

Supporting Information

© Wiley-VCH 2005

69451 Weinheim, Germany

Organocatalytic Diastereo- and Enantioselective Annulation Reactions - Construction of Optically Active 1,2-Dihydroisoquinoline and -Phthalazine Derivatives

Kim Frisch, Aitor Landa, Steen Saaby and Karl Anker Jørgensen*

[*] The Danish National Research Foundation: Center for Catalysis Department of Chemistry, Aarhus University DK-8000 Aarhus C, Denmark Fax (45) 8919 6199, e-mail: kaj@chem.au.dk

Supporting Information

General. The ¹H NMR and ¹³C NMR spectra were recorded at 400 MHz and 100 MHz respectively. The chemical shifts are reported in ppm relative to CDCl₃ (δ = 7.26) or the central acetone- d_6 resonance (δ = 2.05) for ¹H NMR and relative to the central resonances of CDCl₃ (δ = 77.0) or acetone- d_6 (δ = 30.83) for ¹³C NMR. The ¹⁹F NMR spectra were recorded in CDCl₃ at 376 MHz. The chemical shifts are reported in ppm relative to hexafluorobenzene (δ = -162.9).^[1] Chromatography was carried out by flash chromatography using Merck silica gel 60 (230-400 mesh) or by preparative TLC using Merck silica gel 60 F₂₅₄ (20 x 20 cm, 2 mm) with mixtures of Et₂O and CH₂Cl₂ as eluents.

Materials. All solvents were of p.a. quality and were dried by standard procedures prior to use if necessary. Isoquinoline, 5-bromoisoquinoline, 5-nitroisoquinoline, phenanthridine and phthalazine were all commercially available. 5,7-Dimethoxy-isoquinoline, 6,7-dimethoxyisoquinoline^[2] and 4-phenylisoquino-line^[3] were prepared as described in the literature. Catalysts **1a**-**d** were commercially available. Catalyst **1e**^[4] and **1f**^[5] were prepared

as described in the literature. For catalysts **1g**, **1h** and **1i** see below.

Experimental procedures and characterizations.

General description of the preparation of compounds 2a-g. The following procedure for the preparation of compounds **2a-g** has been devised (Scheme 2):

Scheme 2.

Iodo-alcohol **9** was prepared from readily available 1,5-pentanediol (8) by treatment with aq. HI in benzene. The alcohol was subsequently oxidized under Swern-conditions to give 10, which was immediately protected as its dimethyl acetal (11). Treatment of isoquinoline derivatives 12a-q with neat 11 qave 13a-q, respectively, which by deprotection with Amberlyst 15 yielded the desired substrates (2a-g) in good overall yield. The detailed experimental procedures are given below. It should be noted, that 2a-g could not be synthesized by a mere addition of 5-iodopentanal (10) to the respective isoquinoline derivatives due to the instability of the iodo-aldehyde.

2

Preparation of 5-iodo-pentan-1-ol (9)

1,5-pentanediol (8) (6.0 mL, 57 mmol) in benzene (180 9 ML) was added 57% aqueous HI (12.0 mL, 91 mmol) and the mixture was refluxed overnight in the dark. The mixture was then concentrated somewhat *in vacuo* and washed with saturated NaHCO₃ (100 mL). The aqueous layer was extracted with CH_2Cl_2 (3 x 100 mL) and the combined organic layers were washed first with saturated NH₄Cl (2 x 100 mL), then with saturated Na₂S₂O₃ (100 mL). After drying (MgSO₄) the solvents were evaporated to give 5-iodo-1-pentanol (9) (6.6 g, 54%). ¹H NMR (CDCl₃) δ 3.58 (t, J =6.4 Hz, 2H), 3.16 (t, J = 7.0 Hz, 2H), 2.38 (s, 1H), 1.81 (quintet, J = 7.1 Hz, 2H), 1.49-1.57 (m, 2H), 1.37-1.48 (m, 2H) ppm. ¹³C NMR δ 62.2, 33.0, 31.4, 26.6, 7.0.

