1,8-Bis(dimethylamino)naphthalene 2,7-Diolate: The Simplest Arylamine Nitrogen Base with Hydride-Ion-Comparable Proton Affinity**

Valery A. Ozeryanskii,* Aleksey A. Milov,
Vladimir I. Minkin, and Alexander F. Pozharskii
Table S1. Total energies (in a.u.) of structures 1-13 calculated in the gas phase and in solution (DMSO)[a].

<table>
<thead>
<tr>
<th>Structure</th>
<th>R</th>
<th>B3LYP/6-31G**</th>
<th>B3LYP/6-311++G**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Gas</td>
<td>DMSO</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>-653.833347</td>
<td>-653.833215</td>
</tr>
<tr>
<td></td>
<td>1H+</td>
<td>-654.246998</td>
<td>-654.300939</td>
</tr>
<tr>
<td>2</td>
<td>2,7-OMe</td>
<td>-882.866594</td>
<td>-882.864760</td>
</tr>
<tr>
<td></td>
<td>2H+</td>
<td>-883.304374</td>
<td>-883.349140</td>
</tr>
<tr>
<td>4</td>
<td>2,7-OH</td>
<td>-804.259808</td>
<td>-804.265084</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[-804.268814]</td>
</tr>
<tr>
<td>6</td>
<td>2,7-OH</td>
<td>-804.694155</td>
<td>-804.750166</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[-804.754411]</td>
</tr>
<tr>
<td>9</td>
<td>2-OH,7-O-</td>
<td>-803.692288</td>
<td>-803.765738</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[-803.760074]</td>
</tr>
<tr>
<td>7</td>
<td>2-OH,7-O-</td>
<td>-804.265624</td>
<td>-804.278909</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[-804.274317]</td>
</tr>
<tr>
<td>5</td>
<td>2,7-O-</td>
<td>-803.002671</td>
<td>-803.251425</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[-803.241614]</td>
</tr>
<tr>
<td>8</td>
<td>2,7-O-</td>
<td>-803.704467</td>
<td>-803.784719</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[-803.775085]</td>
</tr>
<tr>
<td>10</td>
<td>4,5-OH</td>
<td>-804.272570</td>
<td>-804.277894</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[-804.280322]</td>
</tr>
<tr>
<td>10H+</td>
<td>4,5-OH</td>
<td>-804.692483</td>
<td>-804.750919</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[-804.755207]</td>
</tr>
<tr>
<td>12</td>
<td>4-OH, 5-O-</td>
<td>-803.727866</td>
<td>-803.792854</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[-803.796403]</td>
</tr>
<tr>
<td>11</td>
<td>4-OH, 5-O-</td>
<td>-804.270480</td>
<td>-804.287047</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[-804.292061]</td>
</tr>
<tr>
<td>13</td>
<td>4,5-O-</td>
<td>-802.971211</td>
<td>-803.242503</td>
</tr>
<tr>
<td>13H+</td>
<td>4,5-O-</td>
<td>-803.640282</td>
<td>-803.740769</td>
</tr>
</tbody>
</table>

[a] Single point IEFPCM calculations; results of calculations with full geometry optimization in the presence of solvent see in brackets.
Figure S1. Gas phase calculated geometries of molecules 1 and 2 and their protonated forms (bond lengths in angstroms, angles in degrees).
Figure S2. Gas phase calculated geometries of structures 10-12 (bond lengths in angstroms, angles in degrees).
Figure S3. Gas phase calculated geometries of ions 13 and 13H⁺ (bond lengths in angstroms, angles in degrees).
Figure S4. Solution geometries of 1, 4 and 6 (bond lengths in angstroms, angles in degrees).
Figure S5. Solution geometries of structures 5, 7-9 (bond lengths in angstroms, angles in degrees).
Figure S6. Solution geometries of structures 10-12 (bond lengths in angstroms, angles in degrees).