

Angewandte Chemie

Eine Zeitschrift der Gesellschaft Deutscher Chemiker

Supporting Information

© Wiley-VCH 2005

69451 Weinheim, Germany

A 'Through-Shell' Binding Isotope Effect

Yong Liu and Ralf Warmuth*

Yong Liu, Dr. Ralf Warmuth
Department of Chemistry and Chemical Biology
Rutgers, The State University of New Jersey
610 Taylor Road
Piscataway, NJ 08854 – USA
Fax (+1) 732 445 5312
E-mail: warmuth@rutchem.rutgers.edu

Yong Liu
Merck Research Laboratories
Department of Analytical Research
Building RY818-C220
P. O. Box 2000
Rahway, NJ 07065

Experimental Section

¹H-NMR spectra were recorded on a 400 MHz Varian FT NMR spectrometer. Spectra taken in CDCl₃, were referenced to residual CHCl₃, at δ 7.26. FAB mass spectra (3-nitrobenzyl alcohol (NOBA) matrix) and ESI mass spectra (in CH₃CN) were determined at the University of Kansas Mass Spectrometry Laboratory. Gravity chromatography was performed on E. Merck silica gel (70-230 mesh). Semi-preparative HPLC column involved a Silica column (Phenomenax, 21.2*100 mm, 5 μ m). Thin-layer chromatography involved polyethylene-backed plates (silica gel 60, F₂₅₄, 0.25 mm).

Hemicarceplexes **1**○**8**,^[1] **1**○**23**,^[3] **1**○**24**,^[3] **1**○**26**,^[3] **1**○**33**,^[3] **1**○**34**,^[3] **1**○**35**,^[3] **3**○**4**,^[2] **3**○**37**^[2] and **3**○**38**^[2] have been prepared earlier in this laboratory.

General procedure for the synthesis of hemicarceplexes **1**○guest (*procedure A*)

One mol equivalent of **1**○NMP^[3] and 100-200 mol equivalents of the guest were sealed under argon in a glass ampoule and were heated for four days at 217 °C. After the reaction mixture had cooled to room temperature, the ampoule was opened. The reaction mixture was poured into the tenfold volume of methanol. If the free guest was solid, the content of the ampoule was dissolved in the minimum volume of CHCl₃, which was poured into the 10-fold volume of methanol. The precipitated crude hemicarceplex was collected on a glass sinter (pore size 10-15 μ), washed with methanol and dried at high vacuum. Purification by HPLC using a Silica column (Phenomenax, 21.2*100 mm, 5 μ m) with CH₂Cl₂ : Ether (100:1, v/v) as the mobile phase gave the pure hemicarceplex **1**○guest.

General procedure for the synthesis of hemicarceplexes **1**○guest (*procedure B*)

One mol equivalent of **1**○NMP and 100 mol equivalents of diphenylether were sealed under argon in a glass ampoule and were heated for two days at 250 °C. After the reaction mixture had cooled to room temperature, the ampoule was opened. The reaction mixture was poured into the tenfold volume of methanol. The precipitated crude empty hemicarcerand was collected on a glass sinter (pore size 10-15 μ), washed with methanol and dried at high vacuum. Crude ¹H-NMR was acquired to confirm the formation of hemicarcerand **1**. The product was directly used for the synthesis without purification. One mol equivalent of hemicarcerand **1** and 100-200 mol equivalents of the guest were sealed under argon in a glass ampoule and were heated for five days at 140 °C. After the reaction mixture had cooled to room temperature, the ampoule was opened. The reaction mixture was poured into the tenfold volume of methanol. The precipitated crude hemicarceplex was collected on a glass sinter (pore size 10-15 μ), washed with methanol and dried at high vacuum. Purification by HPLC using a Silica column (Phenomenax, 21.2*100 mm, 5 μ m) with CH₂Cl₂: Ether (100:1, v/v) as the mobile phase gave the pure hemicarceplex **1**○guest.

Benzene hemicarceplex (1**○**4**).^[5]** Application of *procedure B* (2 days; 130 °C) gave **1**○**4** (95 % yield) as a white powder. ¹H-NMR (400 MHz; CDCl₃; 25°C): 7.15-7.26 (m, 40H, C₆H₅), 6.96 (s, 8H, ArH on bowl), 5.70 (d, J = 7.25 Hz, 8H OCH₂O outer), 4.85 (t, J = 8.09 Hz, 8H, CH methine), 4.70 (s, 6H, guest-H), 4.05 (d, J = 7.23 Hz, 8H, OCH₂O inner), 3.83 (sb, 16H, OCH₂CH₂), 2.51-2.73 (m, 32H, CH₂CH₂Ph), 1.98 (sb, 16H, OCH₂CH₂). ¹H NMR data obtained were in agreement with that previously reported in [5].

p-Difluorobenzene hemicarceplex (1 \odot 17). Application of *procedure B* (5 days; 140 °C; semi-preparative HPLC, Phenomenax, Si, 21.2*100 mm, 5 μ m) gave 1 \odot 17 (40 % yield) as a white powder. 1 H-NMR (400 MHz; CDCl₃; 25°C): 7.15-7.25 (m, 40H, C₆H₅), 6.90 (s, 8H, ArH on bowl), 5.70 (d, J = 7.11 Hz, 8H OCH₂O outer), 5.40 (d, J = 5.65 Hz, 4H, guest-H), 4.83 (t, J = 7.77 Hz, 8H, CH methine), 4.03 (d, J = 7.06 Hz, 8H, OCH₂O inner), 3.86 (sb, 16H, OCH₂CH₂), 2.48-2.71 (m, 32H, CH₂CH₂Ph), 1.92 (sb, 16H, OCH₂CH₂). FAB-MS: *m/z* [M + H]⁺, 2366 (100); [M - 17 + H]⁺, 2250.7 (75).

1,4-Dichlorobenzene hemicarceplex (1 \odot 18):^[4] Application of *procedure A* (4 days; 217 °C; semi-preparative HPLC, Phenomenax, Si, 21.2*100 mm, 5 μ m) gave 1 \odot 18 (90 % yield) as a white powder. 1 H-NMR (400 MHz; CDCl₃; 25°C): 7.15-7.25 (m, 40H, C₆H₅), 6.85 (s, 8H, ArH), 6.21 (s, 4H, guest-H), 5.68 (d, J = 6.81 Hz, 8H, OCH₂O outer), 4.85 (t, 8H, J = 7.86 Hz, CH methine), 4.07 (d, J = 6.79 Hz, 8H, OCH₂O inner), 3.90 (sb, 16H, OCH₂CH₂), 2.47-2.72 (m, 32H, CH₂CH₂Ph), 1.88 (sb, 16H, OCH₂CH₂). 1 H NMR data agreed with those reported in [4].

1-Bromo-4-chlorobenzene hemicarceplex (1 \odot 15):^[4] Application of *procedure A* (4 days; 217 °C; semi-preparative HPLC, Phenomenax, Si, 21.2*100mm, 5 μ m) gave 1 \odot 15 (94 % yield) as a white powder. 1 H-NMR (400 MHz; CDCl₃; 25°C): 7.16-7.26 (m, 40H, C₆H₅), 6.85 (s, 4H, ArH on bowl), 6.82 (s, 4H, ArH), 6.46 (d, J = 8.41 Hz, 2H, guest-H), 6.16 (d, J = 8.41 Hz, 2H, guest-H), 5.68 (m, 8H OCH₂O outer), 4.86 (m, 8H, CH methine), 4.12 (d, J = 6.77 Hz, 4H, OCH₂O inner), 4.07 (d, J = 6.84 Hz, 4H, OCH₂O inner), 3.92 (sb, 16H, OCH₂CH₂), 2.51-2.73 (m, 32H, CH₂CH₂Ph), 1.87 (sb, 16H, OCH₂CH₂). 1 H-NMR data agreed with those reported in [4].

1,4-Dibromobenzene hemicarceplex (1 \odot 19):^[5] Application of *procedure A* (4 days; 217 °C; semi-preparative HPLC, Phenomenax, Si, 21.2*100 mm, 5 μ m) gave 1 \odot 19 (85 % yield) as a white powder. 1 H-NMR (400 MHz; CDCl₃; 25°C): 7.15-7.25 (m, 40H, C₆H₅), 6.82 (s, 8H, ArH on bowl), 6.43 (s, 4H, guest-H), 5.68 (d, J = 6.7 Hz, 8H, OCH₂O outer), 4.86 (t, 8H, J = 7.9 Hz, CH methine), 4.12 (d, J = 6.7 Hz, 8H, OCH₂O inner), 3.94 (sb, 16H, OCH₂CH₂), 2.47-2.72 (m, 32H, CH₂CH₂Ph), 1.87 (sb, 16H, OCH₂CH₂). 1 H NMR data agreed with those reported in [5].

1,4-Diiodobenzene hemicarceplex (1 \odot 20):^[5] Application of *procedure B* (4 days; 160 °C) gave 1 \odot 20 (85 % yield) as a white powder. 1 H-NMR (400 MHz; CDCl₃; 25°C): 7.16-7.26 (m, 40H, C₆H₅), 6.77 (s, 8H, ArH on bowl), 6.73 (s, 4H, guest-H), 5.70 (d, J = 6.7 Hz, 8H, OCH₂O outer), 4.89 (t, J = 7.8 Hz, 8H, CH methine), 4.26 (d, J = 6.7 Hz, 8H, OCH₂O inner), 3.94 (sb, 16H, OCH₂CH₂), 2.47-2.73 (m, 32H, CH₂CH₂Ph), 1.79 (sb, 16H, OCH₂CH₂). 1 H NMR data agreed with those reported in [5].

p-Xylene hemicarceplex (1 \odot 16):^[4] Application of *procedure A* (4 days; 217 °C; semi-preparative HPLC, Phenomenax, Si, 21.2*100 mm, 5 μ m) gave 1 \odot 16 (90 % yield) as a white powder. 1 H-NMR (400 MHz; CDCl₃; 25°C): 7.16-7.25 (m, 40H, C₆H₅), 6.87 (s, 8H, ArH on bowl), 5.89 (s, 4H, guest-H), 5.67 (d, J = 7.07 Hz, 8H, OCH₂O outer), 4.86 (t, J = 7.97 Hz, 8H, CH methine), 4.13 (d, J = 7.06 Hz, 8H, OCH₂O inner), 3.86 (sb, 16H, OCH₂CH₂), 2.48-2.72 (m, 32H, CH₂CH₂Ph), 1.88 (sb, 16H, OCH₂CH₂), -2.09 (s, 6H, CH₃). 1 H NMR data agreed with those reported in [4].

