

Angewandte Chemie

Eine Zeitschrift der Gesellschaft Deutscher Chemiker

Supporting Information

© Wiley-VCH 2005

69451 Weinheim, Germany

Chiral Boron-Bridged Bisoxazolines: Readily Available Anionic Ligands for Asymmetric Catalysis

Clément Mazet, Valentin Köhler and Andreas Pfaltz*

All reactions were carried out under an inert atmosphere of argon or nitrogen, unless otherwise noted. Solvents were distilled according to standard procedures and degassed by three successive "freeze-pump-thaw" cycles prior to use. NMR spectra were recorded on 400 and 500 Bruker Avance spectrometers. Infrared spectra were obtained on Shimadzu FTIR-8400S spectrometer using neat samples. Optical rotations were measured on a Perkin Elmer polarimeter 341 equipped with a Na-lamp. Elemental analyses were obtained from the Micro-Analytical Laboratory of the Department of Chemistry of the University of Basel.

Ph_2BCl ^[1] Et_2BBr ^[1,2] bis[3,5-bis(trifluoromethyl)phenyl]boronchloride,^[3] 2H-oxazolines^[4] and 2,2-diphenylmalonyl dichloride^[5] were prepared according to literature procedures. All other reagents were available from commercial suppliers and most of the time used without further purification. Olefins were purified by distillation from CaH_2 and finally degassed. Liquid diazoacetate precursors were degassed prior to use.

General procedure for the synthesis of ligands 6a and 6b. In a 100ml round bottom flask 2,2-diphenylmalonyldichloride (720 mg, 2.46 mmol) was dissolved in 50 ml of dry CH_2Cl_2 . Triethylamine (0.75 g, 1.03 ml, 7.4 mmol) was added, followed by solid (*S*)-amino alcohol (2.56 mmol). The pale yellow solution was stirred overnight before 25ml of a saturated aqueous Na_2CO_3 solution was added. The organic layer was separated and the aqueous phase extracted with 25 ml of CH_2Cl_2 . The combined organic extracts were dried over Na_2SO_4 , filtered and concentrated in vacuo. The crude product was first filtered through a plug of silica ($\text{CH}_2\text{Cl}_2/\text{MeOH}$ 9:1) and subsequently purified by column chromatography (gradient: $\text{CH}_2\text{Cl}_2/\text{MeOH}$ 20:1 to $\text{CH}_2\text{Cl}_2/\text{MeOH}$ 9:1). The product was isolated as a white solid.

The β -amido alcohol (1.00 mmol) and Burgess' reagent (1.15 mmol) were dissolved in 50 mL of dry THF. The reaction mixture was refluxed overnight. After cooling to room temperature and evaporation of the volatiles, the crude mixture was dissolved in CH_2Cl_2 , successively washed with HCl (1N), brine and water. The organic phases were combined and dried over MgSO_4 . After evaporation of the solvent, the remaining yellowish oil was transferred to a silica gel column and purified by flash chromatography (CH_2Cl_2 to $\text{CH}_2\text{Cl}_2/\text{MeOH}$ 20:1) to afford the desired product.

N,N-Bis[1-(hydroxymethyl)-1,1-dimethylethyl]-2,2-diphenyl-1,3-propanediamide).

Yield: 87 %; ^1H NMR (500 MHz, CDCl_3): δ 7.38-7.26 (m, 10H, H_{Ar}), 3.82 (bm, 2H, $\text{CH}_2\text{-CH-NH}$), 3.68 (m, 2H, CH_2OH), 3.53 (m, 2H, CH_2OH), 2.71 (bs, 2H, OH), 1.80 (m, 2H, CH_{iPr}), 0.86 (d, 6H, CH_3 iPr), 0.74 (d, 6H, CH_3 iPr); ^{13}C NMR (125 MHz, CDCl_3): δ 172.9 (C=O), 139.8 ($\text{C}_{\text{quat Ar}}$), 129.5 (C_{Ar}), 128.6 (C_{Ar}), 128.1 (C_{Ar}), 64.3 (CH), 58.1

(CH₂), 28.8 (CH₃iPr), 19.6 (CH₃iPr), 18.1 (CH₃iPr). IR: 3409, 3301, 2954, 1666, 1635, 1504, 1242, 1072, 1033, 702; $[\alpha]_{20} = -30$ (*c* = 0.11, CH₂Cl₂). MS (FAB) *m/z* (rel. intensity): [M+H⁺] 427 (100). Elemental analysis calcd (%) for C₂₅H₃₄N₂O₄ (426.55): C 70.39, H 8.03, N 6.57; found: C 70.15, H 8.19, N 6.46.

6a (R¹ = Ph; R² = *i*-Pr). Yield: 96 %; ¹H NMR (500 MHz, CDCl₃): δ 7.40-7.26 (m, 10H, H_{Ar}), 4.25 (m, 2H, H_{oxa}), 4.05 (m, 4H, H_{oxa}), 1.86 (m, 2H, CH_{iPr}), 0.96 (d, 6H, CH₃iPr), 0.90 (d, 6H, CH₃iPr); ¹³C NMR (125 MHz, CDCl₃): δ 166.2 (C=N), 139.8 (C_{quat} Ar), 129.4 (C_{Ar}), 127.7 (C_{Ar}), 127.3 (C_{Ar}), 72.0 (CH_{oxa}), 70.1 (CH₂oxa), 57.8 (C_{bridge}), 32.5 (CH_{iPr}), 18.9 (CH₃iPr), 18.1 (CH₃iPr). IR: 2962, 2908, 2869, 2360, 1650, 1596, 1465, 1442, 1350, 1211, 1164, 1002, 941, 871, 748. $[\alpha]_{20} = -119$ (*c* = 0.11, CH₂Cl₂). MS (FAB) *m/z* (rel. intensity): [M+H⁺] 391 (100). Elemental analysis calcd (%) for C₂₅H₃₀N₂O₂ (390.52): C 76.89, H 7.74, N 7.17; found: C 75.76, H 7.73, N 7.07.