Preparation of 5-iodo-pentanal (10)

 CH_2Cl_2 (100 mL) and (COCl)₂ (3.9 mL, 46 mmol, 1.5 eq.) were successively place in an oven dried three-necked flask and the solution was cooled to -60 °C under dry 10 Ar. DMSO (4.8 mL, 68 mmol) in CH_2Cl_2 (15 mL) was added at a rate where a temperature below -60 $^{\circ}C$ was maintained. The mixture was then stirred for ca. 5 min followed by addition of 5-iodo-1pentanol (9) (6.6 g, 31 mmol) in CH_2Cl_2 (25 mL) over a periode of ca. 5 min. The mixture was stirred for an additional 25 min, then rapidly quenched with Et_3N (22 mL, 0.16 mol). The obtained white slurry was stirred for ca. 5 min and then allowed to warm to room temperature. The reaction mixture was washed with water (300 mL) and the aqueous layer was extracted with Et_2O (300 mL). The combined organic layers were washed with 1 N HCl until the wash was acidic. The organic layers were then washed successively with saturated NaHCO₃ (2 x 200 mL) and brine (2 x 200 mL). After drying (MgSO₄) the solvents were evaporated to give 5-iodo-pentanal (10) (6.4 g, 97%). ¹H NMR (CDCl₃) δ 9.77 (s, 1H), 3.19 (t, J = 6.7 Hz,

2H), 2.48 (t, J = 7.2 Hz, 2H), 1.92–180 (m, 2H), 1.79–1.69 (m, 2H). ¹³C NMR δ 201.4, 42.3, 32.3, 22.6, 6.0.

Preparation of 5-iodo-1,1-dimethoxy-pentane (11)

CH (OCH₃)₃ (6.7 mL, 61 mmol) and pTSOH·H₂O (0.29 g, 1.5 mmol) were added to 5-iodo-pentanal (10) (6.4 g, 30 mmol) in MeOH (65 mL). The mixture was stirred for 3 h at room temperature. After dilution with CH₂Cl₂ (65 mL) the mixture was washed with 1% aqueous Na₂CO₃ (130 mL) and the aqueous layer was extracted with CH₂Cl₂ (3 x 65 mL). The combined organic layers were dried (MgSO₄) and the solvents removed by evaporation to give 5-iodo-1,1-dimethoxy-pentane (11) (7.0 g, 90%). The compound was stored under dry Ar in the dark at ca. 4 °C. ¹H NMR (CDCl₃) δ 4.32 (t, J = 5.6 Hz, 1H), 3.28 (s, 6H), 3.15 (t, J= 7.0 Hz, 2H), 1.76-1.86 (m, 2H), 1.55-1.60 (m, 2H), 1.36-1.46 (m, 2H). ¹³C NMR (CDCl₃) δ 104.0, 52.6, 33.1, 31.3, 25.5, 6.6. HRMS: C₇H₁₅IO₂ [M+Na]⁺ calcd.: 281.0009, found: 281.0003.

Preparation of 2-(5,5-dimethoxy-pentyl)-isoquinolinium iodide (13a)

A mixture of isoquinoline (12a) (0.36 mL, 0.40 g, 3.1 mmol) and 5-iodo-1,1-dimethoxy-pentane (11) (0.95 g, 3.7 mmol) was stirred for 3 h at 40 °C. The mixture was allowed to cool to room temperature and the obtained tar was washed with Et₂O (5 x 5 mL) to give

a yellow paste. After evaporation of the remaining solvent at low heat (ca. 30 °C) followed by cooling (ca. 4 °C) overnight 2-(5,5-dimethoxy-pentyl)-isoquinolinium iodide (**13a**) (1.1 g, 92%) was obtained as a yellow solid. ¹H NMR (CDCl₃) δ 10.75 (s, 1H), 8.81 (d, J = 6.9 Hz, 1H), 8.62 (d, J = 8.3 Hz, 1H), 8.40 (d, J = 6.8 Hz, 1H), 8.14 (d, J = 8.3 Hz, 1H), 8.06 (t, J = 7.1Hz, 1H), 7.88 (t, J = 7.4 Hz, 1H), 4.97 (t, J = 7.4 Hz, 2H), 4.24 (t, J = 5.4 Hz, 1H), 3.18 (s, 6H), 2.08-2.15 (m, 2H), 1.54-1.61 (m, 2H), 1.36-1.47 (m, 2H). ¹³C NMR (CDCl₃) δ 149.1, 137.1, 136.9, 134.3, 131.1, 130.5, 127.4, 127.0, 126.3, 103.9, 60.9, 53.0, 31.2, 20.7. HRMS: $C_{16}H_{22}INO_2$ [M-I⁻]⁺ calcd: 260.1645, found: 260.1649.