Fluorobenzene hemicarceplex (1 \odot 5):^[4] Application of *procedure B* (5 days; 140 °C; semi-

preparative HPLC, Phenomenax, Si, 21.2*100 mm, 5 μ m) gave **1O5** (30 % yield) as a white powder. 1 H-NMR (400 MHz; CDCl₃; 25°C): 7.15-7.25 (m, 40H, C₆H₅), 6.93 (s, 8H, ArH on bowl), 5.69 (d, J = 7.07 Hz, 8H, OCH₂O outer), 5.24 (m, 2H, guest-H), 5.18 (m, 2H, guest-H), 4.84 (t, J = 7.96 Hz, 8H, CH methine), 4.05 (d, J = 7.17 Hz, 8H, OCH₂O inner), 3.84 (sb, 16H, OCH₂CH₂), 3.45 (t, J = 7.37 Hz, 1H, guest-H), 2.49-2.71 (m, 32H, CH₂CH₂Ph), 1.99 (sb, 16H, OCH₂CH₂). 1 H NMR data agreed with those reported in [4].

Chlorobenzene hemicarceplex (1O6):^[4] Application of *procedure B* (3 days; 132 °C) gave **1O6** (90 % yield) as a white powder. 1 H-NMR (400 MHz; CDCl₃; 25°C): 7.16-7.26 (m, 40H, C₆H₅), 6.92 (s, 8H, ArH on bowl), 6.03 (d, J = 8 Hz, 2H, guest-H_o), 5.65-5.7 (m, 10H, OCH₂O outer, guest-H_m), 4.85 (t, J = 7.8 Hz 8H, CH methine), 4.13 (d, J = 6.8 Hz, 8H, OCH₂O inner), 3.88 (sb, 16H, OCH₂CH₂), 3.37 (t, J = 7.3 Hz, 1H, guest-H_p), 2.51-2.73 (m, 32H, CH₂CH₂Ph), 1.92 (sb, 16H, OCH₂CH₂). 1 H NMR data agreed with those reported in [4].

Bromobenzene hemicarceplex (1O7):^[4] Application of *procedure A* (4 days; 217 °C; preparative HPLC, Phenomenax, Si, 21.2*100mm, 5 μ m) gave **1O7** (94 % yield) as a white powder. 1 H-NMR (400 MHz; CDCl₃; 25°C): 7.16-7.26 (m, 40H, C₆H₅), 6.90 (s, 8H, ArH on bowl), 6.31 (d, J = 7.66 Hz, 2H, guest-H), 5.67 (d, J = 7.02 Hz, 8H OCH₂O outer), 5.63 (t, J = 7.60 Hz, 2H, guest-H), 4.85 (t, J = 7.81 Hz 8H, CH methine), 4.16 (d, J = 6.84 Hz, 8H, OCH₂O inner), 3.89 (sb, 16H, OCH₂CH₂), 3.37 (t, J = 7.33 Hz, 1H, guest-H), 2.51-2.73 (m, 32H, CH₂CH₂Ph), 1.91 (sb, 16H, OCH₂CH₂). 1 H NMR data agreed with those reported in [4].

Benzylchloride hemicarceplex (1O10): Application of *procedure B* (26 h; 130 °C) gave **1O10** (95 % yield) as a white powder. 1 H-NMR (400 MHz; CDCl₃; 25°C): 7.16-7.26 (m, 40H, C₆H₅), 6.93 (s, 8H, ArH on bowl), 6.21 (d, J = 7.2 Hz, 2H, guest-H_o), 5.67 (d, J = 7.2 Hz, 8H, OCH₂O outer), 5.15 (t, J = 7.4 Hz, 2H, guest-H_m), 4.87 (t, J = 7.8 Hz 8H, CH methine), 4.21 (d, J = 7.2 Hz, 8H, OCH₂O inner), 3.94 (sb, 16H, OCH₂CH₂), 3.20 (t, J = 7.4 Hz, 1H, guest-H_p), 2.51-2.73 (m, 32H, CH₂CH₂Ph), 1.91 (sb, 16H, OCH₂CH₂). FAB-MS: *m/z* [M+H]⁺ 2380.0 (65); [M - **10** + H]⁺ 2250.5 (100).

4-Fluorotoluene hemicarceplex (1O11):^[5] Application of *procedure B* (5 days; 140 °C; semi-preparative HPLC, Phenomenax, Si, 21.2*100 mm, 5 μ m) gave **1O11** (25 % yield) as a white powder. 1 H-NMR (400 MHz; CDCl₃; 25°C): 7.14-7.25 (m, 40H, C₆H₅), 6.89 (s, 8H, ArH on bowl), 5.79 (d, J = 7.25 Hz, 2H, guest-H), 5.68 (d, J = 7.05 Hz, 8H OCH₂O outer), 5.61 (d, J = 8.14 Hz, 2H, guest-H), 4.84 (t, J = 7.97 Hz, 8H, CH methine), 4.09 (d, J = 6.97 Hz, 8H, OCH₂O inner), 3.86 (sb, 16H, OCH₂CH₂), 2.47-2.71 (m, 32H, CH₂CH₂Ph), 1.89 (sb, 16H, OCH₂CH₂), -1.98 (s, 3H, guest-H). 1 H NMR data agreed with those reported in [5].

4-Chlorotoluene hemicarceplex (1O12):^[4] Application of *procedure A* (4 days; 217 °C; semi-preparative HPLC, Phenomenax, Si, 21.2*100 mm, 5 μ m) gave **1O12** (90 % yield) as a white powder. 1 H-NMR (400 MHz; CDCl₃; 25°C): 7.15-7.25 (m, 40H, C₆H₅), 6.87 (s, 4H, ArH on bowl), 6.85 (s, 4H, ArH on bowl), 6.12 (d, J = 7.86 Hz, 2H, guest-H), 5.98 (d, J = 7.77 Hz, 2H, guest-H), 5.69 (d, J = 7.37 Hz, 4H, OCH₂O outer), 5.67 (d, J = 6.95 Hz, 4H, OCH₂O outer), 4.86 (m, 8H, CH methine), 4.10 (m, 8H, OCH₂O inner), 3.89 (sb, 16H, OCH₂CH₂), 2.47-2.72 (m, 32H, CH₂CH₂Ph), 1.88 (sb, 16H, OCH₂CH₂), -2.10 (s, 3H, CH₃). 1 H NMR data agreed with those reported in [4].

p-Bromotoluene hemicarceplex (1 \odot 13):^[4] Application of *procedure A* (4 days; 217 °C; semi-preparative HPLC, Phenomenax, Si, 21.2*100 mm, 5 μ m) gave 1 \odot 13 (95 % yield) as a white powder. 1 H-NMR (400 MHz; CDCl₃; 25°C): 7.16-7.26 (m, 40H, C₆H₅), 6.88 (s, 4H, ArH on bowl), 6.82 (s, 4H, ArH on bowl), 6.37 (d, J = 8.09 Hz, 2H, guest-H), 5.94 (d, J = 7.77 Hz, 2H, guest-H), 5.68 (m, 8H OCH₂O outer), 4.87 (m, 8H, CH methine), 4.18 (d, J = 6.93 Hz, 4H, OCH₂O inner), 4.10 (d, J = 6.93 Hz, 4H, OCH₂O inner), 3.90 (sb, 16H, OCH₂CH₂), 2.50-2.73 (m, 32H, CH₂CH₂Ph), 1.87 (sb, 16H, OCH₂CH₂), -2.14 (s, 3H, CH₃). 1 H NMR data agreed with those reported in [4].

p-Iodotoluene hemicarceplex (1 \odot 14): Application of *procedure A* (4 days; 217 °C; semi-preparative HPLC, Phenomenax, Si, 21.2*100 mm, 5 μ m) gave 1 \odot 14 (100 % yield) as a white powder. 1 H-NMR (400 MHz; CDCl₃; 25°C): 7.16-7.26 (m, 40H, C₆H₅), 6.88 (s, 8H, ArH on bowl), 5.83 (d, J = 7.83 Hz, 2H, guest-H), 6.73 (d, J = 7.96 Hz, 2H, guest-H), 5.67 (d, J = 6.48 Hz, 8H OCH₂O outer), 4.87 (t, J = 8.00 Hz, 8H, CH methine), 4.10 (d, J = 7.02 Hz, 8H, OCH₂O inner), 3.92 (sb, 16H, OCH₂CH₂), 2.48-2.73 (m, 32H, CH₂CH₂Ph), 1.85 (sb, 16H, OCH₂CH₂) - 2.20 (s, 3H, guest-CH₃). FAB-MS: *m/z* [M+H]⁺ 2472.5 (100); [M - 14 + H]⁺ 2250.6 (65).

p-Chlorobenzonitrile hemicarceplex (1 \odot 21): Application of *procedure A* (4 days; 217 °C; semi-preparative HPLC, Phenomenax, Si, 21.2*100 mm, 5 μ m) gave 1 \odot 21 (80 % yield) as a white powder. 1 H-NMR (400 MHz; CDCl₃; 25°C): 7.16-7.26 (m, 40H, C₆H₅), 6.85 (s, 8H, ArH on bowl), 6.62 (d, J = 8.38 Hz, 2H, guest-H), 6.41 (d, J = 8.04 Hz, 2H, guest-H), 5.70 (d, J = 6.63 Hz, 8H, OCH₂O outer), 4.86 (t, J = 7.95 Hz, 8H, CH methine), 4.03 (d, J = 6.82 Hz, 8H, OCH₂O inner), 3.92 (sb, 16H, OCH₂CH₂), 2.48-2.75 (m, 32H, CH₂CH₂Ph), 1.87 (sb, 16H, OCH₂CH₂). FAB-MS: *m/z* [M+H]⁺ 2388.5 (95); [M - 21 + H]⁺, 2250.8 (84).

