Unusual Rate Enhancement of Bimolecular Dehydrocondensation Forming Amides at the Interface of Micelles of Fatty Acid Salt

Munetaka Kunishima, Hiroko Imada, Kanako Kikuchi, Kazuhito Hioki, Jin Nishida, Shohei Tani

Faculty of Pharmaceutical Sciences, Kobe Gakuin University, PRESTO, JST, Nishi-ku, Kobe 651-2180, Japan

Experimental details including synthesis and characterization of 2, 3, and 6

General methods. 1H and spectra were recorded on a Bruker DPX 400 spectrometer. Chemical shifts are reported as δ values relative to tetramethylsilane as internal standard. Infrared spectra were recorded on a Nicolet FT-IR AVATER 360 spectrometer. Mass spectra were measured on a Waters MassLynx 4.0 (ESI-MS), and a JEOL The MStation JMS-700 (FAB-MS). GC analysis was performed on a Silicon SE-30 (2 m) or OV-17 (2 m). Preparative thin-layer chromatography (PTLC) was performed on Merck precoated silica gel plates.

Preparation of octyl N,N-dimethylaminoacetate ($2b$)
To a suspension of N,N-dimethylglycine hydrochloride (2.23 g, 0.016 mol), 1-octylalcohol (2.08 g, 0.016 mol), triethylamine (1.62 g, 0.016 mol), and N,N-dimethylaminopyridine (0.195 g, 1.6 mmol) in DMF (100 mL) was added 1,3-dicyclohexylcarbodiimide (3.63 g, 0.0176 mol) in dry DMF (100 mL) under nitrogen atmosphere. After being stirred for 1 day, the solvent was removed in vacuo, and the residue was dissolved in ether. The organic layer was washed successively with NaHCO$_3$, water, and brine, and then dried over MgSO$_4$. The crude mixture was purified by silica gel column chromatography (hexane : AcOEt : Et$_3$N = 50 : 50 : 1) to give $2b$ (2.03 g, 59% yield). Colorless liquid; 1NMR(CDCl$_3$) δ 0.85 (3H, t, J = 6.9 Hz), 1.21-1.33 (m, 10H), 1.57-1.65 (m,
2H), 2.32 (s, 6H), 3.13 (s, 2H), 4.09 (t, J = 6.8 Hz, 2H); IR (neat) 2928, 1753 cm\(^{-1}\); ESI-MS m/z 216 [(M+1)]. Anal. Calcd for C\(_{12}\)H\(_{25}\)NO\(_2\): C, 66.93; H, 11.70; N, 6.50. Found: C, 66.48; H, 11.53; N, 6.52.

Dodecyl N,N-dimethylaminoacetate (2c): 48% yield. Colorless liquid; NMR(CDCl\(_3\)) \(\delta\) 0.88 (t, \(J = 6.9\) Hz, 3H), 1.23-1.31 (m, 18H), 1.59-1.68 (m, 2H), 2.35 (s, 6H), 3.16 (s, 2H), 4.12 (t, \(J = 6.8\) Hz, 2H); IR (neat) 2923, 1749 cm\(^{-1}\); ESI-MS m/z 272 [(M+1)]. Anal. Calcd for C\(_{16}\)H\(_{33}\)NO\(_2\): C, 70.80; H, 12.25; N, 5.16. Found: C, 71.06; H, 11.97; N, 5.31.

Hexadecyl N,N-dimethylaminoacetate (2d): 44% yield. Colorless liquid; NMR(CDCl\(_3\)) \(\delta\) 0.88 (t, \(J = 6.8\) Hz, 3H), 1.23-1.30 (m, 26H), 1.59-1.68 (m, 2H), 2.35 (s, 6H), 3.16 (s, 2H), 4.12 (t, \(J = 6.8\) Hz, 2H); IR (neat) 2923, 1742 cm\(^{-1}\); ESI-MS m/z 328 [(M+1)]. Anal. Calcd for C\(_{20}\)H\(_{41}\)NO\(_2\): C, 73.34; H, 12.62; N, 4.28. Found: C, 72.72; H, 12.36; N, 4.28.

