

Supporting Information

for

Angew. Chem. Int. Ed. Z53535

© Wiley-VCH 2004

69451 Weinheim, Germany

A Novel 1,2-Migration of Acyl, Phosphatyl, and Sulfonyl Groups in Allenes: Efficient Synthesis of Tri- and Tetrasubstituted Furans

Anna W. Sromek, Alexander V. Kel'in, and Vladimir Gevorgyan*

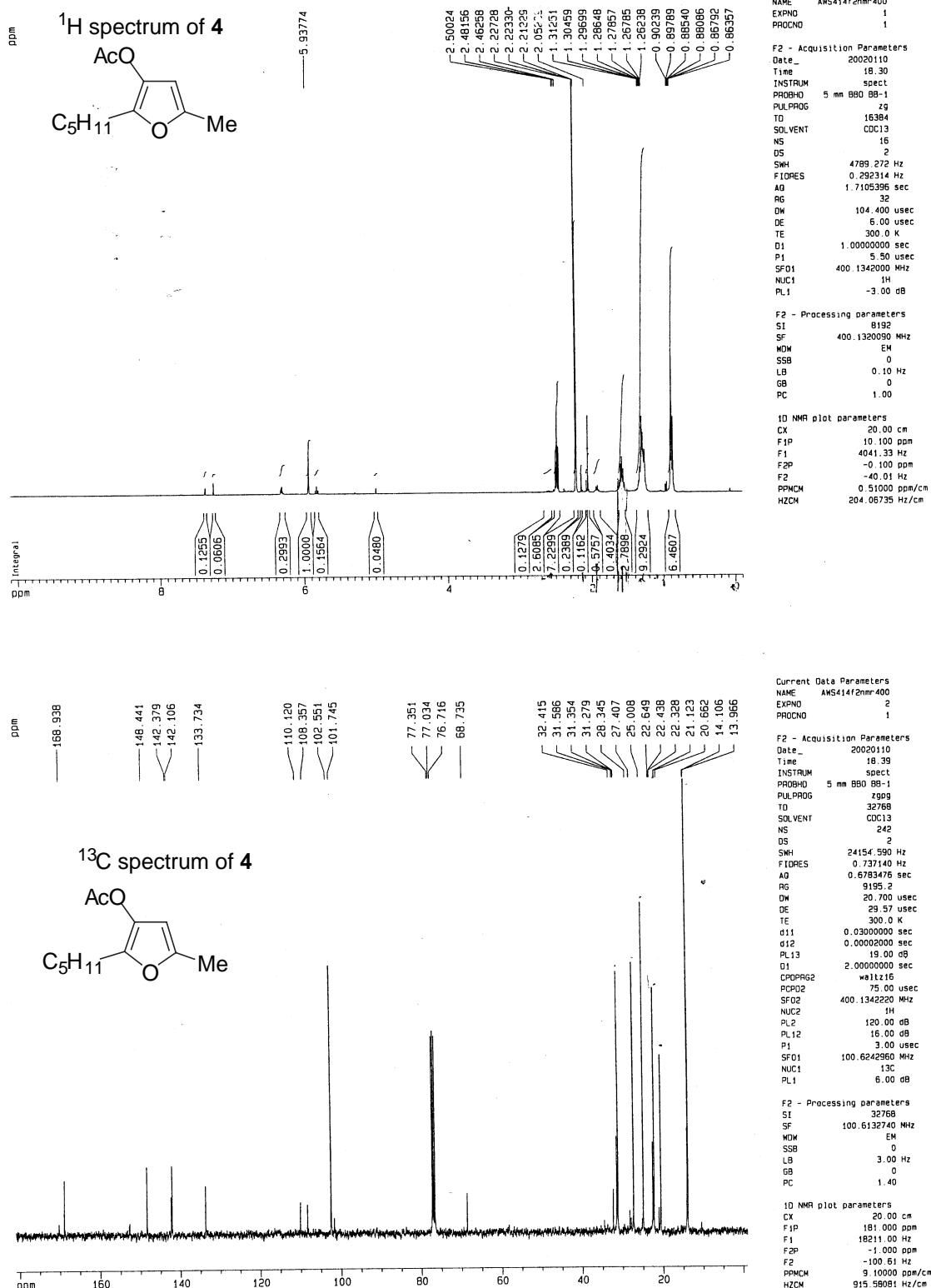
A. W. Sromek, Dr. A. V. Kel'in, Prof. V. Gevorgyan

Department of Chemistry
University of Illinois at Chicago
845 West Taylor Street room 4500
Chicago, Illinois 60607-7061 (USA)
Fax: (+1) 312-355-0836
E-mail: vlad@uic.edu

Table of Contents

	Pages
1. General Information	SI2
Instrumentation	
Purification and Analysis	
Chemicals	
2. General procedures, analytical and spectral data	SI2-SI17
^1H and ^{13}C spectra charts	
3. ^1H , ^{13}C , HMQC, and HMBC charts for compounds 3 and 4f	SI19-SI22

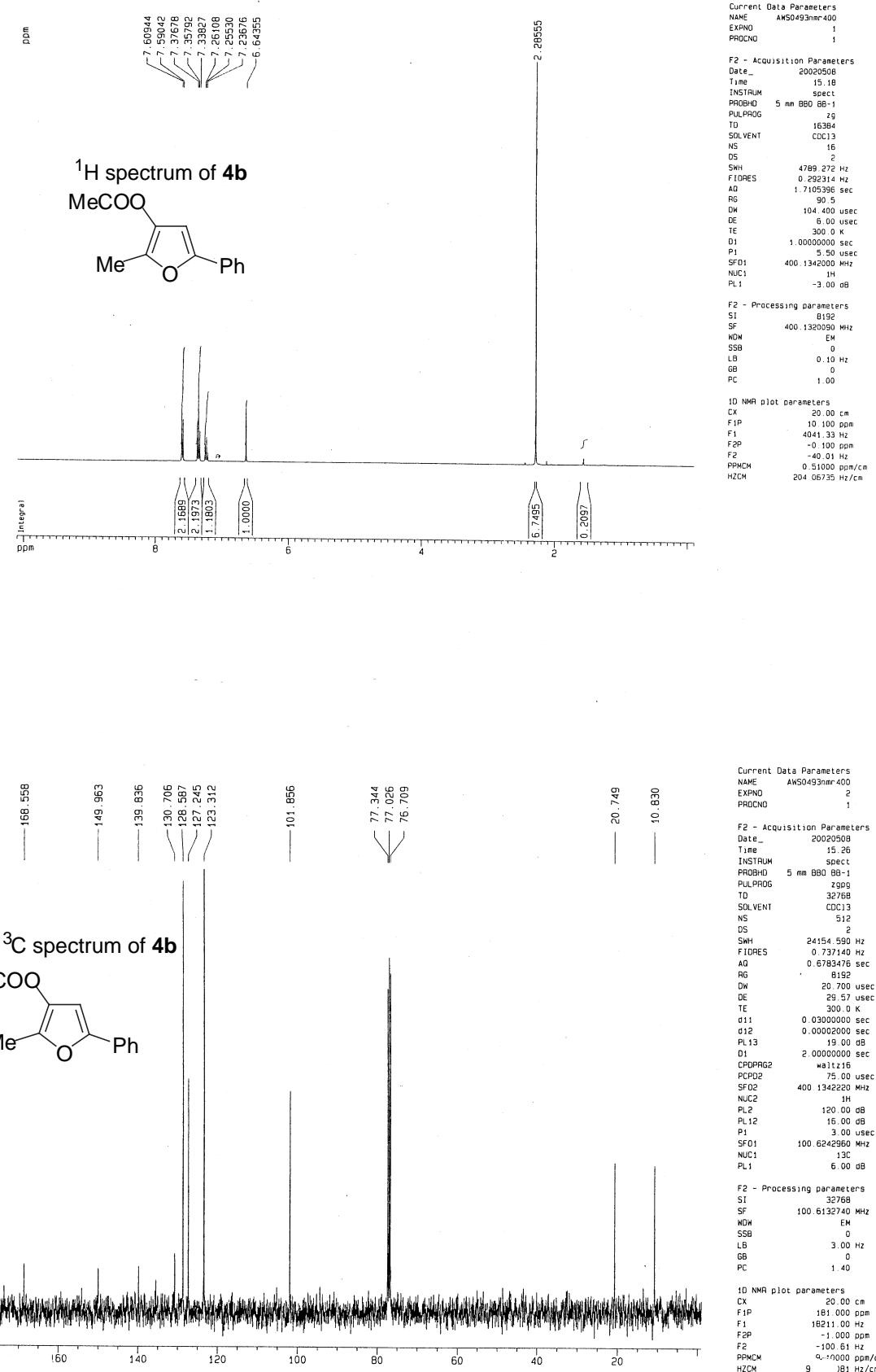
Instrumentation. NMR spectra were recorded on Bruker Avance DPX-400 (400 MHz) and Bruker Avance DRX-500 (500 MHz) instruments. GC/MS analyses were performed on a Hewlett-Packard Model 6890 GC interfaced to a Hewlett-Packard Model 5973 mass selective detector (15 m x 0.25 mm capillary column, HP-5MS). Elemental analyses were performed at Midwest Microlabs, Indianapolis, Indiana.