Methyl benzoate hemicarceplex (1 \odot 29): Application of *procedure B* (3 days at 210 °C) gave 1 \odot 29 (95 % yield) as a white powder. 1 H-NMR (400 MHz; CDCl₃; 25°C): 7.16-7.27 (m, 42H, 40 C₆H₅ and 2 guest-H), 6.99 (s, 4H, ArH on bowl), 6.84 (s, 4H, ArH on bowl), 5.74 (d, 4H, J=6.8 Hz, OC H₂O outer), 5.60 (d, 4H, J=6.8 Hz, OC H₂O outer), 5.12-5.20 (m, 2H, guest-H), 4.91 (t, 4H, J=7.7 Hz, CH methine), 4.86 (t, 4H, J=7.7 Hz, CH methine), 4.38 (d, 1H, J=7.6 Hz, guest-H), 4.67 (s, 1H, CHOCH₃ guest), 4.32 (d, 4H, J=6.8 Hz, OCH₂O inner), 4.16 (d, 4H, J=6.8 Hz, OCH₂O inner), 3.96 (t, 8H, J=5.6 Hz, OCH₂CH₂), 3.87 (t, 8H, J=4.8 Hz, OCH₂CH₂), 3.79 (t, 1H, J=7.4 Hz, guest-H), 2.47-2.75 (m, 32H, CH₂CH₂Ph), 1.74-1.95 (m, 16H, OCH₂CH₂). FAB-MS (NBA-matrix): *m/z* 2415.6 ([M + H]⁺, 100 %); 2250.8 ([M + H - 29]⁺, 93%) Anal. Calcd for C₁₅₂H₁₄₄O₂₆: C, 76.49; H, 6.09. Found: C, 76.43; H, 6.16.

Phenylisocyanate hemicarceplex (1 \odot 36): Application of *procedure B* (3 days; 168 °C) gave 1 \odot 36 (92 % yield) as a white powder. 1 H-NMR (400 MHz; CDCl₃; 25°C): 7.16-7.26 (m, 40H, C₆H₅), 6.92 (s, 8H, ArH on bowl), 5.97 (d, J = 7.6 Hz, 2H, guest-H_o), 5.70 (d, J = 6.8 Hz, 8H, OCH₂O outer), 5.63 (t, J = 7.8 Hz, 2H, guest-H), 4.89 (t, J = 7.9 Hz 8H, CH methine), 4.21 (d, J = 6.8 Hz, 8H, OCH₂O inner), 3.90 (sb, 16H, OCH₂CH₂), 3.03 (t, J = 7.4 Hz, 1H, guest-H_p), 2.51-2.73 (m, 32H, CH₂CH₂Ph), 1.93 (sb, 16H, OCH₂CH₂). FAB-MS: *m/z* [M + H]⁺, 2370.2 (35); [M - 36 + H]⁺, 2250.6 (100). Anal. Calcd for C₁₅₁H₁₅₁NO₂₅: C, 76.21; H, 6.40; N, 0.59. Found: C, 76.47; H, 6.08; N, 0.59.

Methoxyphthalide hemicarceplex (1 \odot 27): Synthesis will be reported elsewhere.

$^1\text{H-NMR}$ (400 MHz; CDCl_3 ; 25°C): 7.16-7.27 (m, 40H, C_6H_5), 6.97 (s, 4H, ArH on bowl), 6.81 (s, 4H, ArH on bowl), 6.58 (d, 1H, $J=7.2$ Hz, guest-H), 5.82 (d, 4H, $J=7.2$ Hz, OC H_2O outer), 5.61 (d, 1H, $J=7.6$ Hz, guest-H), 5.45 (d, 4H, $J=7.6$ Hz, OC H_2O outer), 5.26 (t, 1H, $J=7.4$ Hz, guest-H), 4.89 (t, 4H, $J=7.8$ Hz, CH methine), 4.85 (t, 4H, $J=7.8$ Hz, CH methine), 4.38 (d, 1H, $J=7.6$ Hz, guest-H), 4.67 (s, 1H, CHOCH_3 guest), 4.53 (d, 4H, $J=7.2$ Hz, OCH_2O inner), 3.85-4.12 (m, 20H, OC H_2C H_2 , OCH_2O inner), 3.79 (t, 1H, $J=7.4$ Hz, guest-H), 2.47-2.75 (m, 32H, C H_2C H_2Ph), 1.74-1.90 (m, 16H, O CH_2C H_2) -0.68 (s, 3H, CH_3 guest). IR (CHCl_3) 1779.5 cm^{-1} . FAB-MS (NBA-matrix): m/z 2415.6 ($[\text{M} + \text{H}]^+$, 100 %); 2250.8 ($[\text{M} + \text{H} - 27]^+$, 93%) Anal. Calcd for $\text{C}_{153}\text{H}_{144}\text{O}_{27}$: C, 76.10; H, 6.01. Found: C, 76.49; H, 5.98.

Coumarin hemicarceplex (1 \odot 31): Application of *procedure B* (2 days; 145 °C) gave **1 \odot 31** (25 % yield) as a white powder. $^1\text{H-NMR}$ (400 MHz; CDCl_3 ; 25°C): 7.26 (d, $J = 9.2$ Hz, 1H, guest-H_{vinyl}), 7.16-7.26 (m, 40H, C_6H_5), 6.97 (s, 8H, ArH on bowl), 6.59 (d, $J = 5.9$ Hz, 1H, guest-H_{aryl}), 6.58 (d, $J = 5.9$ Hz, 1H, guest-H_{aryl}), 5.60 (d, $J = 7.0$ Hz, 8H, OCH_2O outer), 4.85 (t, $J = 7.8$ Hz 8H, CH methine), 4.22 (sb, 8H, OCH_2O inner), 3.94 (sb, 16H, OCH_2CH_2), 3.22 (t, $J = 7.9$ Hz, 1H, guest-H_{aryl}), 2.88 (t, $J = 7.6$ Hz, 1H, guest-H_{aryl}), 2.51-2.73 (m, 32H, $\text{CH}_2\text{CH}_2\text{Ph}$), 2.34 (d, $J = 9.2$ Hz, 1H, guest-H_{vinyl}), 1.86 (sb, 16H, OCH_2CH_2). FAB-MS: m/z $[\text{M} + \text{H}]^+$, 2397 (100); $[\text{M} - 31 + \text{H}]^+$, 2251 (80). Anal. Calcd for $\text{C}_{153}\text{H}_{152}\text{O}_{26}$: C, 76.67; H, 5.97. Found: C, 76.94; H, 6.64.

Benzonitrile hemicarceplex (1 \odot 9). Application of *procedure A* (4 days; 217 °C; semi-preparative HPLC, Phenomenax, Si, 21.2*100mm, 5 μm) gave **1 \odot 9** (57 % yield) as a white powder. $^1\text{H-NMR}$ (400 MHz; CDCl_3 ; 25°C): 7.16-7.28 (m, 40H, C_6H_5), 6.91 (s, 8H, ArH on bowl), 6.48 (d, $J = 7.50$ Hz, 2H, guest-H), 5.81 (t, $J = 7.66$ Hz, 2H, guest-H), 5.69 (d, $J = 6.86$ Hz, 8H OCH_2O outer), 4.85 (t, $J = 7.89$ Hz, 8H, CH methine), 4.08 (d, $J = 6.87$ Hz, 8H, OCH_2O inner), 3.90 (sb, 16H, OCH_2CH_2), 3.59 (t, $J = 7.53$ Hz, 1H, guest-H), 2.49-2.73 (m, 32H, $\text{CH}_2\text{CH}_2\text{Ph}$), 1.90 (sb, 16H, OCH_2CH_2). FAB-MS: m/z $[\text{M} + \text{H}]^+$ 2354.7 (100); $[\text{M} - 9 + \text{H}]^+$ 2249.7 (43).

Nitrobenzene hemicarceplex (1 \odot 28):^[5] Application of *procedure B* (19 h; 180 °C) gave **1 \odot 28** (90 % yield) as a white powder. $^1\text{H-NMR}$ (400 MHz; CDCl_3 ; 25°C): 7.16-7.26 (m, 40H, C_6H_5), 7.04 (d, $J = 7.6$ Hz, 2H, guest-H_o), 6.96 (s, 8H, ArH), 5.65 (d, $J = 7.0$ Hz, 8H, OCH_2O outer), 5.58 (t, $J = 7.9$ Hz, 2H, guest-H_m), 4.84 (t, $J = 7.8$ Hz 8H, CH methine), 4.06 (d, $J = 7.0$ Hz, 8H, OCH_2O inner), 3.92 (sb, 16H, OCH_2CH_2), 3.59 (t, $J = 7.6$ Hz, 1H, guest-H_p), 2.51-2.73 (m, 32H, $\text{CH}_2\text{CH}_2\text{Ph}$), 1.89 (sb, 16H, OCH_2CH_2). ^1H NMR data agreed with those reported in [5].