Preparation of 2-(5-oxo-pentyl)-isoquinolinium iodide (2a)

2-(5,5-Dimethoxy-pentyl)-isoquinolinium iodide J[⊕]∣ (13a) (1.1 g, 28 mmol) was dissolved in acetone (12 mL) and H_2O (0.18 mL, 1.5 vol %). Amberlyst 2a (128 mg) was then added and the heterogeneous mixture was 15 stirred for 5 h. Dry molecular sieves (3Å) were then added and the mixture was stirred for ca. 30 min. The solids were filtered off and washed with acetone. After evaporation at low heat (ca. 30 $^{\circ}$ C) a brown oil was obtained which solidified on standing at ca. 4 $^\circ\mathrm{C}$ to give 2-(5-oxo-pentyl)-isoquinolinium iodide (2a) as a yellow solid in a quantitative yield. ¹H NMR (CDCl₃) δ 10.82 (s, 1H), 9.74 (s, 1H), 8.87 (d, J = 6.8 Hz, 1H), 8.66 (d, J = 8.3, 1H), 8.39(d, J = 6.8 Hz, 1H), 8.17 (d, J = 8.2 Hz, 1H), 8.11 (t, J = 8.2Hz, 1H), 7.96 (t, J = 8.2 Hz, 1H), 5.09 (t, J = 7.6 Hz, 2H), 2.63 (t, J = 7.1 Hz, 2H), 2.20 (quintet, J = 7.6 Hz, 2H), 1.76(quintet, J = 7.2 Hz, 2H). ¹³C NMR (CDCl₃) δ 201.9, 149.3, 137.4, 137.2, 134.5, 131.4, 130.7, 127.6, 127.1, 126.3, 60.7, 42.8, 30.8, 18.2. HRMS: C₁₄H₁₆INO [M-I⁻]⁺ calcd: 214.1221, found: 214.1224.

Preparation of 2-(5-oxo-pentyl)-isoquinolinium and -phthazinium iodides 2b-g.

2-(5-Oxo-pentyl)-isoquinolinium and -phthazinium iodides 2b-2gwere prepared from the corresponding isoquinolines and phthazine by the procedure described for compound 13a/2a. Occasionally, for the deprotection of the aldehyde CHCl₃ was added in order to overcome solubility problems of the starting dimethylacetals in the acetone/H₂O mixture. Also, evaporation was for the more

5

sensitive compounds carried out using a flow of $N_{\rm 2}$ instead of a rotary evaporator.

5-Bromo-2-(5-oxo-pentyl)-isoquinolinium iodide (2b)

Brown oil. Yield: 71% from 5-bromoisoquinoline. ¹H NMR (CDCl₃) δ 11.27 (s, 1H), 9.80 (s, 1H), ¹H NMR (CDCl₃) δ 11.27 (s, 1H), 9.80 (s, 1H), ¹H NMR (CDCl₃) δ 11.27 (s, 1H), 9.80 (s, 1H), ¹H NMR (CDCl₃) δ 201 (d, J = 6.8 Hz, 1H), 8.39 (d, J = 6.8 Hz, 1H), 7.88 (t, J = 8.0 Hz, 1H), 5.17 (t, J = 8.0 Hz, 2H), 2.72 (t, J = 7.2 Hz, 2H), 2.26 (m, 2H), 1.80 (m, 2H). ¹³C NMR (CDCl₃) δ 201.8, 149.9, 140.4, 136.5, 135.9, 132.1, 130.7, 128.7, 125.5, 60.8, 42.7, 30.7, 18.2. HRMS: C₁₄H₁₅BrINO [M-I⁻]⁺ calcd: 292.0332, found: 292.0327.

2-(5-Oxo-pentyl)-4-phenyl-isoquinolinium iodide (2c)

Ph Brown oil. Yield: 81% from 4-phenylisoquinoline. ¹H NMR (CDCl₃) δ 11.25 (s, 1H), 9.80 (s, 1H), 8.86 (d, J = 8.0 Hz, 1H), 8.29 (s, 1H), 8.10 (d, J = 4.0 Hz, 2H), 8.01 (m, 1H), 7.61 (m, 5H), 5.16 (t, J = 7.6 Hz, 2H), 2.71 (t, J = 6.8 Hz, 2H), 2.28 (m, 2H), 1.83 (m, 2H). ¹³C NMR (CDCl₃) δ 201.7, 147.7, 139.1, 136.8, 135.8, 132.5, 131.9, 130.9, 130.8, 129.6, 129.5, 128.8, 127.6, 125.0, 60.4, 42.4, 30.4, 17.9 ppm. HRMS: C₂₀H₂₀INO [M-I⁻]⁺ calcd: 290.1539, found: 290.1530.

