Synthesis of Optically Active C_1 Symmetric Al(salalen) Complex and Its Application to Catalytic Hydrophosphonylation of Aldehydes

Bunnai Saito and Tsutomu Katsuki

1. General

All reagents and solvents were used as supplied commercially, except for THF that was distilled from Na/Ph$_2$CO, before use. 1H and 13C NMR spectra were measured on a JEOL GX-400 spectrometer at 400 and 100 MHz, respectively. All chemical shifts were recorded in δ (ppm) relative to tetramethylsilane (TMS). Melting points were measured with a BÜCHI Melting Point B-545 apparatus and uncorrected. Infrared spectra were measured as a KBr disc or as a thin film using NaCl plate on a SHIMADZU FTIR-8600 spectrophotometer, and only diagnostic absorptions are listed below. UV/visible spectra were measured on SHIMADZU MultiSpec-1500. Optical rotation was measured with a JASCO P-1020 polarimeter. High resolution FAB mass spectra were obtained from JEOL JMX-SX/SX 102A spectrometer. Enantiomeric excesses were determined by HPLC analysis using SHIMADZU LC-10AT-VP equipped with an appropriate optically active column, as described in the footnotes to the corresponding Tables. TLC analysis was performed on Silica gel 60 F$_{254}$-coated glass plates (Merck). Visualization was accomplished with irradiation of 254 nm UV light or spray of a 12-molybdo(VI)phosphoric acid ethanol solution as the developing agent.

2. Synthesis of salalen ligand

To a solution of (1R, 2R)-1,2-cyclohexanediamine monohydrochloride (1, 3.40 g, 22.56 mmol) in dry methanol (ca. 100 ml) was added 3,5-di-tert-butyl salicylaldehyde (2, 5.03 g, 21.48 mmol) and the resulting mixture was stirred for 3 h at room temperature. After cooling to 0 °C, sodium borohydride
(2.03 g, 53.7 mmol) was added to the solution and stirred for 2 h at room temperature. The reaction was quenched with H$_2$O and extracted with Et$_2$O three times. The combined organic phases were washed with brine and dried over Na$_2$SO$_4$. After filtration, the solution was concentrated in vacuo, and re-dissolved in dry ethanol (100 ml). To the mixture was added di-tert-butyl dicarbonate (5.45 ml, 23.6 mmol) at room temperature and stirred for 1.5 h. The solution was concentrated under reduced pressure and submitted to silica gel column chromatography (hexane/ethyl acetate = 9/1-4/1) to give 3 (6.24 g, 67%).

Colorless solid (hygroscopic). [α]$_D^{22}$ + 8.85 (c 1.33, CHCl$_3$), IR (KBr): 3317, 2955, 2862, 1701, 1510, 1481, 1454, 1391, 1363, 1236, 1171, 1107, 1016, 872 cm$^{-1}$; 1H NMR (CDCl$_3$): δ 7.21 (d, J = 2.4 Hz, 1H), 6.85 (d, J = 2.4 Hz, 1H), 4.42 (br d, J = 10.3 Hz, 1H), 4.08 (d, J = 13.43 Hz, 1H), 3.87 (d, J = 13.43 Hz, 1H), 3.40 (m, 1H), 2.23-2.32 (m, 2H), 2.00 (m, 1H), 1.69-1.76 (m, 2H), 1.46 (s, 9H), 1.42 (s, 9H), 1.28 (s, 9H), 1.12-1.40 (m, 4H); 13C NMR (CDCl$_3$): δ 155.7, 154.5, 140.1, 135.7, 123.0, 122.7, 122.1, 79.5, 60.4, 54.1, 50.4, 34.2, 33.5, 31.8, 31.4, 29.8, 28.5, 25.1, 24.7; HRFABMS m/z. Calcd for [C$_{26}$H$_{44}$N$_2$O$_3$]$^+$: m/z = 432.3352. Found: m/z = 432.3349.

