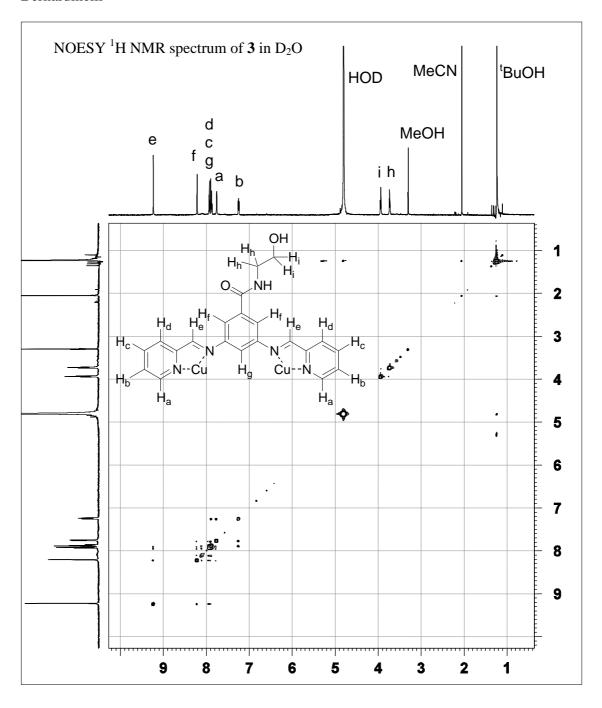
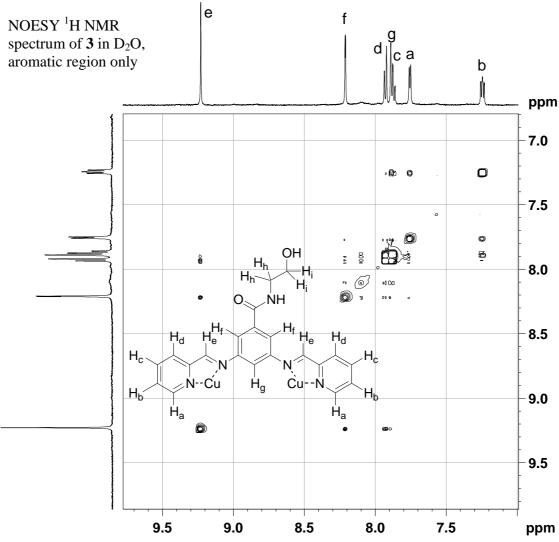


Supporting Information


for


Angew. Chem. Int. Ed. 200461308

© Wiley-VCH 2004

69451 Weinheim, Germany

Supporting information for "Hydrophobic Effect as a Driving Force in the Self-Assembly of a $[2 \times 2]$ Copper(I) Grid" by Jonathan R. Nitschke, Marie Hutin, and Gérald Bernardinelli

Synthesis of 3,5-diamino-N-(2-hydroxy-ethyl)-benzamide (1): Into a 10 ml Schlenk flask was loaded methyl-3,5-diaminobenzoate (1.26 g, 7.62 mmol) and 2-aminoethanol (5.05 g, 82.7 mmol). The atmosphere was purified of dioxygen by three evacuation / argon-purge cycles, and the mixture was stirred until the solids dissolved. The light orange solution was then placed in an oil bath at 373 K and stirred at this temperature for 3 h. The mixture was then allowed to cool to room temperature, and volatiles were removed under dynamic vacuum during 12 h. The product was recrystallised from a mixture of water and 2-methyl-2-propanol, and obtained as white microcrystals. The isolated yield was 1.19 g, 80 %. ¹H NMR (400 MHz, 300 K, D₂O, referenced to 2methyl-2-propanol at 1.24 ppm as internal standard): $\delta = 6.59$ (d, J = 2.0 Hz, 2H, 2,6phenylamide), 6.42 (t, J = 2.0 Hz, 1H, 4-phenylamide), 3.73 (t, J = 5.5 Hz, 2H, ethanolamide), 3.47 (t, J = 5.5 Hz, 2H, ethanolamide); ¹³C NMR (100.62 MHz, 300 K, D₂O, referenced to the methyl groups of 2-methyl-2-propanol at 30.29 ppm as internal standard): $\delta = 171.2, 147.6, 135.8, 106.7, 105.9, 59.92, 41.85.$; EI-MS $m/z = 195 (1^+),$ 177 (**1**⁺ - H₂O) 135 (**1**⁺ - NHCH₂CH₂OH); Anal. Calcd for C₉H₁₃N₃O₂: C 55.37, H 6.71, N 21.52; Found C 55.19, H 6.76, N 21.40.

Attempts at the synthesis of 3 in different solvents: Diamine 1 (0.02 mmol) was mixed with pyridine-2-carboxaldehyde 2 (2 equiv) and copper(I) tetrakis(acetonitrile)tetrafluoroborate (1 equiv) in the solvent noted below (0.7 ml) under an argon atmosphere.

Deuterated solvent	Solution color	Solubility	Appearance of the NMR spectrum
$DMSO ext{-}d_6$	purple-orange	poor	broad peaks
CD ₃ OD	purple	poor	broad peaks
CD ₃ CN	yellow-orange	poor	numerous peaks
CD ₃ NO ₂	pink-orange	poor	broad peaks
CDCl ₃	orange	poor	pyridinecarboxaldeyde and CH ₃ CN observed
C_6D_6	light yellow	poor	pyridinecarboxaldeyde observed
Acetone- d_6	red-pink	poor	broad peaks

Non-deuterated			
solvent	Solution color	Solubility	Analytical technique
			ES-MS : showed only the formation
DMF	purple-orange	good	of $[CuL]^+$ (m/z=436.3)
Pyridine	light orange	good	None
Et ₂ O	colorless	very poor	None
CH ₃ COOH	purple	poor	NMR: numerous peaks
THF	yellow-orange	poor	None

Solubility good: all products were soluble

Solubility poor: insoluble products were observed