5-Nitro-2-(5-oxo-pentyl)-isoquinolinium iodide (2d)

NO₂ H NMR (CDCl₃) δ 11.57 (s, 1H), 9.77 (s, 1H), H NMR (CDCl₃) δ 11.57 (s, 1H), 9.77 (s, 1H), H 9.26 (d, J = 8.0 Hz, 1H), 9.23 (d, J = 7.6 Hz, 1H), 9.00 (d, J = 6.4 Hz, 1H), 8.78 (d, J = 7.6 Hz, Hz, 1H), 8.19 (t, J = 8.0 Hz, 1H), 5.11 (t, J = 7.2 Hz, 2H), 2.71 (t, J = 6.8 Hz, 2H), 2.15-1.70 (m, 4H). ¹³C NMR (CDCl₃) δ 201.6, 151.0, 138.6, 136.5, 134.7, 130.8, 128.8, 122.6, 53.7, 42.7, 29.6, 18.1. HRMS: $C_{14}H_{15}IN_2O_3$ [M-I⁻]⁺ calcd: 259.1077, found: 259.0948.

5-(5-Oxo-pentyl)-phenanthridinium iodide (2e)

Brown oil: Yield: 70% from phenanthridine. ¹H NMR (CDCl₃) δ 11.60 (s, 1H), 9.78 (s, 1H), 8.92 (d, J = 8.2 Hz, 1H), 8.87 (d, J = 8.2 Hz, 1H), 8.77 (d, J = 8.4 Hz, 1H), 8.41 (d, J = 8.6 Hz, 1H), 8.28 (t, J = 7.2 Hz, 1H), 8.10 (t, J = 7.2 Hz, 1H), 7.94-8.07 (m, 2H), 5.43 (t, J = 7.8 Hz, 2H), 2.72 (t, J = 6.9 Hz, 2H), 2.20-2.33 (m, 2H), 1.89-2.00 (m, 2H). ¹³C NMR (CDCl₃) δ 201.9, 154.4, 138.3, 134.8, 133.8, 133.0, 132.4, 130.53, 130.47, 126.3, 124.8, 123.7, 122.3, 119.2, 57.2, 42.8, 29.2, 18.6. HRMS: C₁₈H₁₈INO [M-I⁻]⁺ calcd: 264.1383, found: 264.1386.

2-(5-Oxo-pentyl)-phthalazin-2-ium iodide (2f)

Orange oil. Yield: 77% from phtalazine. ¹H NMR (CDCl₃) δ 11.64 (s, 1H), 9.96 (s, 1H), 9.67 (s, 2f (CDCl₃) δ 11.64 (s, 1H), 9.96 (s, 1H), 9.67 (s, 1H), 8.77 (d, J = 8.1 Hz, 1H), 8.59 (d, J = 8.0Hz, 1H), 8.37 (t, J = 7.4 Hz, 1H), 8.26 (t, J = 7.7 Hz, 1H), 4.96 (t, J = 7.2 Hz, 2H), 2.55, (t, J = 7.0 Hz, 2H), 2.18 (quintet, J = 7.3 Hz, 2H), 1.66 (quintet, J = 7.2 Hz, 2H). ¹³C NMR (CDCl₃) δ 201.6, 154.2, 150.2, 139.3, 136.2, 130.5, 128.1, 127.6, 127.5, 63.4, 42.5, 28.7, 18.1. HRMS: C₁₃H₁₅IN₂O [M-I⁻]⁺ calcd: 215.1179, found: 215.1185.

5,7-Dimethoxy-2-(5-oxo-pentyl)-isoquinolinium iodide (2g)

MeO MeO MeO MeO MeO Qg Qgg Qggg Qgg Qgg Qgg Qgg Qgg Qgg Qggg Qgg 3.94 (s, 3H), 2.60 (t, J = 7.1 Hz, 2H), 2.15 (quintet, J = 7.5 Hz, 2H), 1.71 (quintet, J = 7.2 Hz, 2H). ¹³C NMR (CDCl₃) δ 201.7, 162.3, 155.1, 146.1, 131.8, 130.1, 126.2, 120.9, 107.4, 98.9, 60.5, 56.5, 56.4, 42.7, 30.7, 18.1. HRMS: C₁₆H₂₀INO₃ [M-I⁻]⁺ calcd: 274.1438, found: 274.1443.

6,7-Dimethoxy-2-(5-oxo-pentyl)-isoquinolinium iodide

Note: The NMR spectra of the isoquinolinium iodides synthesized are concentration dependent. For the reported spectra the sample concentrations were 50-200 mg/mL.

Preparation of catalysts 1g, 1h and 1i.

