

Supporting Information

© Wiley-VCH 2006

69451 Weinheim, Germany

Introduction of 2,2,2-trichloroethyl-Protected Sulfates into Monosaccharides using a Sulfuryl Imidazolium Salt and its application to the Synthesis of Sulfated Carbohydrates

Laura J. Ingram and Scott D. Taylor

Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1

General Information: All reactions were carried out under argon with freshly distilled solvents unless otherwise noted. Tetrahydrofuran (THF) and Et₂O were distilled from sodium metal in the presence of benzophenone under argon. CH₂Cl₂ was distilled from calcium hydride under nitrogen. All commercially available reagents were obtained from Aldrich Chemical Company (Oakville, Ontario, Canada) and were used as received, with the exception of TMSOTf, which was immediately distilled into a Schlenk tube and stored under argon. Flash chromatography was performed using silica gel 60Å (234-400 mesh) obtained from Silicycle (Laval, Quebec, Canada). ¹H, ¹⁹F, ¹³C and 2D spectra were recorded on a Brüker Avance 300MHz or Brüker Avance 500 MHz spectrometer. Chemical shifts (d) for ¹H NMR spectra are reported in parts per million (ppm) relative to Me₄Si (0.0 ppm) or DMSO-d₆ (2.49 ppm) and are reported as follows: chemical shift (ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broadened), integration, coupling constant in Hz, and assignment. Chemical shifts (d)for ¹³C spectra are reported in ppm relative to $CDCl_3$ (*d* 77.0, central peak) or DMSO- d_6 (d 39.5, central peak). Chemical shifts (d) for ¹⁹F spectra are reported in ppm relative to an external fluoroform standard (d 0.0, CFCl₃). All melting points were obtained using a Fisher-Johns apparatus and are uncorrected. Electron impact mass spectra were acquired with a JEOL HX110 double focusing mass spectrometer operated at a mass resolution of ~ 1000 for nominal mass work and $\sim 10,000$ for elemental composition determinations. Typical source conditions were: source temp=200°C and electron energy of 70eV. Ammonia was used as the CI reagent gas for positive ion CI. All samples were introduced by direct insertion. Positive and negative ion electrospray (ESI) experiments were performed with a Waters/Micromass QTOF Ultima Global mass spectrometer. Samples were infused at 1μ /min in 1:1 CH₃CN/H₂O+0.2% formic acid for +ve ion work or 1:1 CH₃CN/H₂O for -ve ion work. Typical operating conditions were: source temp=80°C, capillary voltage=3.5kV, cone voltage=60-160V and mass resolution of ~9000.

2,2,2-Trichloroethoxysulfuryl imidazole 8: To imidazole (21.17 g, 0.31 mol) in dry THF (50 mL) at 0°C was added dropwise a solution of 2,2,2-trichloroethylsulfonylchloride **7** (20 mL, 0.15 mol) in THF (20 mL). The reaction was

stirred at 0°C for 1 h, warmed to room temperature and stirred for an additional hour. The salts were removed by suction filtration, washed with THF and the filtrate was condensed to a yellow crude oil. Flash chromatography (33:67 EtOAc/hexanes) provided a white solid (35.9 g, 86%). Melting point 46-48°C; ¹H NMR (300 MHz, CDCl₃) **d** 8.04, (s, 1H, ImH), 7.41, 7.23 (2m, 2H, ImH), 4.68 (s, 2H, CH₂); ¹³C NMR (75 MHz, CDCl₃) **d** 136.90, 131.66, 117.97, 91.53, 80.05; HRMS (EI) m/z = 277.9090, C₅H₅N₂SO₃Cl₃ requires 277.9087.

