

Supporting Information

for

Angew. Chem. Int. Ed. Z53121

© Wiley-VCH 2003

69451 Weinheim, Germany

Direct Substitution of the Hydroxyl Group in Alcohols with Silyl Nuculeophiles Catalyzed by Indium Trichloride

Makoto Yasuda, Takahiro Saito, Masako Ueba, and Akio Baba*

Department of Molecular Chemistry and Handai Frontier Research Center, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

General. IR spectra were recorded as thin films or as solids in KBr pellets on a HORIBA FT-720 spectrophotometer. ¹H and ¹³C NMR spectra were obtained with a 270 and 67.9 MHz spectrometer, respectively, with TMS as internal or external standard. Mass spectra were recorded on a JEOL JMS-DS303 or a Shimadzu GCMS-QP2000A spectrometer. GLC analyses were performed on a Shimadzu GC-8A with FID using a 2 m x 3 mm column packed with SE-52. Column chromatography was performed on silica gel (Wakogel C-300). Bulb-to-bulb distillation (Kugelrohr) was accomplished in a Sibata GTO-250RS at the oven temperature and pressure indicated. Yields were determined by GLC or ¹H NMR using internal standards.

Materials. Dichloromethane and 1,2-dichloroethane were distilled from CaH_2 . THF and hexane were distilled from sodium and benzophenone. DMF was distilled after stirring with molecular sieves 4A. All catalysts in Table 1 were commercially available. Allylsilanes 1, 7, and alkynylsilane 14 were commercially available. γ -Substituted allylsilanes 8,^[1] 10,^[2] and propargylsilane 12^[3] were prepared according to the literature. The alcohols 2d, 2k, and 2m were prepared according to our paper.^[4] All other starting alcohols are commercially available.

General Procedure for InCl₃-Catalyzed Allylation of Alcohols Using Allylic Silanes (1, 7, 8, 10, 12, or 14). To a mixture of InCl₃ (0.05 mmol) and the alcohol (1.0 mmol) in dry dichloromethane or 1,2-dichloroethane (1 mL) was added allylsilane (2.0 mmol) under nitrogen. The reaction mixture was stirred under the reaction conditions noted in the text. The resulting mixture was poured into Et_2O (50 mL) and $NaHCO_3$ aq (15%, 30 mL). The solution was extracted with Et_2O and the organic layer was dried over MgSO₄. The evaporation of the ether

solution gave the crude product which was analyzed by GLC and NMR. The details of further purification are performed for the new compound and described in product data section.

Product data. The products **3b**,^[5] **3f**^[5] and **5**^[6], and **15a**^[7] showed spectra in an excellent agreement with the reported data. The spectral data of **6** was in an excellent agreement with the sample which is commercially available. Spectral data for the products, **3a**, **3c-e**, **3g-m**, **9**, **11a** and **11g** are shown below.

4,4-Diphenyl-1-butene (3a). According to the general procedure, this compound was prepared from **1**, **2a**, and InCl₃ to give the product as a colorless liquid after chromatography (hexane). Further purification was performed by distillation under reduced pressure: bp: 100 °C/0.011mmHg; IR: (neat) 1643 (C=C) cm⁻¹; 1 H NMR: (270 MHz, CDCl₃) 7.31-7.14 (m, 5H, aroma), 5.80-5.64 (m, 1H, 2-H), 5.07-4.92 (m, 2H, 1-H₂), 4.01 (t, J = 7.8 Hz, 1H, 4-H), 2.82 (t, J = 7.8 Hz, 2H, 3-H₂); 13 C NMR: (67.9 MHz, CDCl₃) 144.45 (s, Ph-*ipso*), 136.79 (d, C-2), 128.36 (d, Ph-o), 127.90 (d, Ph-m), 126.14 (d, Ph-p), 116.27 (t, C-1), 51.19 (d, C-4), 39.92 (t, C-3); MS: (EI, 70 eV) m/z 208 (M⁺, 0.6), 167 (M⁺ -CH₂CH=CH₂, 100), 165 (30); HRMS: (EI, 70 eV) calcd for C₁₆H₁₆ 208.1252, found m/z 208.1266, 208.1262, 208.1234 (M⁺). Anal. Calcd for C₁₆H₁₆: C, 92.26; H, 7.74. Found: C, 92.20; H, 7.73.