(2S, 5S) - 2, 5-Dibenxyl-pyrrolidine (1g)

Catalyst **1g** was prepared as described in the literature $^{\mbox{\tiny [6]}}$ with the exception that the final deprotective hydrogenation was carried out at room 1g temperature in MeOH/CH₃CO₂H (5/2) under 45 bar H₂ with the catalyst. The 20% Pd(OH)₂/C as obtained data for characterization was similar to the data reported in the literature.^[6c]

(2S, 5S) -2, 5-Bis-cyclohexylmethyl-pyrrolidine (1h)

Catalyst **1h** was prepared by the procedure reported for **1g** with the exception that the final hydrogenation was performed under 50 bar $\rm H_2$ at room temperature with PtO_2 as catalyst. ¹H NMR $(CDCl_3)$ δ 3.28-3.10 (m, 2H), 1.95-1.78 (m, 2H), 1.77-1.48 (m, 10H), 1.36-1.26 (m, 2H), 1.31-0.97 (m, 12H), 0.91-0.68 (m, 4H). ¹³C NMR (CDCl₃) δ 54.9, 45.1, 35.5, 33.6, 33.5, 32.9, 26.5, 26.2. HRMS: C₁₈H₃₃N [M+H]⁺ calcd.: 264.2686, found: 264.2690.

 $[\alpha]^{22}_{D} = -6.5$ (c = 10 mg/mL, CDCl₃).

(2S, 5S) - 2, 5-Bis-(4-methoxy-benzyl)-pyrrolidine (1i)

Catalyst 1i was prepared by the procedure reported for catalyst 1g. ¹H NMR (CDCl₃) δ 7.08 (d, J = 8.7 Hz, 4H), 6.82 (d, J =8.6 Hz, 4H), 3.78 (s, 6H), 3.43 (quintet, J = 6.4 Hz, 2H), 2.65-2.70 (dd, J = 7.1,

13.4 Hz, 2H), 2.56-2.61 (dd, J = 6.9, 13.4 Hz, 2H), 1.78-1.99 (m, 3H), 1.39-1.51 (m, 2H). 13 C NMR (CDCl₃) δ 157.8, 132.0, 129.7, 113.7, 58.9, 55.1, 42.0, 31.1. HRMS: C₂₀H₂₅NO₂ [M+H]⁺ calcd.: 312.1964, found: 312.1965. $[\alpha]_{D}^{22} = +29.0$ (c = 10 mg/mL, CDCl₃).

Organocatalytic asymmetric annulation reaction of 2-(5-oxopentyl)-isoquinolinium iodide (2a) to produce 7-(2,2,2-trifluoroacetyl)-1,3,4,11b-tetrahydro-2*H*-pyrido[2,1-*a*]isoquinoline-1carbaldehyde (6a)

2-(5-Oxo-pentyl)-isoquinolinium iodide (2a) (137 mg, 0.40 mmol) was placed in a flame dried Schlenk tube fitted with a rubber septum. Freshly distilled CH_2Cl_2 (2.0 mL) was added and the mixture was cooled to -40 $^{\circ}$ C under Ar or N₂. (2*S*, 5*S*)-2, 5-Dibenzylpyrrolidine (10.2 $\mu\text{L}\text{,}$ 0.04 mmol) was added, followed by dry Et_3N (56 μ L, 0.40 mmol). The mixture was stirred at -40 $^{\circ}$ C under Ar or N_2 overnight (formation of the product 1,3,4,11b-tetrahydro-2Hpyrido[2, 1-a] isoquinoline-1-carbaldehyde (**5a**) was observed by ¹H NMR (CDCl₃) δ 9.48 (s, 1H), 7.32-6.77 (m, 4H), 6.07 (d, J = 7.3 Hz, 1H), 5.45 (d, J = 7.4, 1H), 4.53 (d, J = 9.9 Hz, 1H), 3.44-3.25 (m, 2H), 3.13-3.00 (m, 1H), 1.99-1.53 (m, 4H). Dry Et₃N (167 μ L 1.20 mmol) was then added directly to the mixture followed by DMAP (7.3 mg, 0.06 mmol). $(CF_3CO)_2O$ (85 µL, 0.60 mmol) was now added dropwise and the mixture was stirred for 45 min. under dry Ar or N_2 at -20 °C. The reaction was guenched with saturated NaHCO₃ (30 mL) and extracted with Et_2O (3 x 30 mL). The combined organic phases were washed first with 0.5 M aqueous HCl (30 mL), then with brine (50 mL). The organic layer was dried (MqSO₄) and filtered. Finally, the solvent was evaporated to obtain 7-(2,2,2-trifluoro-acetyl)-

1,3,4,11b-tetrahydro-2H-pyrido[2,1-a]isoquinoline-1-carbaldehyde
(6a).