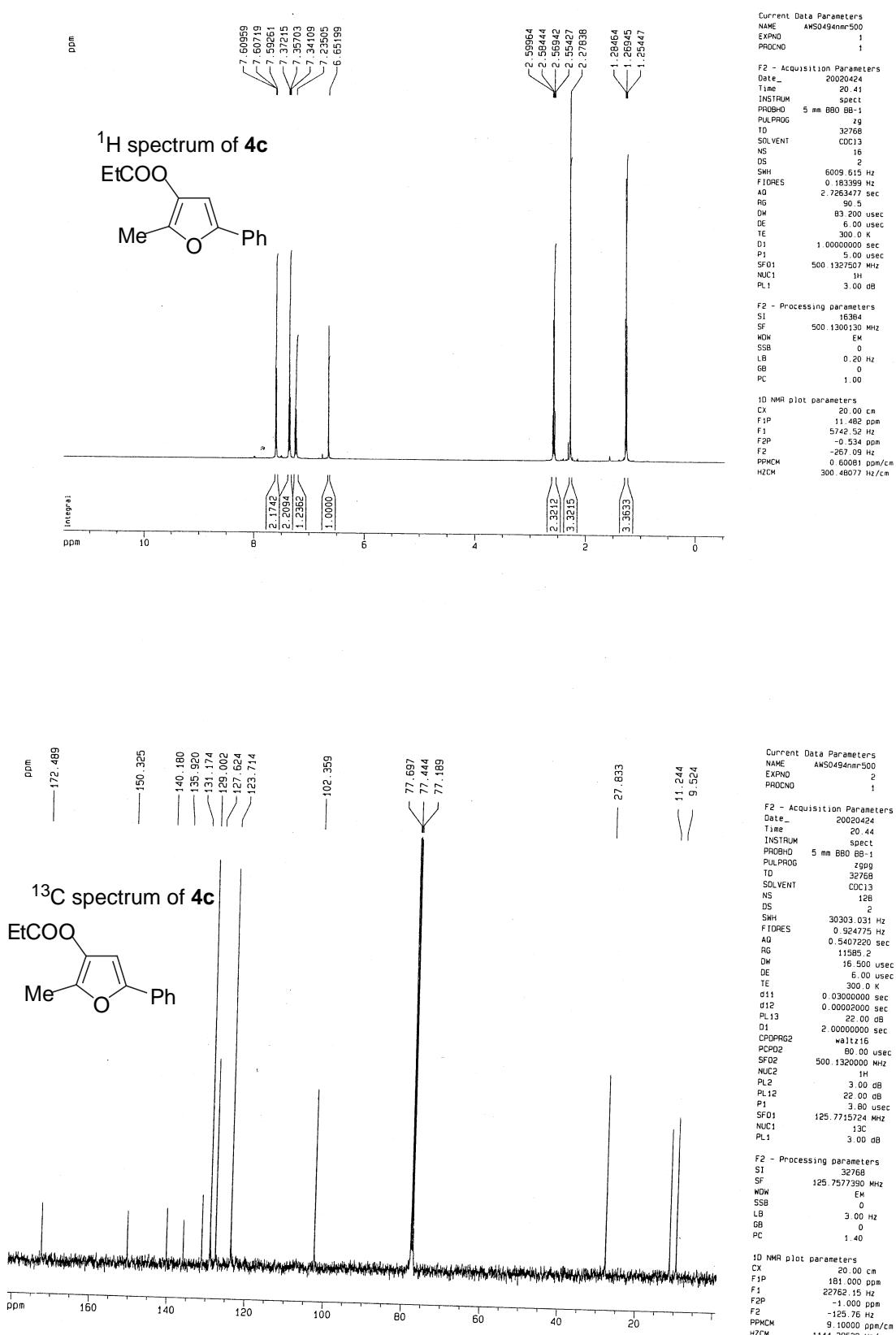

Purification and analysis. Purification was carried out through column chromatography using Merck and ICN silica gels (40-63 μ m and 63-100 μ m) and Fluka aluminum oxide (neutral, Brockmann I). Analytical thin layer chromatography was performed using precoated using Merck 0.2 mm precoated silca gel plates (60 F₂₅₄).

Chemicals. Alkynes, propargylic alcohols, acid chlorides, acid anhydrides, *n*-butyllithium, DMAP, and diones were purchased from Aldrich, Acros Organics, and TCI and used without further purification. Triethylamine was stored over calcium hydride prior to use. Triethyl orthoformate was distilled prior to use. Anhydrous DMA, THF, and ether were purchased from Aldrich and additionally stored over calcium hydride prior to use. Bis(triphenylphosphine)dichloropalladium (II) was prepared in our lab. Copper chloride, copper iodide, and silver tetrafluoroborate were purchased from Aldrich and stored in a glovebox. Acetals^[1] and (4-*t*-butyldimethylsiloxy)-1-pentyn-3-ol^[2] were prepared using published procedures.

3 (acetic acid 2-methyl-5-pentyl-furan-2-yl ester): Copper chloride (0.5 mmol, 51 mg) was loaded in a glovebox into an oven-dried 3 mL Wheaton microreactor equipped with a spin vane and Teflon septum. Anhydrous DMA (2.5 mL) and **1** (1.0 mmol, 230 μ L) were sequentially added. The microreactor was capped with a Mininert valve, shielded from light, and placed in a preheated aluminum block (130°C) and stirred until the reaction was judged complete by GC/MS and TLC (12 hours). The microreactor was allowed to cool, and the mixture was poured into 15 mL of water and thoroughly extracted with hexanes (3x3 mL). The organic layer was dried by filtering through anhydrous Na₂CO₃, then concentrated and purified by column chromatography using 1:20 ethyl acetate:hexanes as eluent to afford 29% of a 6.7:1 mixture of **3:4**. ¹H NMR (400.13 MHz): δ 5.95 (s, 1H); 2.51 (t, 2H, *J* = 7.7 Hz); 2.23 (s, 3H); 2.15 (s, 3H); 1.62-1.58 (m, 2H); 1.34-1.29 (m, 4H); 0.89 (t, 3H; *J* = 7.3 Hz). ¹³C NMR (100.61 MHz): δ 168.8; 152.9; 137.8; 134.0; 101.7; 31.3; 28.4; 27.4; 22.4; 20.7; 14.0; 10.6. GC/MS *m/z*: 210 (M⁺, 8); 168 (49); 111 (100).

4 (acetic acid 2-methyl-5-pentyl-furan-3-yl ester): Copper chloride (18 mg, 0.2 mmol) was loaded in a glovebox into an oven-dried 3 mL Wheaton microreactor equipped with a spin vane and Teflon septum. Anhydrous DMA (2.5 mL), anhydrous triethylamine (0.2 mmol, 28 μ L), and **1** (1.0 mmol, 230 μ L) were sequentially added. The microreactor was capped with a Mininert valve, shielded from light, and placed in a preheated aluminum block (130°C), and stirred until the reaction was judged complete by TLC and GC/MS (12 hours). The microreactor was allowed to cool, and the mixture was poured into 15 mL of water and extracted thoroughly with hexanes (3x3 mL). The organic layer was dried by filtering through anhydrous Na₂CO₃, and then concentrated and purified by column chromatography using 1:20 ethyl acetate:hexanes as eluent to afford 33% of a


6.7:1 mixture of **4:3**. ^1H NMR (400.13 MHz): δ 5.94 (s, 1H); 2.48 (t, 2H, J = 7.5 Hz); 2.23 (s 3H); 2.21 (s, 3H); 1.64-1.52 (m, 2H); 1.31-1.26 (m, 4H); 0.88 (t, 3H, J = 7.1 Hz). ^{13}C NMR (100.61 MHz): δ 168.9; 148.4; 142.1; 133.7; 102.6; 31.3; 27.4; 25.0; 22.3; 20.7; 14.0 (x 2). GC/MS m/z : 210 (M^+ , 6); 168 (16); 111 (100).


Synthesis of 2,3,5-trisubstituted furans (General Procedure): Copper chloride (0.05 mmol, 5 mg) was loaded into an oven-dried 3 mL Wheaton microreactor in a glovebox. Anhydrous DMA (1 mL), anhydrous triethylamine (0.2 mmol, 28 μ L), and acyloxy alkynyl ketone (1 mmol) were successively added. The reactor was capped with a Mininert valve and then placed in a preheated aluminum block (130°C), shielded from light, and stirred from 2 to 24 hours. Progress of the reaction was monitored by TLC and GC/MS. After the reaction was judged to be complete, the microreactor was allowed to cool and the mixture was poured into 10 mL of water and thoroughly extracted with hexanes (3x3 mL). The organic layer was dried with anhydrous Na_2CO_3 , concentrated, and chromatographed over silica gel using hexanes-ethyl acetate as the eluent.

4a (benzoic acid 2-methyl-5-phenyl-furan-3-yl ester): ^1H NMR (500.13 MHz): δ 8.21 (d, 2H, J = 8.4 Hz); 7.65 (d, 3H, J = 8.5 Hz); 7.53 (t, 2H, J = 9.8 Hz); 7.38 (t, 2H, J = 7.8 Hz); 7.26 (pst, 1H, J = 3.8 Hz); 6.78 (s, 1H); 2.36 (s, 3H). ^{13}C NMR (125.76 MHz): δ 164.6; 150.5; 140.5; 136.1; 134.1(x2); 131.2; 130.6(x2); 129.3(x3); 129.0(x2); 123.8(x2); 102.4; 11.4. Anal. calcd.: C, 77.68; H, 5.07. Found: C, 77.29; H, 5.07. GC/MS m/z : 278 (M^+ , 18); 105 (PhCO, 100).

4b (acetic acid 2-methyl-5-phenyl-furan-3-yl ester): ^1H NMR (400.13 MHz): δ 7.60 (d, 2H, J = 7.6 Hz); 7.36 (t, 2H, J = 7.7 Hz); 7.25 (t, 1H, J = 7.4 Hz); 2.29 (s, 6H). ^{13}C NMR (100.61 MHz): δ 168.6; 150.0; 139.8; 130.7; 128.6 (x 2); 127.2; 123.3 (x 2); 101.9; 20.7; 10.8. GC/MS m/z : 174 (100); 105 (PhCO, 82).

4c (propionic acid-2-methyl-5-phenyl-furan-3-yl ester): ^1H NMR (500.13 MHz): δ 7.61 (d, 2H, J = 7.3 Hz); 7.36 (d, 2H, J = 7.3 Hz); 7.23 (t, 1H, J = 7.4 Hz); 6.65 (s, 1H,); 2.58 (q, 2H, J = 7.6 Hz); 2.28 (s, 3H); 1.27 (t, 3H, J = 7.5 Hz). ^{13}C NMR (125.76 MHz): δ 172.5; 150.3; 140.2; 135.9; 131.2; 129.0; 127.6; 123.7; 102.4; 27.8; 11.2; 9.5. GC/MS m/z : 230 (M^+ , 14); 174 (100).

4d (isobutyric acid 2-methyl-5-phenyl-furan-3-yl ester): ^1H NMR (400.13 MHz): δ 7.60 (dd, 2H, J_1 = 8.4, J_2 = 1.2 Hz); 7.36 (t, 2H, J = 7.7 Hz); 7.23 (t, 1H, J = 7.5 Hz); 6.65 (s, 1H); 2.80 (sept, 1H, J = 7.0 Hz); 2.27 (s, 3H); 1.32 (d, 6H, J = 7.0 Hz). ^{13}C NMR (100.61 MHz): δ 174.7; 149.9; 139.7; 135.6; 130.8; 128.6(x 2); 127.2; 123.3(x 2); 102.0; 34.0; 19.0; 10.8. Anal. calcd.: C, 73.75; H, 6.60. Found: C, 74.09; H, 6.81. GC/MS m/z : 244 (M^+ , 12); 174 (100).

4e (2,2-dimethylpropionic acid-2-methyl-5-phenyl-furan-3-yl ester): ^1H NMR (500.13 MHz): δ 7.63 (d, 2H, J = 7.2 Hz); 7.38 (t, 2H, J = 7.8 Hz); 7.29 (t, 1H, J = 7.4 Hz); 6.67 (s, 1H,); 2.29 (s, 3H); 1.40 (s, 9H). ^{13}C NMR (125.76 MHz): δ 176.6; 150.3; 140.1; 136.1; 131.2; 129.0 (x 2); 127.6 (x 2); 124.0; 102.4; 39.5; 27.6 (x 3); 11.2. Anal. calcd.: C, 74.39; H, 7.02. Found: C, 74.47; H, 7.07. GC/MS m/z : 258 (M^+ , 21); 174 (100); 57 ($t\text{Bu}$, 81).