4-(4-Chlorophenyl)-4-phenyl-1-butene (3c). According to the general procedure, this compound was prepared from **1**, **2c**, and InCl₃ to give the product as a colorless liquid after chromatography (hexane). Further purification was performed by distillation under reduced pressure: bp: 118 °C/0.3 mmHg; IR: (neat) 1643 (C=C), 1095 (Ph-Cl) cm⁻¹; ¹H NMR: (270 MHz, CDCl₃) 7.13-7.31 (m, 9H, aroma), 5.69 (ddt, J = 17.1, 10.3, 6.8 Hz, 1H, 2-H), 5.02 (ddd, J = 17.1, 2.0, 1.5 Hz, 1H, 1-H^A), 4.95 (ddd, J = 10.3, 2.0, 1.2 Hz, 1H, 1-H^B), 3.98 (t, J = 8.1 Hz, 1H, 4-H), 2.75-2.80 (m, 2H, 3-H₂), 2.76 (ddd, J = 8.1, 6.8, 1.5 Hz, 1H, 3-H^B); ¹³C NMR: (67.9 MHz, CDCl₃) 143.90 (s, ipso), 142.87 (s, ipso), 136.32 (d, C-2), 131.82 (s, C-Cl), 129.24 (d, aroma-CH), 128.45 (d, aroma-CH), 127.75 (d, aroma-CH), 126.33 (d, p-Ph), 116.57 (t, C-1), 50.54 (d, C-4), 39.83 (t, C-3); MS: (EI, 70 eV) m/z 244 (M⁺ + 2, 0.11), 242 (M⁺, 0.41), 203 (45), 201 (M⁺ - CH₂CH=CH₂, 100), 165 (51); HRMS: (EI, 70 eV) calcd for C₁₆H₁₅Cl 242.0862, found m/z 242.0858, 242.0878, 242.0852 (M⁺). Anal. Calcd for C₁₆H₁₅Cl: C, 79.17; H, 6.23. Found: C, 78.86; H, 6.30.

4-Phenyl-4-(4-nitrophenyl)-1-butene (3d). According to the general procedure, this compound was prepared from **1**, **2d**, and InCl₃ to give the product as a colorless liquid after chromatography (hexane/Et₂O, 4/1). Further purification was performed by distillation under reduced pressure: bp: 150-165 °C/ 0.011mmHg; IR: (neat) 1640 (C=C), 1520 (NO₂), 1350 (NO₂) cm⁻¹; ¹H NMR: (270 MHz, CDCl₃) 8.14 (d, J = 8.8 Hz, 2H, aroma), 7.40-7.20 (m, 7H, aroma), 5.77-5.62 (m, 1H, 2-H), 5.04 (d, J = 17.6 Hz, 1H, 1-H^A), 4.98 (d, J = 10.3 Hz, 1H, 1-H^B), 4.13 (t,

J = 7.8 Hz, 1H, 4-H), 2.85 (m, 2H, 3-H₂); ¹³C NMR: (67.9 MHz, CDCl₃) 152.06 (s, ¹Ph-*ipso*), 146.31 (s, ¹Ph-*p*), 142.67 (s, ²Ph-*ipso*), 135.58 (d, C-2), 128.74 (d, ¹Ph-*o*), 128.68 (d, ²Ph-*o*), 127.77 (d, ²Ph-*m*), 126.77 (d, ²Ph-*p*), 123.62 (d, ¹Ph-*m*), 117.13 (t, C-1), 50.89 (d, C-4), 39.41 (t, C-3); MS: (EI, 70 eV) m/z 253 (M⁺, 1.0), 212 (M⁺ - CH₂=CHCH₂, 100), 166 (M⁺ - CH₂=CHCH₂ - NO₂, 31), 165 (M⁺, 41), 103 (37); HRMS: (EI, 70 eV) calcd for C₁₆H₁₅NO₂ 253.1103, found m/z 253.1128, 253.1086, 253.1084 (M⁺). Anal. Calcd for C₁₆H₁₅NO₂: C, 75.87; H, 5.97; N, 5.53. Found: C, 75.51; H, 6.22; N, 5.50.