Reduction of 7-(2,2,2-trifluoro-acetyl)-1,3,4,11b-tetrahydro-2*H*-pyrido[2,1-*a*]-isoquinoline-1-carbaldehyde (6a) to produce 2,2,2-trifluoro-1-(1-hydroxymethyl-1,3,4,11b-tetrahydro-2*H*-pyrido[2,1-*a*]isoquinolin-7-yl)-ethanone (7a)

The 7-(2,2,2-trifluoro-acetyl)-1,3,4,11b-tetra-hydro-2Hcrude pyrido[2, 1-a]-iso-quinoline-1-carbaldehyde (**6a**) was added EtOH (2 mL) and the solution was cooled on an ice-bath. $NaBH_4$ (7.6 mg, 0.20 mmol, 0.5 eq.) was added and the mixture was stirred at 0 $^\circ$ C for 20 min (TLC: 15% Et₂O in CH₂Cl₂). The reaction mixture was then quenched with saturated NH_4Cl (20 mL) and extracted with EtOAc (3 x 30 mL). The combined organic layers were washed with brine and dried (Na₂SO₄). The solvent was finally evaporated and the crude compound was purified by chromatography (eluent: 10% Et₂O in to obtain 2,2,2-trifluoro-1-(1-hydroxymethyl-1,3,4,11b- CH_2Cl_2) tetrahydro-2*H*-pyrido[2,1-*a*]isoquinolin-7-yl)-ethanone (**7a**) as а yellow solid (51 mg, 41% based on 2-(5-oxo-pentyl)-isoquinolinium iodide (2a)). ¹H NMR (CDCl₃) δ 8.59 (d, J = 8.0 Hz , 1H), 7.61 (s, 1H), 7.31 (dt, J = 1.8, 7.6 Hz, 1H), 7.17 (m, 2H), 4.61 (d, J =9.2 Hz , 1H), 3.68 (d, J = 12.8 Hz , 1H), 3.54 (m, 1H), 3.43 (m, 2H), 2.03-1.81 (m, 5H), 1.33 (t, J = 3.6 Hz , 1H). ¹³C NMR (CDCl₃) δ 173.3 (q, J = 31.1 Hz, COCF₃), 152.5, 128.4, 128.2, 127.1, 126.3,

125.9, 124.5, 118.1 (q, J = 291.4 Hz, CF_3), 102.0, 62.8, 62.3, 56.3, 43.3, 27.4, 27.3. ¹⁹F NMR (CDCl₃) δ -67.76. HRMS: $C_{16}H_{16}F_3NO_2$ [M+Na]⁺ calcd.: 334.1025, found: 334.1026. HPLC: Daicel Chiralpak AD, hexane/2-propanol (85/15), flow rate = 1.0 mL/min ($\tau_1 = 7$ and 11 min. (major diastereomer); $\tau_2 = 9$ and 14 min. (minor diastereomer)).

Organocatalytic asymmetric annulation reaction of 2-(5-oxopentyl)-isoquinolinium and phthazinium iodides 2b-g followed by reduction to produce the corresponding cyclized compounds 7b-g. Compounds 7b-g were prepared from 2b-g, respectively, by the procedure described for 6a/7a. However, the procedure differed for the compounds based on 2c,e,f in that the *in situ* protection with (CF₃CO)₂O was unnecessary. In these cases workup consisted of a simple filtration through silica (or alumina for 2f) followed by washing with CH₂Cl₂. After evaporation of the solvent the compounds 7b-g were subjected to the reduction conditions described for 7a. For yields of the respective final compounds consult Table 4 in the main paper.

It should be noted that the purity of the produced compounds **7a-g** were often suitable for HPLC analysis without purification by chromatography.

(1S,11bS)-1-(8-Bromo-1-hydroxymethyl-1,3,4,11b-tetrahydro-2Hpyrido[2,1-a]isoquinolin-7-yl)-2,2,2-trifluoro-ethanone (7b)

White solid. ¹H NMR (CDCl₃) δ 7.66 (s, 1H), 7.58 (d, J = 7.7 Hz, 1H), 7.15 (d, J = 7.6 Hz, 1H), 7.05 (t, J = 7.6 Hz, 1H), 7.05 (t, J = 7.6 Hz, 1H), 4.49 (d, J = 10.4 Hz, 1H), 3.68-3.59 (m, 2H), 3.45 (d, J = 10.5 Hz, 1H), 3.34 (dt, J = 3.2, 13.0 Hz, 1H), 2.05-1.77 (m, 5H). ¹³C NMR (CDCl₃) δ 172.4 (q, J = 32.4 Hz, COCF₃), 153.0 134.3, 131.8, 128.7, 127.4, 126.5, 120.5, 118.5 (q, J = 290.6 Hz, CF₃), 106.9, 64.4, 62.3, 55.3, 40.5, 27.3,

27.0. ¹⁹F NMR (CDCl₃) δ -69.56. HRMS: C₁₆H₁₅BrF₃NO₂ [M+Na]⁺ calcd.: 412.0130, found: 412.0135. HPLC: Daicel Chiralpak AD+AS, hexane/2propanol (90/10), flow rate = 0.5 mL/min (τ_1 = 48 and 69 min. (major diastereomer); τ_2 = 59 and 77 min. (minor diastereomer)).