4f (benzoic acid 2-pentyl-5-phenyl-furan-3-yl ester): ^1H NMR (400.13 MHz): δ 8.19 d, 2H, J = 8.4 Hz); 7.65 (d, 3H, J = 7.8 Hz); 7.53 (t, 2H, J = 7.7 Hz); 7.37 (t, 2H, J = 7.8 Hz); 7.26 (t, 1H, J = 3.7 Hz); 6.80 (s, 1H); 2.71 (t, 2H, J = 7.5 Hz); 1.73 (quint, 2H, J = 7.4 Hz); 1.40-1.34 (m, 4H); 0.89 (t, 3H, J = 7.1 Hz). ^{13}C NMR (100.61 MHz): 164.3; 150.0; 144.0; 135.4; 133.7; 130.9; 130.1(x2); 129.2; 128.6(x4); 127.2; 123.3(x2); 102.0; 31.3; 27.4; 25.4; 22.3; 14.0. Anal. calcd.: C, 79.02; H, 6.63. Found: C, 78.76; H, 6.80. GC/MS m/z : 334 (M^+ , 9); 105 (PhCO, 100).

4g (2,2-dimethylpropionic acid-5 *tert*-butyl-2-pentyl-furan-3-yl ester): ^1H NMR (500.13 MHz): δ 5.98 (s, 1H); 2.52 (t, 2H, J = 7.4 Hz); 1.62 (quint, 2H, J = 7.4 Hz); 1.37-1.29 (m, 4H); 1.33 (s, 9H); 1.26 (s, 9H); 0.91 (t, 3H, J = 7.0 Hz). ^{13}C NMR (125.76 MHz): δ 176.8; 160.5; 141.8; 134.3; 99.4; 39.4; 33.1; 31.7; 29.2 (x 3); 27.7; 27.6 (x 3); 25.5; 22.7; 14.4. Anal. calcd.: C, 73.43; H, 10.27. Found: C, 73.42; H, 10.37. GC/MS m/z : 294 (M^+ , 13); 153 (98); 57 ($t\text{Bu}$, 100).

4h (benzoic acid-2[1-(*tert*-butyldimethylsilyloxy)-ethyl]-5-phenyl-furan-3-yl ester): ^1H NMR (500.13 MHz): δ 8.20 (dd, 2H, J_1 = 8.5; J_2 = 1.4 Hz); 7.68 (dd, 2H, J_1 = 8.2; J_2 = 0.9 Hz); 7.66 (d, 1H, J = 7.5 Hz); 7.53 (t, 2H, J = 7.8 Hz); 7.40 (t, 2H, J = 7.8 Hz); 7.29 (t, 1H, J = 7.4 Hz); 6.81 (s, 1H); 5.03 (q, 1H, J = 6.6 Hz); 1.60 (d, 3H, J = 6.6 Hz); 0.88 (s, 9H); 0.088 (s, 3H); 0.006 (s, 3H). ^{13}C NMR (125.76 MHz): δ 164.5; 151.1; 144.8; 135.5; 134.2; 131.0; 130.6 (x 2); 129.4; 129.09 (x 4); 129.06; 128.1; 124.1 (x 2); 102.4; 62.6; 26.2 (x 3); 22.6; 18.6; -4.4; -4.6. Anal. calcd.: C, 71.05; H, 7.16. Found: C, 71.03; H, 7.13. GC/MS m/z : 422 (M^+ , 1); 105 (PhCO, 100).

Synthesis of tetrasubstituted furans. General procedure. Silver tetrafluoroborate (0.05 mmol, 5 mg) was loaded into an oven-dried, cooled 3 mL Wheaton microreactor in a glovebox under argon atmosphere. The microreactor was capped with a Mininert valve, shielded from light. Anhydrous dichloromethane (1 mL) and propargyl ketone acetate (1 mmol) were added successively while stirring. The solution was allowed to stir at room temperature from 2 to 15 minutes and monitored by TLC and GCMS. Reactions were

generally complete within 5 minutes. The solution was then filtered over a pad of aluminum oxide to yield rather pure crude product. Products were additionally purified by silica gel column chromatography using ethyl acetate:hexanes as eluent.

10a (acetic acid 2-*tert*-butyl-4,5-diphenyl-furan-3-yl ester): ^1H NMR (500.13 MHz): δ 7.42 (d, 2H, J = 7.2 Hz); 7.37-7.33 (m, 6H); 7.23 (t, 2H, J = 7.6 Hz); 7.19 (tt, 1H, J_1 = 7.2, J_2 = 1.3 Hz); 2.07 (s, 3H); 1.39 (s, 9H). ^{13}C NMR (125.76 MHz): δ 169.8; 149.9; 145.2; 132.0; 131.4; 130.0 (x 2); 129.1 (x 2); 128.7 (x 2); 127.9; 127.6; 125.7 (x 2); 118.9; 33.5; 29.0 (x 3); 20.9. Anal. calcd.: C, 79.02; H, 6.63. Found: C, 78.95; H, 6.57. GC/MS m/z : 334 (M^+ , 8); 277 ($\text{M}^+ - t\text{Bu}$, 100).

10b (acetic acid 2-*tert*-butyl-5-methyl-4-phenyl-furan-3-yl ester): ^1H NMR (500.13 MHz): δ 7.36 (t, 2H, J = 7.6 Hz); 7.27 (t, 3H, J = 7.1 Hz); 2.30 (s, 3H); 2.11 (s, 3H); 1.31 (s, 9H). ^{13}C NMR (125.76 MHz): δ 170.0; 148.5; 145.1; 132.2; 131.1; 128.9 (x 2); 128.8 (x 2); 127.1; 117.6; 33.2; 29.0 (x 3); 21.0; 13.3. Anal. calcd.: C, 74.97; H, 7.40. Found: C, 75.02; H, 7.37. GC/MS m/z : 272 (M^+ , 5); 215 ($\text{M}^+ - t\text{Bu}$, 100).

10c (acetic acid 2-*tert*-butyl-4-methyl-5-phenyl-furan-3-yl ester): ^1H NMR (500.13 MHz): δ 7.59 (dd, 2H, J_1 = 8.5, J_2 = 0.9 Hz); 7.39 (t, 2H, J = 7.8 Hz); 7.24 (t, 1H, J = 7.4 Hz); 2.31 (s, 3H); 2.05 (s, 3H); 1.34 (s, 9H). ^{13}C NMR (125.76 MHz): δ 169.8; 148.0; 145.1; 134.2; 132.3; 128.9 (x 2); 127.0; 125.3 (x 2); 112.9; 33.3; 21.0 (x 3); 9.0. Anal. calcd.: C, 74.97; H, 7.40. Found: C, 74.60; H, 7.55. GC/MS m/z : 272 (M^+ , 11); 215 ($\text{M}^+ - t\text{Bu}$, 100).

10d (acetic acid 2-*tert*-butyl-4,5-dimethyl-furan-3-yl ester): ^1H NMR (500.13 MHz): δ 7.25 (s, 3H); 2.14 (s, 3H); 1.73 (s, 3H); 1.24 (s, 9H). ^{13}C NMR (125.76 MHz): δ 170.0; 147.5; 144.0; 132.8; 110.7; 32.6; 29.1 (x 3); 20.9. Anal. calcd.: C, 68.54; H, 8.63. Found: C, 68.45; H, 8.73. GC/MS m/z : 210 (M^+ , 7); 153 ($\text{M}^+ - t\text{Bu}$, 100).

10e (acetic acid 2-*tert*-butyl-4,5,6,7-tetrahydrobenzofuran-3-yl ester): ^1H NMR (500.13 MHz): δ 2.50 (tt, 2H, J_1 = 6.4, J_2 = 1.7 Hz); 2.23 (s, 3H); 2.21 (tt, 2H, J_1 = 6.0, J_2 = 1.8 Hz); 1.79 (dquint, 2H, J_1 = 6.1, J_2 = 2.5 Hz); 1.68 (dquint, 2H, J_1 = 5.9, J_2 = 2.4 Hz); 1.26 (s, 9H). ^{13}C NMR (125.76 MHz): δ 169.7; 147.8; 147.4; 132.0; 113.8; 33.1; 29.2 (x 3); 23.6; 23.2; 22.9; 21.0; 20.4. Anal. calcd.: C, 71.16; H, 8.53. Found: C, 70.86; H, 8.79. GC/MS m/z : 236 (M^+ , 7); 179 ($\text{M}^+ - t\text{Bu}$, 100).

12 (phosphoric acid 2-*tert*-butyl-4,5-diphenyl-furan-3-yl ester diethyl ester):

Preparation of 12 from 11: Silver tetrafluoroborate (0.04 mmol, 8 mg) was added to an oven-dried 3 mL Wheaton microreactor in the glovebox under argon atmosphere. Dichloroethane (1 mL) and **11** (0.94 mmol, 403 mg) were successively added. The microreactor was capped with a Mininerty valve and shielded from light, and the reaction was stirred at 60°C for 16 hours. After the reaction was judged to be complete by TLC analysis, the reactor was cooled, and the solution was filtered through a short pad of aluminum oxide and concentrated. The residue was purified by column chromatography over 50 mL silica gel using 1:3 ethyl acetate:hexanes as eluent to afford 263 mg (65%) pure **12**.

Preparation of 12 from 13: Silver tetrafluoroborate (0.005 mmol, 1 mg) was added to an oven-dried 3 mL Wheaton microreactor in the glovebox under argon atmosphere. Dichloroethane (0.20 mL) and **13** (0.1 mmol, 43 mg) were successively added. The microreactor was capped with a Mininert valve, shielded from light and the solution was stirred for 1.25 h at room temperature, and then at 60°C for 20 h. Once the reaction was complete by TLC analysis, the solution was cooled, filtered through a short pad of aluminum oxide, and concentrated. Analysis of the crude residue indicated a 76% NMR yield of **12** with dibromomethane as the standard. ¹H NMR (500.13 MHz): δ 7.44-7.32 (m, 7H); 7.22-7.14 (m, 3H); 3.86-3.81 (m, 2H); 3.74-3.65 (m, 2H); 1.47 (s, 9H); 1.13 (t, 3H, J = 7.0 Hz); 1.12 (t, 3H, J = 7.0 Hz). ¹³C NMR (125.76 MHz): δ 49.5; 144.6; 132.1; 131.5; 131.0 (x 2); 128.8 (x 2); 128.6 (x 2); 127.9; 127.5; 125.6 (x 2); 118.7; 64.4 (J_{CP} = 6.0 Hz); 33.6; 29.2 (x 3); 16.3 (J_{CP} = 6.9 Hz). Anal. calcd.: C, 67.28; H, 6.82. Found: C, 67.09; H, 6.92. GC/MS *m/z*: 428 (M⁺, 12); 105 (PhCO, 100).