4-Phenyl-4-(4-methoxyphenyl)-1-butene (3e). According to the general procedure, this compound was prepared from **1**, **2e**, and InCl₃ to give the product as a colorless liquid after chromatography (hexane/AcOEt, 9/1). Further purification was performed by distillation under reduced pressure: bp: $103 \, ^{\circ}\text{C}/ \, 0.11 \, \text{mmHg}$; IR: (neat) $1635 \, (\text{C=C}) \, \text{cm}^{-1}$; $^{1}\text{H NMR}$: (270 MHz, CDCl₃) 7.30-7.13 (m, 7H, aroma), 6.82 (d, $J = 8.9 \, \text{Hz}$, 2H, aroma), 5.795.64 (m, 1H, 2-H), 5.06-4.92 (m, 2H, 1-H₂), 3.96 (t, $J = 7.8 \, \text{Hz}$, 1H, 4-H), 3.76 (s, 3H, Ar-CH₃), 2.78 (t, $J = 7.8 \, \text{Hz}$, 2H, 3-H₂); $^{13}\text{CNMR}$: (67.9 MHz, CDCl₃) 157.88 (s, $^{1}\text{Ph-}p$), 144.89 (s, $^{2}\text{Ph-ipso}$), 136.93 (d, C-2), 136.61 (s, $^{1}\text{Ph-ipso}$), 128.81 (d, $^{1}\text{Ph-o}$), 128.36 (d, $^{2}\text{Ph-o}$), 127.81 (d, $^{2}\text{Ph-m}$), 126.05 (d, $^{2}\text{Ph-}p$), 16.18 (t, C-1), 113.73 (d, $^{1}\text{Ph-}m$), 55.17 (q, OMe), 50.35 (d, C-4), 40.10 (t, C-3); MS: (EI, 70 eV) m/z 238 (M⁺, 1.6), 197 (M⁺ -CH₂=CHCH₂, 100), 165 (15); HRMS: (EI, 70 eV) calcd for C₁₇H₁₈O 238.1358, found m/z 238.1371, 238.1353, 238.1347 (M⁺). Anal. Calcd for C₁₇H₁₈O: C, 85.67; H, 7.61. Found: C, 85.46; H, 7.65.

4-Phenyl-1-pentene (**3g**). According to the general procedure, this compound was prepared from **1**, **2g**, and InCl₃ to give the product as a colorless liquid after chromatography (hexane). Further purification was performed by distillation under reduced pressure: bp: 40-50 °C/ 0.011mmHg; IR: (neat) 1643 (C=C) cm⁻¹; 1 H NMR: (270 MHz, CDCl₃) 7.32-7.09 (m, 5H, aroma), 5.70-5.55 (m, 1H, 2-H), 4.85-4.93 (m, 2H, 1-H₂), 2.77-2.64 (m, 1H, 4-H), 2.36-2.14 (m, 1H, 3-H₂), 1.17 (d, J = 6.8 Hz, 3H, 5-H₃); 13 C NMR: (67.9 MHz, CDCl₃) 147.01 (s, Ph-*ipso*), 137.14 (d, C-2), 128.28 (d, Ph-*o*), 126.97 (d, Ph-*m*), 125.93 (d, Ph-*p*), 115.87 (t, C-1), 42.67 (t, C-3), 39.75 (d, C-4), 21.49 (q, C-5); MS: (EI, 70 eV) m/z 146 (M⁺, 6.5), 105 (M⁺ - CH₂=CHCH₂· 100), 91 (PhCH₂, 3.2), 77 (Ph, 8.9); HRMS: (EI, 70 eV) calcd for C₁₁H₁₄ 146.1096, found m/z 146.1103, 146.1100, 146.1087 (M⁺).

