

Supporting Information © Wiley-VCH 2006

69451 Weinheim, Germany

Formation of S-Shaped Disilicoeicosatungstate (W_{20}) and the Efficient Baeyer-Villiger Oxidation with Hydrogen Peroxide

Akihiro Yoshida, Masayuki Yoshimura, Kazuhiro Uehara, Shiro Hikichi, and Noritaka Mizuno*

Experimental details

Instruments. IR measurements were carried out as KBr pellets using JASCO FT/IR-460 plus spectrometer. NMR spectra were recorded at room temperature on JEOL JNM-EX-270 (¹H, 270.0 MHz; ¹³C, 67.8 MHz) spectrometer. Chemical shifts (δ) were reported in ppm downfield from internal SiMe₄. UV-vis spectra were recorded on a Perkin Elmer Lambda 12 spectrometer. Gas chromatographic (GC) analysis was carried out on a Perkin Elmer Autosystem GC equipped with a TC-WAX column (30 m, 0.25 mmID, 0.25 μmdf; GL-Science).

Materials and Methods. The solvents (acetonitrile and 1,2-dichloroethane) used for the syntheses of the silicotungstates were dried with P_2O_5 , distilled, and stored under argon. Nitromethane (Tokyo Kasei Kogyo Co., Ltd.; 98.0 %) for the catalytic reactions was used as received. The commercially available reagents of the highest grade were used without further purification. The starting material of the silicotungustate, $K_8[SiW_{10}O_{36}] \cdot 8H_2O$ ($K_8 \cdot [1'] \cdot 8H_2O$), was prepared according to the reported method. [1]

Synthesis of tetra-*n*-butylammonium salt of [g-SiW₁₀(H₂O)₂O₃₄]⁴⁻ (TBA₄·[1]). The non-protonated silicodecatungustate, [γ -SiW₁₀O₃₆] (1'), was purified by the cation exchange method: The potassium salt of 1' (K₈·[1']·8H₂O; 12.2 g, 4.7 mmol) was dissolved in 240 mL of H₂O. The addition of RbCl (1.50 g, 12.5 mmol) to this solution resulted in the white precipitate of impurities and then the impurities were

removed by the filtration. The evaporation of the filtrate yielded white solids of Rb salt of **1'**. The obtained Rb salt of **1'** (3.5 g, 1 mmol) was dispersed in 35 mL of water and then the pH of this aqueous solution was adjusted to 2 with 20 % HNO₃. After stirring the resulting clear solution for 5 min at room temperature, an excess amount of $[(n-C_4H_9)_4N]Br$ (1.48 g, 1.15 mmol) was added in a single step. The resulting white precipitate was collected by the filtration and then washed with an excess amount of H_2O (three times). An analytically pure white powder of $TBA_4\cdot[1]$ was obtained by the evacuation to dryness at room temperature.

Checking the effect of $CF_3SO_3^-$ on the catalytic activity of 2. The ¹⁹F NMR analysis revealed that a small amount of the TBA salt of $CF_3SO_3^-$ (< 0.8 mol % of 2) was contained in the crystalline solid of as-prepared catalyst 2. We confirmed that the presence of $CF_3SO_3^-$ did not affect the BV oxidation of cyclopentanone as follows: The reaction rate with 2 was not changed by the addition of $TBA \cdot CF_3SO_3$ (10 mol % of 2). In addition, we carried out the control experiment by using 0.005 mol % of CF_3SO_3H instead of 0.5 mol % of 2 with respect to CF_3SO_3H (the amount of CF_3SO_3H corresponded to the 1 mol % of 2). The initial rate for CF_3SO_3H (4.97 × 10-2 mM·min-1) was almost CF_3SO_3H times smaller than that for 2 (49.5 mM·min-1). Therefore, the effect of the contaminated $CF_3SO_3^-$ (or CF_3SO_3H) on the oxidation catalysis is negligible.

Reference for supporting information

(1) A. Tézé, G. Hervé, *Inorg. Synth.* **1990**, 27, 85.

Table S-1: Reported catalytic Baeyer-Villiger oxidation with H_2O_2 .

Catalyst	Amount of catalyst [mol%]		Ketone Ketone	Ratio of H ₂ O ₂ /Ketone	Vield	Selec. efficienc	H_2O_2	TON	Solvent	Temp.	Time	ref.
Ş—(Se') 1.46 DH	30	cyclopetanone	1.8	98	-	54	67	CH ₂ Cl ₂	298	72 h	[1]
	Л	2	2-methylcyclopentanone		86	-	48	59		298	103 h	[1]
			cyclobutanone		96	-	53	66		298	3 h	[1]
		2,	6-dimethylcyclohexanon	e	92	-	51	63		298	108 h	[1]
F ₃ C	0.5	60	cyclobutanone	2.0	89	90	45	178	CF ₃ CH ₂ OH	293	1 h	[2]
F ₃ C	2		cyclopentanone		89	94	45	178		293	8 h	[2]
			cyclohexanone		94	99	47	188		293	4 h	[2]
			2-adamantanone		99	99	50	198		293	1 h	[2]
As:	OH :O 3.2 OH	90	cyclohexanone	0.2	63	80	80	20	Dioxane	353	7 h	[3]
_ (Л		2-methylcyclohexanone		78	100	100	24		353	5 h	[3]
			cyclopetanone		79	85	79	24		353	8 h	[3]
			cyclobutanone		98	100	100	30		353	0.5 h	[3]
Sn/Hydrotalcit Sn = 1.5 wt%		30	cyclohexanone	4	26	100	6.5	102	MeCN	343	4 h	[4]
			2-methylcyclohexanone		42	100	11	164		343	4 h	[4]
			3-methylcyclohexanone		32	100	8.0	125		343	4 h	[4]
			4-methylcyclohexanone		26	100	6.5	102		343	4 h	[4]
			cyclopentanone		16	100	4.0	63		343	4 h	[4]
Sn-zeolite bet Sn = 1.5 wt%	1.0	30	cyclohexanone	0.67	52	>98	52	52	Dioxane	363	3 h	[5]
	0.67		2-adamantanone	1	94	>98	94	140	MTBE	329	6 h	[5]
p-TsOH	1.0	50	cyclohexanone	1.3	92	>99	71	92	(CF ₃) ₂ CHOF	H 333	40 min	[6]
Amberlyst 15	5 -	30	cyclopentanone	1.5	66	69	44	-	solventless	343	6 h	[7]
H-ZSM-5	-	30	cyclopentanone	ca. 5	15	32	ca. 3	-	1,2-DCE	313	5 h	[8]