16 (toluene-4-sulfonic acid 2-*tert*-butyl-4,5-diphenyl-furan-3-yl ester): Silver tetrafluoroborate (0.01 mmol, 1.8 mg) and **15** (1.03 mmol, 461 mg) were successively added to an oven-dried, 3 mL Wheaton microreactor in the glovebox under argon atmosphere. Dichloroethane (1 mL) was added, the microreactor was capped with a Mininert valve, shielded from light, and the reaction was stirred at 60°C for 45 h. After the reaction was judged complete by TLC analysis, the microreactor was cooled, and the solution was filtered through a short pad of aluminum oxide, concentrated, and purified by column chromatography over 50 mL silica gel with 1:10 ethyl acetate:hexanes as eluent to afford 376 mg (82%) pure **16**. ¹H NMR (500.13 MHz): δ 7.33 (dd, 2H, J_1 = 8.3, J_2 = 1.4 Hz); 7.29 (d, 2H, J = 8.3 Hz); 7.23-7.15 (m, 4H), 7.10-7.07 (m, 4H); 6.94 (d, 2H, J = 8.1 Hz); 2.33 (s, 3H); 1.52 (s, 9H). ¹³C NMR (125.76 MHz): δ 153.3; 145.1; 144.9; 133.4; 131.8; 131.4; 131.2; 130.4(x 2); 129.7(x 2); 128.7 (x 4); 128.4 (x 2); 127.8; 127.4; 125.9 (x 2); 118.4; 34.0; 29.3 (x 3); 22.0. Anal. calcd.: C, 72.62; H, 5.87. Found: C, 72.83; H, 5.93.

Synthesis of acyloxy alkynyl ketones. General procedures.

Procedure A. To a 250 mL round-bottomed, two-necked, flash-dried, argon flushed flask equipped with a Teflon coated magnetic stir bar, addition funnel, and T-shaped stopcock with an argon balloon, were successively added: 1-octyn-3-ol (50 mmol, 7.3 mL) and anhydrous THF (100 mL). The solution was cooled while stirring to -78°C and *n*-butyllithium (0.11 mol, 44mL of 2.5M solution in hexanes) was added dropwise *via* addition funnel (*ca.* 30 minutes). The resulting solution was allowed to warm to room temperature. To a 500 mL round bottomed, two-necked flask, also flash-dried and flushed with argon, equipped with a Teflon coated magnetic stir bar, addition funnel, and T-shaped stopcock with argon balloon were successively added: acid anhydride (0.25 mol) and anhydrous ether (150 mL). The resulting solution was cooled to -78°C while stirring, and the dianion solution from the first flask was slowly added *via* addition funnel. The solution was allowed to warm to room temperature overnight, and was quenched with a mixture of 1% NH₄OH and 200 mL saturated NH₄Cl, adjusted to reach pH 8. After thorough extraction with hexanes and 1:1 hexanes:diethyl ether (50 mL each); the organic extracts were combined and dried with anhydrous Na₂SO₄ and then

concentrated. The resulting residue was purified either by high vacuum distillation or by column chromatography using ethyl acetate:hexanes as eluent.

Procedure B. Sonogashira coupling.^[3] (Representative procedure). To an oven-dried, 3 mL Wheaton microreactor equipped with a triangular Teflon coated spin vane and Teflon septum with open phenolic cap were successively added copper iodide (0.0013 mmol, 2.5 mg) and dichlorobis(triphenylphosphine)palladium (0.0035 mmol, 2.5 mg) in a glovebox under argon atmosphere. Anhydrous triethylamine (2.5 mL) was added and the mixture was stirred. The propargylacyloxyalkyne (2.33 mmol) was added *via* syringe and the mixture was briefly stirred. Benzoyl chloride (2.5 mmol, 290 μ L) was then added dropwise. The reaction was stirred overnight at room temperature and monitored by TLC and GC/MS. The reaction was quenched by filtration through a pad of silica gel with ethyl acetate. The washings were concentrated and purified by column chromatography using silica gel and hexanes: ethyl acetate as eluent.

1 (acetic acid-2-oxo-3-decyn-5-yl ester): Procedure A (62% y.): ^1H NMR (400.13 MHz): δ 5.45 (t, 1H, J = 6.7 Hz); 2.34 (s, 3H); 2.09 (s, 3H); 1.82-1.77 (m, 2H); 1.44-1.41 (m, 2H); 1.33-1.29 (m, 4H); 0.89 (t, 3H, J = 7.0 Hz). ^{13}C NMR (125.76 MHz): δ 184.0; 170.0; 88.4; 84.1; 63.3; 33.9; 32.6; 31.1; 24.6; 22.4; 20.8; 13.9. GC/MS *m/z*: 195 (M^+ -15, 1); 168 (44); 111 (100).

5a (benzoic acid 1-methyl-4-oxo-4-phenyl-but-2-ynyl ester): Procedure B (74% y.): ^1H NMR (500.13 MHz): δ 8.13-8.09 (m, 4H); 7.62-7.59 (m, 2H); 5.93 (q, 1H, J = 6.8 Hz); 1.78 (d, 3H, J = 6.8 Hz). ^{13}C NMR (125.76 MHz): δ 177.9; 165.8; 136.7; 134.8; 133.9; 130.3(x 2); 130.1(x 2); 129.8; 129.1(x 2); 128.9(x 2); 91.9; 82.6; 60.8; 21.1. GC/MS *m/z*: 278 (M^+ , 18); 105 (PhCO, 100).

5b (acetic acid 1-methyl-4-oxo-4-phenyl-but-2-ynyl ester): Procedure B (42% y.): ^1H NMR (500.13 MHz): δ 8.10 (d, 2H, J = 7.7 Hz); 7.62 (t, 1H, J = 7.4 Hz); 7.48 (t, 2H, J = 7.7 Hz); 5.66 (q, 1H, J = 6.8 Hz); 2.13 (s, 3H); 1.63 (d, 3H, J = 6.8 Hz). ^{13}C NMR (125.76 MHz): δ 177.9; 170.2; 136.7; 134.8; 130.1(x 2); 129.1(x 2); 91.8; 82.3; 60.2; 21.3; 20.9. GC/MS *m/z*: 215 (M^+ -1, 1); 174 (100); 128 (77); 105 (PhCO, 96); 77 (Ph, 75); 51 (47).

5c (propionic acid 1-methyl-4-oxo-4-phenyl-but-2-ynyl ester): Procedure B (43% y.): ^1H NMR (500.13 MHz): δ 8.10 (dd, 2H, J_1 = 8.3; J_2 = 1.3 Hz); 7.62 (t, 1H, J = 7.4 Hz); 7.49 (t, 2H, J = 7.8 Hz); 5.68 (q, 1H, J = 6.8 Hz); 2.41 (q, 1H, J = 7.6 Hz); 2.40 (q, 1H, J = 7.6 Hz); 1.63 (d, 3H, J = 6.8 Hz); 1.18 (t, 3H, J = 7.6 Hz). ^{13}C NMR (125.76 MHz): δ 177.9; 173.6; 136.7; 134.8; 130.1 (x 2); 129.1 (x 2); 92.1; 82.3; 60.0; 27.9; 21.0; 9.4. GC/MS *m/z*: 229 (M^+ -1, 0.1); 175 (87); 128 (100); 105 (PhCO, 94); 77 (Ph, 64); 57 (66).

5d (isobutyric acid 1-methyl-4-oxo-4-phenyl-but-2-ynyl ester): Procedure B (76% y.): ^1H NMR (500.13 MHz): δ 8.12 (dd, 2H, J_1 = 8.4; J_2 = 1.3 Hz); 7.64 (t, 1H, J = 7.5 Hz); 7.51 (t, 2H, J = 7.8 Hz); 5.70 (q, 1H, J = 6.8 Hz); 2.65 (sept, 1H, J = 7.0 Hz); 1.66 (d, 3H, J = 6.9 Hz); 1.23 (d, 6H, J = 7.0 Hz). ^{13}C NMR (125.76 MHz): δ 177.9; 176.3; 136.8; 134.7;

130.0 (x 2); 129.0 (x 2); 92.2; 82.3; 60.0; 34.3; 20.9; 19.2 (x 2). GC/MS *m/z*: 243 (M⁺-1, 0.4); 175 (98); 128 (100); 105 (PhCO, 68); 77 (Ph, 79).

5e (2,2-dimethylpropionic acid 1-methyl-4-oxo-4-phenyl-but-2-ynyl ester): Procedure B (78% y.): ¹H NMR (500.13 MHz): δ 8.09 (dd, 2H, *J*₁ = 8.1; *J*₂ = 1.9 Hz); 7.61 (t, 1H, *J* = 7.4 Hz); 7.48 (t, 2H, *J* = 7.8 Hz); 5.65 (q, 1H; *J* = 6.8 Hz); 1.62 (d, 3H, *J* = 6.8 Hz); 1.25 (s, 9H). ¹³C NMR (125.76 MHz): δ 177.9; 177.7; 136.8; 134.8; 130.0 (x 2); 129.0 (x 2); 92.3; 82.2; 60.1; 39.2; 27.4 (x 3); 20.8. GC/MS *m/z*: 258 (M⁺; 0.1); 57 (tBu, 100).

5f (benzoic acid 4-oxo-1-pentyl-4-phenyl-but-2-ynyl ester): Procedure B (69% y.): ¹H NMR (500.13 MHz): δ 8.11 (t, 4H, *J* = 6.8 Hz); 7.61 (t, 2H, *J* = 7.4 Hz); 7.48 (q, 4H, *J* = 7.0 Hz); 5.85 (t, 1H, *J* = 6.7 Hz); 2.10-2.03 (m, 2H); 1.62 (quint, 2H, *J* = 7.4 Hz); 1.43-1.34 (m, 4H); 0.92 (t, 3H, *J* = 6.9 Hz). ¹³C NMR (125.76 MHz): δ 177.9; 165.9; 136.8; 134.8; 133.9; 130.3 (x 2); 130.1 (x 2); 129.8; 129.1 (x 2); 128.9 (x 2); 91.4; 83.2; 64.6; 34.6; 31.7; 25.2; 22.9; 14.4. GC/MS *m/z*: 334 (M⁺, 2); 105 (PhCO, 100).

5g (2,2-dimethyl propionic acid 5,5-dimethyl-4-oxo-1-pentyl-hex-2-ynyl ester): Procedure A (41% y.): ¹H NMR (500.13 MHz): δ 5.45 (t, 1H, *J* = 6.7 Hz); 1.85-1.92 (m, 2H); 1.48-1.42 (m, 2H); 1.34-1.28 (m, 4H); 1.21 (s, 9H); 1.17 (s, 9H); 0.88 (t, 3H, *J* = 6.9 Hz). ¹³C NMR (125.76 MHz): δ 194.0; 177.6; 91.1; 82.1; 63.7; 45.3; 39.2; 34.3; 31.5; 27.4 (x 3); 26.3 (x 3); 25.0; 22.8; 14.3. GC/MS *m/z*: 294 (M⁺, 0.1); 57 (tBu, 100).