N,N-Bis[1-(hydroxymethyl)-2,2-dimethylpropyl]-2,2-diphenyl-1,3-propanediamide. Yield: 90 %; ¹H NMR (500 MHz, CDCl₃): δ 7.51-7.29 (m, 10H, H_{Ar}), 3.78 (m, 2H, CH₂OH), 3.41 (m, 2H, CH-NH), 2.54 (bm, 2H, OH), 0.88 (s, 18H, CH₃tBu); ¹³C NMR (125 MHz, CDCl₃): δ 173.1 (C=O), 139.9 (C_{quat} Ar), 129.6 (C_{Ar}), 128.6 (C_{Ar}), 128.0 (C_{Ar}), 63.2 (CH), 60.8 (CH₂), 33.2 (C_{quat} tBu), 26.7 (CH₃tBu). IR: 3409, 3355, 3278, 2954, 2877, 2360, 1666, 1643, 1512, 1465, 1365, 1242, 1188, 10566, 1002, 933, 825, 756, 702. $[\alpha]_{20} = -15$ (*c* = 0.11, CH₂Cl₂). MS (FAB) *m/z* (rel. intensity): [M+H⁺] 455 (100). Elemental analysis calcd (%) for C₂₇H₃₈N₂O₄ (454.61): C 71.34, H 8.42, N 6.16; found: C 70.86, H 8.45, N 6.28.

6b (R¹ = Ph; R² = *t*-Bu). Yield: 96 %; ¹H NMR (500 MHz, CDCl₃): δ 7.45-7.28 (m, 10H, H_{Ar}), 4.21 (bt, 2H, CH_{oxa}), 4.12 (bt, 2H, CH_{oxa}) 4.00 (bt, 2H, CH_{oxa}), 0.95 (s, 18H, CH₃tBu); ¹³C NMR (125 MHz, CDCl₃): δ 166.2 (C=N), 139.8 (C_{quat} Ar), 129.6 (C_{Ar}), 127.7 (C_{Ar}), 127.3 (C_{Ar}), 75.7 (CH), 68.9 (CH₂), 57.9 (C_{bridge}), 34.1 (C_{quat} tBu), 26.1 (CH₃tBu). IR: 2954, 2900, 2360, 1658, 1481, 1450, 1396, 1288, 1203, 1157, 1002, 948, 871, 748, 702. $[\alpha]_{20} = -116$ (*c* = 0.11, CH₂Cl₂). MS (FAB) *m/z* (rel. intensity): [M+H⁺] 419 (100). Elemental analysis calcd (%) for C₂₇H₃₄N₂O₂ (418.58): C 77.48, H 8.19, N 6.69; found: C 77.17, H 8.24, N 6.60.

General procedure for the synthesis of the lithium salts (7)-Li and the ligands 9a-f. *t*-BuLi (1.7 M in hexanes, 1.78 mL, 3.03 mmol) was added at -78°C over a 10 minutes period to a solution of 2*H*-oxazoline (2.75 mmol) in 100 mL of THF, resulting in a pale yellow solution. After stirring for 30 minutes at this temperature, a solution of R₂BCl (1.38 mmol) in toluene (5 mL) was added through a cannula and the cooling bath immediately removed after addition was complete. After 4 to 12 h, the reaction was complete and the volatile compounds were removed under vacuum. The remaining foamy residue was redissolved in benzene, filtered to remove LiCl, and the solvent evaporated again. After washing with hexanes (3x20 mL) and drying, the ligand salt was isolated as a highly hygroscopic white solid.

General procedure for the conversion of the lithium salts into their protonated analogues. The lithium salt of the Bora-BOX (**7**)-Li was dissolved in a minimum amount of the eluent mixture (typically: hexanes : ethyl acetate : Et₃N = 10:1:0.5 unless otherwise mentioned) and directly transferred to a silica gel column chromatography (12 cm; Ø = 2cm). After elution and evaporation of the solvents, the product was isolated in its protonated form.

General procedure for the conversion of the protonated ligands into their lithium salts. *n*-BuLi (140 μ L, 0.23 mmol) was added at 0 °C to a solution of **9a** (84 mg, 0.22 mmol) in 10 mL of THF. After 2h hours of additional stirring at room temperature, the volatiles were removed under reduced pressure. The analytically pure material (**7a**)-Li was isolated as a white solid (82 mg, 0.206 mmol, 96 % yield).