4-Methyl-4-phenyl-1-pentene (3h). According to the general procedure, this compound was prepared from **1**, **2h**, and InCl₃ to give the product as a colorless liquid after chromatography (hexane). Further purification was performed by distillation under reduced pressure: bp: 30 °C/0.11 mmHg; IR: (neat) 1643 (C=C) cm⁻¹; 1 H NMR: (270 MHz, CDCl₃) 7.37-7.13 (m, 5H, aroma), 5.62-5.47 (m, 1H, 2-H), 5.00-4.91 (m, 2H, 1-H₂), 2.37 (d, J = 6.8 Hz, 2H, 3-H₂), 1.30 (s, 6H, 5-H₃ and 4-CH₃); 13 CNMR: (67.9 MHz, CDCl₃) 149.18 (s, Ph-ipso), 135.52 (d, C-2), 128.00

(d, Ph-m), 125.80 (d, Ph-o), 125.50 (d, Ph-p), 116.88 (t, C-1), 48.82 (t, C-3), 37.56 (s, C-4), 28.50 (q, C-5 and 4-C); MS: (EI, 70 eV) m/z 160 (M⁺, 0.4), 119 (M⁺ -CH₂=CHCH₂, 100), 91 (46); HRMS: (EI, 70 eV) calcd for C₁₂H₁₆ 160.1252, found m/z 160.1260, 160.1271, 160.1261 (M⁺). Anal. Calcd for C₁₂H₁₆: C, 89.94; H, 10.06. Found: C, 89.70; H, 9.99.

4-Chloro-(4-chlorophenyl)1-pentene (3i). According to the general procedure, this compound was prepared from **1**, **2i**, and InCl₃ to give the product as a colorless liquid after chromatography (hexane). Further purification was performed by distillation under reduced pressure: bp: 50-60 °C/ 0.011mmHg; IR: (neat) 1643 (C=C), 1095 (Ph-Cl) cm⁻¹; ¹H NMR: (270 MHz, CDCl₃) 7.15 (d, J = 8.8 Hz, 2H, aroma), 7.01 (d, J = 8.8 Hz, 2H, aroma), 5.65-5.50 (m, 1H, 2-H), 4.88 (d, J = 18.6 Hz, 1H, 1-H^A), 4.86 (d, J = 10.3 Hz, 1H, 1-H^B), 2.70-2.60 (m, 1H, 4-H), 2.29-2.10 (m, 2H, 3-H₂), 1.13 (d, J = 7.3 Hz, 3H, 5-H₃); ¹³C NMR: (67.9 MHz, CDCl₃) 145.36 (s, Ph-*ipso*), 136.62 (d, C-2), 131.50 (s, Ph-*p*), 128.37 (d), 128.32 (d), 116.21 (t, C-1), 42.53 (t, C-3), 39.20 (d, C-4), 21.44 (q, C-5); MS: (EI, 70 eV) m/z 182 (M⁺ + 2, 3.0), 180 (M⁺, 7.9), 141 (M⁺ + 2 - CH₂=CHCH₂, 39), 139 (M⁺ - CH₂=CHCH₂, 100), 103 (37); HRMS: (EI, 70 eV) calcd for C₁₁H₁₃Cl 180.0706, found m/z 180.0726, 180.0713, 180.0706 (M⁺).

2-Allyl-bicyclo[2.2.1]heptane (3j). According to the general procedure, this compound was prepared from **1**, **2j**, and InCl₃ to give the product as a colorless liquid after chromatography (hexane). Further purification was performed by distillation under reduced pressure: bp: $105 \, ^{\circ}\text{C}/27 \, \text{mmHg}$; IR: (neat) $1639 \, (\text{C=C}) \, \text{cm}^{-1}$; $^{1}\text{H NMR}$: (270 MHz, CDCl₃) 5.84- $5.69 \, (\text{m}, 1\text{H}, 2\text{-H})$, 5.01- $4.83 \, (\text{m}, 2\text{H}, 1\text{-H}_2)$, 2.19- $2.17 \, (\text{m}, 1\text{H}, 4\text{-H})$, 2.04- $1.79 \, (\text{ddd}, J = 14.1, 7.0, 7.2 \, \text{Hz}, 2\text{H}, 3\text{-H}_2)$, $1.96 \, (\text{m}, 1\text{H}, 9\text{-H})$, 1.52- $1.41 \, (\text{m}, 2\text{H}, 8\text{-H})$, 1.39- $1.31 \, (\text{m}, 1\text{H}, 6\text{-H})$, $1.35 \, (\text{dd}, J = 3.6, 2.2 \, \text{Hz}, 2\text{H}, 10\text{-H})$, $1.28 \, (\text{dd}, J = 3.8, 1.9 \, \text{Hz}, 2\text{H}, 5\text{-H})$, 1.18- $1.01 \, (\text{m}, 2\text{H}, 7\text{-H})$; $^{13}\text{CNMR}$: (67.9 MHz, CDCl₃) $138.10 \, (\text{d}, \text{C-2})$, $114.76 \, (\text{t}, \text{C-1})$, $41.58 \, (\text{d}, \text{C-6})$, $41.08 \, (\text{t}, \text{C-3})$, $40.65 \, (\text{d}, \text{C-4})$, $37.78 \, (\text{t}, \text{C-10})$, $36.66 \, (\text{d}, \text{C-9})$, $35.13 \, (\text{t}, \text{C-5})$, $30.01 \, (\text{t}, \text{C-8})$, $28.82 \, (\text{t}, \text{C-7})$; MS: (EI, $70 \, \text{eV}$) $m/z \, 136 \, (\text{M}^+, 0.4)$, $95 \, (\text{M}^+ \text{-CH}_2 = \text{CHCH}_2, 100)$; HRMS: (EI, $70 \, \text{eV}$) calcd for $\text{C}_{10}\text{H}_{16} \, 136.1252$, found $m/z \, 136.1232$, 136.1244, $136.1272 \, (\text{M}^+)$.