(7-Phenyl-1,3,4,11b-tetrahydro-2H-pyrido[2,1-a]isoquinolin-1-yl)methanol (7c)

Ph Yellow oil. ¹H NMR (CDCl₃) δ 7.39-7.08 (m, 9H), 6.26 (s, 1H,), 4.27 (d, J = 9.6 Hz, 1H), 3.48-3.37 (m, 3H), 3.14 (dt, J = 4.2, 11.4 Hz, 1H), 2.30 (m, 1H,), 1.97 (m, 1H), 1.78-1.56 (m, 3H), 1.10 (t, J = 4.4 Hz, 1H). ¹³C NMR (CDCl₃) δ 138.8, 137.1, 132.6, 128.4, 128.4, 127.6, 127.1, 125.7, 125.2, 121.8, 113.3, 63.9, 62.6, 53.5, 37.1, 27.8, 25.6. HRMS: C₂₀H₂₁NO [M+Na]⁺ calcd.: 314.1515, found: 314.1525. HPLC: Daicel Chiralpak AD, hexane/2-propanol (95/5), flow rate = 1.0 mL/min ($\tau_1 = 12$ and 19 min. (major diastereomer); $\tau_2 = 16$ and 31 min. (minor diastereomer)).

2,2,2-Trifluoro-1-(1-hydroxymethyl-8-nitro-1,3,4,11b-tetrahydro-2H-pyrido[2,1-a]isoquinolin-7-yl)-ethanone (7d)

Orange solid. ¹H NMR (acetone- d_6) δ 8.09 (s, 1H), 7.69 (d, J = 7.8 Hz, 1H), 7.58 (d, J = 7.8 Hz, 1H), (t, J = 7.8 Hz, 1H), 4.84 (d, J = 9.6 Hz, 1H), 4.11 (dd, J = 4.8, 13.2 Hz, 1H), 4.02 (t, J = 4.8 Hz, 1H), 3.53 (m, 2H), 3.40 (m, 1H), 2.87 (m, 2H), 2.01 (m, 2H), 1.86 (m, 1H). ¹³C-NMR (acetone- d_6) δ 155.9, 148.5, 133.9, 133.3, 127.9, 125.8, 123.2, 119.6 (q, J = 289.8 Hz, **C**F₃), 102.2, 64.9, 62.4 (d, J = 12.9 Hz), 56.7, 43.8, 29.1, 28.8 (carbonyl not observed due to solubility problems). ¹⁹F NMR (CDCl₃) δ -69.37. HRMS: C₁₆H₁₅F₃N₂O₄ [M+Na]⁺ calcd.: 379.0876, found: 379.0871. HPLC: Daicel Chiralcel OD, hexane/2-propanol (85/15), flow rate = 1.0 mL/min ($\tau_1 = 25$ and 34 min. (major diastereomer); $\tau_2 = 47$ and 51 min. (minor diastereomer)).

(7,8,9,9a-Tetrahydro-6H-pyrido[1,2-f]phenanthridin-9-yl)-methanol (7e)

Yellow oil. ¹H NMR (CDCl₃) δ 7.72 (d, J = 7.6 Hz , 2H), 7.34 (t, J = 8.0 Hz, 1H,), 7.52-7.21 (m, 3H), 6.86 (d, J= 8.0 Hz, 1H), 6.82 (t, J = 7.6 Hz, 1H), 4.31 (d, J =10.0 Hz , 1H), 4.08 (d, J = 14.8 Hz , 1H), 3.39 (s, 2H), 3.18 (t, J = 13.6 Hz, 1H,), 2.18-1.59 (m, 5H). ¹³C NMR (CDCl₃) δ 144.6, 133.1, 129.5, 128.2, 127.4, 127.0, 124.0, 122.9, 118.0, 114.0, 64.3, 64.2, 47.8, 38.8, 28.9, 20.7. HRMS: C₁₈H₁₉NO [M+H]⁺ calcd.: 266.1539, found: 266.1538. HPLC: Daicel Chiralpak AD+AS, hexane/2-propanol (90/10), flow rate = 0.5 mL/min ($\tau_1 = 40$ and 43 min. (major diastereomer); $\tau_2 = 54$ and 62 min. (minor diastereomer)).