(7a)-Li (R¹ = Ph; R² = *i*-Pr). Yield: 67 %; ¹H NMR (500 MHz, (CD₃)₂CO): δ 7.29 (vt, 4H, H_{Ar-m}), 6.96 (vt, 4H, H_{Ar-o}), 6.87 (dd, 2H, H_{Ar-p}), 3.79 (m, 2H, H_{oxa}), 3.73 (m, 2H, H_{oxa}), 3.62 (m, 2H, H_{oxa}), 2.02 (m, 2H, H_{iPr}), 0.821 (s, 6H, CH₃ *iPr*), 0.71 (s, 6H, CH₃ *iPr*); ¹³C NMR (125 MHz, (CD₃)₂CO): δ C_{Ar-ipso}: not detected, 209.4 (C=N_{oxa}), 134.5 (C_{Ar-m}), 125.7 (C_{Ar-o}), 123.1 (C_{Ar-p}), 71.1 (C_{oxa}), 65.4 (C_{oxa}), 31.6 (CH₃ *iPr*), 18.9 (CH₃ *iPr*); 16.3 (CH₃ *iPr*); ¹¹B NMR (160 MHz, (CD₃)₂CO): δ -12.7 (s); IR: 2962, 2877, 2360, 1635, 1589, 1465, 1388, 1265, 1157, 1103, 1033, 964, 864, 732. $[\alpha]_{20} = -49$ (*c* = 0.11, CH₂Cl₂). MS (MALDI-TOF, 2,5-dihydroxybenzoic acid): *m/z*(%): 402 [M+2Li]⁺, 396 [M]⁺, 390 [M-Li]⁺.

9a (R¹ = Ph; R² = *i*-Pr). Yield: 63 %; ¹H NMR (500 MHz, CDCl₃): δ 10.76 (bs, 1H_{NHN}), 7.32 (bt, 4H, H_{Ar-m}), 7.21 (dd, 4H, H_{Ar-o}), 7.14 (dd, 2H, H_{Ar-p}), 4.40 (m, 2H, H_{oxa}), 4.11 (m, 2H, H_{oxa}), 3.86 (m, 2H, H_{oxa}), 1.78 (m, 2H, H_{iPr}), 1.05 (s, 6H, CH₃ *iPr*), 0.96 (s, 6H, CH₃ *iPr*); ¹³C NMR (125 MHz, CDCl₃): δ C_{Ar-ipso} and C=N_{oxa} not detected, 133.8 (C_{Ar-m}), 127.1 (C_{Ar-o}), 125.2 (C_{Ar-p}), 72.1 (C_{oxa}), 67.3 (C_{oxa}), 32.9 (CH₃ *iPr*), 18.9 (CH₃ *iPr*); 18.8 (CH₃ *iPr*); ¹¹B NMR (160 MHz, CDCl₃): δ -13.5 (s); IR: 2954, 2877, 1581, 1465, 1411, 1311, 1272, 1218, 1164, 1033, 964, 933, 725. $[\alpha]_{20} = -66$ (*c* = 0.11, CH₂Cl₂). Elemental analysis calcd (%) for C₂₄H₃₁BN₂O₂ (390.33): C 73.85, H 8.00, N 7.18; found: C 73.75, H 7.91, N 7.15. MS (FAB) *m/z* (rel. intensity): [M+H]⁺ 391 (100), [M - oxa + H]⁺ 278 (57.83). Rf = 0.43.

(7b)-Li (R¹ = Ph; R² = *t*-Bu). Yield: 88 %; ¹H NMR (500 MHz, (CD₃)₂CO): δ 7.32 (dd, 4H, H_{Ar-m}), 6.95 (vt, 4H, H_{Ar-o}), 6.86 (vt, 2H, H_{Ar-p}), 3.76 (m, 2H, H_{oxa}), 3.68 (m, 2H, H_{oxa}), 3.63 (m, 2H, H_{oxa}), 0.71 (s, 18H, CH₃ *tBu*); ¹³C NMR (125 MHz, (CD₃)₂CO): δ C_{Ar-ipso}: not detected, 209.4 (C=N_{oxa}), 134.6 (C_{Ar-m}), 125.6 (C_{Ar-o}), 123.1 (C_{Ar-p}), 75.1 (C_{oxa}), 65.6 (C_{oxa}), 33.6 (C_{quat-tBu}), 25.7 (CH₃ *tBu*); ¹¹B NMR (160 MHz, (CD₃)₂CO): δ -12.5 (s); IR: 2954, 2869, 2360, 1581, 1473, 1411, 1365, 1288, m 1211, 1164, 1033, 964, 848, 702; $[\alpha]_{20} = -50$ (*c* = 0.11, CH₂Cl₂). MS (MALDI-TOF, 2,5-dihydroxybenzoic acid): *m/z* (%): 425 [M+H]⁺, 419 [M-Li+H]⁺.

9b (R¹ = Ph; R² = *t*-Bu). Yield: 72 %; ¹H NMR (500 MHz, CDCl₃): δ 13.62 (bs, 1H_{NHN}), 7.35 (vt, 4H, H_{Ar-m}), 7.23 (dd, 4H, H_{Ar-o}), 7.16 (vt, 2H, H_{Ar-p}), 4.32 (vt, 2H, H_{oxa}), 4.21 (vt, 2H, H_{oxa}), 3.90 (vt, 2H, H_{oxa}), 0.98 (s, 18H, CH₃ *tBu*); ¹³C NMR (125 MHz, CDCl₃): δ C_{Ar-ipso}: not detected, 194.5 (very broad signal, C=N_{oxa}), 134.0 (C_{Ar-m}), 127.2 (C_{Ar-o}),

125.2 (C_{Ar-p}), 70.8 (C_{oxa}), 70.1 (C_{oxa}), 33.4 (C_{quat-tBu}), 25.8 (CH₃ tBu); ¹¹B NMR (160 MHz, CDCl₃): δ -13.4 (s); IR: 2954, 2869, 2360, 1581, 1473, 1411, 1365, 1288, m 1211, 1164, 1033, 964, 848, 702. [α]₂₀ = -89 (c = 0.11, CH₂Cl₂). Elemental analysis calcd (%) for C₂₆H₃₅BN₂O₂ (418.38): C 74.64, H 8.43, N 6.70; found: C 74.41, H 8.52, N 6.83. MS (FAB) *m/z* (rel. intensity): [M+H⁺] 419 (100), [M - oxa + H⁺] 292 (55.07). Rf = 0.46.