5h (benzoic acid 1-[1-(*tert*-butyldimethylsilanyloxy)-ethyl]-4-oxo-4-phenyl-but-2-ynyl ester): Procedure B (85% y.): ¹H NMR (500.13 MHz): δ 8.16 (d, 2H, *J* = 8.4 Hz); 8.10 (dd, 2H, *J*₁ = 8.4, *J*₂ = 1.4 Hz); 7.61 (t, 2H, *J* = 7.4 Hz); 7.50-7.45 (m, 4H); 5.83 (d, 0.2 H, *J* = 6.2 Hz); 5.78 (d, 0.8 H, *J* = 4.1 Hz); 4.29 (dquint, 0.8 H, *J*₁ = 6.3; *J*₂ = 2.1 Hz); 4.24 (quint, 0.2 H, *J* = 6.2 Hz); 1.44 (d, 0.6 H, *J* = 6.2 Hz); 0.097 (s, 2.4 H); 0.093 (s, 0.6 H). ¹³C NMR (125.76 MHz): δ 177.8; 165.8; 136.9; 134.7; 133.9; 130.3 (x 2); 130.1 (x 2); 129.7; 129.1 (x 2); 128.9 (x 2); 89.5 (x 0.2); 89.4 (x 0.8); 84.0 (x 0.2); 83.8 (x 0.8); 69.9 (x 0.8); 69.3 (x 0.8); 69.1 (x 0.2); 68.7 (x 0.2); 26.1; 20.4 (x 0.8); 20.1 (x 0.2); 18.4; -4.2; -4.4. GC/MS *m/z*: 407 (M⁺-15, 0.1); 179 (44); 105 (PhCO, 100).

Synthesis of acetoxy propargyl ketones. General procedure.

To a flash dried, argon flushed, round bottomed two-necked flask equipped with a Teflon coated stir bar and a T-shaped stopcock with an argon filled balloon, were successively added 10 mL anhydrous THF and 3,3-dimethyl-1-butyne (0.62 mL, 5.0 mmol). The solution was cooled to -78°C in a dry ice/acetone bath while stirring. *n*-Butyllithium (5.2 mmol, 2.1 mL of 2.5 M solution in hexanes) was added dropwise to the cooled solution. The resulting solution was allowed to warm to room temperature. To an additional flash dried 50 mL round bottomed two-necked flask, flushed with argon and equipped with a stir bar and T-shaped stopcock with argon balloon, were successively added the appropriate dione (4.8 mmol) and anhydrous THF (10 mL). The dione solution was cooled to -78°C while stirring. The acetylidyne solution from the first flask was added slowly via cannula to the dione solution under argon pressure at -78°C. The resulting solution was allowed to warm to room temperature and then cooled down again to -78°C.

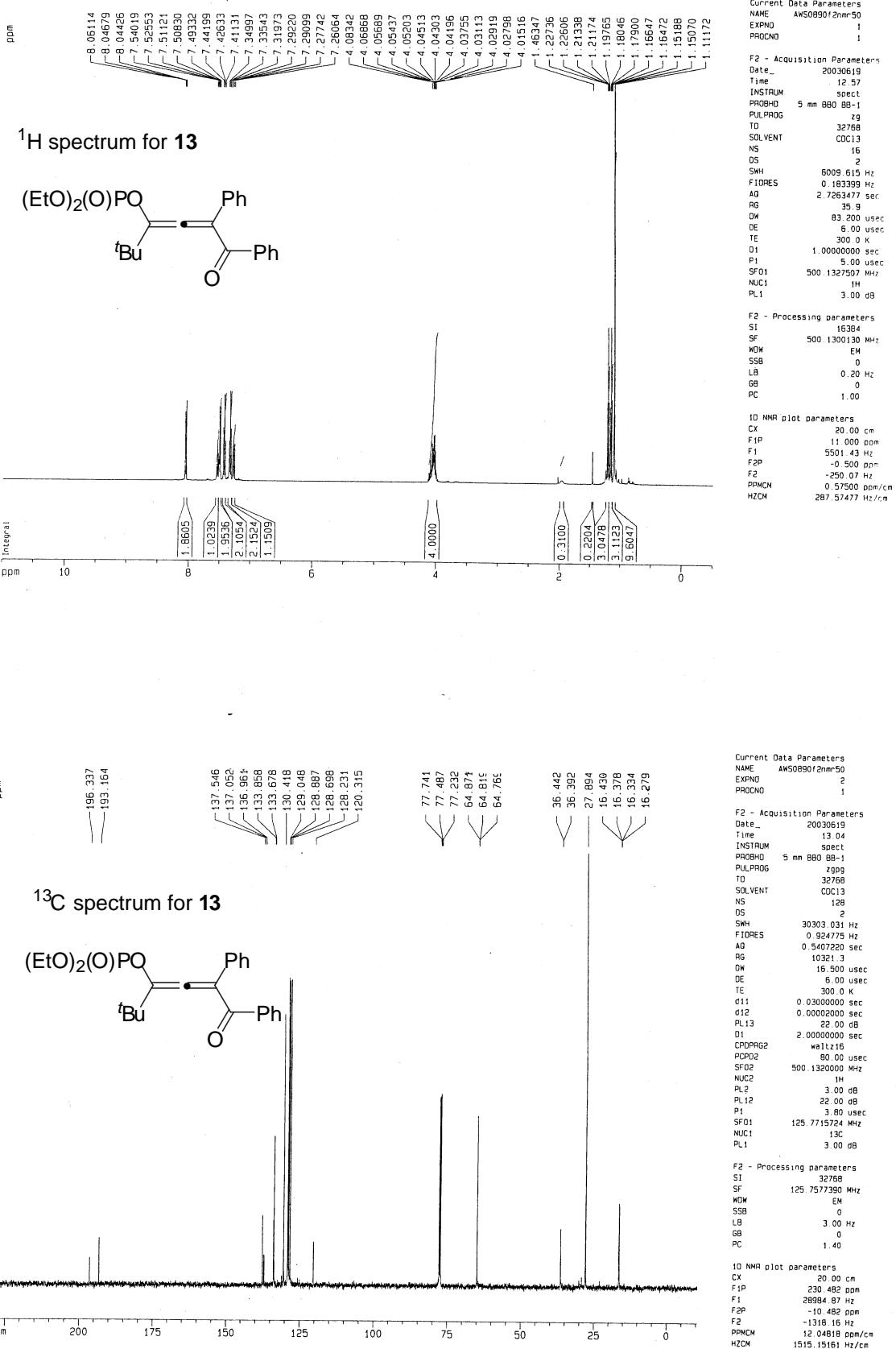
Acetic anhydride (8.0 mmol, 0.76 mL) was added to the flask while stirring, and the flask was removed from the cooling bath and allowed to warm to room temperature. The solution was then poured into a separatory funnel containing 200 mL of saturated NH_4Cl solution and 50 mL of ether. After extraction, the organic layer was separated, dried with anhydrous MgSO_4 , concentrated, and purified by silica gel column chromatography with hexanes:ethyl acetate as eluent to afford pure acetoxy propargyl ketone.

8a (acetic acid 1-benzoyl-4,4-dimethyl-1-phenyl-pent-2-ynyl ester) (83% y.): ^1H NMR (500.13 MHz): δ 7.88 (dd, 2H, J_1 = 8.3; J_2 = 1.0 Hz); 7.77 (dd, 2H, J_1 = 8.0; J_2 = 1.1 Hz); 7.45-7.35 (m, 4H); 7.31 (t, 2H, J = 7.7 Hz); 2.15 (s, 3H); 1.20 (s, 9H). ^{13}C NMR (125.76 MHz): δ 192.3; 169.0; 136.5; 134.9; 132.8; 130.3 (x 2); 129.6; 129.2 (x 2); 128.0 (x 2); 127.8 (x 2); 101.5; 81.3; 75.9; 30.7 (x 3); 28.2; 21.8. GC/MS m/z : 334 (M^+ , 10); 277 ($\text{M}^+ - t\text{Bu}$, 100); 105 (PhCO, 63).

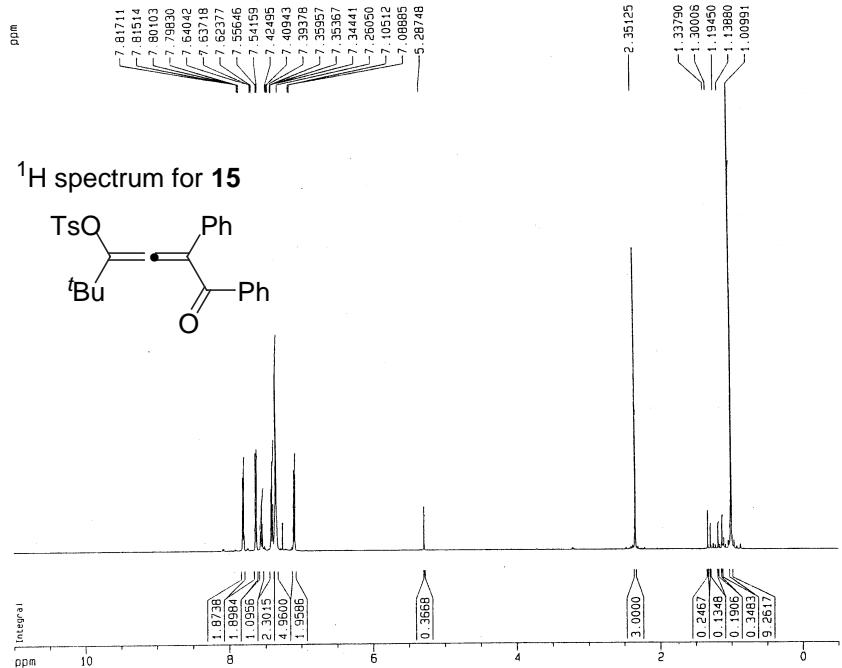
8c (acetic acid 1-benzoyl-1,4,4-trimethyl-pent-2-ynyl ester) (43%): ^1H NMR (500.13 MHz): δ 8.15 (dd, 2H, J_1 = 8.2, J_2 = 0.9 Hz); 7.51 (t, 3H, J = 7.4 Hz); 7.41 (t, 2H, J = 8.0 Hz); 1.93 (s, 3H); 1.90 (s, 3H); 1.18 (s, 9H). ^{13}C NMR (125.76 MHz): δ 193.7; 169.7; 134.4; 133.0; 129.8 (x 2); 128.4 (x 2); 99.1; 78.4; 76.8; 30.8 (x 3); 28.0; 25.1; 21.6. GC/MS m/z : 272 (M^+ , 12); 215 ($\text{M}^+ - t\text{Bu}$, 100); 105 (PhCO, 73).

8d (acetic acid 1-acetyl-1,4,4-trimethyl-pent-2-ynyl ester) (51%): ^1H NMR (500.13 MHz): δ 2.35 (s, 3H); 2.08 (s, 3H); 1.61 (s, 3H); 1.22 (s, 9H). ^{13}C NMR (125.76 MHz): δ 202.7; 169.7; 96.8; 77.4; 76.5; 30.9 (x 3); 27.9; 25.6; 25.0; 21.3. GC/MS m/z : 210 (M^+ , 7); 153 ($\text{M}^+ - t\text{Bu}$, 100).