Ethyl 3-phenyl-5-hexenate (3k). According to the general procedure, this compound was prepared from **1**, **2k**, and InCl₃ to give the product as a colorless liquid after purification by TLC (hexane/Et₂O, 8/1, R_f = 0.57): IR: (neat) 1736 (C=O), 1643 (C=C) cm⁻¹; ¹H NMR: (270 MHz, CDCl₃) 7.32-7.16 (m, 5H, aroma), 5.66 (ddt, J = 17.1, 10.3, 6.8 Hz, 1H, 5-H), 5.00 (dd, J = 17.1, 1.5 Hz, 1H, 6-H^A), 4.97 (dd, J = 10.3, 1.5 Hz, 1H, 6-H^B), 4.02 (q, J = 7.1 Hz, 2H, OCH₂), 3.26-3.16 (m, 1H, 3-H), 2.68 (dd, J = 15.1, 6.8 Hz, 1H, 2-H^A), 2.55 (dd, J = 15.1, 8.5 Hz, 1H, 2-H^B), 2.39 (td, J = 6.8, 1.2 Hz, 2H, 4-H₂), 1.13 (t, J = 7.1 Hz, 3H, CH₃); ¹³C NMR: (67.9 MHz, CDCl₃) 172.21 (s, C-1), 143.48 (s, ipso), 135.88 (d, C-5), 128.30 (d, aroma-CH), 127.37 (d, aroma-CH), 126.42 (d, aroma-CH), 116.77 (t, C-6), 60.22 (t, OCH₂), 41.83 (d, C-3), 40.65 (t, C-1)

2 and C-4), 14.12 (q, CH₃); MS: (EI, 70 eV) m/z 218 (M⁺, 9), 177 (M⁺ - CH₂CH=CH₂, 23), 144 (35), 135 (100), 130 (45), 105 (53), 91 (33), 77 (11); HRMS: (EI, 70 eV) calcd for C₁₄H₁₈O₂ 218.1307, found m/z 218.1300, 218.1326, 218.1292 (M⁺). Anal. Calcd for C₁₄H₁₈O₂: C, 77.03; H, 8.31. Found: C, 76.91; H, 8.39.