(7c)-Li (R¹ = Cy; R² = *i*-Pr). Yield: 40 %; ¹H NMR (500 MHz, (CD₃)₂CO): δ 3.73 (m, 2H, H_{oxa}), 3.67 (m, 2H, H_{oxa}), 3.60 (m, 2H, H_{oxa}), 1.65 (m, 2H, H_{iPr}), 1.61-1.48 (m, 6H_{Cy}), 1.28 (bd, 4H, H_{Cy}), 1.15-0.9 (m, 12H, H_{Cy}), 0.83 (s, 6H, CH₃ iPr), 0.75 (s, 6H, CH₃ iPr); ¹³C NMR (125 MHz, (CD₃)₂CO): δ 209.4 (C=N_{oxa}), 71.1 (C_{oxa}), 64.9 (C_{oxa}), 53.5 (broad signal, C_{Cy}), 31.6 (CH_{iPr}), 29.0 (C_{Cy}), 20.5 (C_{Cy}), 29.4 (C_{Cy}), 19.6 (CH₃ iPr); 16.7 (CH₃ iPr); ¹¹B NMR (160 MHz, (CD₃)₂CO): δ -12.9 (s); IR: 2954, 2908, 2839, 1650, 1581, 1465, 1442, 1411, 1265, 1180, 1110, 1049, 1018, 964, 902, 871. [α]₂₀ = -45 (c = 0.11, CH₂Cl₂). MS (MALDI-TOF, 2,5-dihydroxybenzoic acid): *m/z* (%): 402 [M-Li]⁺.

9c (R¹ = Cy; R² = *i*-Pr). Yield: 70 %; ¹H NMR (500 MHz, CDCl₃): δ 13.09 (bs, 1H_{NHN}), 4.37 (m, 2H, H_{oxa}), 4.00 (m, 2H, H_{oxa}), 3.75 (m, 2H, H_{oxa}), 1.61-1.48 (m, 6H_{Cy}), 1.43 (bd, 4H, H_{Cy}), 1.15 (m, 2H, H_{iPr}), 0.98 (s, 6H, CH₃ iPr), 0.92 (s, 6H, CH₃ iPr) 1.21-0.28 (m, 12H, H_{Cy}); ¹³C NMR (125 MHz, CDCl₃): δ 197.5 (C=N_{oxa}), 71.3 (C_{oxa}), 67.1 (C_{oxa}), 32.9 (CH_{iPr}), 31.5 (C_{Cy}), 31.3 (C_{Cy}), 29.1 (C_{Cy}), 27.9 (C_{Cy}), 19.1 (CH₃ iPr); 18.9 (CH₃ iPr); ¹¹B NMR (160 MHz, CDCl₃): δ -12.9 (s); IR: 2962, 2908, 2839, 1573, 1465, 1442, 1411, 1311, 1203, 1018, 956, 933, 864; [α]₂₀ = -63 (c = 0.11, CH₂Cl₂). Elemental analysis calcd (%) for C₂₄H₄₃BN₂O₂ (402.43): C 71.63, H 10.77, N 6.96; found: C 71.53, H 10.75, N 6.90. MS (FAB) *m/z* (rel. intensity): [M+H⁺] 403 (100), [M - oxa - Cy + H⁺] 307 (17.63). Rf = 0.3.

(7d)-Li (R¹ = Cy; R² = *t*-Bu). Yield: 34 %; ¹H NMR (500 MHz, (CD₃)₂CO): δ 3.73 (m, 4H, H_{oxa}), 3.58 (m, 2H, H_{oxa}), 1.62-1.48 (m, 6H_{Cy}), 1.36 (bd, 4H, H_{Cy}), 1.12-0.5 (m, 12H, H_{Cy}), 0.78 (s, 18H, CH₃ tBu); ¹³C NMR (125 MHz, (CD₃)₂CO): δ 209.3 (C=N_{oxa}), 75.3 (C_{oxa}), 64.8 (C_{oxa}), 53.5 (broad signal, C_{Cy}), 29.0 (C_{Cy}), 33.1 (C_{quat-tBu}), 20.5 (C_{Cy}), 29.4 (C_{Cy}), 29.2 (CH₃ tBu), 29.0 (C_{Cy}); ¹¹B NMR (160 MHz, (CD₃)₂CO): δ -13.2 (s); IR: 2908, 2839, 1634, 1573, 1473, 1442, 1396, 1365, 1203, 1126, 1103, 1049, 1010, 972, 894, 864, 786. [α]₂₀ = -45° (c = 0.11, CH₂Cl₂). MS (MALDI-TOF, 2,5-dihydrobenzoic acid): *m/z* (%): 436 [M]⁺, 430 [M-Li]⁺, 402 [M-Li]⁺.