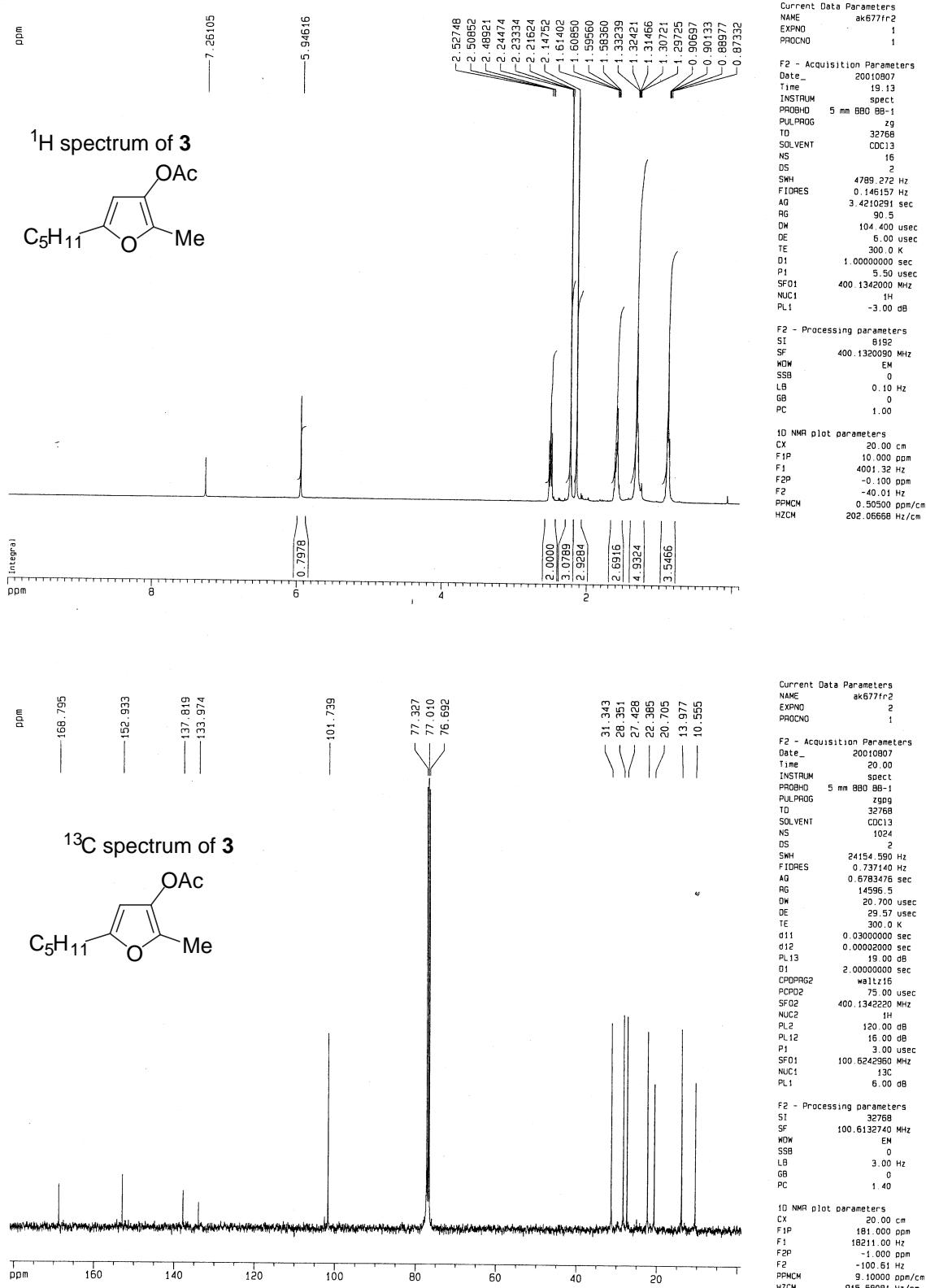
8b (acetic acid 1-acetyl-4,4-dimethyl-1-phenyl-pent-2-ynyl ester) To a flash-dried, 10 mL, argon-flushed, round-bottomed, two-necked flask equipped with a Teflon-coated stir bar and T-shaped stopcock with an argon balloon were sequentially added anhydrous THF (6 mL) and 3,3-dimethyl-1-butyne (3.3 mmol, 406 μL). The solution was cooled to -78°C while stirring, and *n*-butyllithium (1.4 mL, 2.5 M in hexanes) was added dropwise. The resulting solution was allowed to warm to room temperature. Another flash-dried, two-necked, round-bottomed, 25 mL flask with argon atmosphere equipped with a Teflon coated stir bar and T-shaped stopcock with argon balloon was loaded with anhydrous THF (6 mL) and 1-phenyl-1-propanone-2,2-diethylacetal^[1] (3.0 mmol, 650 mg). The flask was cooled while stirring and the acetylidyne solution from the first flask was transferred dropwise *via* cannula. The resulting alkoxide solution was allowed to warm to room temperature and cooled again to -78°C and quenched with acetic anhydride (5.0 mmol, 410 μL). The solution was allowed to warm to room temperature, and was poured into a separatory funnel containing 120 mL saturated NH_4Cl and 30 mL ether. The mixture was extracted, and the organic layer was separated and dried with anhydrous MgSO_4 . The organic extract was then concentrated and purified over 100 mL flash silica gel with 1:30 ethyl acetate:hexanes as eluent to afford 502 mg (48%) of the acetal. The acetal was hydrolyzed using a known procedure to afford **8b** in 86% yield.^[4] ^1H NMR (500.13 MHz): δ 7.71 (dd, 2H, J_1 = 8.1, J_2 = 1.6 Hz); 7.41-7.35 (m, 3H); 2.27 (s, 3H); 2.16 (s, 3H); 1.33 (s, 9H). ^{13}C NMR (125.76 MHz): δ 199.7; 169.2; 135.6; 129.6; 129.0

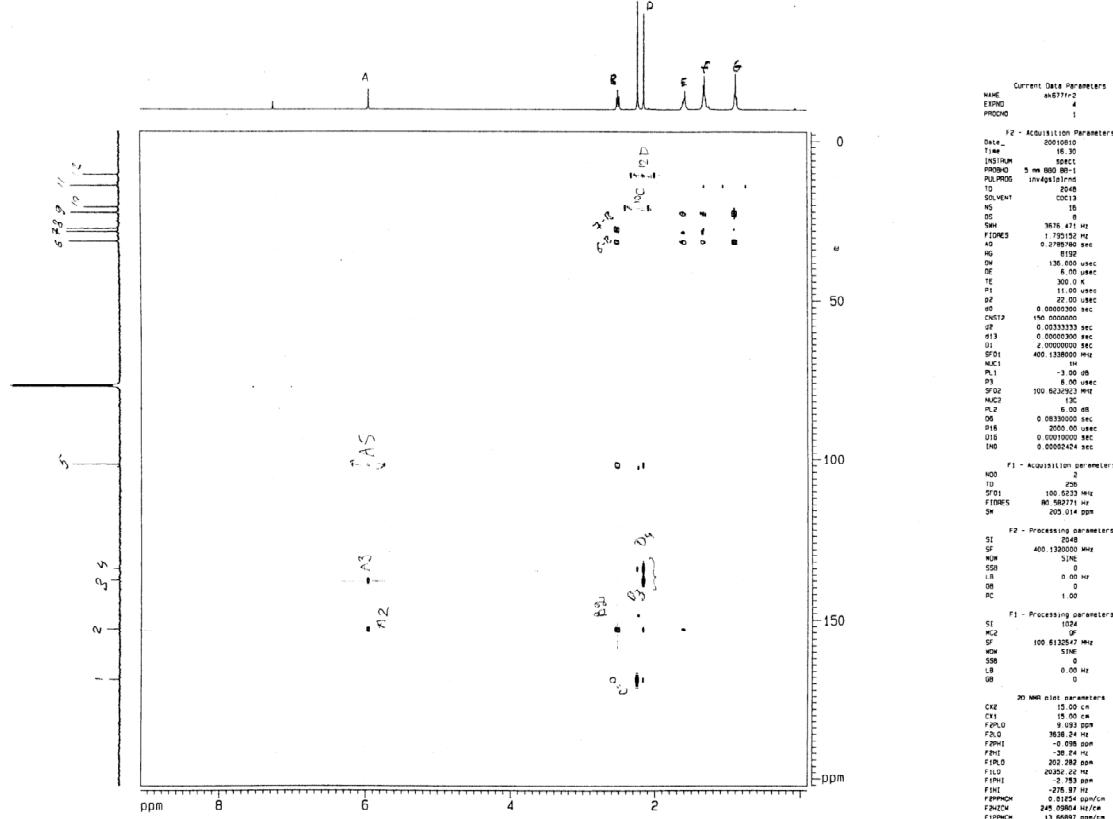
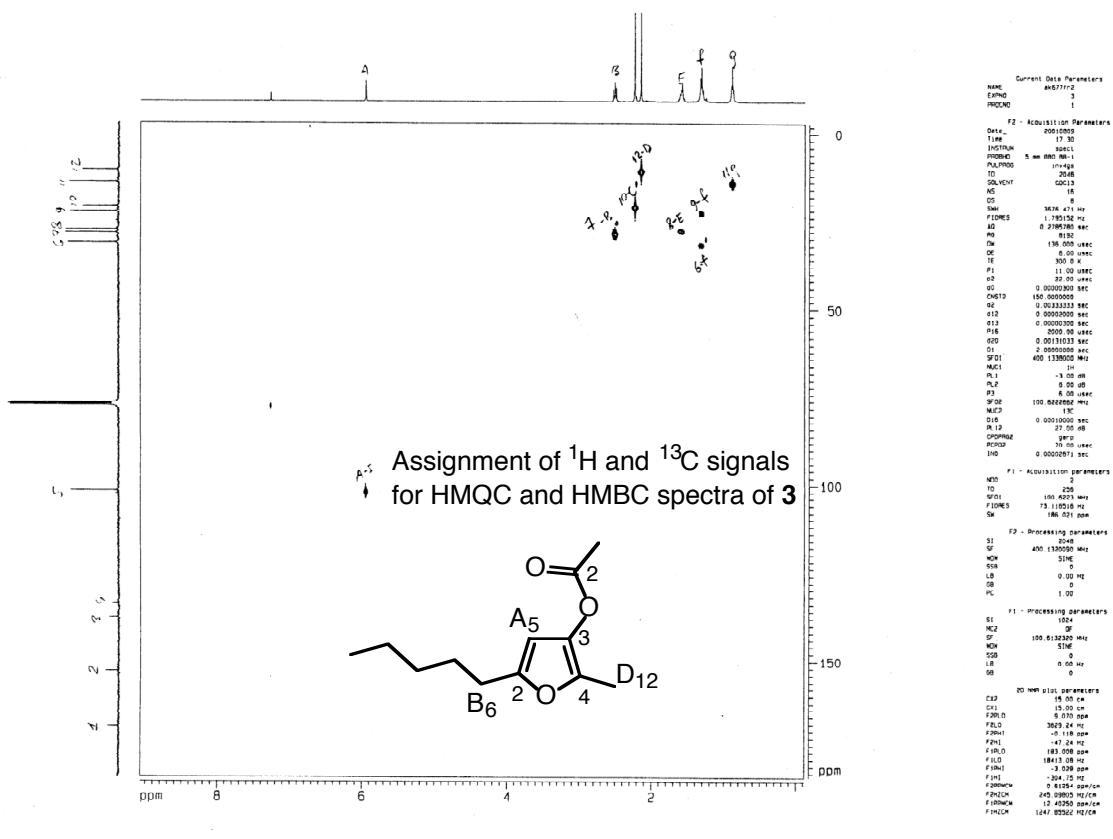

(x 2); 127.3 (x 2); 99.7; 77.7; 75.2; 30.9 (x 3); 28.2; 25.7; 21.5. GC/MS *m/z*: 272 (M⁺, 7); 215 (M⁺-*t*Bu, 100).