Benzoyl chloride hemicarceplex (1 \odot 30): Application of *procedure B* (28 h at 90 °C) gave **1 \odot 30** (80 % yield) as a white powder. $^1\text{H-NMR}$ (400 MHz; CDCl_3 ; 25°C): 7.16-7.27 (m, 40H, C_6H_5), 6.97 (s, 4H, ArH on bowl), 6.96 (d, 2H, $J=7.6$ Hz, guest-H), 6.87 (s, 4H, ArH on bowl), 5.60-5.78 (m, 8H, OC H_2O outer), 5.28-5.32 (m, 2H, guest-H), 4.85 (t, 8H, $J=7.9$ Hz, CH methine), 4.08 (sb, 4H, OCH_2O inner), 3.85-4.10 (m, 20H, OCH_2CH_2 , OCH_2O inner), 3.61 (t, 1H, $J=7.4$ Hz, guest-H), 2.47-2.75 (m, 32H, $\text{CH}_2\text{CH}_2\text{Ph}$), 1.87 (sb, 16H, OCH_2CH_2). FAB-MS (NBA-matrix): m/z 2391 ($[\text{M} + \text{H}]^+$, 100 %); 2251 ($[\text{M} + \text{H} - 30]^+$, 60 %) Anal. Calcd for $\text{C}_{151}\text{H}_{139}\text{O}_{25}\text{Cl}$: C, 75.78; H, 6.02. Found: C, 76.18; H, 5.68.

p-Tolunitrile hemicarceplex (1 \odot 22). Application of *procedure A* (4 days; 217 °C; semi-

preparative HPLC, Phenomenax, Si, 21.2*100mm, 5 μ m) gave **1**○**22** (97 % yield) as a white powder. ¹H-NMR (400 MHz; CDCl₃; 25°C): 7.18-7.26 (m, 40H, C₆H₅), 6.90 (s, 8H, ArH on bowl), 6.16 (d, J = 7.70 Hz, 2H, guest-H), 6.54 (d, J = 7.70 Hz, 2H, guest-H), 5.69 (d, J = 6.48 Hz, 8H OCH₂O outer), 4.87 (t, J = 8.09 Hz, 8H, CH methine), 4.08 (d, J = 7.45 Hz, 8H, OCH₂O inner), 3.91 (sb, 16H, OCH₂CH₂), 2.51-2.72 (m, 32H, CH₂CH₂Ph), 1.87 (sb, 16H, OCH₂CH₂), -2.03 (s, 3H, guest-CH₃). FAB-MS: *m/z* [M+H]⁺ 2368.9 (100); [M - **22** +H]⁺ 2250.1 (14).

DMA hemicarceplex (1○25):^[5] Application of *procedure A* (4 days; 217 °C; preparative HPLC, Phenomenax, Si, 21.2*100mm, 5 μ m) gave **1**○**25** (90 % yield) as a white powder. ¹H-NMR (400 MHz; CDCl₃; 25°C): 7.17-7.30 (m, 40H, C₆H₅), 6.88 (s, 8H, ArH on bowl), 5.83 (d, J = 7.16 Hz, 8H OCH₂O outer), 4.86 (t, J = 7.93 Hz 8H, CH methine), 4.32 (d, J = 7.20 Hz, 8H, OCH₂O inner), 3.95 (sb, 16H, OCH₂CH₂), , 2.51-2.73 (m, 32H, CH₂CH₂Ph), 1.95 (sb, 16H, OCH₂CH₂), 1.64 (s, 3H, guest-H), -0.38 (s, 3H, guest-H), -1.60 (s, 3H, guest-H). ¹H NMR data obtained were in agreement with that previously reported.^[5]

Phenol hemicarceplex (1○32):^[6] Application of *procedure B* (25 h; 166 °C) gave **1**○**32** (95 % yield) as a white powder. ¹H-NMR (400 MHz; CDCl₃; 25°C): 7.16-7.26 (m, 40H, C₆H₅), 6.94 (s, 8H, ArH on bowl), 5.70 (d, J = 7.2 Hz, 8H, OCH₂O outer), 4.86 (t, J = 7.9 Hz 8H, CH methine), 4.78 (t, J = 7.8 Hz, 2H, guest-H_m), 4.55 (t, J = 7.0 Hz, 1H, guest-H_p), 4.40 (d, J = 7.8 Hz, 2H, guest-H_o), 4.18 (d, J = 7.2 Hz, 8H, OCH₂O inner), 3.88 (sb, 16H, OCH₂CH₂), 3.19 (s, 1H, guest-OH), 2.51-2.73 (m, 32H, CH₂CH₂Ph), 1.96 (sb, 16H, OCH₂CH₂).

d₁₀-p-Xylene hemicarceplex (1○d₁₀-16**):** Application of *procedure A* (2 days; 256 °C; semi-preparative HPLC, Phenomenax, Si, 21.2*100mm, 5 μ m) gave **1**○**d**₁₀-**16** (93 % yield) as a white powder. ¹H-NMR (400 MHz; CDCl₃; 25°C): 7.16-7.25 (m, 40H, C₆H₅), 6.91 (s, 8H, ArH on bowl), 5.69 (d, J = 7.0 Hz, 8H OCH₂O outer), 4.88 (t, J = 8.3 Hz, 8H, CH methine), 4.15 (d, J = 7.0 Hz, 8H, OCH₂O inner), 3.88 (sb, 16H, OCH₂CH₂), 2.48-2.72 (m, 32H, CH₂CH₂Ph), 1.90 (sb, 16H, OCH₂CH₂); ESI-MS: *m/z* [M + 23]⁺ 2387.7 (68).

p-Xylene hemicarceplex (3○16**):** Application of *procedure A* (4 days; 227 °C; preparative HPLC, Phenomenax, Si, 21.2*100mm, 5 μ m) gave **3**○**16** (94 % yield) as a white powder. ¹H-NMR (400 MHz; CDCl₃; 25°C): 6.82 (s, 8H, ArH on bowl), 5.86 (s, 4H, guest-H), 5.63 (d, J = 6.92 Hz, 8H OCH₂O outer), 4.72 (t, J = 8.13 Hz, 8H, CH methine), 4.09 (d, J = 7.07Hz, 8H, OCH₂O inner), 3.81 (sb, 16H, OCH₂CH₂), 2.17-2.22 (m, 16H, CH₂(CH₂)₃CH₃), 1.84 (sb, 16H, OCH₂CH₂), 1.28-1.34 (m, 48H, CH₂(CH₂)₃CH₃), 0.93 (t, J = 7.04 Hz, 24H, CH₃), -2.14 (s, 6H, guest-H). FAB-MS: *m/z* [M + H]⁺, 2084.2 (100); [M - **16** + H]⁺, 1979.1 (50).

Toluene hemicarceplex (3○8**):** Application of *procedure B* (2 days; 170 °C) gave **3**○**8** (95 % yield) as a white powder. ¹H-NMR (400 MHz; CDCl₃; 25°C): 6.88 (s, 8H, ArH on bowl), 5.81 (d, J = 7.6, 2H, guest-H_o), 5.6-5.65 (m, 10H, OCH₂O outer, guest-H_m), 4.71 (t, J = 8 Hz, 8H, CH methine), 4.09 (d, J = 7.2Hz, 8H, OCH₂O inner), 3.82 (sb, 16H, OCH₂CH₂), 3.30 (t, J = 7.0, 1H, guest-H_p), 2.18-2.3 (m, 16H, CH₂(CH₂)₃CH₃), 1.88 (sb, 16H, OCH₂CH₂), 1.28-1.34 (m, 48H, CH₂(CH₂)₃CH₃), 0.93 (t, J = 7.2 Hz, 24H, CH₃), -1.85 (s, 3H, guest-CH₃). FAB-MS: *m/z* [M + H]⁺, 2070.3 (100); [M - **8** + H]⁺, 1979.5 (39).

Benzaldehyde hemicarceplex (3○23**):** Application of *procedure B* (2 days; 170 °C) gave **3**○**23**

(82 % yield) as a white powder. $^1\text{H-NMR}$ (400 MHz; CDCl_3 ; 25°C): 6.92 (s, 8H, ArH on bowl), 6.53 (s, 1H, guest-CHO), 6.51 (d, J = 7.2, 2H, guest- H_0), 5.70 (d, J = 7.6, 2H, guest- H_m), 5.61 (d, J = 7.2Hz, 8H, OCH_2O outer), 4.71 (t, J = 8 Hz, 8H, CH methine), 4.00 (d, J = 7.2Hz, 8H, OCH_2O inner), 3.83 (sb, 16H, OCH_2CH_2), 3.59 (t, J = 7.2, 1H, guest- H_p), 2.18-2.3 (m, 16H, $\text{CH}_2(\text{CH}_2)_3\text{CH}_3$), 1.86 (sb, 16H, OCH_2CH_2), 1.28-1.34 (m, 48H, $\text{CH}_2(\text{CH}_2)_3\text{CH}_3$), 0.93 (t, J = 7.0 Hz, 24H, CH_3). FAB-MS: m/z $[\text{M} + \text{H}]^+$, 2084.2 (85); $[\text{M} - \mathbf{23} + \text{H}]^+$, 1978.2 (100).

Phenol hemicarceplex (3 \odot 32): Application of *procedure B* (30 h; 170 °C) gave **3 \odot 32** (80 % yield) as a white powder. $^1\text{H-NMR}$ (400 MHz; CDCl_3 ; 25°C): 6.88 (s, 8H, ArH on bowl), 5.64 (d, J = 7.2Hz, 8H, OCH_2O outer), 4.76-4.65 (m, 10H, CH methane, guest- H_m), 4.53 (t, J = 7.2 Hz, 1H, guest- H_p), 4.33 (d, J = 7.8 Hz, 2H, guest- H_0), 4.12 (d, J = 7.2Hz, 8H, OCH_2O inner), 3.82 (sb, 16H, OCH_2CH_2), 3.14 (s, 1H, guest-OH), 2.18-2.3 (m, 16H, $\text{CH}_2(\text{CH}_2)_3\text{CH}_3$), 1.91 (sb, 16H, OCH_2CH_2), 1.28-1.34 (m, 48H, $\text{CH}_2(\text{CH}_2)_3\text{CH}_3$), 0.93 (t, J = 7.2 Hz, 24H, CH_3). FAB-MS: m/z $[\text{M} + \text{H}]^+$, 2072.1 (100); $[\text{M} - \mathbf{32} + \text{H}]^+$, 1978.9 (47).