2,2,2-trichloroethoxysulfuryl-*N***-methylimidazolium triflate 6:** To a solution of 2,2,2-trichloroethoxysulfurylimidazole **8** (10.6 g, 36 mmol) in Et₂O (140 mL) at 0°C was added dropwise methyl triflate (4.6 mL, 41 mmol). The reaction was stirred for 3 h at 0°C during which time a white precipitate formed. The desired product was isolated by suction filtration (filtrate re-precipitated 1x) and washed with cold Et₂O to afford a light white solid (14.6 g, 91%). Melting point 146-148°C; ¹H NMR (300 MHz, CD₃OD) **d** 9.97, 8.34, 7.91 (3s, 3H, ImH), 5.41 (s, 2H, CH₂), 4.07 (s, 3H, CH₃); ¹³C NMR (75 MHz, CD₃OD) **d** 139.53, 125.87, 120.73, 120.43 (q, $J_{CF} = 318.7$ Hz, CF₃), 91.52, 82.08, 36.42; ¹⁹F NMR (282 MHz, CD₃OD) **d** -79.6; ESI of cation m/z = 294.9423, C₆H₈Cl₃N₂O₃S⁺ requires 294.9635.

General Procedure for Synthesis of Sulfated Carbohydrates: All sulfations commenced with the following procedure as described for **2**. For reactions incomplete after 24h, additional equivalents of *N*-methyl imidazole and 2,2,2-trichloroethoxysulfuryl-*N*-methylimidazolium triflate salt **6** (1 eq. each) were added at intervals of approximately 12 h until no starting material remained by TLC, unless otherwise described.

1:2,3:4-di-O-isopropylidine-6-O-trichloroethylsulfogalactose 2: General Procedure: To 1:2,3:4 di-isopropylidinegalactose **1** (0.25 g, 0.97 mmol) in THF (4.2 mL, 0.23 M) at 0° C was added *N*-methyl imidazole (0.19 mL, 2.39 mmol) followed by 2,2,2-trichloroethoxysulfuryl-*N*-methylimidazolium triflate **6** (0.85 g, 1.92 mmol). The reaction was stirred at 0° C, gradually warmed to room temperature by allowing the ice bath to melt, and then stirred overnight. After 24 h, the system was quenched with water and extracted with EtOAc. The combined organics were washed with NaHCO₃, brine, and dried over MgSO₄ and condensed to brown crude oil. (*Note*: work up was not performed for all products, reaction contents were instead applied directly to silica gel column). Flash chromatography (25:75 EtOAc/hexanes) yields desired product as a white solid (0.4 g, 87%). ¹H NMR (300 MHz, CDCl₃) *d* 5.55 (d, 1H, J = 4.9 Hz, H1), 4.82, 4.79 (AB, 2H, J = 10.8 Hz, CH₂CCl₃), 4.76 (dd, 1H, J = 7.8, 2.5 Hz, H3), 4.51 (m, 2H, H6, H6'), 4.38 (dd, 1H, J = 4.9, 2.5 Hz, H2), 4.26 (dd, 1H, J = 7.8, 1.7 Hz, H4), 4.15 (m, 1H, H5), 1.56 (s, 3H, CH₃), 1.45 (s, 3H, CH₃), 1.35 (s, 6H, 2xCH₃); ¹³C NMR (75 MHz, CDCl₃) *d* 109.89 109.00, 96.00, 92.53, 79.46, 72.02, 70.50, 70.35, 70.10, 65.50, 25.90, 25.8, 24.74, 24.32; Melting Point 70-72°C; HRMS (ESI) m/z = 471.0060, C₁₄H₂₂C₁₃O₉S (M+H)⁺ requires 471.0050.

1,2,4,6-tetra-*O***-benzyl-3-trichloroethylsulfogalactose 14**: Prepared according to the general procedure. Carbohydrate **4** (0.5 g, 0.93 mmol), THF (6 mL, 016 M), *N*-methyl imidazole (0.22 mL, 2.8 mmol), 2,2,2-trichloroethoxysulfuryl-*N*-methylimidazolium triflate **6** (0.86 g, 1.9 mmol), reaction time 2 d. Desired product isolated as a white solid (0.65 g, 94%). ¹H NMR (300 MHz, CDCl₃) **d** 3.55-3.64 (m, 3H, H5, H6, H6'), 3.93, (dd, 1H, J = 10.0, 7.6 Hz, H2), 4.30 (d, 1H, J = 3.0 Hz, H4), 4.40-4.49 (m, 4H, CH₂CCl₃, CH₂Ph), 4.50 (d, 1H, J = 7.6 Hz, H1), 4.57 (dd, 1H, J = 10.1, 3.1 Hz, H3), 4.59-4.66 (m, 3H, CH₂Ph), 4.87 (d, 1H, J = 11.4 Hz, CH₂Ph), 4.95 (d, 1H, J = 11.9 Hz, CH₂Ph), 5.00 (d, 1H, J = 11.0Hz, CH₂Ph), 7.25-7.37 (m, 20H, ArH); ¹³C NMR (75 MHz, CDCl₃) **d** 67.95, 71.04, 72.70, 73.43, 73.87, 75.09, 75.29, 76.38, 79.34, 85.65, 92.37, 102.18, 127.75, 127.81, 127.84, 127.88, 127.95, 128.01, 128.11, 128.27, 128.38, 128.41, 128.49, 136.77, 137.43, 137.51, 137.59; Melting point 52-54°C; HRMS (ESI) m/z = 768.1581, C₃₆H₄₁NO₉SCl₃ (M+NH₄)⁺ requires 768.1568.