6-Chloro-4-phenyl-1-hexene (3l). According to the general procedure, this compound was prepared from **1**, **2l**, and InCl₃ to give the product as a colorless liquid after chromatography (hexane/Et₂O, 4/1). Further purification was performed by distillation under reduced pressure: bp: 110 °C/ 0.011mmHg; IR: (neat) 1643 (C=C) cm⁻¹; 1 H NMR: (270 MHz, CDCl₃) 7.34-7.16 (m, 5H, aroma), 5.74-5.59 (m, 1H, 2-H), 5.04-4.94 (m, 2H, 1-H₂), 3.47-3.38 (ddd, J = 10.7, 8.5, 6.8 Hz, 1H, 6-H^A), 3.30-3.20 (ddd, J = 10.8, 7.3, 4.9 Hz, 1H, 6-H^B), 2.92-2.84 (m, 1H, 4-H), 2.39 (m, 2H, 3-H₂), 2.20-2.10 (m, 1H, 5-H^A), 2.05-1.92 (m, 1H, 5-H^B); 13 C NMR: (67.9 MHz, CDCl₃) 143.30 (s, Ph-*ipso*), 136.32 (d, C-2), 128.54 (d, Ph-*o*), 127.64 (d, Ph-*m*), 126.54 (d, Ph-*p*), 114.45 (t, C-1), 43.08 (t), 42.73 (d), 40.89 (t, C-4), 38.53 (t); MS: (EI, 70 eV) m/z 196 (M⁺ + 2, 1.7), 194 (M⁺, 5.2), 155 (M⁺ + 2 -CH₂CH=CH₂, 22), 153 (M⁺ -CH₂CH=CH₂, 63), 91 (100); HRMS: (EI, 70 eV) calcd for C₁₂H₁₅Cl 194.0862, found m/z 194.0872, 194.0862, 194.0858 (M⁺).

7-Hydroxy-4-phenyl-1-heptene (3m). According to the general procedure, this compound was prepared from **1**, **2m**, and InCl₃ to give the product as a colorless liquid after chromatography (hexane/AcOEt, 3/1). Further purification was performed by distillation under reduced pressure: bp: 125 °C/ 0.11 mmHg; IR: (neat) 3340 (OH), 1643 (C=C) cm⁻¹; ¹H NMR: (270 MHz, CDCl₃) 7.31-7.13 (m, 5H, aroma), 5.74-5.59 (m, 1H, 2-H), 4.99-4.91 (m, 2H, 1H₂), 3.55 (t, J = 6.7 Hz, 2H, 7-H₂), 2.66-2.56 (m, 1H, 4-H), 2.37 (t, J = 6.8 Hz, 2H, 3-H₂), 1.85-1.52 (m, 2H, 5-H₂), 1.50-1.34 (m, 2H, 6-H₂); ¹³CNMR: (67.9 MHz, CDCl₃) 144.89 (s, Ph-ipso), 136.93 (d, C-2), 128.30 (d), 127.64 (d), 126.09 (d, Ph-p), 115.93 (t, C-1), 62.93 (t, C-7), 45.66 (d, C-4), 41.38 (t, C-3), 31.94 (t, C-5), 30.69 (t, C-6); MS: (EI, 70 eV) m/z 190 (M⁺, 3.7), 149 (M⁺, -CH₂=CHCH₂, 40), 131 (100), 91 (44); HRMS: (EI, 70 eV) calcd for C₁₃H₁₈O 190.1358, found m/z 190.1362, 190.1333, 190.1366 (M⁺). Anal. Calcd for C₁₃H₁₈O: C, 82.06; H, 9.53. Found: C, 81.94; H, 9.38.

4,4-Diphenyl-3-phenyl-1-butene (9a). According to the general procedure, this compound was prepared from **8**, **2a**, and InCl₃ to give the product as a white solid after recrystallization (hexane): mp: 85-88 °C; IR: (KBr) 1635 (C=C) cm⁻¹; ¹H NMR: (270 MHz, CDCl₃) 7.38-6.97 (m, 15H, aroma), 5.92 (ddd, J = 17.1, 10.1, 7.3 Hz, 1H, 2-H), 4.88 (dd, J = 17.1, 10.1 Hz, 2H, 1-H₂), 4.30 (d, J = 7.3 Hz, 1H, 4-H), 4.17 (dd, J = 7.3 Hz, 2H, 3-H₂); ¹³C NMR: (67.9 MHz, CDCl₃) 143.46 (s), 143.17 (s), 142.69 (s), 140.90 (d, C-2), 128.71 (d), 128.64 (d), 128.38 (d), 128.32 (d), 128.22 (d), 128.08 (d), 126.28 (d), 126.08 (d), 125.83 (d), 115.95 (t, C-1), 57.00 (t, C-4), 54.42 (d, C-3); MS: (EI, 70 eV) m/z 284 (M⁺, 2.5), 167 (M⁺ -