Benzyl alcohol hemicarceplex (3 \odot 35): Application of *procedure B* (2 days; 170 °C) gave **3 \odot 35** (95 % yield) as a white powder. $^1\text{H-NMR}$ (400 MHz; CDCl_3 ; 25°C): 6.88 (s, 8H, ArH on bowl), 6.05 (d, J = 7.2, 2H, guest- H_0), 5.60 (d, J = 7.2Hz, 8H, OCH_2O outer), 5.33 (t, J = 7.6, 2H, guest- H_m), 4.72 (t, J = 8 Hz, 8H, CH methine), 4.15 (d, J = 6.8 Hz, 8H, OCH_2O inner), 3.83 (sb, 16H, OCH_2CH_2), 3.20 (t, J = 7.2, 1H, guest- H_p), 2.18-2.3 (m, 16H, $\text{CH}_2(\text{CH}_2)_3\text{CH}_3$), 1.68 (d, J = 3, 2H, guest-CH₂), 1.86 (sb, 16H, OCH_2CH_2), 1.28-1.34 (m, 48H, $\text{CH}_2(\text{CH}_2)_3\text{CH}_3$), 0.93 (t, J = 7.0 Hz, 24H, CH_3), -2.62 (t, J = 3Hz, 1H, OH), FAB-MS: m/z $[\text{M} + \text{H}]^+$, 2086.5 (10); $[\text{M} - \text{CH}_2\text{O} + \text{H}]^+$, 2056.6 (100); $[\text{M} - \mathbf{35} + \text{H}]^+$, 1978.6 (18).

Benzoic acid hemicarceplex (3 \odot 39): Application of *procedure B* (2 days; 170 °C) gave **3 \odot 39** (80 % yield) as a white powder. $^1\text{H-NMR}$ (400 MHz; CDCl_3 ; 25°C): 6.89 (s, 8H, ArH on bowl), 6.82 (d, J = 7.6, 2H, guest- H_0), 5.58 (d, J = 7.2Hz, 8H, OCH_2O outer), 5.34 (d, J = 7.8, 2H, guest- H_m), 4.71 (t, J = 8 Hz, 8H, CH methine), 4.13 (d, J = 7.2Hz, 8H, OCH_2O inner), 3.88 (sb, 16H, OCH_2CH_2), 3.49 (t, J = 7.4, 1H, guest- H_p), 2.37 (s, 1H, guest-OH), 2.18-2.3 (m, 16H, $\text{CH}_2(\text{CH}_2)_3\text{CH}_3$), 1.85 (sb, 16H, OCH_2CH_2), 1.28-1.34 (m, 48H, $\text{CH}_2(\text{CH}_2)_3\text{CH}_3$), 0.93 (t, J = 7.0 Hz, 24H, CH_3). FAB-MS: m/z $[\text{M} + \text{H}]^+$, 2100.1 (82); $[\text{M} - \mathbf{39} + \text{H}]^+$, 1978.4 (100).

***d*₁₀-*p*-Xylene hemicarceplex (3 \odot *d*₁₀-16):** Application of *procedure A* (4 days; 227 °C; preparative HPLC, Phenomenax, Si, 21.2*100 mm, 5 μm) gave **3 \odot *d*₁₀-16** (92 % yield) as a white powder. $^1\text{H-NMR}$ (400 MHz; CDCl_3 ; 25°C): 6.82 (s, 8H, ArH on bowl), 5.63 (d, J = 6.92 Hz, 8H OCH_2O outer), 4.72 (t, J = 8.13 Hz, 8H, CH methine), 4.09 (d, J = 7.07Hz, 8H, OCH_2O inner), 3.81 (sb, 16H, OCH_2CH_2), 2.17-2.22 (m, 16H, $\text{CH}_2(\text{CH}_2)_3\text{CH}_3$), 1.84 (sb, 16H, OCH_2CH_2), 1.28-1.34 (m, 48H, $\text{CH}_2(\text{CH}_2)_3\text{CH}_3$), 0.93 (t, J = 7.04 Hz, 24H, CH_3). ESI-MS: m/z $[\text{M} + \text{Na}]^+$, 2387.7 (70).

***d*₆-*p*-Xylene hemicarceplex (3 \odot *d*₆-16):** Application of *procedure A* (4 days; 227 °C; preparative HPLC, Phenomenax, Si, 21.2*100 mm, 5 μm) gave **3 \odot *d*₆-16** (80 % yield) as a white powder. $^1\text{H-NMR}$ (400 MHz; CDCl_3 ; 25°C): 6.83 (s, 8H, ArH on bowl), 5.63 (d, J = 6.92 Hz, 8H OCH_2O outer), 4.73 (t, J = 8.13 Hz, 8H, CH methine), 4.09 (d, J = 7.07Hz, 8H, OCH_2O inner), 3.81 (sb, 16H, OCH_2CH_2), 2.18-2.21 (m, 16H, $\text{CH}_2(\text{CH}_2)_3\text{CH}_3$), 1.85 (sb, 16H, OCH_2CH_2), 1.25-1.42 (m, 48H, $\text{CH}_2(\text{CH}_2)_3\text{CH}_3$), 0.93 (t, J = 7.04 Hz, 24H, CH_3), -2.14 (s, 6H, guest-H).

***d*4, *p*-Xylene hemicarceplex (3○d₄-16):** Application of *procedure A* (4 days; 227 °C; preparative HPLC, Phenomenax, Si, 21.2*100 mm, 5μm) gave 3○d₄-16 (80 % yield) as a white powder. ¹H-NMR (400 MHz; CDCl₃; 25°C): 6.83 (s, 8H, ArH on bowl), 5.86 (s, 4H, guest-H), 5.63 (d, J = 6.92 Hz, 8H OCH₂O outer), 4.73 (t, J = 8.13 Hz, 8H, CH methine), 4.09 (d, J = 7.07 Hz, 8H, OCH₂O inner), 3.82 (sb, 16H, OCH₂CH₂), 2.19-2.21 (m, 16H, CH₂(CH₂)₃CH₃), 1.85 (sb, 16H, OCH₂CH₂), 1.25-1.42 (m, 48H, CH₂(CH₂)₃CH₃), 0.93 (t, J = 7.04 Hz, 24H, CH₃).

1,4-Dibromobenzene hemicarceplex (3○19): Application of *procedure A* (4 days; 227 °C; preparative HPLC, Phenomenax, Si, 21.2*250mm, 5μm) gave 3○19 (77 % yield) as a white powder. ¹H-NMR (400 MHz; CDCl₃; 25°C): 6.76 (s, 8H, ArH on bowl), 6.38 (s, 4H, guest-H), 5.63 (d, J = 6.84 Hz, 8H OCH₂O outer), 4.72 (t, J = 8.12 Hz 8H, CH methine), 4.07 (d, J = 7.06 Hz, 8H, OCH₂O inner), 3.87 (sb, 16H, OCH₂CH₂), 2.16-2.22 (m, 16H, CH₂(CH₂)₃CH₃), 1.82 (sb, 16H, OCH₂CH₂), 1.25-1.42 (m, 48H, CH₂(CH₂)₃CH₃), 0.92 (t, J = 7.03 Hz, 24H, CH₃). ESI-MS: *m/z* [M + Na]⁺, 2233.7 (60).

1,4-Dichlorobenzene hemicarceplex (3○18): Application of *procedure A* (4 days; 227 °C; preparative HPLC, Phenomenax, Si, 21.2*250mm, 5μm) gave 3○18 (79 % yield) as a white powder. ¹H-NMR (400 MHz; CDCl₃; 25°C): 6.79 (s, 8H, ArH on bowl), 6.17 (s, 4H, guest-H), 5.64 (d, J = 6.86 Hz, 8H OCH₂O outer), 4.71 (t, J = 8.04 Hz 8H, CH methine), 4.02 (d, J = 6.97 Hz, 8H, OCH₂O inner), 3.87 (sb, 16H, OCH₂CH₂), 2.16-2.22 (m, 16H, CH₂(CH₂)₃CH₃), 1.84 (sb, 16H, OCH₂CH₂), 1.25-1.42 (m, 48H, CH₂(CH₂)₃CH₃), 0.92 (t, J = 7.09 Hz, 24H, CH₃). ESI-MS: *m/z* [M + Na]⁺, 2145.8 (100).

***p*-Fluorotoluene hemicarceplex (3○11):** Application of *procedure A* (4 days; 227 °C; preparative HPLC, Phenomenax, Si, 21.2*250mm, 5μm) gave 3○11 (80 % yield) as a white powder. ¹H-NMR (400 MHz; CDCl₃; 25°C): 6.84 (s, 8H, ArH on bowl), 5.88 (t, J = 4.77 Hz, 2H, guest-H), 5.64 (d, J = 6.82 Hz, 8H OCH₂O outer), 5.58 (t, J = 7.84 Hz 2H, guest-H), 4.71 (t, J = 7.97 Hz, 8H, CH methine), 4.05 (d, J = 6.93 Hz, 8H, OCH₂O inner), 3.82 (sb, 16H, OCH₂CH₂), 2.16-2.22 (m, 16H, CH₂(CH₂)₃CH₃), 1.86 (sb, 16H, OCH₂CH₂), 1.25-1.42 (m, 48H, CH₂(CH₂)₃CH₃), 0.92 (t, J = 6.84 Hz, 24H, CH₃).-2.03 (s, 3H, guest-H). ESI-MS: *m/z* [M + Na]⁺, 2110.0 (52).