9d (R¹ = Cy; R² = *t*-Bu). Yield: 51 %; ¹H NMR (500 MHz, CDCl₃): δ 13.40 (bs, 1H_{NHN}), 4.30 (m, 2H, H_{oxa}), 4.09 (m, 2H, H_{oxa}), 3.82 (m, 2H, H_{oxa}), 1.62-1.33 (m, 8H_{Cy}), 1.19-0.6 (m, 14H, H_{Cy}), 0.91 (s, 18H, CH₃ tBu); ¹³C NMR (125 MHz, CDCl₃): δ C_{Ar-ipso} and C_{C=N} not detected, 70.5 (C_{oxa}), 69.3 (C_{oxa}), 33.0 (C_{quat-tBu}), 31.7 (C_{Cy}), 31.4 (C_{Cy}), 29.1 (C_{Cy}), 27.9 (C_{Cy}), 25.9 (CH₃ tBu); ¹¹B NMR (160 MHz, CDCl₃): δ -13.5 (s); IR: 2954, 2908, 2839, 1581, 1473, 1442, 1404, 1203, 1149, 1018, 964, 856, 709; [α]₂₀ = -35 (c = 0.11, CH₂Cl₂). Elemental analysis calcd (%) for C₂₆H₄₇BN₂O₂ (430.48): C 72.54, H 11.00, N 6.51; found: C 72.40, H 10.80, N 6.36. MS (FAB) *m/z* (rel. intensity): [M+H⁺] 431 (100), [M - oxa - Cy + H⁺] 222 (15.58). Rf = 0.39.

(7e)-Li (R¹ = Et; R² = *t*-Bu). Yield: 44 %; ¹H NMR (500 MHz, d₈-THF): δ 3.74 (bt, 2H, H_{oxa}), 3.66 (bt, 2H, H_{oxa}), 3.50 (m, 2H, H_{oxa}), 0.79 (s, 18H, CH₃ tBu), 0.58 (t, 6H, CH₃ Et),

0.36 (t, 2H, CH_2 Et), 0.23 (bm, 2H, CH_2 Et); ^{13}C NMR (125 MHz, d_8 -THF): δ 171.5 ($\text{C}=\text{N}_{\text{oxa}}$), 76.7 (C_{oxa}), 66.0 (C_{oxa}), 33.9 ($\text{C}_{\text{quat tBu}}$), 26.5 (CH_3 iPr), 17.4 (CH_2 Et), 13.1 (CH_3 Et); ^{11}B NMR (160 MHz, d_8 -THF): δ -16.9 (s); IR: 2947, 2869, 2815, 1581, 1473, 1411, 1365, 1288, 1164, 1041, 1018, 964, 933, 848. $[\alpha]_{20} = -65$ ($c = 0.11$, CH_2Cl_2). MS (MALDI-TOF, matrix name): m/z (%): 328 [$\text{M}+\text{Li}]^+$, 322 [$\text{M}]^+$.

9e ($\text{R}^1 = \text{Et}$; $\text{R}^2 = t\text{-Bu}$). Yield: 65 %; ^1H NMR (500 MHz, CDCl_3): δ 9.39 (bs, 1H, N-H-N), 4.29 (dd, 2H, CH_2 oxa), 4.13 (dd, 2H, CH_2 oxa), 3.82 (dd, 2H, CH_{oxa}), 0.89 (s, 18H, CH_3 tBu), 0.66 (t, 6H, CH_3 Et), 0.38 (bm, 4H, CH_2 Et); ^{13}C NMR (125 MHz, $(\text{CD}_3)_2\text{CO}$): δ 198.3 ($\text{C}=\text{N}_{\text{oxa}}$), 70.7 (CH_{oxa}), 69.5 (CH_2 oxa), 33.1 ($\text{C}_{\text{quat tBu}}$), 25.6 (CH_3 iPr), 14.4 (CH_2 Et), 11.9 (CH_3 Et); ^{11}B NMR (160 MHz, CDCl_3): δ -15.7 (s). IR: 2947, 2869, 2815, 2360, 1589, 1473, 1411, 1365, 1319, 1288, 1211, 1164, 1018, 964, 933, 848. $[\alpha]_{20} = -80$ ($c = 0.11$, CH_2Cl_2). Elemental analysis calcd (%) for $\text{C}_{18}\text{H}_{35}\text{BN}_2\text{O}_2$ (322.29): C 67.08, H 10.95, N 8.69; found: C 67.21, H 10.93, N 8.74. MS (FAB) m/z (rel. intensity): $[\text{M}+\text{H}]^+$ 323 (100), $[\text{M} - \text{oxa} + \text{H}]^+$ 196 (8.43).