- CHPhCH=CH₂, 100); HRMS: (EI, 70 eV) calcd for $C_{22}H_{20}$ 284.1565, found m/z 284.1571, 284.1563, 284.1553 (M⁺). Anal. Calcd for $C_{22}H_{20}$: C, 92.91; H, 7.09. Found: C, 92.52; H, 6.99.
- **3,3-Dimethyl-4,4-diphenyl-1-butene** (**11a**). According to the general procedure, this compound was prepared from **10**, **2a**, and InCl₃ to give the product as a colorless liquid. Further purification was performed by distillation and TLC (hexane/Et₂O, 8/1, R_f = 0.74): bp: 138 °C/0.3 mmHg; IR: (neat) 1635 (C=C) cm⁻¹; ¹H NMR: (270 MHz, CDCl₃) 7.11-7.40 (m, 10H, aroma), 6.07 (ddd, J = 17.6, 11.0, 1.2 Hz, ¹H, 4-H), 5.06 (dd, J = 11.0, 1.2 Hz, 1H, 1-H^A), 4.99 (dd, J = 17.6, 1.2 Hz, 1H, 1-H^B), 3.79 (s, 1H, 4-H), 1.07 (d, J = 1.2 Hz, 6H, CH₃); ¹³C NMR: (67.9 MHz, CDCl₃) 145.76 (d, C-2), 142.44 (s, ipso), 129.79 (d, aroma-CH), 127.76 (d, aroma-CH), 126.02 (d, aroma-CH), 112.11 (t, C-1), 63.70 (d, C-4), 40.47 (s, C-3), 27.60 (q, CH₃); MS: (EI, 70 eV) m/z 236 (M⁺, 0.09), 167 (M⁺ C(CH₃)₂CH=CH₂, 100); HRMS: (EI, 70 eV) calcd for C₁₈H₂₀ 236.1565, found m/z 236.1587, 236.1548, 236.1543 (M⁺). Anal. Calcd for C₁₈H₂₀: C, 91.47; H, 8.53. Found: C, 91.28; H, 8.50.
- **3,3-dimethyl-4-phenyl-1-pentene (11g).** According to the general procedure, this compound was prepared from **10**, **2g**, and InCl₃ to give the product as a colorless liquid. Further purification was performed by distillation and TLC (hexane, $R_f = 0.60$): bp: 85 °C/0.1 mmHg; IR: (neat) 1639 (C=C) cm⁻¹; ¹H NMR: (270 MHz, CDCl₃) 7.28-7.14 (m, 5H, aroma), 5.84 (dd, J = 17.3, 10.7 Hz, 1H, 2-H), 4.97 (dd, J = 10.7, 1.2 Hz, 1H, 1-H^A), 4.89 (dd, J = 17.3, 1.2 Hz, 1H, 1-H^B), 2.62 (q, J = 7.1 Hz, 3H, 4-H), 1.22 (d, 7.1 Hz, 3H, 5-H₃),0.96 (s, 1H, 3-CH₃^A), 0.92 (s, 3H, 3-CH₃^B); ¹³C NMR: (67.9 MHz, CDCl₃) 146,78 (d, C-1), 144.19 (s, ipso), 129.13 (d, aroma-CH), 127.36 (d, aroma-CH), 125.89 (d, aroma-CH), 111.38 (t, C-2), 49.35 (d, C-4), 39.95 (s, C-3), 26.30 (q, 3-C^A), 23.78 (q, 3-C^B), 16.19 (q, C-5); MS: (EI, 70 eV) m/z 174 (M⁺, 1), 105 (100), 77(6); HRMS: (EI, 70 eV) calculated for C₁₃H₁₈ 174.1409, found m/z 174.1414 (M⁺).
- **4,4-Diphenyl-1,2-butadiene** (13a). According to the general procedure, this compound was prepared from 12, 2a, and InCl₃ to give the product as a colorless liquid after chromatography (hexane). Further purification was performed by distillation under reduced pressure: bp: 128 °C/0.1 mmHg; IR: (neat) 1955 (C=C=C) cm⁻¹; ¹H NMR: (270 MHz, CDCl₃) 7.33-7.17 (m, 10H, aroma), 5.62 (dt, J = 6.6, 6.6 Hz, 1H, 3-H), 4.77-4.73 (m, 1H, 4-H), 4.72-4.69 (m, 2H, 1-H₂); ¹³C NMR: (67.9 MHz, CDCl₃) 208.58 (s, C-2), 143.41 (s, ipso), 128.28 (d, o- and m-Ph), 126.39 (d, p-Ph), 93.92 (d, C-3), 76.34 (t, C-1), 50.76 (d, C-4); MS: (EI, 70 eV) m/z 206 (M⁺, 73), 191 (24), 167 (M⁺ CH=C=CH₂, 100), 165 (68), 152 (33), 128 (29), 91 (36); HRMS: (EI, 70 eV) calcd for C₁₆H₁₄ 206.1096, found m/z 206.1083 (M⁺).
- **4-Phenyl-1,2-pentadiene (13g)**. According to the general procedure, this compound was prepared from **12**, **2g**, and InCl₃ to give the product as a colorless liquid after chromatography (hexane). Further purification was performed by distillation under reduced pressure: bp: 68