1:2,5:6-di-O-acetone-3-O-trichloroethylsulfoglucofuranose 15: Prepared according to the general procedure. Carbohydrate 9 (0.25 g, 0.96 mmol), in THF (4.2 mL, 0.23 M), Nimidazole 1.9mmol), 2,2,2-trichloroethoxysulfuryl-Nmethvl (0.15)mL, methylimidazolium triflate 6 (0.85 g, 1.9 mmol). Desired product isolated as a white solid, (0.41 g, 90%). ¹H NMR (300 MHz, CDCl₃) d 5.98 (d, 1H, J = 3.7 Hz, H1), 5.10 $(1/2AB, 1H, J = 10.5 \text{ Hz}, CH_2CCl_3), 5.07 (d, 1H, J = 2.8 \text{ Hz}, H3), 5.00 (d, 1H, J = 3.7)$ Hz, H2), 4.81 (1/2AB, 1H, J = 10.5, CH₂CCl₃), 4.29 (m, 1H, H5), 4.18 (m, 2H, H4, H6), 4.08 (dd, 1H, J = 9.1, 3.8 Hz, H6'), 1.54, 1.46, 1.38, 1.34 (4s, 4x3H, 4xCH₃); ¹³C NMR (75 MHz, CDCl₃) **d** 112.67, 109.95, 104.88, 92.45, 85.29, 82.44, 79.58, 79.53, 71.54, 67.39, 26.91, 26.45, 26.05, 25.00; Melting point 100-102°C; HRMS (ESI) m/z =471.0059, $C_{14}H_{22}C_{13}O_9S$ (M+H)⁺ requires 471.0050.

Methyl-2-O-benzoyl-3-O-trichloroethylsulfo-4:6-O-benzylidine-a-D-

glucopyranoside 16: To sugar 10 (1.0 g, 2.6 mmol) in THF (11 mL, 0.24 M) at 0° C was added *N*-methyl imidazole (0.66)mL, 8.3 mmol) followed bv 2.2.2trichloroethoxysulfuryl-N-methylimidazolium triflate 6 (3.0 g, 6.76 mmol). The reaction was stirred at 0°C, gradually warmed to room temperature by allowing the ice bath to melt, and then stirred overnight. After 24 h and 36 h, additional aliquots of N-methyl imidazole (0.22 mL, 2.8 mmol) and 2,2,2-trichloroethoxysulfuryl-N-methylimidazolium triflate **6** (0.1.2 g, 2.7 mmol) were added at room temperature. Upon completion by TLC (approx. 48 h) the reaction was quenched with water and extracted with EtOAc. The combined organics were washed with NaHCO₃, brine, and dried over MgSO₄ and condensed to brown crude oil. Flash chromatography (33:67 EtOAc/hexanes) yields desired product as a white solid (1.467 g, 94%). ¹H NMR (300 MHz, CDCl₃) **d** 3.44 (s, 3H, OCH₃), 3.86 (dd, 1H, $J_1 = J_2 = 10.3$ Hz, H6_{ax}), 3.89 (dd, 1H, $J_1 = J_2 = 9.5$ Hz, H4), 4.05 (ddd, 1H, J = 9.9, 9.7, 4.7 Hz, H5), 4.41 (dd, 1H, J = 10.4, 4.8 Hz, H6_{eq}), 4.43, 4.50 (AB, 2H, J = 11.1 Hz, CH₂CCl₃), 5.18 (dd, 1H, J = 9.5, 3.6 Hz, H2), 5.22 (d, 1H, J = 3.6 Hz, H1), 5.36 (dd, 1H, *J*₁ = *J*₂ = 9.5 Hz, H3), 7.38-7.40 (m, 3H, ArH), 7.46-7.53 (m, 4H, ArH), 7.59-7.61 (m, 1H, ArH), 8.19 (d, 2H, J = 7.4 Hz, ArH); ¹³C NMR (75 MHz, CDCl₃) **d** 55.67, 62.27, 68.74, 71.62, 78.67, 79.64, 80.62, 94.23, 97.77, 102.59, 126.35, 128.42, 129.64, 130.19, 133.60, 136.09, 165.71; Melting point (dec.) 130-132°C; HRMS (ESI) m/z = 597.0133, $C_{23}H_{23}Cl_3O_{10}S$ (M+H)⁺ requires 597.0156.

