Fabrication of Metal-Semiconductor Nanowire Heterojunctions

Jinhua Zhan, Yoshio Bando, Junqing Hu, Zongwen Liu, Longwei Yin, Dmitri Golberg

Fabrication of Metal-Semiconductor Nanowire Heterojunctions

Jinhua Zhan*, Yoshio Bando, Junqing Hu, Zongwen Liu, Longwei Yin, Dmitri Golberg

Figure Captions

Fig. 1 SEM image of a product.

Fig. 2 a) TEM image of a Si subnanowire growing along the [331] direction, the inset is corresponding SAED pattern in accordance with the Si [110] zone axis. b) High-resolution TEM image of the Si subnanowire ($d_{(111)} = 3.13 \text{Å}$, as indicated by

[*] Dr. J. Zhan, Prof. Y. Bando, Dr. Z. Liu, Dr. L. Yin, Prof. D. Golberg

Advanced Materials Laboratory and Nanomaterials Laboratory

National Institute for Materials Science,

Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan

Fax: +81-29-851-6280

E-mail: ZHAN.Jinhua@nims.go.jp

Dr. J. Hu

International Center for Young Scientists (ICYS),

National Institute for Materials Science (NIMS),

Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
double-lines), the inset is the scheme of diamond-like Si crystal structure viewed along the [110] direction.

Fig. 3 a) TEM image of a Si subnanowire growing along the [111] direction. b) SAED pattern taken from the Si subnanowires, that corresponds to the Si [110] zone axis. Streaking of the reflections on the underfocused ED pattern (the right-hand-side images) implies the preferential growth direction close to the [111] orientation. c) High-resolution TEM image of the Si subnanowire ($d_{[111]} = 3.13\text{Å}$, as indicated by double lines), and its corresponding structural model (inset).

Fig. 4 a) A plot of the equilibrium vapor pressure of metallic In (P_{In}, Pa) versus temperature (T, K). b) A plot of the standard free energy (ΔG^0, $2SiO(g) \rightarrow Si(s) + SiO_2(s)$, KJ/mol) versus temperature (T, K).
Fig. 1
Fig. 2
Fig. 3
Fabrication of Metal-Semiconductor Nanowire Heterojunctions
Jinhua Zhan, Yoshio Bando, Junqing Hu, Zongwen Liu, Longwei Yin, Dmitri Golberg

Fig. 4

2SiO(g) → Si(s) + SiO₂(s)