1,4-Difluorobenzene hemicarceplex (3○17): Application of *procedure A* (4 days; 227 °C; preparative HPLC, Phenomenax, Si, 21.2*250mm, 5μm) gave 3○17 (75 % yield) as a white powder. ¹H-NMR (400 MHz; CDCl₃; 25°C): 6.85 (s, 8H, ArH on bowl), 5.66 (d, J = 7.08 Hz, 8H OCH₂O outer), 5.36 (t, J = 5.78 Hz 4H, guest-H), 4.70 (t, J = 8.09 Hz 8H, CH methine), 4.00 (d, J = 7.08 Hz, 8H, OCH₂O inner), 3.83 (sb, 16H, OCH₂CH₂), 2.16-2.22 (m, 16H, CH₂(CH₂)₃CH₃), 1.88 (sb, 16H, OCH₂CH₂), 1.25-1.44 (m, 48H, CH₂(CH₂)₃CH₃), 0.92 (t, J = 7.00 Hz, 24H, CH₃). ESI-MS: *m/z* [M+H]⁺ 2091.9 (25); [M + Na]⁺, 2113.9 (100).

Fluorobenzene hemicarceplex (3○5): Application of *procedure A* (4 days; 227 °C; preparative HPLC, Phenomenax, Si, 21.2*250mm, 5μm) gave 3○5 (70 % yield) as a white powder. ¹H-NMR (400 MHz; CDCl₃; 25°C): 6.87 (s, 8H, ArH on bowl), 5.64 (d, J = 5.27 Hz, 8H OCH₂O outer), 5.14-5.20 (m, 4H, guest-H), 4.69 (t, J = 7.88 Hz 8H, CH methine), 4.00 (d, J = 5.72 Hz, 8H, OCH₂O inner), 3.41 (m, 1H, guest-H), 3.79 (sb, 16H, OCH₂CH₂), 2.16-2.22 (m, 16H,

$CH_2(CH_2)_3CH_3$), 1.89 (sb, 16H, OCH_2CH_2), 1.25-1.42 (m, 48H, $CH_2(CH_2)_3CH_3$), 0.92 (t, $J = 8.0$ Hz, 24H, CH_3). ESI-MS: m/z $[M+H]^+$ 2073.9 (100); $[M + Na]^+$, 2095.9 (62).

***p*-Chlorotoluene hemicarceplex (3 \odot 12):** Application of *procedure A* (4 days; 227 °C; preparative HPLC, Phenomenax, Si, 21.2*250mm, 5 μ m) gave 3 \odot 12 (80 % yield) as a white powder. 1 H-NMR (400 MHz; $CDCl_3$; 25°C): 6.82 (s, 4H, ArH on bowl), 6.79 (s, 4H, ArH on bowl), 6.08 (d, $J = 8.12$ Hz 2H, guest-H), 5.94 (d, $J = 8.12$ Hz 2H, guest-H), 5.65 (d, $J = 7.18$ Hz, 4H OCH_2O outer), 5.62 (d, $J = 7.02$ Hz, 4H OCH_2O outer), 4.73 (t, $J = 8.11$ Hz 4H, CH methine), 4.70 (t, $J = 8.11$ Hz 4H, CH methine), 4.07 (d, $J = 6.86$ Hz, 4H, OCH_2O inner), 4.04 (d, $J = 7.06$ Hz, 4H, OCH_2O inner), 3.84 (sb, 16H, OCH_2CH_2), 2.17-2.22 (m, 16H, $CH_2(CH_2)_3CH_3$), 1.84 (sb, 16H, OCH_2CH_2), 1.28-1.34 (m, 48H, $CH_2(CH_2)_3CH_3$), 0.92 (t, $J = 7.01$ Hz, 24H, CH_3), -2.14 (s, 3H, guest-H). ESI-MS: m/z $[M + Na]^+$, 2125.9 (85).

1-Bromo-4-chlorobenzene hemicarceplex (3 \odot 15): Application of *procedure A* (4 days; 227 °C; preparative HPLC, Phenomenax, Si, 21.2*250mm, 5 μ m) gave 3 \odot 15 (80 % yield) as a white powder. 1 H-NMR (400 MHz; $CDCl_3$; 25°C): 6.79 (s, 4H, ArH on bowl), 6.76 (s, 4H, ArH on bowl), 6.42 (d, $J = 8.38$ Hz 2H, guest-H), 6.12 (d, $J = 8.18$ Hz 2H, guest-H), 5.94 (d, $J = 8.12$ Hz 2H, guest-H), 5.64 (d, $J = 6.84$ Hz, 4H OCH_2O outer), 5.63 (d, $J = 6.84$ Hz, 4H OCH_2O outer), 4.73 (t, $J = 5.34$ Hz 4H, CH methine), 4.70 (t, $J = 5.56$ Hz 4H, CH methine), 4.08 (d, $J = 6.87$ Hz, 4H, OCH_2O inner), 4.02 (d, $J = 6.95$ Hz, 4H, OCH_2O inner), 3.87 (sb, 16H, OCH_2CH_2), 2.16-2.22 (m, 16H, $CH_2(CH_2)_3CH_3$), 1.83 (sb, 16H, OCH_2CH_2), 1.25-1.42 (m, 48H, $CH_2(CH_2)_3CH_3$), 0.92 (t, $J = 7.11$ Hz, 24H, CH_3). ESI-MS: m/z $[M+H]^+$ 2167.9 (45); $[M + Na]^+$, 2189.8 (95).

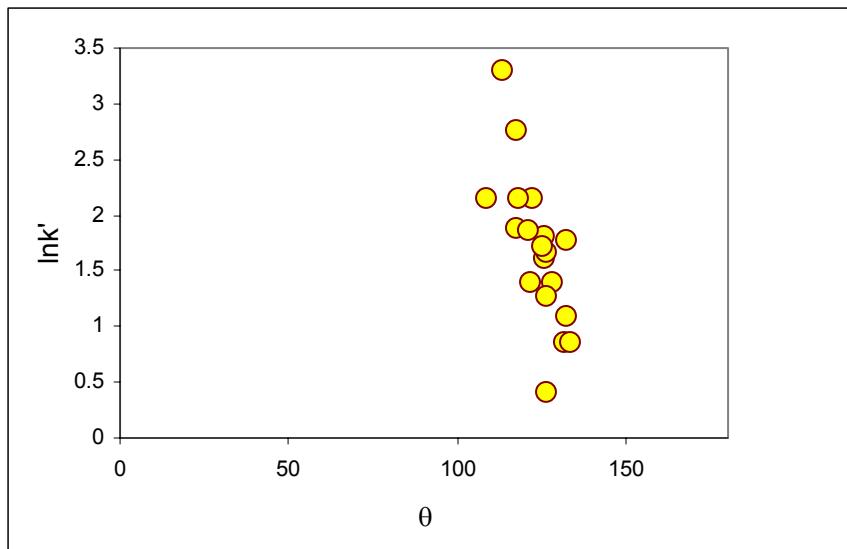
***p*-Iodotoluene hemicarceplex (3 \odot 14):** Application of *procedure A* (4 days; 227 °C; preparative HPLC, Phenomenax, Si, 21.2*250mm, 5 μ m) gave 3 \odot 14 (82 % yield) as a white powder. 1 H-NMR (400 MHz; $CDCl_3$; 25°C): 6.82 (s, 4H, ArH on bowl), 6.70 (s, 4H, ArH on bowl), 6.69 (2H, guest-H), 6.12 (d, $J = 8.18$ Hz 2H, guest-H), 5.79 (d, $J = 8.11$ Hz 2H, guest-H), 5.63 (d, $J = 7.03$ Hz, 4H OCH_2O outer), 5.62 (d, $J = 6.51$ Hz, 4H OCH_2O outer), 4.73 (t, $J = 8.06$ Hz 8H, CH methine), 4.30 (d, $J = 6.80$ Hz, 4H, OCH_2O inner), 4.05 (d, $J = 7.06$ Hz, 4H, OCH_2O inner), 3.85 (sb, 16H, OCH_2CH_2), 2.16-2.22 (m, 16H, $CH_2(CH_2)_3CH_3$), 1.80 (sb, 16H, OCH_2CH_2), 1.25-1.42 (m, 48H, $CH_2(CH_2)_3CH_3$), 0.92 (t, $J = 6.52$ Hz, 24H, CH_3), -2.25 (s, 3H, guest-H). ESI-MS: m/z $[M + Na]^+$, 2217.8 (78).

***p*-Bromotoluene hemicarceplex (3 \odot 13):** Application of *procedure A* (4 days; 227 °C; preparative HPLC, Phenomenax, Si, 21.2*250mm, 5 μ m) gave 3 \odot 13 (80 % yield) as a white powder. 1 H-NMR (400 MHz; $CDCl_3$; 25°C): 6.82 (s, 4H, ArH on bowl), 6.76 (s, 4H, ArH on bowl), 6.34 (d, $J = 8.11$ Hz, 2H, guest-H), 5.90 (d, $J = 8.11$ Hz 2H, guest-H), 5.63 (d, $J = 6.87$ Hz, 4H OCH_2O outer), 5.62 (d, $J = 6.35$ Hz, 4H OCH_2O outer), 4.73 (t, $J = 7.87$ Hz 4H, CH methine), 4.71 (t, $J = 7.92$ Hz 4H, CH methine), 4.13 (d, $J = 6.81$ Hz, 4H, OCH_2O inner), 4.04 (d, $J = 7.07$ Hz, 4H, OCH_2O inner), 3.85 (sb, 16H, OCH_2CH_2), 2.16-2.22 (m, 16H, $CH_2(CH_2)_3CH_3$), 1.83 (sb, 16H, OCH_2CH_2), 1.25-1.42 (m, 48H, $CH_2(CH_2)_3CH_3$), 0.92 (t, $J = 6.33$ Hz, 24H, CH_3), -2.25 (s, 3H, guest-H). ESI-MS: m/z $[M + Na]^+$, 2169.8(52).