p-Tolyl-2,3-di-O-benzoyl-4-O-trichloroethylsulfo-6-O-benzyl-1-thio-ß-D-

glucopyranoside 17: To sugar 11 (0.41 g, 0.70 mmol) in THF (3 mL, 0.24 M) at 0°C was added *N*-methyl imidazole (0.17)mL, 2.1 mmol) followed bv 2.2.2trichloroethoxysulfuryl-*N*-methylimidazolium triflate 6 (3.0 g, 1.7 mmol). The reaction was stirred at 0°C, gradually warmed to room temperature by allowing the ice bath to melt, and then stirred overnight. After 24 h and 36 h, additional aliquots of N-methyl imidazole (0.06 mL, 0.76 mmol) and 2,2,2-trichloroethoxysulfuryl-N-methylimidazolium triflate **6** (0.3 g, 0.68 mmol) were added at room temperature. Upon completion by TLC (approx. 48 h), reaction contents were applied directly to a silica column, and were purified by flash chromatography (25:75 EtOAc/hexanes). Product was isolated as a white waxy compound (5.034 g, 91%). ¹H NMR (300 MHz, CDCl₃) **d** 2.31 (s, 3H, CH₃), 3.81-3.94 (m, 3H, H5, H6, H6'), 4.45, 4.57 (AB, 2H, J = 11.1 Hz, CH₂Ph), 4.60, 4.66 (AB, 2H, J = 11.8 Hz, CH₂CCl₃), 4.86 (d, 1H, J = 9.9 Hz, H1), 5.14 (dd, 1H, $J_1 = J_2 = 9.5$ Hz, H4), 5.31 (dd, 1H, $J_1 = J_2 = 9.7$ Hz, H2), 5.80 (dd, 1H, $J_1 = J_2 = 9.4$ Hz, H3), 7.03 (d, 2H, J = 7.9 Hz, ArH), 7.24-7.39 (m, 11H, ArH), 7.45-7.54 (m, 2H, ArH), 7.92 (d, 4H, J = 7.8 Hz, ArH); ¹³C NMR (75 MHz, CDCl₃) **d** 21.3, 68.1, 70.6, 73.7, 73.8, 77.5, 79.2, 80.2, 86.1, 92.4, 127.4, 127.9, 128.0, 128.5, 128.7, 129.1, 129.9, 130.0, 130.2, 133.5, 133.7,

134.1, 137.8, 139.0; Melting point (dec.) 112-114°C; HRMS (ESI) m/z = 795.0659, C₃₆H₃₄O₁₀S₂Cl₃ (M+H)⁺ requires 795.0659.

