =====
NUC1          3H
P1           4.50 usec
PL1          -2.00 dB
SF01        300..1312000 MHz
```

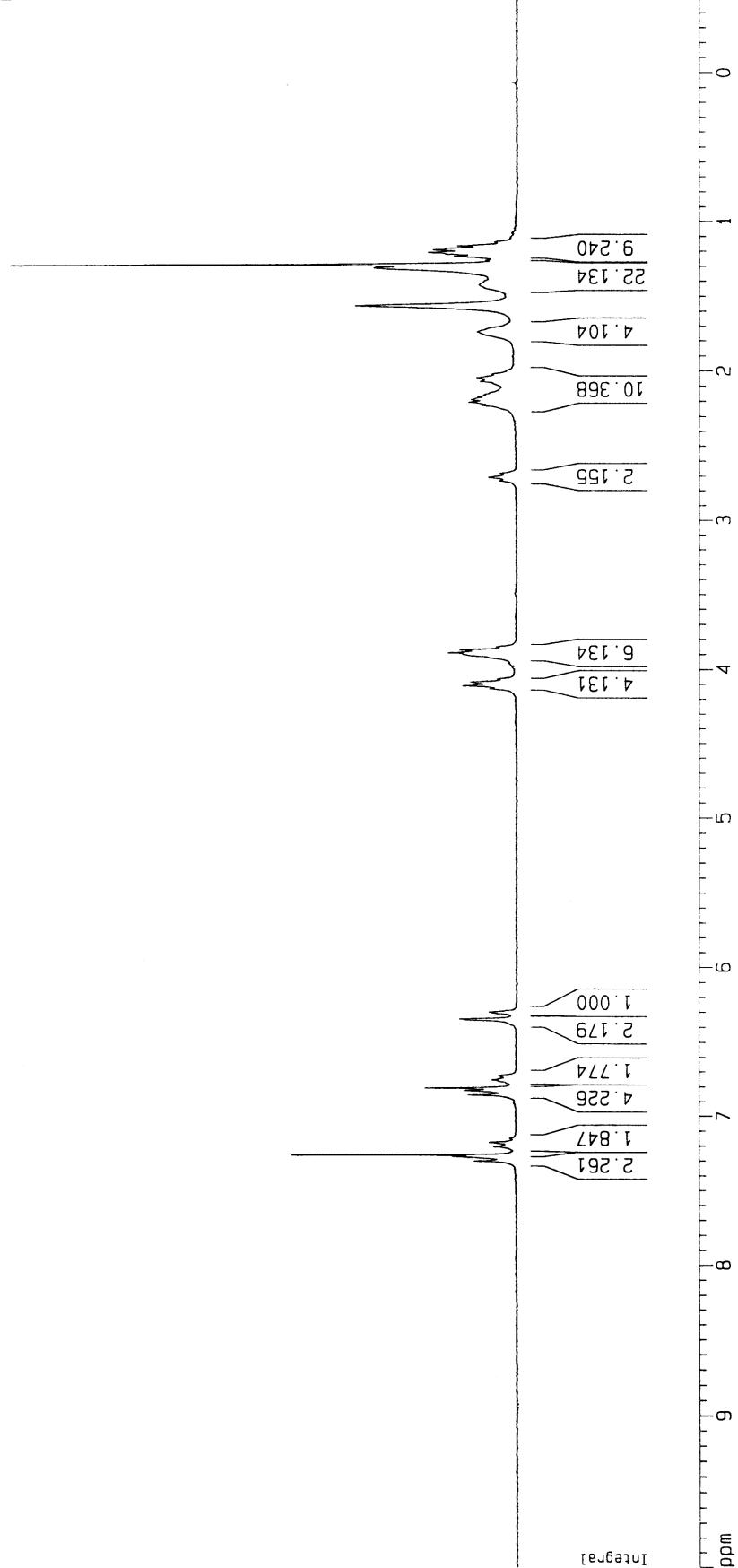

E2 = Processing Parameters

32768
300.1300055 MHz
FM

parameters	0.30 Hz	0	1.00
23.00 cm			
10.000 ppm			
300.130 Hz			
-0.500 ppm			
-150.07 Hz			
0.45552 ppm/cm			
137.01587 Hz/cm			

Current Data Parameters
 NAME pPTAG1_2
 EXPNO 1
 PROCNO 1

F2 - Acquisition Parameters

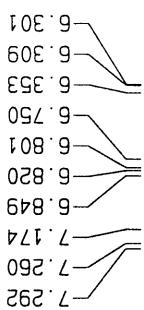
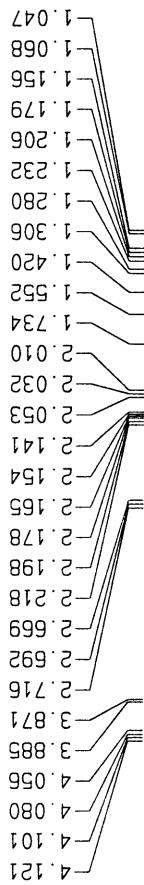

1. 132	4. 111	7. 301	10. 299
1. 111	4. 085	7. 260	10. 203
1. 064	4. 064	7. 203	10. 175
1. 050	4. 050	7. 252	10. 155
1. 020	4. 020	7. 227	10. 149
1. 010	4. 010	7. 206	10. 143
1. 000	4. 000	7. 167	10. 132
1. 000	4. 000	7. 155	10. 125
1. 000	4. 000	7. 149	10. 111
1. 000	4. 000	7. 143	10. 100
1. 000	4. 000	7. 132	10. 085
1. 000	4. 000	7. 125	10. 064
1. 000	4. 000	7. 111	10. 050
1. 000	4. 000	7. 100	10. 045
1. 000	4. 000	7. 080	10. 035
1. 000	4. 000	7. 075	10. 032
1. 000	4. 000	7. 072	10. 030
1. 000	4. 000	7. 068	10. 027
1. 000	4. 000	7. 063	10. 020
1. 000	4. 000	7. 051	10. 010
1. 000	4. 000	7. 045	10. 000

G1-dendritic necklace 17

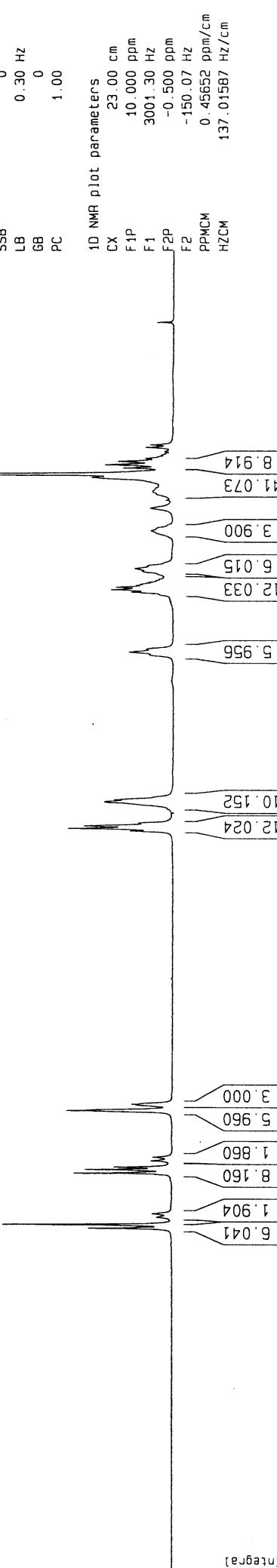
SMH	8992.806	Hz
FIDRES	0.274439	Hz
AQ	1.8219508	sec
RG	724.1	
DW	55.600	usec
DE	6.00	usec
TE	300.0	K
DI	1.00000000	sec

F2 - Processing parameters	
SI	32768
SF	300.1300057 MHz
WDW	EM
SSB	0
LB	0.30 Hz
GB	0
PC	1.00

1D NMR plot parameters	
CX	23.00 cm
F1P	10.000 ppm
F1	3001.30 Hz
F2P	-0.500 ppm
F2	-150.07 Hz
PPCM	0.45652 ppm/cm