8e (acetic acid 1-(3,3-dimethyl-but-2-ynyl)-2-oxocyclohexyl ester): To a flash-dried, argon flushed, round bottomed two-necked flask equipped with a T-shaped stopcock, argon balloon, and bubbler was added ethyl magnesium bromide (11 mL, 1.0 M in THF) and the flask was cooled to 0°C. 3,3-Dimethyl-1-butyne (1.4 mL, 11. mmol) was added dropwise. The resulting mixture was allowed to warm to room temperature and observed until evolution of ethane ceased (*ca.* 30 min.) and stirred for an additional 30 minutes. The flask was cooled to 0°C and a solution of 1,2-cyclohexanedione (560 mg, 5.0 mmol) in 3 mL anhydrous THF was added dropwise. The resulting mixture was allowed to warm to room temperature and stirred for another 30 minutes. After TLC and GC/MS analysis showed the reaction was complete, the contents of the flask were poured into 130 mL saturated NH₄Cl solution and extracted with 30 mL ether. The organic layer was separated and the aqueous layer was acidified with 2N HCl and extracted a second time with 30 mL 2N HCl. The organic extracts were combined, dried with anhydrous MgSO₄, concentrated, and purified over 75 mL of silica gel with 1:10 ethyl acetate:hexanes as the eluent to afford 492 mg (51%) pure alcohol.^[5] This compound was acylated using a known procedure.^[6] ¹H NMR (500.13 MHz): δ 2.86 (dt, 1H, *J*₁ = 13.2, *J*₂ = 5.9 Hz); 2.41 (td, 1H, *J*₁ = 13.2, *J*₂ = 3.3 Hz); 2.28 (qd, 1H, *J*₁ = 12.7, *J*₂ = 2.6 Hz); 2.12 (dt, 1H, *J*₁ = 12.0, *J*₂ = 3.8 Hz); 2.12 (s, 3H); 2.05-1.97 (m, 1H); 1.86-1.82 (m, 1H); 1.76-1.70 (m, 1H); 1.60-1.49 (m, 1H); 1.23 (s, 9H). ¹³C NMR (125.76 MHz): δ 202.3; 168.9; 99.4; 79.9; 75.3; 40.7; 38.8; 31.4; 31.2; 31.0 (x 3); 28.0; 27.9; 22.8; 21.8. GC/MS *m/z*: 236 (M⁺, 6); 179 (M⁺-*t*Bu, 100).

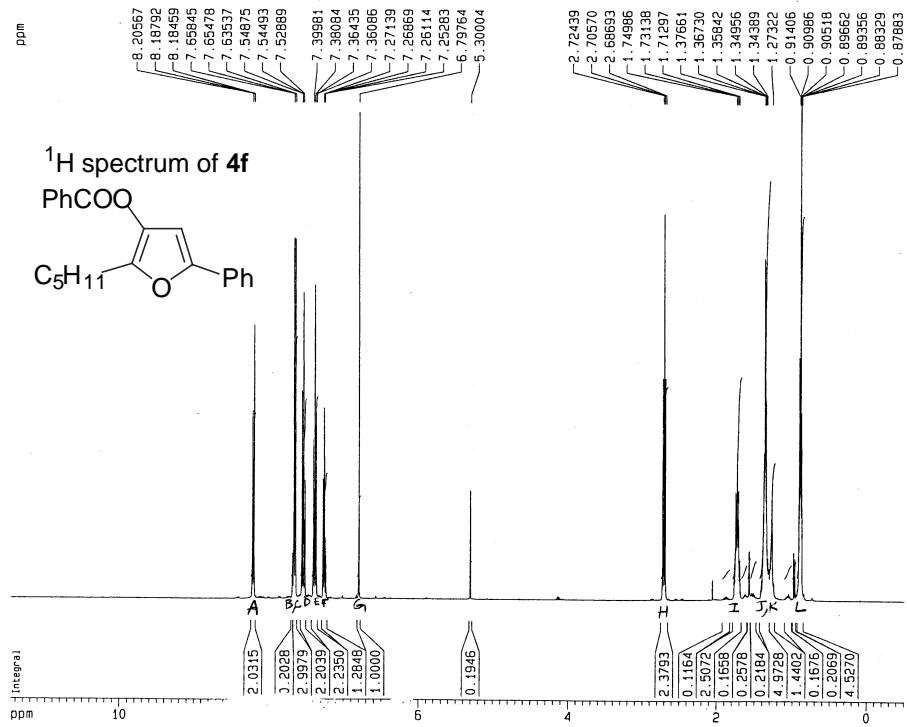

11 (phosphoric acid 1-benzoyl-4,4-dimethyl-1-phenyl-pent-2-ynyl ester): To a flash-dried, argon flushed, round bottomed, two-necked flask equipped with a Teflon coated magnetic stir bar and T-shaped stopcock with an argon balloon were successively added anhydrous THF (10 mL) and 3,3-dimethyl-1-butyne (5.0 mmol, 0.62 mL). The solution was cooled to -78°C while stirring. *n*-Butyllithium (5.5 mmol, 2.2 mL of 2.5 M solution in hexanes) was added slowly dropwise. The flask was removed from the cooling bath and allowed to warm to room temperature. A flash-dried, argon flushed, 50 mL round bottomed, two-necked flask equipped with a Teflon-coated stir bar and T-shaped stopcock with an argon balloon was sequentially loaded with benzil (5.0 mmol, 1.05 g) and anhydrous THF (10 mL). The solution was cooled to -78°C while stirring, and the acetylide solution from the first flask was transferred dropwise via cannula under positive argon pressure. The resulting purple-black solution was allowed to warm to room temperature while stirring and then placed back into the dry ice/acetone bath to cool to -78°C again. Next, diethylchlorophosphate (5.5 mmol, 0.8 mL) and anhydrous triethylamine^[7] (5.5 mmol, 0.8 mL) were successively added. The solution was removed from the bath and allowed to return to room temperature. The resulting amber solution was then poured into a separatory funnel containing 300 mL saturated NH₄Cl solution and 50 mL diethyl ether. After thorough extraction, the organic layer was separated, dried with anhydrous MgSO₄, and concentrated. The resulting residue was purified over 150 mL flash silica gel with 1:3 ethyl acetate:hexanes as the eluent to afford 653 mg (30%) pure **11** (and 878 mg (41%) slightly contaminated **11**). ¹H NMR (500.13 MHz): δ 7.89 (d,

2H, J = 8.4 Hz); 7.70 (dd, 2H, J_1 = 7.8, J_2 = 0.9 Hz); 7.43-7.34 (m, 4H); 7.26 (t, 2H, J = 7.7 Hz); 4.24-4.10 (m, 2H); 4.07-3.97 (m, 2H); 1.31 (t, 3H, J = 7.1 Hz); 1.24 (t, 3H, J = 8.1 Hz); 1.23 (s, 9H). ^{13}C NMR (125.76 MHz): δ 191.6; 137.8; 134.1; 133.0; 131.0 (x 2); 129.7; 129.1 (x 2); 128.0 (x 2); 127.8 (x 2); 103.8; 82.6; 75.3; 64.1 (d, J_{CP} = 38.9 Hz); 64.1 (d, J_{CP} = 39.0 Hz); 30.6 (x 3); 28.3; 16.5 (d, J_{CP} = 12.7 Hz); 16.4 (d, J_{CP} = 12.8 Hz). ^{31}P NMR (202.46 MHz): δ -7.30 ppm. GC/MS m/z : 428 (M^+ , 15); 155 (66); 105 (PhCO, 100).


13 (phosphoric acid 1-*tert*-butyl-4-oxo-3,4-diphenyl-buta-1,2-dienyl ester): Silver tetrafluoroborate (0.01 mmol, 1.9 mg) was added to an oven-dried 1 mL Wheaton microreactor equipped with a Teflon-coated spin vane and Teflon septum in the glovebox under argon atmosphere. Anhydrous dichloromethane (0.20 mL) and **15** (0.2 mmol, 88 mg) were successively added. The microreactor was shielded from light and the solution was allowed to stir at room temperature for one hour and monitored by TLC. The solution was then filtered through a short pad of aluminum oxide, concentrated, and purified by column chromatography over 20 mL silica gel and 1:3 ethyl acetate:hexanes as eluent to afford 48 mg (56%) of pure **13**. ^1H NMR (500.13 MHz): δ 8.05 (d, 2H, J = 7.2 Hz); 7.54 (t, 1H, J = 7.3 Hz); 7.50 (d, 2H, J = 7.5 Hz); 7.43 (d, 2H, J = 7.6 Hz); 7.34 (t, 2H, J = 7.6 Hz); 7.28 (t, 1H, J = 7.9 Hz); 4.07-3.99 (m, 4H); 1.21 (t, 3H, J = 7.1 Hz); 1.16 (t, 3H, J = 7.0 Hz); 1.11 (s, 9H). ^{13}C NMR (125.76 MHz): δ 196.3; 193.2; 137.5; 137.0 (d, J_{CP} = 11.4 Hz); 133.9; 133.7; 130.4 (x 2); 129.0; 128.9 (x 2); 128.7 (x 2); 128.2 (x 2); 120.3; 64.8 (d, J_{CP} = 6.5 Hz); 64.7 (d, J_{CP} = 6.3 Hz); 36.4 (d, J_{CP} = 6.3 Hz); 27.9 (x 2); 16.4 (d, J_{CP} = 12.6 Hz); 16.3 (d, J_{CP} = 12.5 Hz). ^{31}P NMR (202.46 MHz): δ -7.01 ppm.