[1] R. T. Taylor, L. A. Flood, *J. Org. Chem.* **1983**, *48*, 5160. [2] G.-J. ten Brink, J. Vis, W. C. E. Arends, R. A. Sheldon, *J. Org. Chem.* **2001**, *66*, 2429. [3] S. E. Jacobson, F. Mares, P. M. Zambri, *J. Am. Chem. Soc.* **1979**, *101*, 6938. [4] U. R. Pillai, E. Sahle-Demessie, *J. Mol. Catal. A* **2003**, *191*, 93. [5] A. Corma, L. T. Nemeth, M. Renz, S. Valencia, *Nature* **2001**, *412*, 423. [6] A. Berkessel, M. R. M. Andreae, *Tetrahedron Lett.* **2001**, *42*, 2293. [7] J. Fischer, W. F. Holderich, *Appl. Catal. A* **1999**, *180*, 435. [8] Z. B. Wang, T. Mizusaki, Y. Kawakami, *Bull. Chem. Soc. Jpn.* **1997**, *70*, 2567.

Table S-1 (continued)

Catalyst	Amount of catalyst [mol%]	H ₂ O ₂ conc [%]		Ratio of H ₂ O ₂ /Ketone		Selec. efficienc	H ₂ O ₂ y [%]	TON	Solvent	Temp.	Time	ref.
CH₃ReO₃	6.4	?	cyclobutanone	2.7	80	100	30	13	MeCN	298	12 h	[9]
			cyclopentanone		15	75	5.6	2.3		298	72 h	[9]
			cyclohexanone		21	100	7.8	3.3		298	72 h	[9]
			methylcyclohexanone		20	61	7.4	3.1		298	72 h	[9]
CH₃ReO₃	0.3	3.0 M Et ₂ O soln.	cyclobutanone derivatives	8 2.2	63-80	-	29-36	210-267	Et ₂ O	293	1-24 h	[10]
CH ₃ ReO ₃ / [bmim]BF ₄	2.0	50	cyclobutanone	2	>98	>99	>49	>49	MeCN	r.t.	1 h	[11]
			cyclopentanone	6	70	<71	12	35		333	24 h	[11]
			2-methylcyclopentanone	6	75	<77	13	38		333	24 h	[11]
			3-methylcyclopentanone	6	74	82	12	37		333	24 h	[11]
			cyclohexanone	6	20	50	3.3	10		333	48 h	[11]
			2-methylcyclohexanone	6	20	53	3.3	10		333	48 h	[11]
			3-methylcyclohexanone	6	18	50	3.0	9.0		333	48 h	[11]
			2-Adamantanone	4	>98	>99	>25	>49		333	12 h	[11]
O	6.4	70	cyclopentanone	1.6	35	54	43	5.5	MeCN	343	9 h	[12]
ال السابيان م	''IIO 3.3	90	cyclopentanone	1	40	95	40	12	MeCN	333	24 h	[13]
OH ₂	20		2-methylcyclopentanone		82	95	82	25		333	24 h	[13]
	_		cyclohexanone		10	100	10	3.0		333	24 h	[13]
			2-methylcyclohexanone		10	47	10	3.0		333	24 h	[13]
$\begin{bmatrix} P & H & H \\ P & M & D & M \\ P & M & P \end{bmatrix}$) _{(BF₄)₂}	= 1,4-bis(di	phenylphosphino)buta	ne								
M = Pt	10	60	2-methylcyclohexanone	1	55	-	55	5.5	1,2-DCE	298	5 h	[14]
M = Pd	10	60	2-methylcyclohexanone	1	4.9	-	4.9	0.49		298	1 h	[14]

[9] W. A. Herrmann, R. W. Fischer, J. D. G. Correia, *J. Mol. Catal.* **1994**, *94*, 213. [10] A. M. F. Phillips, C. Romao, *Eur. J. Org. Chem.* **1999**, 1767. [11] R. Berinini, A. Coratti, G. Fabrizi, A. Goggiamani, *Tetrahedron Lett.* **2003**, *44*, 8991. [12] S. Campestrini, F. D. Furia, *J. Mol. Catal.* **1993**, *79*, 13. [13] S. E. Jacobson, R. Tang, F. Mares, *J. Chem. Soc., Chem. Commun.* **1978**, 888. [14] R. Gavagnin, M. Cataldo, F. Pinna, G. Strukul, *Organometallics* **1998**, *17*, 661.