p-Methoxyphenyl-2-O-trichloroethylsulfo-3-O-benzyl-4:6-O-benzylidine-B-D-

glucospyranoside 18: To carbohydrate 12 (0.2 g 0.43 mmol) in THF (2 mL, 0.25 M) at 0°C was added N-methyl imidazole (0.2 mL, 2.5 mmol) followed by 2,2,2trichloroethoxysulfuryl-N-methylimidazolium triflate 6 (1.0 g, 2.25 mmol). After 24 h, reaction was incomplete by TLC, additional base and triflate 6 were added (0.2 mL, 2.5 mmol, and 1.0 g, 2.25 mmol) respectively. Upon completion (48 h) the reaction contents were directly applied to a silica gel column. Flash chromatography (20:80 EtOAc/hexanes) provided a white solid (0.26 g, 90%). ¹H NMR (300 MHz, CDCl₃) d3.57 (ddd, 1H, J = 9.7, 9.5, 5.0 Hz, H5), 3.80 (s, 3H, CH₃), 3.86 (dd, 1H, $J_1 = J_2 = 10.4$ Hz, H6_{ax}), 3.88 (dd, 1H, $J_1 = J_2 = 9.2$ Hz, H4), 3.98 (dd, 1H, $J_1 = J_2 = 9.1$ Hz, H3), 4.43 (dd, 1H, J = 10.5, 5.0 Hz, H6_{eq}), 4.68, 4.71 (AB, 2H, J = 11.1 Hz, CH₂CCl₃), 4.85 (m, 1H, H2), 4.87, 5.01 (AB, 2H, J = 11.2 Hz, CH₂Ph), 5.02 (d, 1H, J = 7.8 Hz, H1), 5.61 (s, 1H, CHPh), 6.85-6.88 (m, 2H, ArH), 7.06-7.09 (m, 2H, ArH), 7.33-7.50 (m, 10H, ArH); ¹³C NMR (75 MHz, CDCl₃) **d** 55.54, 66.19, 66.30, 74.61, 77.87, 79.86, 81.21, 83.89, 92.57, 99.89, 101.36, 114.59, 118.77, 125.88, 127.92, 128.09, 128.11, 128.25, 128.27, 128.28, 128.38, 129.13, 136.63, 137.12, 150.16, 155.99; Melting point 105-107°C; HRMS (EI) m/z = 674.0546, C₂₉H₂₉Cl₃O₁₀S requires 674.0547.

p-Methoxyphenyl-2,3-di-O-acetyl-4-O-benzyl-6-O-trichloroethylsulfo-B-D-

glucopyranoside 19: To carbohydrate **13** (0.81 g, 1.76 mmol) in THF (8 mL, 0.22 M) at 0°C was added *N*-methyl imidazole (0.42 mL, 5.29 mmol) followed by 2,2,2-trichloroethoxysulfuryl-*N*-methylimidazolium triflate **6** (1.9 g, 4.28 mmol). The reaction was stirred at 0°C, gradually warmed to room temperature by allowing the ice bath to melt, and then stirred overnight. After 24 h and additional aliquots of *N*-methylimidazolium triflate **6** (1.0 g, 2.25 mmol) and 2,2,2-trichloroethoxysulfuryl-*N*-methylimidazolium triflate **6** (1.0 g, 2.25 mmol) were added at room temperature. Upon completion by TLC (approx. 36 h), reaction contents were applied directly to a silica column, and were purified by flash chromatography (33:67 EtOAc/hexanes). Product was isolated as a white solid (0.96 g, 81%). ¹H NMR (300 MHz, CDCl₃) **d** 2.04 (s, 3H, CH₃), 2.09 (s, 3H, CH₃), 3.78 (m, 5H, OCH₃, H4, H6), 4.45 (dd, 1H, *J* = 10.6, 3.7 Hz, H5), 4.65-4.72 (m, 5H, CH₂CCl₃, CH₂Ph, H6'), 5.02 (d, 1H, *J* = 7.8 Hz, H1), 5.16 (dd, 1H, *J* = 9.5, 7.9 Hz, H2), 5.34 (m, 1H, H3), 6.81-6.84 (m, 2H, ArH), 6.91-6.94 (m, 2H, ArH), 7.30-7.40 (m,

5H, ArH); ¹³C NMR (75 MHz, CDCl₃) *d* 20.55, 20.68, 55.55, 71.18, 71.45, 72.34, 74.52, 74.60, 74.94, 79.60, 92.28, 99.73, 114.59, 118.27, 128.04, 128.40, 128.66, 136.53, 150.53, 155.73, 169.47, 169.83; Melting point 110-112°C; HRMS (ESI) m/z = 688.0812 (M+NH₄)⁺ C₂₆H₃₃NO₁₂SCl₃ requires 688.0789.

General Procedure for Deprotection of the Sulfate Moiety: All deprotections were performed with the following procedure (*note:* reaction equivalents are doubled when two trichloroethyl bearing sulfate groups are to be deprotected).