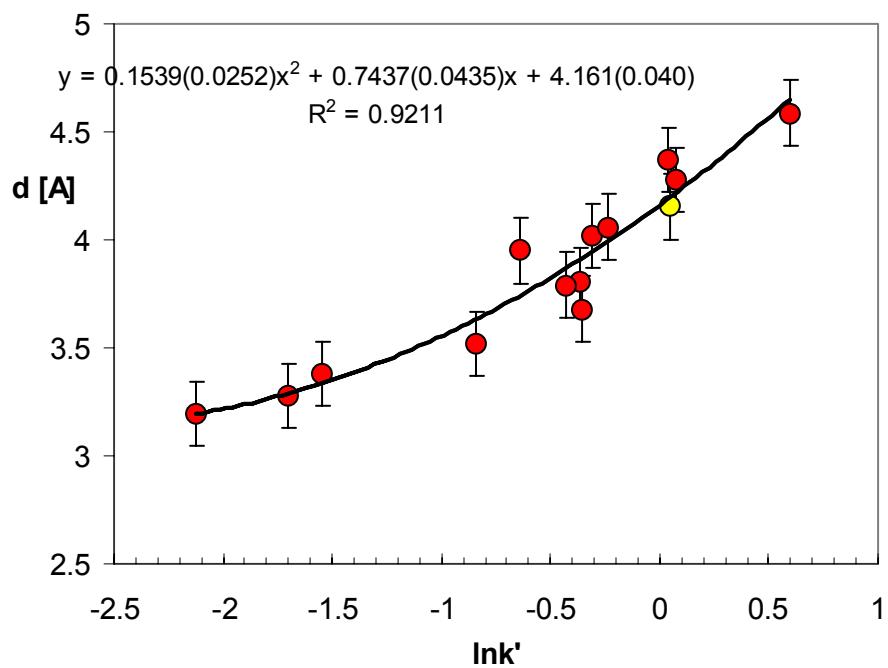
Bromobenzene hemicarceplex (3 \odot 7): Application of *procedure A* (4 days; 227 °C; preparative HPLC, Phenomenax, Si, 21.2*250mm, 5 μ m) gave 3 \odot 7 (80 % yield) as a white powder. 1 H-NMR (400 MHz; $CDCl_3$; 25°C): 6.84 (s, 8H, ArH on bowl), 6.27 (d, $J = 7.6$ Hz 2H, guest-H),

6.12 (d, $J = 8.67$ Hz 2H, guest-H), 5.62 (d, $J = 6.80$ Hz, 8H OCH_2O outer), 5.59 (d, $J = 7.6$ Hz 2H, guest-H), 4.71 (t, $J = 8.0$ Hz 8H, CH methine), 4.12 (d, $J = 6.80$ Hz, 8H, OCH_2O inner), 3.84 (sb, 16H, OCH_2CH_2), 3.31 (t, $J = 7.6$ Hz 1H, guest-H), 2.16-2.22 (m, 48H, $CH_2(CH_2)_3CH_3$), 1.83 (sb, 16H, OCH_2CH_2), 1.25-1.42 (m, 48H, $CH_2(CH_2)_3CH_3$), 0.93 (t, $J = 6.33$ Hz, 24H, CH_3). ESI-MS: m/z $[M + Na]^+$, 2154.9 (40).

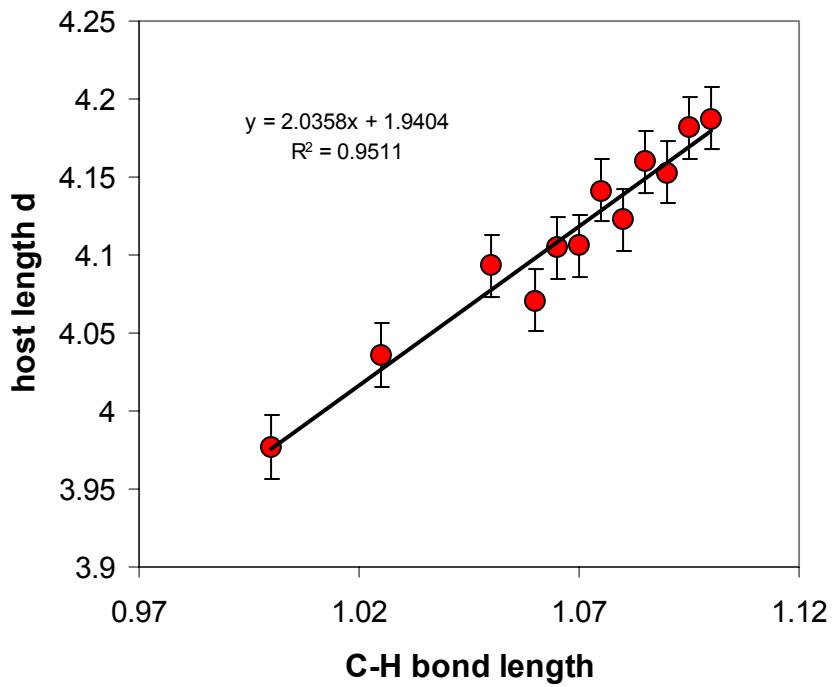
Chlorobenzene hemicarceplex (3 \odot 6): Application of *procedure A* (4 days; 227 °C; preparative HPLC, Phenomenax, Si, 21.2*250mm, 5 μ m) gave 3 \odot 6 (78 % yield) as a white powder. 1H -NMR (400 MHz; $CDCl_3$; 25°C): 6.85 (s, ArH on bowl), 5.98 (d, $J = 7.77$ Hz 2H, guest-H), 6.12 (d, $J = 8.67$ Hz 2H, guest-H), 5.63 (d, $J = 7.05$ Hz, 8H OCH_2O outer), 5.61 (2H, guest-H), 4.70 (t, $J = 8.01$ Hz 8H, CH methine), 4.08 (d, $J = 7.04$ Hz, 8H, OCH_2O inner), 3.83 (sb, 16H, OCH_2CH_2), 3.32 (t, $J = 7.26$ Hz 1H, guest-H), 2.16-2.22 (m, 48H, $CH_2(CH_2)_3CH_3$), 1.88 (sb, 16H, OCH_2CH_2), 1.25-1.42 (m, 48H, $CH_2(CH_2)_3CH_3$), 0.92 (t, $J = 7.02$ Hz, 24H, CH_3). ESI-MS: m/z $[M+H]^+$ 2089.9 (37); $[M + Na]^+$, 2111.9 (100).

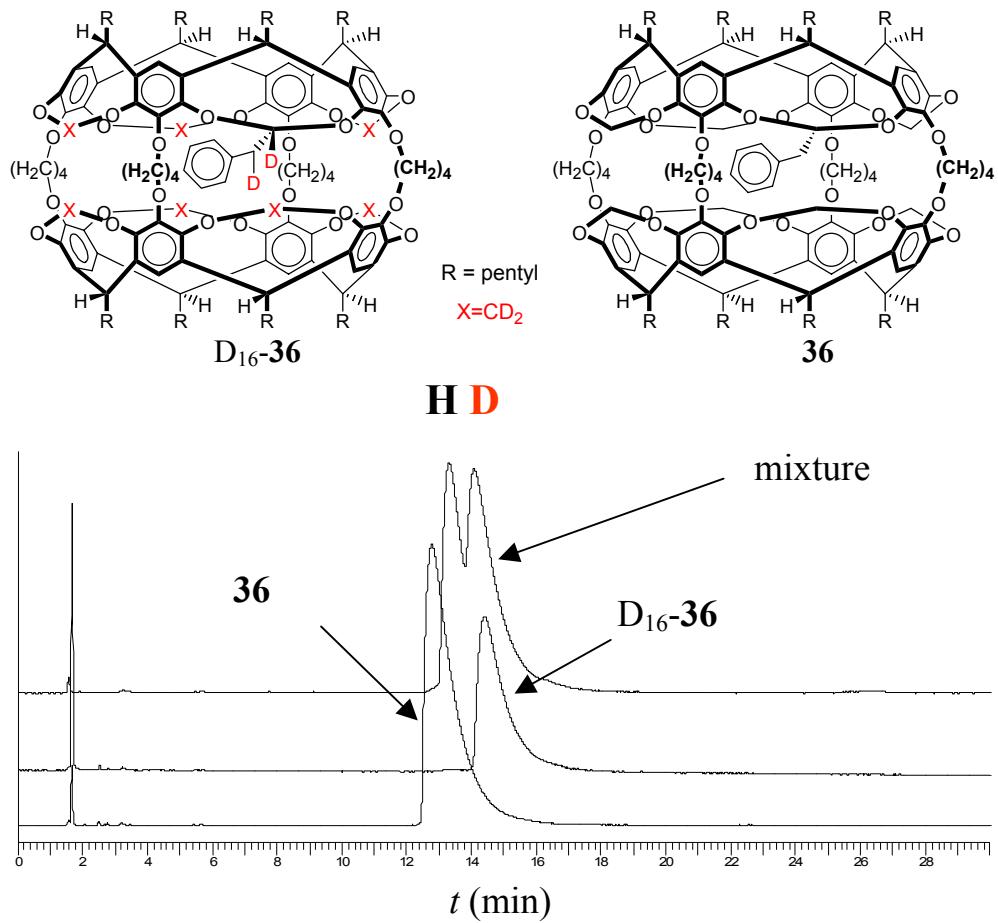

d_6 -Benzene hemicarceplex (3 \odot d_6 -4): Application of *procedure B* (2 days; 130 °C; preparative HPLC, Phenomenax, Si, 21.2*250mm, 5 μ m) gave 3 \odot d_6 -4 (66 % yield) as a white powder. 1H -NMR (400 MHz; $CDCl_3$; 25°C): 6.90 (s, ArH on bowl), 5.65 (d, $J = 7.15$ Hz, 8H OCH_2O outer), 4.71 (t, $J = 8.05$ Hz 8H, CH methine), 4.00 (d, $J = 7.20$ Hz, 8H, OCH_2O inner), 3.78 (sb, 16H, OCH_2CH_2), 2.16-2.22 (m, 48H, $CH_2(CH_2)_3CH_3$), 1.94 (sb, 16H, OCH_2CH_2), 1.25-1.42 (m, 48H, $CH_2(CH_2)_3CH_3$), 0.93 (t, $J = 7.02$ Hz, 24H, CH_3).