(1,3,4,11b-Tetrahydro-2H-pyrido[2,1-a]phthalazin-1-yl)-methanol (7f)

Pale yellow solid. ¹H NMR (CDCl₃) δ 7.43 (s, 1H), 7.30-7.22 (m, 2H), 7.11-7.09 (m, 2H), 4.20 (d, J = 10.8 Hz, 1H), 3.69 (d, J = 13.0 Hz, 1H), 3.28 (m, 2H), 3.14 (t, J = 13.4 Hz, 1H), 2.01-1.85 (m, 3H), 1.67-1.53 (m, 2H). ¹³C NMR (CDCl₃) δ 138.2, 131.1, 129.7, 128.0, 126.7, 124.9, 124.1, 63.3, 59.2, 55.0, 35.1, 27.3, 23.8. HRMS: C₁₃H₁₆N₂O [M+H]⁺ calcd.: 217.1335, found: 217.1348. HPLC: Daicel Chiralpak AS, hexane/2propanol (90/10), flow rate = 1.0 mL/min ($\tau_1 = 7$ and 9 min. (major diastereomer); $\tau_2 = 15$ min. (minor diastereomer)).

2,2,2-Trifluoro-1-(1-hydroxymethyl-8,10-dimethoxy-1,3,4,11btetrahydro-2*H*-pyrido[2,1-*a*]isoquinolin-7-yl)-ethanone (7g)

Yellow solid. 1 H NMR (CDCl $_{3}$) δ 7.30 (s, 1H), 6.39 (d, MeO O _CF₃ J = 2.40 Hz, 1H), 6.35 (d, J = 2.40 Hz, 1H), 4.37 (d, J = 10.0 Hz, 1H), 3.80 (s, 3H), 3.78 (s, 3H),MeO 3.47-3.65 (m, 4H), 3.24 (m, 1H), 2.05-1.75 (m, 5H). 7g ¹³C NMR (CDCl₃) δ 178.9 (q, J = 33.4 Hz, COCF₃), OН 159.4, 154.9, 148.5, 129.4, 125.5, 117.6 (q, J = 289.8 Hz, CF_3), 111.6, 104.1, 97.8, 63.9, 63.2, 55.2 (d, J = 34.0 Hz), 54.6, 39.8, 29.7, 27.3, 26.9. ¹⁹F NMR (CDCl₃) δ -74.40. HRMS: C₁₈H₂₀F₃NO₄ [M+Na]⁺ calcd.: 394.1237, found: 394.1249. HPLC: Daicel Chiralpak AD, hexane/2-propanol (85/15), flow rate = 1.0 mL/min (τ_1 = 12 and 14 diastereomer); τ_2 = 26 and 27 min. min. (major (minor diastereomer)).

Racemic annulation reactions of 2-(5-oxo-pentyl)-isoquinolinium Iodides 2a-g followed by reduction to produce the corresponding cyclized compounds 7a-g.

Racemic 6a-g/7a-g were prepared be the procedure described for the asymmetric cases with the exception that the chiral catalyst and Et₃N were replaced by DBU (1.0 eq.) and the annulation reactions were run at room temperature instead of -40 °C.

Crystal Data for compound 7b.^[7]

References

[1] M. Fujita, H. Egawa, T. Miyamoto, J. Nakano, J. Matsumoto, *Eur. J. Med. Chem.* **1996**, *31*, 981.

[2] D. L. Boger, C. E. Brotherton, M. D. Kelley, *Tetrahedron* **1981**, 37, 3977.

[3] R. B. Miller, J. J. Svoboda, Synth. Commun. 1994, 24, 1187.

[4] N. Halland, R. G. Hazell, K. A. Jørgensen, J. Org. Chem. 2002,67, 8331.

[5] J. M. Chong, I. S. Clarke, I. Koch, P. C. Olbach, N. J. Taylor, Tetrahedron: Asymmetry 1995, 6, 409.

[6] (a) Y. Yamamoto, J.Hoshino, Y.Fujimoto, J.Ohmoto, S. Sawada, Synthesis 1993, 298; b) M. Nakajima, K. Tomioka, K. Koga, Tetrahedron 1993, 49, 9735; c) K. T. Sprott, E. J. Corey, Org. Lett. 2003, 5, 2465.

[7] CCDC xxxx contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or deposit@ccdc.cam.ac.uk).