General procedure for preparation of alkyl 2-[(N-(4,6-dimethoxy-1,3,5-triazin-2-yl)-N,N-dimethylammonio)acetate trifluoromethanesulfonate (3a-d).[1]

To a solution of 2-hydroxy-4,6-dimethoxy-1,3,5-triazine (HO-DMT; 1.46 g, 9.3 mmol) in dry CH\(_2\)Cl\(_2\) (160 mL) was added trifluoromethanesulfonic anhydride (2.89g, 10.2 mmol) and N,N-disopropylethylamine (1.2 g, 9.3 mmol) under nitrogen atmosphere. After being stirred for 1 h, the mixture was washed with water (three times), dried (MgSO\(_4\)), and concentrated. The resulting residue was dissolved in THF (24 mL), and then, 2 (3.7 mmol) in THF (16 mL) was added. After being stirred for 1 h, the solvent was removed in vacuo, and the residue was purified by decantation (hexane and ether) to give 3.

Ethyl 2-(N-(4,6-dimethoxy-1,3,5-triazin-2-yl)-N,N-dimethylammonio)acetate trifluoromethanesulfonate (3a): 79% yield. Pale yellow crystals; mp 52-56°C; \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 1.29 (t, \(J = 7.2\) Hz, 3H), 3.79 (s, 6H), 4.17 (s, 6H), 4.21 (q, \(J = 7.2\) Hz, 2H), 5.10 (s, 2H); IR (KBr) 2922, 1765, 1617 cm\(^{-1}\); ESI-MS m/z 271 [(M-CF\(_3\)SO\(_2\)]+]; Anal. calcd for C\(_{12}\)H\(_{19}\)F\(_3\)N\(_2\)O\(_5\): C 34.29; H, 4.56; N, 13.33. Found: C, 34.22; H, 4.41; N, 13.47.

Octyl 2-(N-(4,6-dimethoxy-1,3,5-triazin-2-yl)-N,N-dimethylammonio)acetate trifluoromethanesulfonate (3b): 75% yield. Colorless crystals; mp 51-53°C. \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 0.88 (t, \(J = 6.9\) Hz, 3H), 1.23-1.34 (m, 10H), 1.59-1.67 (m, 2H), 3.79 (s, 6H), 4.14
(t, J = 6.8 Hz, 2H), 4.17 (s, 6H), 5.10 (s, 2H); IR (KBr) 2972, 1741, 1630 cm\(^{-1}\); ESI-MS m/z 355 [(M-CF\(_3\)SO\(_3\))^\(\cdot\)]. Anal. Calcd for C\(_{19}\)H\(_{31}\)F\(_3\)N\(_4\)O\(_7\)S: C, 42.85; H, 6.19; N, 11.10. Found: C, 42.67; H, 5.93; N, 11.16.

Dodecyl 2-(N-(4,6-dimethoxy-1,3,5-triazin-2-yl)-N,N-dimethylammonio)acetate trifluoromethanesulfonate (3c): 63% yield. Colorless crystals; mp 52-54°C. \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 0.88 (t, \(J = 6.8\) Hz, 3H), 1.23-1.34 (m, 18H), 1.59-1.68 (m, 2H), 3.80 (s, 6H), 4.14 (t, \(J = 6.8\) Hz, 2H), 4.17 (s, 6H), 5.11 (s, 2H); IR (KBr) 2918, 1764, 1619 cm\(^{-1}\); ESI-MS m/z 411 [(M-CF\(_3\)SO\(_3\))^\(\cdot\)]. Anal. Calcd for C\(_{22}\)H\(_{39}\)F\(_3\)N\(_4\)O\(_7\)S: C, 47.13; H, 7.01; N, 9.99. Found: C, 46.97; H, 7.08; N, 10.04.

Hexadecyl 2-(N-(4,6-dimethoxy-1,3,5-triazin-2-yl)-N,N-dimethylammonio)acetate trifluoromethanesulfonate (3d): 44% yield. Colorless crystals; mp 59-61°C. \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 0.88 (t, \(J = 6.8\) Hz, 3H), 1.23-1.33 (m, 26H), 1.59-1.68 (m, 2H), 3.79 (s, 6H), 4.14 (t, \(J = 6.8\) Hz, 2H), 4.17 (s, 6H), 5.10 (s, 2H); IR (KBr) 2916, 1765, 1612 cm\(^{-1}\); ESI-MS m/z 467 [(M+1)^\(+\)]. Anal. Calcd for C\(_{26}\)H\(_{47}\)F\(_3\)N\(_4\)O\(_7\)S·H\(_2\)O: C, 49.20; H, 7.78. Found: C, 49.50; H, 7.61.

General procedure for the kinetic study of stoichiometric reaction between 1 and 3 is described in experimental section in the text.