(7f)-Li ($\text{R}^1 = 3,5\text{-bis(trifluoromethyl)phenyl}$; $\text{R}^2 = t\text{-Bu}$). Yield: 98 %; ^1H NMR (500 MHz, C_6D_6): δ 8.28 (bs, 4H, $\text{H}_{\text{Ar-}o}$), 7.80 (bs, 2H, $\text{H}_{\text{Ar-}p}$), 3.38-3.26 (m, 6H, H_{oxa}), 0.60 (s, 18H, CH_3 tBu); ^{13}C NMR (125 MHz, C_6D_6): δ $\text{C}_{\text{Ar-}i\text{pso}}$ and $\text{C}=\text{N}_{\text{oxa}}$ not detected, 134.2 ($\text{C}_{\text{Ar-}o}$), 118.7 ($\text{C}_{\text{Ar-}p}$), 75.2 (C_{oxa}), 66.4 (C_{oxa}), 33.2 ($\text{C}_{\text{quat-tBu}}$), 25.4 (CH_3 tBu); ^{11}B NMR (160 MHz, C_6D_6): δ -12.5 (s); ^{19}F NMR (376.5 MHz, C_6D_6): δ -63.2 (s); IR: 2962, 2877, 1635, 1596, 1473, 1657, 1272, 1118, 1049, 972, 894, 810, 678. $[\alpha]_{20} = -36$ ($c = 0.11$, CH_2Cl_2). MS (MALDI-TOF, 2,5-dihydrobenzoic acid): m/z (%): 706 [$\text{M}+3\text{Li}-2\text{H}]^+$, 696 [$\text{M}+\text{Li}]^+$, 402 [$\text{M}]^+$.

9f ($\text{R}^1 = 3,5\text{-bis(trifluoromethyl)phenyl}$; $\text{R}^2 = t\text{-Bu}$). Yield: 89 %; ^1H NMR (500 MHz, CDCl_3): δ 12.62 (bs, 1H, NHN), 7.67 (s, 6H, $\text{H}_{\text{Ar-}p}$), 4.37 (vt, 2H, H_{oxa}), 4.28 (vt, 2H, H_{oxa}), 3.98 (vt, 2H, H_{oxa}), 0.97 (s, 18H, CH_3 tBu); ^{13}C NMR (125 MHz, CDCl_3): δ $\text{C}_{\text{Ar-}i\text{pso}}$ and $\text{C}=\text{N}_{\text{oxa}}$ not detected, 133.4 ($\text{C}_{\text{Ar-}o}$), 119.9 ($\text{C}_{\text{Ar-}p}$), 70.9 (C_{oxa}), 70.6 (C_{oxa}), 33.4 ($\text{C}_{\text{quat-tBu}}$), 25.5 (CH_3 tBu); ^{11}B NMR (160 MHz, CDCl_3): δ -13.1 (s); ^{19}F NMR (376.5 MHz, CDCl_3): δ -63.2 (s); IR: 2962, 2908, 1604, 1481, 1357, 1272, 1118, 964, 894, 840, 709, 678. $[\alpha]_{20} = -42$ ($c = 0.11$, CH_2Cl_2). Elemental analysis calcd (%) for $\text{C}_{30}\text{H}_{31}\text{BF}_{12}\text{N}_2\text{O}_2$ (690.37): C 52.19, H 4.53, N 4.06; found: C 52.33, H 4.61, N 4.11. Rf = 0.31.

9g ($\text{R}^1 = \text{Et}$; $\text{R}^2 = \text{Bn}$). Yield: 78 %; ^1H NMR (500 MHz, CDCl_3): δ 10.31 (bs, 1H, NHN), 7.31 (m, 4H, $\text{C}_{\text{Ar-}m}$), 7.25 (m, 2H, $\text{C}_{\text{Ar-}p}$), 7.17 (m, 4H, $\text{C}_{\text{Ar-}o}$), 4.34 (t, 2H, H_{oxa}), 4.71 ('dq', 2H, H_{oxa}), 4.11 (dd, 2H, H_{oxa}), 2.88 (dd, 2H, PhCH_2H), 2.70 (dd, 2H, PhCH_2H), 0.65 (bt, 6H, CH_3 Et), 0.44 (m, 4H, CH_2 Et); ^{13}C NMR (125 MHz, CDCl_3): δ 198.6 ($\text{C}=\text{N}$), 137.4 ($\text{C}_{\text{Ar-}i}$), 129.1 ($\text{C}_{\text{Ar-}o}$), 128.6 ($\text{C}_{\text{Ar-}m}$), 126.8 ($\text{C}_{\text{Ar-}p}$), 72.8 ($\text{CH}_{2\text{oxa}}$), 62.3 (CH_{oxa}), 42.2 (PhCH_2), 14.5 (b, CH_2 Et), 11.9 (CH_3 Et); ^{11}B NMR (160.5 MHz, CDCl_3): δ -15.6. IR: 3140w, 3032w, 2932s, 2893s, 2854s, 2824m, 1566s, 1488m, 1450m, 1396m, 1350w, 1327w, 1288m, 1242w, 1203m, 1157m, 1026s, 1003s, 964m, 895s, 833m, 748s, 733s, 702vs. $\text{C}_{24}\text{H}_{31}\text{BN}_2\text{O}_2$ (390.33): calculated: C 73.85, H 8.01, N 7.18; found: C 73.74, H 7.85, N 7.03. MS (FAB) m/z (rel. intensity): $[\text{M}+\text{H}]^+$ 391 (100), $[\text{M} - \text{oxa} + \text{H}]^+$ 230 (17.72). Rf = 0.30.

