Supporting Information

for

Angew. Chem. Int. Ed. Z52990

© Wiley-VCH 2003

69451 Weinheim, Germany
5-Dehydro-1,3-quinodimethane: A Hydrocarbon with an Open-Shell Doublet Ground State

by

Lyudmila V. Slipchenko, Tamara E. Munsch, Paul G. Wenthold, and Anna I. Krylov

Experimental procedures and results for the kinetic method determination of the electron affinity of DMX
All experiments were carried out using a flowing afterglow – triple quadrupole instrument that has been described in detail previously \[1\]. The EA of DMX was determined by using the kinetic method developed by Cooks and co-workers \[2\], with full entropy analysis \[3\]. The experiment involves the measurement of the branching ratio for collision-induced dissociation (CID) of the SO$_2$ adducts of DMX$^-$, prepared by direct addition of DMX$^-$ with SO$_2$ (Eq. S1).

$$\text{DMXSO}_2^- \rightleftharpoons \text{DMX}^- + \text{SO}_2^- \quad \text{(Eq. S1)}$$

In the full analysis, the EA of DMX is related to the branching ratio for CID of DMXSO$_2^-$, $R_{\text{DMX},E}$, at the selected collision energy, E, the branching ratios for CID of reference ions, $R_{B_i,E}$ and the electron affinities of the references, $EA(B_i)$ according to Eq. S2, where $T_{\text{eff},E}$ is the “effective temperature” \[4\] of the dissociation at collision energy, and ΔS reflects the difference in the activation entropies in the dissociation reactions of SO$_2$ adduct ions \[5\]. The quantitative relationship between the branching ratio, R, and the electron affinity is established by calibration by using phenyl (EA = 25.3 ± 0.1 kcal mol$^{-1}$) \[6\], 4-chlorophenyl (EA = 32.8 ± 3.2 kcal mol$^{-1}$) \[7\], and α-naphthyl (EA = 32.4 ± 0.3 kcal mol$^{-1}$) \[8\] radicals as references.

$$\ln \left(\frac{R_{\text{DMX}}}{R_{B_i}} \right)_E = \frac{EA(\text{DMX}) - EA_{\text{ave}} + T_{\text{eff},E} \Delta S}{RT_{\text{eff},E}} - \frac{EA(B_i) - EA_{\text{ave}}}{RT_{\text{eff},E}} \quad \text{(Eq. S2)}$$

According to Eq. 8, a plot of $\ln \left(\frac{R_{\text{DMX}}}{R_{B_i}} \right)_E$ versus $EA(B_i) - EA_{\text{ave}}$ at a given energy has a slope $m_E = -1/RT_{\text{eff}}$ and an intercept $y_E = \left[EA(\text{DMX}) - EA_{\text{ave}} + T_{\text{eff}} \Delta S \right] / RT_{\text{eff}}$, where R is the gas
constant. The term EA_{ave} is the average electron affinity of the references, and is included to remove an artificial correlation between the slope and intercept in this analysis [9]. A second plot of y_E versus $-m_E$ has a slope $EA(DMX) - EA_{ave}$ and an intercept of $\Delta S/R$.

Measured branching ratios and representative plots of $\ln\left(\frac{R_{DMX}}{R_{Bi}}\right)$ versus $EA(B_i) - EA_{ave}$ are shown in Figs. S1 and S2. The second regression plot, used to determine the electron affinity, is shown in Fig. S3. The slope of the plot, -5.3 ± 0.4 kcal mol$^{-1}$, when added to EA_{ave}, 30.2 ± 1.2 kcal mol$^{-1}$, yields $EA(DMX) = 24.9 \pm 2.0$ kcal mol$^{-1}$, where the uncertainty includes the average error of the references, the error in the slope of the second regression plot (the 90% confidence limit [9]), and a 40% error in the effective temperature [3, 4]. The intercept of the second regression is 0.68 ± 0.25, yielding $\Delta S = 1.4 \pm 0.5$ cal mol$^{-1}$ K$^{-1}$, indicating only small differences in the activation entropies among the dissociation reactions.

References for Supporting Material

Fig. S1. Plot of $\ln R$ versus center-of-mass frame-of-reference collision energy for Collision Induced Dissociation of SO$_2$ adducts of DMX$^-$ and reference ions.
Fig. S2. Kinetic method plots of $\ln\left(\frac{R_{DMX}}{R_{B_i}}\right)$ versus EA - EA_{avg} at collision energies 5.0, 6.5, and 8.0 eV.
Fig. S3. Second regression plot of \([\text{EA(DMX)} - \text{EA}_{\text{ave}} + T_{\text{eff}}\Delta S]/R_{\text{eff}}\) vs \(-1/RT_{\text{eff}}\) for the electron affinity measurement of DMX. The slope of the plot corresponds to \(\text{EA(DMX)} - \text{EA}_{\text{ave}}\), where \(\text{EA}_{\text{ave}}\) is the average electron affinity of the reference radicals (30.2 ± 1.2 kcal mol\(^{-1}\)).

\[
\gamma_E = \frac{[\text{EA(DMX)} - \text{EA}_{\text{ave}} + T_{\text{eff}}\Delta S]}{R_{\text{eff}}},
\]

Slope: \(-5.3 \pm 0.4\) kcal mol\(^{-1}\)
Intercept: \(+0.68 \pm 0.25\)
\(r^2 = 0.85\)