Molecular Modeling: Stochastic molecular dynamics calculations in vacuum at 300 K were carried out using the program MAESTRO (Schroedinger, Inc. Portland, OR) with the Amber* force field as implemented in the program. The following parameters were chosen: Timestep: 1.5 fs; Equilibrium Time: 1000 ps; Simulation Time: 10000 ps and the shake all bonds option was selected. 500 snapshots (every 20 ps) were saved and d calculated from the coordinates of the ether oxygen.


For simulations shown in figure S3, C-H bonds were constrained by applying a force constant of 10000 dyn/m. The same parameters as above were applied. The total simulation time was 20 ns and 1000 snapshots were saved and the time-averaged d calculated as described above.

References:


- [1] J.-L. Kerdelhue, K. J. Langenwalter, R. Warmuth, *J. Am. Chem. Soc.*, **2003**, *125*, 973-986.
- [2] R. Warmuth, M. A. Marvel, *Angew. Chem. Int. Ed. Engl.*, **2000**, *39*, 1117-1119.
- [3] R. Warmuth, E. F. Maverick, C., B. Knobler, Donald J. Cram, *J. Org. Chem.*, **2003**, *68*, 2077-2088.
- [4] D. A. Makeiff, D. J. Pope, J. C. Sherman, *J. Am. Chem. Soc.* **2000**, *122*, 1337-1342.
- [5] T. A. Robbins, C. B. Knobler, D. R. Bellew, D. J. Cram, *J. Am. Chem. Soc.* **1994**, *116*, 111-122.
- [6] S. K. Kurdistani, R. Helgeson, D. J. Cram, *J. Am. Chem. Soc.* **1995**, *117*, 1659-1660.


Figure S1: Plot of $\ln k'$ against dihedral angle θ for hemicarceplexes $1 \odot$ Guest (Guest = 4-22)

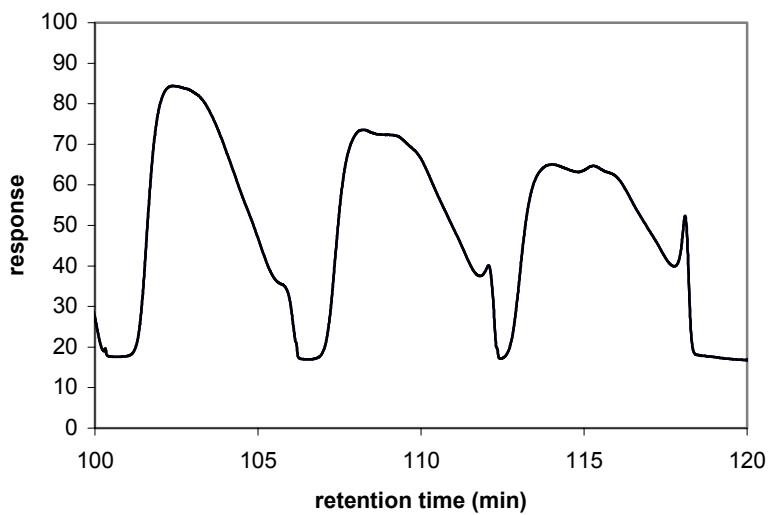
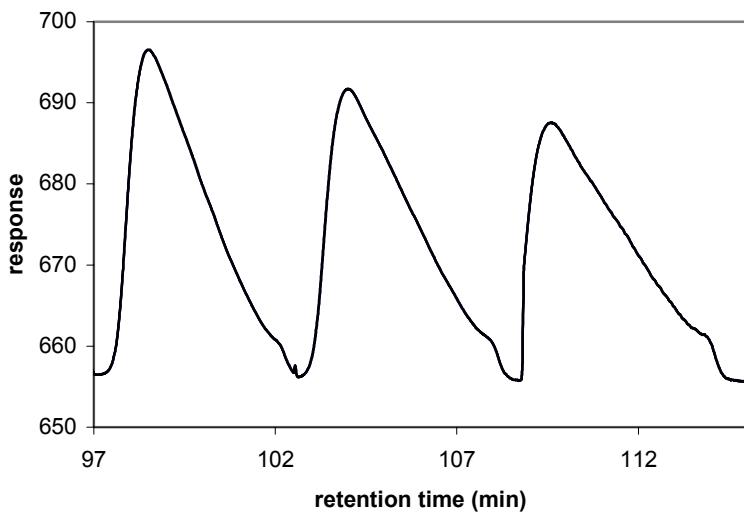


Figure S2: Semi logarithmic plot of hemicarceplex $3 \odot$ Guest (Guest = 4-8; 11-19) length d and retention factor k' and best fit for the correlation. The data point for hemicarceplex $3 \odot 16$ is marked in yellow. Conditions: Mobile phase: A/B, 65:35, A: 2.0 v% ether in CH_2Cl_2 , B: CH_2Cl_2 ; 1 mL/min; Phenomenax, SiO_2 , 25 cm x 4.6 mm, 5mm; 22°C.

Figure S3: Computed time-averaged length d of hemicarceplex **10-16** as function of the C-H bond length of the guest's methyl groups. Each data point is the average of two MDS (20ns; Amber*, 300K).

Figure S4: HPLC chromatograph of a 1:1 mixture of 36 and $D_{16}\text{-}36$ and chromatograph of individual hosts. Conditions: 2.0 v% ether in CH_2Cl_2 ; 1 mL/min; Phenomenex, SiO_2 , 25 cm x 4.6 mm, 3 μ m; 45°C

Table S1: Retention factors and time-averaged d for 3 \odot guest (guest = **4-8, 11-19, 23, 24, 32, 35, 37-39**). Conditions: Mobile phase: A/B, 65:35, A: 2.0 v% ether in CH_2Cl_2 , B: CH_2Cl_2 ; 1 mL/min; Phenomenax, SiO_2 , 25 cm x 4.6 mm, 5mm; 22°C.

<i>Guest</i>	<i>Compound #</i>	<i>Distance d</i>	k'	$\ln k'$
benzene	4	3.1923	0.11922	-2.12677
p-xylene	16	4.154	1.05178	0.050482
1,4-dibromobenzene	19	4.37	1.03622	0.035582
toluene	8	3.68	0.7	-0.35667
1,4-dichlorobenzene	18	3.95	0.52878	-0.63719
4-bromochlorobenzene	15	4.02	0.73056	-0.31395
1,4-difluorobenzene	17	3.38	0.21378	-1.54282
p-iodotoluene	14	4.587	1.81289	0.594922
fluorobenzene	5	3.278	0.18189	-1.70436
p-fluorotoluene	11	3.81	0.693	-0.36673
bromobenzene	7	3.791	0.65011	-0.43061
p-bromotoluene	13	4.28	1.07567	0.072941
chlorobenzene	6	3.52	0.43267	-0.83779
chlorotoluene	12	4.059	0.79189	-0.23333
cyclohepta-1,3,5-triene	37	3.38	0.34511	-1.06389
benzaldehyde	23	3.53	0.51578	-0.66208
NMP	24	3.766	0.77056	-0.26064
7-methoxycyclohepta-1,3,5-triene	38	4.29	1.35533	0.304045
benzylalcohol	35	3.69	1.51478	0.415269
phenol	32	3.13	0.41022	-0.89106
benzoic acid	39	4.06	1.69311	0.526568

Table S2: Retention factors and time-averaged d for hemicarceplexes **1**○guest (guest = **4-35**). Conditions: Phenomenax, SiO_2 ; $\text{CH}_2\text{Cl}_2/0.5\%$ ether; 1 mL/min; 150 x 4.6 mm; 22°C.

Guest	Compound	Distance d	k'	$\ln k'$
benzene	4	3.1923	1.498	0.404130885
p-xylene	16	4.154	8.577	2.149084202
1,4-dibromobenzene	19	4.37	8.67	2.159868791
1,4-diiodobenzene	20	4.907	27.299	3.306850071
toluene	8	3.68	5.347	1.676535656
1,4-dichlorobenzene	18	3.95	5.014	1.612234
4-bromochlorobenzene	15	4.02	6.529	1.876253792
1,4-difluorobenzene	17	3.38	2.361	0.859085258
p-iodotoluene	14	4.587	15.804	2.760263073
fluorobenzene	5	3.278	2.349	0.853989706
benzonitrile	9	3.733	4.082	1.406587064
p-fluorotoluene	11	3.81	6.086	1.805991051
bromobenzene	7	3.791	5.601	1.722945153
p-bromotoluene	13	4.28	8.578	2.149200786
chlorobenzene	6	3.52	3.55	1.266947603
chlorotoluene	12	4.059	6.412	1.858171235
benzylchloride	10	3.907	5.961	1.785238252
p-chlorobenzonitrile	21	3.997	3.003	1.099611789
p-methylbenzonitrile	22	4.226	4.034	1.39475844
phenol	32	3.179	3.615	1.285091856
benzylalcohol	35	3.777	12.652	2.537815305
7-benzocyclobutanol	34	4.277	21.865	3.084887185
cis-7,8-benzocyclobutandiol	33	4.134	45.034	3.80741776
NMP	24	3.766	6.44	1.86252854
benzaldehyde	23	3.53	4.608	1.527793923
DMA	25	3.287	3.649	1.294453157
benzocyclobutanone	26	3.99	7.632	2.032349934
coumarin	31	4.29	23.351	3.15063981
methyl benzoate	29	4.727	47.454	3.859760821
nitrobenzene	28	3.92	9.065	2.204420844
benzoylchloride	30	4.349	22.378	3.108078333
7-methoxyphthalide	27	4.699	51.862	3.948586345