°C/0.2 mmHg; IR: (neat) 1955 (C=C=C) cm⁻¹; ¹H NMR: (270 MHz, CDCl₃) 7.34-7.15 (m, 5H, aroma), 5.34 (dt, J = 6.6, 6.6 Hz, 1H, 3-H), 4.79 (dd, J = 3.4, 6.6 Hz, 2H, 1-H₂), 3.53-3.41 (m, 1H, 4-H), 1.35 (d, J = 7.1 Hz, 3H, 5-H₃); ¹³C NMR: (67.9 MHz, CDCl₃) 207.63 (s, C-2), 145.95 (s, ipso), 128.32 (d, aroma-CH), 127.03 (d, aroma-CH), 126.20 (d, aroma-CH), 95.76 (d, C-3), 76.48 (t, C-1), 38.58 (d, C-4), 21.60 (q, C-5); MS: (EI, 70 eV) m/z 144 (M⁺, 11), 129 (100), 105 (M⁺ - CH=C=CH₂, 61), 77 (17); HRMS: (EI, 70 eV) calcd for C₁₁H₁₂, 144.0939, found m/z 144.0941 (M⁺).

1,3-Diphenyl-1-butyne (15g). According to the general procedure, this compound was prepared from **14**, **2g**, and InCl₃ to give the product as a colorless liquid after chromatography (hexane). Further purification was performed by distillation under reduced pressure: bp: 119 °C/0.15 mmHg; IR: (neat) 2233 (alkyne) cm⁻¹; ¹H NMR: (270 MHz, CDCl₃) 7.47-7.16 (m, 10H, aroma), 3.98 (q, J = 7.1 Hz, 1H, 3-H), 1.58 (d, J = 7.1 Hz, 3H, 4-H₃); ¹³C NMR: (67.9 MHz, CDCl₃) 143.24 (s, ipso), 131.55 (d, aroma-CH), 128.49 (d, aroma-CH), 128.13 (d, aroma-CH), 127.68 (d, aroma-CH), 126.87 (d, aroma-CH), 126.60 (d, aroma-CH), 123.66 (s, ipso), 92.56 (s, C-2), 82.40 (s, C-1), 32.49 (d, C-3), 24.55 (q, C-4); MS: (EI, 70 eV) m/z 206 (M⁺, 57), 191 (M⁺ - CH₃, 100), 189 (18); HRMS: (EI, 70 eV) calcd for C₁₆H₁₄ 206.1096, found m/z 206.1087 (M⁺).

References

- [1] T. Hayashi, K. Kabeta, I. Hamachi, M. Kumada, Tetrahedron Lett. 1983, 2865-2868.
- [2] J.-P.Pillot, J. Dunogues, R. Calas, *Tetrahedron Lett.* **1976**, 1871-1872.
- [3] C. Nativi, M. Taddei, A. Mann, Tetrahedron 1989, 45, 1131-1144.
- [4] M. Yasuda, Y. Onishi, M. Ueba, T. Miyai, A. Baba, J. Org. Chem. 2001, 66, 7741-7744.
- [5] J.-P. Dau-Schmidt, H. Mayr, Chem. Ber. 1994, 127, 205-212.
- [6] H. Mizuno, M. Matsuda, M. Iino, J. Org. Chem. 1981, 46, 520-525.
- [7] W. K. Michael, P. J. Richard, J. Am. Chem. Soc. 1985, 107, 3963.