9h (R¹ = 3,5-bis(trifluoromethyl)phenyl; R² = Bn): yield: 44 %; ¹H NMR (500 MHz, CDCl₃): δ 8.82 (bs, 1H, NHN), 7.68 (bs, 2H, C_{Ar-pF}), 7.60 (bs, 4H, C_{Ar-oF}), 7.29 (m, 4 H, C_{Ar-mBn}), 7.14 (m, 4H, C_{Ar-oBn}), 7.24 (m, 2H, C_{Ar-pBn}), 4.20 (m, 2H, CH₂ oxa), 4.44 (m, 4H, CH₂ oxa, OCH oxa), 2.86 (m, 4 H, PhCH₂); ¹³C NMR (125 MHz, CDCl₃): δ 191.8 (b, C=N), 149.7 (b, C_{Ar-i}), 136.2 (C_{Ar-Bn}), 133.3 (b, C_{Ar-o}), 130.0 (q, ²J_{CF} = 32.2 Hz, C_{Ar-CF₃}), 129.0 (C_{Ar-oBn}), 128.7 (C_{Ar-mBn}), 127.2 (C_{Ar-pBn}), 124.0 (q, ¹J_{CF} = 272.5 Hz, CF₃), 119.9 (sept, ³J_{CF} = 3.8 Hz, C_{Ar-p}), 73.6 (CH₂ oxa), 62.3 (CH oxa), 41.2 (PhCH₂); ¹¹B NMR (160.5 MHz, CDCl₃): δ -14.1. IR: 3070vw, 3032vw, 2962w, 2924w, 1597m, 1497w, 1473w, 1450w, 1420w, 1358m, 1273s, 1119vs, 964m, 887m, 841m, 748m, 702s, 679s. MS (FAB) *m/z* (rel. intensity): [M+H⁺] 759 (75), [M - CH₂Ph + H⁺] 667 (5.15), [M - oxa + H⁺] 598 (17.33). C₃₆H₂₇BF₁₂N₂O₂ (758.20): calculated: C 57.01, H 3.59, N 3.69; found: C 57.04, H 3.73, N 3.65. R_f = 0.34.

Synthesis of (7a)₂-Cu. CuSO₄·H₂O (21 mg, 0.132 mmol) in 10 mL of H₂O was combined with a solution of (7a)-Li (105 mg, 0.265 mmol) in 20 mL of CH₂Cl₂ under vigorous stirring at room temperature. After 25 minutes, 5 mL of a saturated aqueous solution of NaHCO₃ was added. After stirring for additional 25 minutes, during which time the organic phase changed from blue to green, the organic phase was extracted, filtered through a plug of Celite and evaporated. The green crystalline solid was then redissolved in a minimum amount of CH₂Cl₂-Et₂O (1 mL) and layered with hexanes. After 2 days, blue-green plates started to grow. They were collected and subjected to single crystal analysis.

Elemental analysis calcd (%) for C₄₈H₆₀B₂CuN₄O₄ (842.19): C 68.46, H 7.18, N 6.65; found: C 68.78, H 7.23, N 6.60. [α]₂₀ = -931 (c = 0.11, CH₂Cl₂). MS (MALDI-TOF, 2,5-dihydrobenzoic acid): *m/z* (%): 842 [M+H]⁺.

Synthesis of (6a)-CuCl₂. CuCl₂ (15.2 mg, 0.113 mmol) and one equivalent of 6a (44.2 mg, 0.113 mmol) were dissolved in dry CH₂Cl₂ (1mL) under vigorous stirring at room temperature. After 2 hours, the solution was transferred in a long narrow tube and layered with hexanes. After 1 day, long thick green needles started to grow. They were collected and subjected to X-Ray crystallographic analysis. [α]₂₀ = -253 (c = 0.11, CH₂Cl₂); MS (FAB): *m/z* (rel. intensity): [(6a)₂-Cu]⁺ 843 (17.84), [M-Cl]⁺ 488 (40.10), [M-2Cl]⁺ 453 (91.89), [6a+H]⁺ 391 (100).

General procedure for the cyclopropanation of styrene using ethyl diazoacetate or *tert*-butyl diazoacetate. Ligand (7)-Li (0.012 mmol) and [Cu(OTf)]₂-0.5(C₆H₆) (2.5mg, 0.005 mmol) were dissolved in 1 mL of 1,2-dichloroethane and the resulting solution was stirred at room temperature for 30 minutes before 125 μ L (1.0 mmol) of styrene were then added. After further 30 minutes, a solution of the diazoester (1.2 mmol) in anhydrous 1,2-dichloroethane (1 mL) was added over the course of ~6h via a syringe pump. After the addition was complete, the reaction was stirred for an additional 12h. The reaction mixture was then concentrated in vacuo to afford the crude product. Flash chromatography using hexanes-ethylacetate (9:1 when ethyl diazoacetate was used (R_f of *cis/trans* mixture = 0.45); 14:1 when *tert*-butyldiazoacetate was used (R_f = 0.40) afforded a *cis:trans* mixture of the cyclopropane carboxylates. The *cis/trans* ratio as well as the enantiomeric excesses were determined by GC analysis (the cyclopropanes derived from

tert-butyl diazoacetate were converted to the ethyl esters by a standard transesterification protocol prior to analysis^[6].

General procedure for the cyclopropanation of styrene using 2,6-di-*tert*-butyl-4-methylphenyldiazoacetate. Ligand (**7f**)-Li (8.4 mg, 0.012 mmol) and [Cu(OTf)]₂-0.5(C₆H₆) (2.5 mg, 0.005 mmol) were dissolved in 1 mL of 1,2-dichloroethane and the resulting solution was stirred at room temperature for 30 minutes before 125 μ L (1.0 mmol) of styrene were then added. After further 30 minutes, 0.4 equiv. of 2,6-di-*tert*-butyl-4-methylphenyldiazoacetate was added to the reaction mixture. The remaining 0.8 equiv. was added in batches of 0.4 equivalents at 10 hours intervals. After the addition was complete, the reaction was stirred for an additional 18h at room temperature. The reaction mixture was then concentrated in vacuum to afford the crude product. Flash chromatography using hexanes-CHCl₃ (60:40) afforded a *cis:trans* mixture of the cyclopropane carboxylates. The relative *cis/trans* ratio was established by ¹H NMR spectroscopy, before the products were reduced into the corresponding alcohols^[7] in order to determine the enantiomeric purity. Spectroscopic analyses of the cyclopropanation products are in good agreement with published data.^[8,9]

HPLC analyses of the cyclopropanation products.