\(\text{N-Butylbutanamide (6A)}^{[2,3]}\): Colorless liquid; NMR(CDCl\(_3\)) \(\delta\) 0.92 (t, \(J = 7.3\) Hz, 3H), 0.94 (t, \(J = 7.4\) Hz, 3H), 1.31-1.39 (m, 2H), 1.43-1.52 (m, 2H), 1.62-1.69 (m, 2H), 2.13 (t, \(J = 7.5\) Hz, 2H), 3.22-3.28 (m, 2H), 5.39 (br. s, 1H); IR (neat) 3288, 1649, 1559 cm\(^{-1}\); ESI-MS m/z 144 [(M+1)^\(+\)].

\(\text{N-Butyloctanamide (6B)}^{[3]}\): Colorless liquid; NMR(CDCl\(_3\)) \(\delta\) 0.87 (t, \(J = 6.9\) Hz, 3H), 0.92 (t, \(J = 7.3\) Hz, 3H), 1.23-1.40 (m, 10H), 1.43-1.52 (m, 2H), 1.57-1.66 (m, 2H), 2.15 (t, \(J = 7.6\) Hz, 2H), 3.21-3.28 (m, 2H), 5.37 (br. s, 1H); IR (neat) 3288, 1641, 1561 cm\(^{-1}\); ESI-MS m/z 200 [(M+1)^\(+\)].

\(\text{N-Butyldodecanamide (6C)}^{[4]}\): Colorless crystals; mp 45-46°C. (CH\(_2\)Cl/hexane). NMR (CDCl\(_3\)) \(\delta\) 0.88 (t, \(J = 6.9\) Hz, 3H), 0.92 (t, \(J = 7.3\) Hz, 3H), 1.20-1.40 (m, 18H), 1.43-1.52 (m,
2H), 1.57-1.67 (m, 2H), 2.15 (t, J = 7.6 Hz, 2H), 3.22-3.28 (m, 2H), 5.36 (br. s, 1H); IR (KBr) 3293, 1633, 1548 cm⁻¹; ESI-MS m/z 256 [(M+1)⁺].

\(\text{N-Butyloleamide (6D)}^{[4]} \): Colorless liquid; NMR(CDCl₃) δ 0.88 (t, J = 6.9 Hz, 3H), 0.92 (t, J = 7.3 Hz, 3H), 1.20-1.40 (m, 22H), 1.43-1.52 (m, 2H), 1.58-1.65 (m, 2H), 1.97-2.04 (m, 4H), 2.14 (t, J = 7.6 Hz, 2H), 3.21-3.28 (m, 2H), 5.31-5.40 (m, 3H); ESI-MS m/z 338 [(M+1)⁺].

General procedure for the competitive amide-formation.

To a stirred aqueous solution (1.7 mL) containing two kinds of sodium carboxylates 1 (30 µmol each), butylamine hydrochloride (5•HCl, 40 µmol) in sodium phosphate buffer (pH 8) was added 3 (6 µmol in 20% aq. MeOH, 0.3 mL) at 25°C. The initial concentration of reactants in the resulting solution were as follows: 1: 15 mM (each); 5: 20 mM; 3: 1.5 mM; NaPi: 20 mM; and MeOH: 3%. The mixture was stirred at 25°C, and 5M HCl (0.3 mL) was added at a definite time. The resulting mixture was applied to Extrelut® NT (Merck, 2 g) and eluted with AcOEt. The product was quantified by GC (Silicone SE-30 for 6A, Silicone OV-17 for 6B-D).

General procedure for the kinetic study of catalytic reaction using 2 and 2-chloro-4,6-dimethoxy-1,3,5-triazine (DMT-Cl).

To a stirred aqueous solution (9.65 mL) containing sodium carboxylate 1 (150 µmol), butylamine hydrochloride (5•HCl, 200 µmol), in sodium phosphate buffer (pH 8) was added tertiary amine catalyst 2 (15 µmol dissolved in 0.05 mL MeOH). The reaction was started by addition of, followed by DMT-Cl (150 µmol in 0.3 mL MeOH) at 25°C. The initial concentration of reactants in the resulting solution were as follows: 1: 15 mM; 5: 20 mM; 2: 1.5 mM; DMT-Cl: 15 mM; NaPi: 200 mM; and MeOH: 3.5%. The mixture was stirred at 25°C, and 5M HCl (0.3 mL) was added at a definite time. The resulting mixture was applied to Extrelut® NT (Merck, 2 g) and eluted with AcOEt. The product was quantified by GC (Silicone OV-17). The pseudo-first-order rate constants were determined from the slopes of liner plots of ln([I]₀/[I]₀) versus time (t).

References