HZCM	137.01587 Hz/cm



Current	Data	Parameters
NAME		pTAG2
EXPN0		1
PFQCN0		1

F2 - Acquisition Parameters


Date _	20020204
Time _	10.07
INSTRUM	dp300
PROBHD	5 mm Dual 13
PULPROG	zg
TD	32768
SOLVENT	CDC13
NS	8
DS	0
SWH	8992.806 Hz
FIDRES	0.274439 Hz
AQ	1.8219508 sec
RG	406.4
DW	55.600 usec
DE	6.00 usec
TE	300.0 K
DM	1.00000000 K

```
===== CHANNEL f1 =====
NUC1          1H
P1            4.50 usec
PL1          -2.00 dB
SF01        300..1312000 MHz
F2 - Processing parameters
S1            32768
SF          300..13000000 MHz
MDW          EM
SSB          0
LB          0.30 Hz
GB          0
PC          1.00
```

1D NMR plot parameters		
CX	23	00
F1P	10	000
F1	300	1.30
F2P	-0	500
F2	-150	0.07
PPCM	0.49652	ppm/cm
HZCM	137.01587	Hz/cm

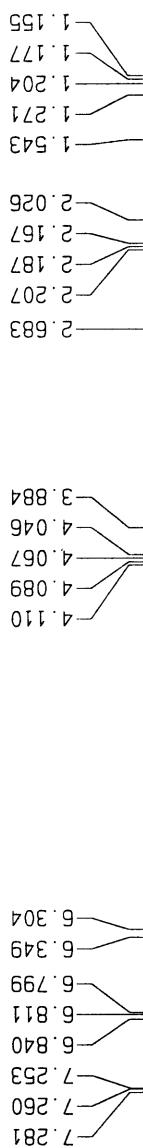
G2-dendritic necklace 18

Current Data Parameters
 NAME pPtAG3
 EXPNO 1
 PROCNO 1

F2 - Acquisition Parameters

Date 20020221
 Time 12.46
 INSTRUM dpx300
 PROBHD 5 mm Dual 13
 PULPROG 32768
 TD 32768
 SOLVENT CDCl3
 NS 8
 DS 0
 SWH 8992.806 Hz
 FIDRES 0.274439 Hz
 AQ 1.8219508 sec
 RG 724.1
 DW 55.600 usec
 DE 6.00 usec
 TE 300.0 K
 D1 1.0000000 sec

===== CHANNEL f1 =====


NUC1 1H
 P1 4.50 usec
 PL1 -2.00 dB
 SF01 300.1312000 MHz

F2 - Processing parameters

SI 32768
 SF 300.1296207 MHz
 MDW EM
 SSB 0
 LB 0.30 Hz
 GB 0
 PC 1.00

1D NMR plot parameters

CX 23.00 cm
 F1P 10.000 ppm
 F1 3001.30 Hz
 F2P -0.500 ppm
 F2 -150.06 Hz
 PPMCM 0.45652 ppm/cm
 HZCM 137.01569 Hz/cm

G3-dendritic necklace 19

ppm

Integral

1 2 3 4 5 6 7 8 9 10