Cyclopropane	ee assay	conditions	t_R maj	t_R min
	HPLC Chiralcel OD-H	<i>i</i> -PrOH-Hept (90:10) 0.5mL/min ; 20°C	19.61	14.57
	HPLC Chiralcel OD-H	<i>i</i> -PrOH-Hept (90:10) 0.5mL/min ; 20°C	12.57	11.49
	HPLC Chiralcel OD-H	<i>i</i> -PrOH-Hept (90:10) 0.5mL/min ; 20°C	19.05	16.92
	HPLC Chiralcel OD-H	<i>i</i> -PrOH-Hept (90:10) 0.5mL/min ; 20°C	17.52	14.78
	HPLC Chiralcel OD-H	<i>i</i> -PrOH-Hept (99.95:0.05) 1.0mL/min ; 20°C	15.55	19.05
	HPLC Chiralcel OD-H	<i>i</i> -PrOH-Hept (90:10) 0.5mL/min ; 20°C	12.20	10.73

General procedure for the asymmetric desymmetrization of *meso*-1,2-diols. Ligand **9g** (3.8 mg, 0.0052 mmol) and CuCl₂ (2.5 mg, 0.005 mmol) were dissolved in 2.5 mL of dichloromethane and the resultant solution was stirred at room temperature for 2-3 hours before the appropriate *meso*-1,2-diol (0.5 mmol) was added at room temperature. After cooling the reaction mixture to 0°C, 86µl of *N*-diisopropylethylamine (0.5 mmol) and 60µL of Benzoylchloride (0.51 mmol) were successively added. The reaction was slowly warmed up to room temperature and stirred for further 12 hours. The reaction mixture was then concentrated in vacuum to afford the crude product. Flash chromatography using hexanes-EtOAc (3:1) afforded the desired pure monobenzoylated alcohols. The enantiomeric excess was assessed by HPLC and the absolute configuration assigned based on the retention times by comparison with the literature.^[10,11]

Spectroscopic analysis of monobenzoylated products were in good agreement with the published data.^[10,11]

Table 3, entries 1-3: (1*R*,2*S*)-2-hydroxycyclopentyl benzoate: Chiralcel OJ, Heptane:*i*-PrOH = 95:05, 40°C, 0.5 ml/min, retention time: 16.2 (minor), 18.9 (major).

Table 3, entries 3-6: (1*R*,2*S*)-2-hydroxycyclohexyl benzoate: HPLC Chiralcel OJ, Heptane:*i*-PrOH = 95:05, 40°C, 1.0 ml/min, retention time: 18.1 (minor), 21.6 (major).

Table 3, entries 6-9: (2*R*,3*S*)-3-hydroxybutan-2-yl benzoate: Chiralcel AD-H, Heptane:*i*-PrOH = 95:05, 40°C, 0.7 ml/min, retention time: 14.7 (minor), 17.2 (major).

References

- [1] R. Köster, P. Binger, *Inorg. Synth.* **1974**, *15*, 149-153.
- [2] R. Köster, M. A. Grassberger, *Liebigs, Ann. Chem.* **1968**, *719*, 169-186.
- [3] a) D. J. Parks, W. E. Piers, G. P. A. Yap, *Organometallics* **1998**, *17*, 5492-5503.
b) J. C. Thomas, J. C. Peters, *Inorg. Chem.* **2003**, *42*, 5055-5073.
- [4] a) W. R. Leonard, J. L. Romine, A. I. Meyers, *J. Org. Chem.* **1991**, *56*, 1961-1963; K. Kamata, I. Agata, A. I. Meyers, *J. Org. Chem.* **1998**, *63*, 3113-3116.
- [5] 2,2-diphenylmalonyl dichloride was prepared according to: H. Staudinger, O Göhring, M. Schöller, *Chem. Ber.* **1914**, *47*, 40-48.
- [6] H. Fritschi, U. Leutenegger, A. Pfaltz, *Helv. Chim. Acta* **1988**, *71*, 1553-1565.
- [7] A. V. Malkov, D. Pernazza, M. Bell, M. Bella, A. Massa, F. Teply, P. Meghani, P. Kocovsky, *J. Org. Chem.* **2003**, *68*, 4727-4742.
- [8] M. M.-C. Lo, G. C. Fu, *J. Am. Chem. Soc.* **1998**, *120*, 10270-10271.
- [9] M. P. A. Lyle, P. D. Wilson, *Org. Lett.* **2004**, *6*, 855-857.
- [10] S. Mizuta, M. Sadamori, T. Fujimoto, I. Yamamoto, *Angew. Chem. Int. Ed.* **2003**, *42*, 3383-3385
- [11] F. Iwasaki, T. Maki, W. Nakashima, Y. Matsumura, *J. Org. Chem.* **2000**, *65*, 996-1002.