2.2. Synthesis of salalen ligand 4.

To a solution of 3 (5.63 g, 13.01 mmol) in methanol (ca. 80 ml) were added aq. CH$_2$O (ca. 37%, 1.21 ml, 16.27 mmol) and 10% Pd/C (1.03 g) at room temperature. The flask was purged with H$_2$ and installed with a rubber balloon filled with H$_2$. After stirring for about 5 h at room temperature, the mixture was filtered through a pad of Celite and subsequently washed with MeOH. The solution was concentrated in vacuo and re-dissolved in MeOH (30 ml). To the solution 3M HCl (30 ml) was added and stirred for 36 h at room temperature. The reaction was quenched with 3M NaOH (35 ml) and the resulting mixture was extracted with Et$_2$O three times. The combined organic phases were washed with brine and dried over Na$_2$SO$_4$. After filtration, the solution was concentrated in vacuo and re-dissolved in methanol (ca. 100 ml). To the solution was added 3,5-di-tert-butyl salicylaldehyde (2, 3.04 g, 13.0 mmol) and stirred for 3.5 h at room temperature. The precipitate was filtered off and washed with methanol to give the ligand 4 (5.54 g, 76%).
Yellow solid. \([\alpha]^{D}_{D} = 100.4 (c 1.00, \text{CHCl}_3)\), IR (KBr): 2955, 2864, 1628, 1477, 1447, 1393, 1362, 1244, 1204, 1171, 1030, 876, 826 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)): \(\delta 13.56\) (s, 1H), 10.58 (br s, 1H), 8.37 (s, 1H), 7.38 (d, \(J = 2.4\) Hz, 1H), 7.10 (d, \(J = 2.4\) Hz, 1H), 7.02 (d, \(J = 2.4\) Hz, 1H), 6.79 (d, \(J = 2.4\) Hz, 1H), 3.79 (br ABq, 2H), 3.29 (m, 1H), 2.96 (m, 1H), 2.22 (s, 3H), 1.63-2.00 (m, 5H), 1.29-1.43 (m, 3H), 1.47 (s, 9H), 1.29 (s, 9H), 1.25 (s, 9H), 1.12 (s, 9H); \(^1\)C NMR (CDCl\(_3\)): \(\delta 165.5, 157.9, 154.5, 139.6, 139.6, 136.4, 135.2, 126.7, 125.6, 123.1, 122.3, 120.8, 117.9, 70.2, 66.6, 35.3, 35.1, 34.8, 34.2, 31.8, 31.6, 29.7, 29.5, 25.3, 24.8; Anal. Calcd for C\(_{37}\)H\(_{58}\)N\(_2\)O\(_2\): C, 78.95; H, 10.39; N, 4.98%. Found: C, 78.94; H, 10.40; N, 4.92%.

To a solution of salalen ligand 4 (453 mg, 0.806 mmol) in dry toluene (10 ml) was added diethylaluminum chloride (0.92 M in hexane, 876 µl) at 0 °C and the solution was stirred for overnight at room temperature. The yellow suspension was concentrated in vacuo and re-suspended in hexane. The yellow precipitate was filtered off and washed with hexane to give complex 5 (468 mg, 93%).

Yellow solid. IR (KBr): 2951, 2909, 2864, 1620, 1543, 1483, 1441, 1420, 1389, 1360, 1304, 1256, 1204, 1177, 1130, 1011, 962, 851, 761, 635, 600, 577 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)): \(\delta 8.44\) (s, 1H), 7.57 (d, \(J = 2.4\) Hz, 1H), 7.30 (d, \(J = 2.4\) Hz, 1H), 7.00 (d, \(J = 2.4\) Hz, 1H), 6.82 (d, \(J = 2.4\) Hz, 1H), 4.57 (d, \(J = 13.2\) Hz, 1H), 3.40 (m, 1H), 3.37 (d, \(J = 13.2\) Hz, 1H), 2.54 (m, 1H), 2.45 (s, 3H), 2.27-2.36 (m, 1H), 1.77-1.84 (m, 3H), 1.52 (s, 9H), 1.38 (s, 9H), 1.29 (s, 9H), 1.27 (s, 9H), 1.12-1.57 (m, 3H), 0.94-1.00 (m, 1H); Anal. Calcd for C\(_{37}\)H\(_{58}\)N\(_2\)O\(_2\)AlCl: C, 71.30; H, 9.06; N, 4.49%. Found: C, 71.35; H, 9.03; N, 4.53%.