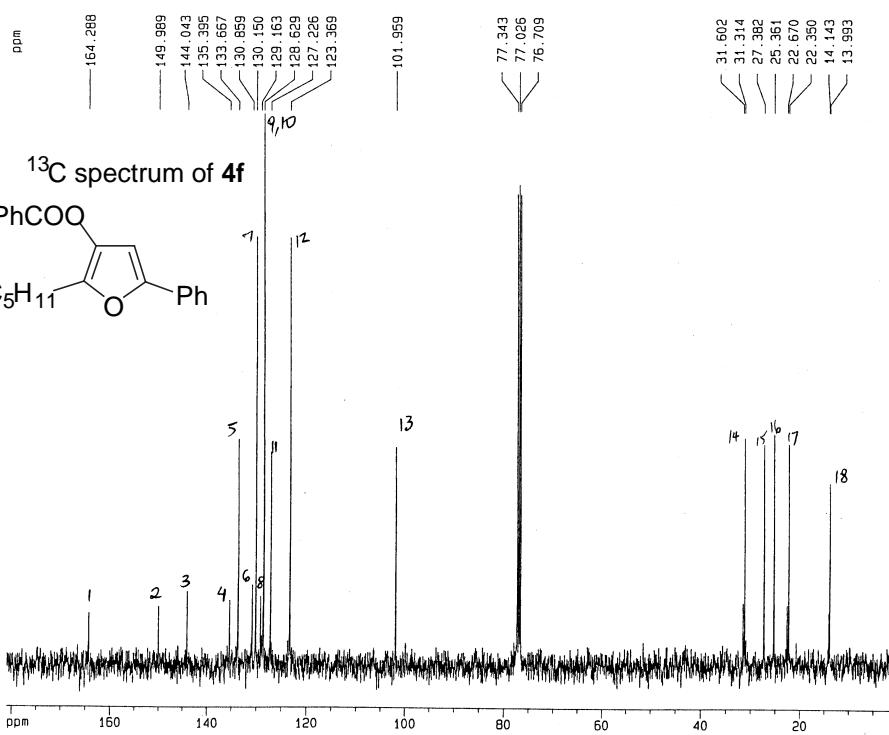



15 (toluene-4-sulfonic acid 1-*tert*-butyl-4-oxo-3,4-diphenyl-buta-1,2-dienyl ester): To a flash-dried, argon flushed, 25 mL round-bottomed, two-necked flask equipped with a Teflon coated magnetic stir bar and T-shaped stopcock with an argon balloon were successively added anhydrous THF (10 mL) and 3,3-dimethyl-1-butyne (5.0 mmol, 0.62 mL). The solution was allowed to cool to -78°C while stirring. *n*-Butyllithium (5.5 mmol, 2.2 mL of 2.5 M solution in hexanes) was added slowly dropwise and the solution gradually turned purple-black with the addition of butyllithium. The flask was removed from the cooling bath and allowed to warm to room temperature. A flash-dried, argon filled, round bottomed, two-necked 50 mL flask equipped with a Teflon coated magnetic stir bar and T-shaped stopcock with argon balloon was successively loaded with benzil (5.0 mmol, 1.05 g) and anhydrous THF (10 mL). The solution was stirred and cooled to -78°C, and the acetylide solution was then transferred slowly dropwise to the benzil solution via cannula under positive argon pressure. The resulting solution was allowed to reach room temperature before being placed back into the dry ice/acetone bath. When the solution was cooled to -78°C, *p*-toluenesulfonyl chloride (5.5 mmol, 1.05 g) in anhydrous THF (1 mL) and anhydrous triethylamine (5.5 mmol, 0.77 mL) were successively added. The flask was then removed from the cooling bath and allowed to warm to room temperature. The solution was then poured into a separatory funnel containing 300 mL saturated NH₄Cl solution and 50 mL diethyl ether. After thorough extraction, the organic layer was separated, dried with anhydrous MgSO₄, and concentrated. The residue was purified by column chromatography over 150 mL silica gel with 1:10 ethyl acetate:hexanes as eluent to afford 1.32 g (60%) of pure **15** (yellow oil which solidifies upon refrigeration). ¹H NMR (500.13 MHz): δ 7.81 (dd, 2H, J_1 = 8.4, J_2 = 1.4 Hz); 7.63 (d, 2H, J = 8.3 Hz); 7.55 (t, 1H, J = 7.4 Hz); 7.41 (t, 2H, J = 7.8 Hz); 7.38-7.32 (m, 5H); 7.09 (d, 2H, J = 8.2 Hz); 2.35 (s, 3H); 1.01 (s, 9H). ¹³C NMR (125.76 MHz): δ 197.1; 192.7; 145.6; 137.5; 136.7; 133.8; 133.3; 133.2; 130.1 (x 2); 130.0 (x 2); 129.3; 129.0 (x 2); 128.8 (x 4); 128.5 (x 2); 121.0; 36.5; 27.8 (x 3); 22.1.



¹H, ¹³C, HMQC, and HMBC of 3:

¹H, ¹³C, HMQC, and HMBC spectra of 4f:

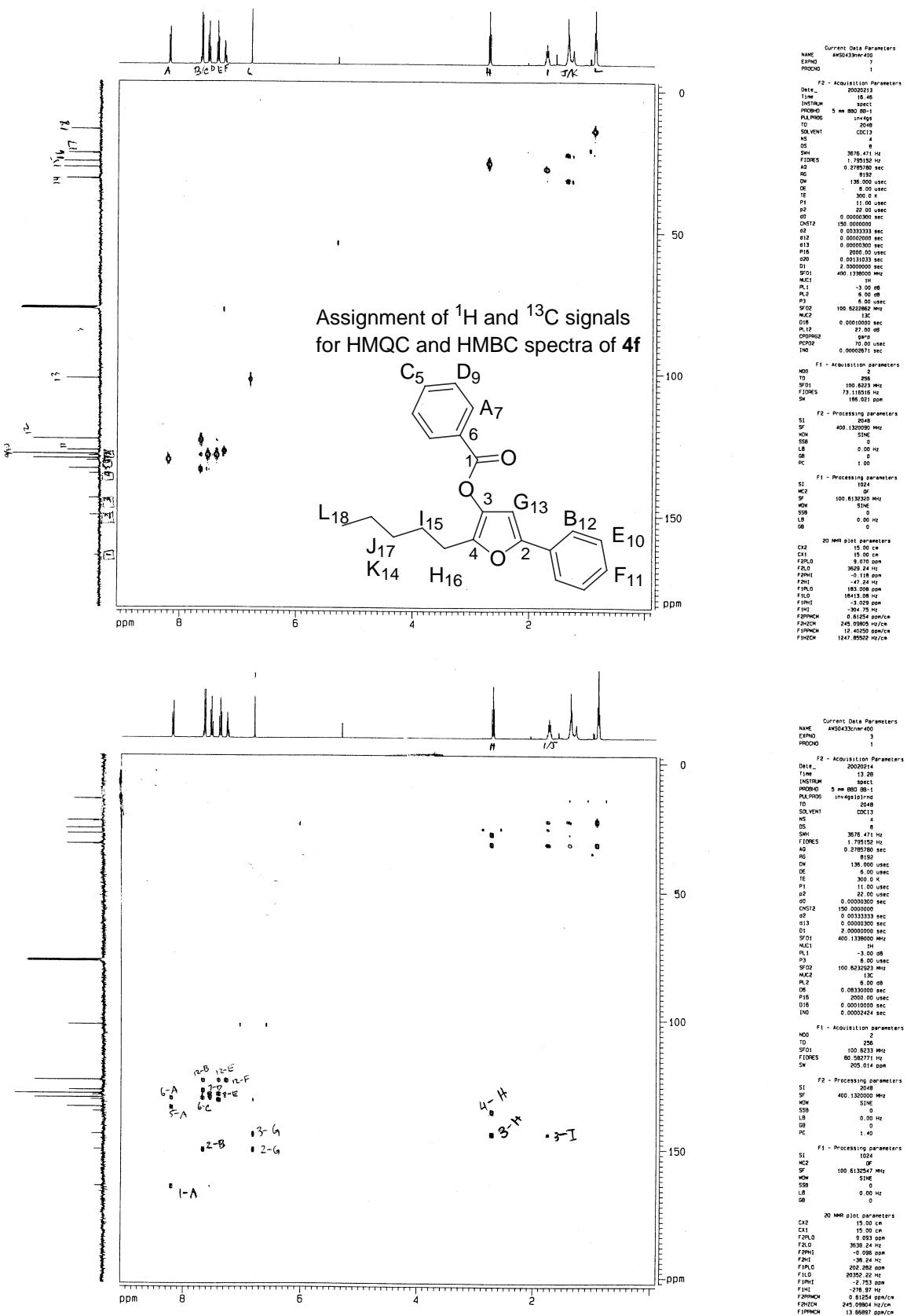


Current Data Parameters
NAME AW50433cnmr400
EXPNO 1
PROCNO 1

F2 - Acquisition Parameters
Date 20020214
Time 12.38
INSTRUM spect
PROBHD 5 mm BBO BB-1
PULPROG zgpg
TD 16384
SOLVENT CDCl3
NS 16
DS 2
SWH 4789.272 Hz
FIDRES 0.292314 Hz
AQ 1.7105396 sec
RG 71.6
DW 104.400 usec
DE 6.00 usec
TE 300.0 K
D1 1.0000000 sec
P1 5.50 usec
SF01 400.1342000 MHz
NUC1 ¹H
PL1 -3.00 dB

F2 - Processing parameters
SI 8192
SF 400.1320090 MHz
WDW EM
SSB 0
LB 0.10 Hz
GB 0
PC 1.00

1D NMR plot parameters
CX 20.00 cm
F1P 11.460 ppm
F1 4585.64 Hz
F2P -0.509 ppm
F2 -203.46 Hz
PPCM 0.59846 ppm/cm
HZCM 239.46362 Hz/cm



Current Data Parameters
NAME AW50433cnmr400
EXPNO 2
PROCNO 1

F2 - Acquisition Parameters
Date 20020214
Time 13.15
INSTRUM spect
PROBHD 5 mm BBO BB-1
PULPROG zgpg
TD 32768
SOLVENT CDCl3
NS 1024
DS 2
SWH 24154.590 Hz
FIDRES 0.737140 Hz
AQ 0.6783476 sec
RG 6502
DW 20.700 usec
DE 29.57 usec
TE 300.0 K
d11 0.0300000 sec
d12 0.0002000 sec
PL13 19.00 dB
D1 2.0000000 sec
CPDPRG2 waltz16
PCPD2 75.00 usec
SF02 400.1342220 MHz
NUC2 ¹H
PL2 120.00 dB
PL12 16.00 dB
P1 3.00 usec
SF01 100.61242960 MHz
NUC1 ¹³C
PL1 6.00 dB

F2 - Processing parameters
SI 32768
SF 100.6132740 MHz
WDW EM
SSB 0
LB 3.00 Hz
GB 0
PC 1.40

1D NMR plot parameters
CX 20.00 cm
F1P 181.000 ppm
F1 1621.000 Hz
F2P -1.000 ppm
F2 -100.61 Hz
PPCM 9.10000 ppm/cm
HZCM 915.58081 Hz/cm

- [1] D. Bernard, A. Doutheau, J. Gore, *Tetrahedron*, **1987**, *43*, 2721.
- [2] G. Solladie, C. Hamdouchi, *Synlett*, special 1st issue **1989**, 66.
- [3] Y. Tohda, K. Sonogashira, N. Hagihara, *Synthesis*, **1977**, 777.
- [4] M. Prakesch, D. Gree, R. Gree, *J. Org. Chem.* **2001**, *66*, 3146.
- [5] G. M. Pilling, F. Sondheimer, *J. Am. Chem. Soc.*, **1971**, 1970.
- [6] P. A. Procopiou, S. P. D. Baugh, S. S. Flack, G. G. A. Inglis, *J. Org. Chem.*, **1998**, *63*, 2342.
- [7] K. Mikami, A. Yoshida, *Tetrahedron*, **2001**, *57*, 889.