1:2,5:6-di-O-acetone-3-O-sulfoglucofuranose 22: *General Procedure:* To a suspension of ammonium formate (0.16 g, 2.5 mmol) in MeOH (2.5 mL, 1.0 M) was added protected carbohydrate **15** (0.2 g, 0.42 mmol) followed by zinc dust (0.2 g, 3.1 mmol). The reaction was stirred for 7 h at room temperature, at which point no starting material was detected by TLC. The reaction was filtered through Celite, and condensed to crude product. Flash chromatography (20:4:1 CH₂Cl₂/MeOH/NH₄OH) afforded a white solid, which was lyophilized (3x) to yield a light white product (0.14 g, 94%). ¹H NMR (300 MHz, DMSO-*d*₆) *d* 1.23 (s, 3H, CH₃), 1.25 (s, 3H, CH₃), 1.30 (s, 3H, CH₃), 1.39 (s, 3H, CH₃), 3.91-3.96 (m, 1H, H6), 3.78-3.83 (m, 1H, H6'), 4.20-4.26 (m, 2H, H4, H5), 4.45 (d, 1H, *J* = 2.7 Hz, H3), 4.76 (d, 1H, *J* = 3.8 Hz, H2), 5.84 (d, 1H, *J* = 3.8 Hz, H1), 7.08 (brs, 4H, NH₄); ¹³C NMR (75 MHz, DMSO-*d*₆) *d* 25.61, 26.42, 26.74, 26.94, 65.09, 73.03, 78.49, 79.63, 83.04, 104.73, 107.76, 111.05; HRMS (ESI) *m*/*z* = 339.0738, C₁₂H₁₉O₉S requires 339.0750.

1:2,3:4-di-O-isopropylidine-6-O-sulfogalactose 20: Carbohydrate **2** (0.20 g, 0.43 mmol), MeOH (2.5 mL), HCO₂NH₄ (0.16 g, 2.6 mmol), Zn (0.22 g, 3.4 mmol), reaction time 6 h. ¹H NMR (300 MHz, DMSO-*d*₆) *d* 1.27 (s, 3H, CH₃), 1.28 (s, 3H, CH₃), 1.34 (s, 3H, CH₃), 1.43 (s, 3H, CH₃), 3.71-3.81 (m, 2H, H6, H6'), 3.94 (brdd, $J_1 = J_2 = 5.7$ Hz, H5), 4.22 (brd, 1H, J = 8.0 Hz, H4), 4.32 (dd, 1H, J = 4.8, 2.1 Hz, H2), 4.57 (dd, 1H, J = 8.0, 1.9 Hz, H3), 5.43 (d, 1H, J = 5.0 Hz, H1), 7.09 (brs, 4H, NH₄); ¹³C NMR (75 MHz, DMSO-*d*₆) *d* 24.59, 25.26, 26.15, 26.28, 65.06, 66.27, 70.13, 70.33, 70.73, 95.94, 108.15, 108.56; HRMS (ESI) m/z = 339.0754, C₁₂H₁₉O₉S requires 339.0750.

$$\overset{\mathsf{NH}_4}{\oplus} \overset{\bigcirc}{\overset{\mathsf{O}}_{\mathsf{S}}} \overset{\mathsf{OBn}_{\mathsf{O}}}{\overset{\mathsf{OBn}}}{\overset{\mathsf{OBn}_{\mathsf{O}}}{\overset{\mathsf{OBn}_{\mathsf{O}}}{\overset{\mathsf{OBn}}}{\overset{\mathsf{OBn}_{\mathsf{O}}}{\overset{\mathsf{OBn}}}{\overset{\mathsf{OBn}_{\mathsf{O}}}{\overset{\mathsf{OBn}}}{\overset{\mathsf{OBn}}}{\overset{\mathsf{OBn}_{\mathsf{O}}}{\overset{\mathsf{OBn}}}{\overset{\mathsf{OBn}}}{\overset{\mathsf{OBn}}}{\overset{\mathsf{OBn}}}{\overset{\mathsf{OBn}}}{\overset{\mathsf{OBn}}}{\overset{\mathsf{OBn}}}{\overset{\mathsf{OBn}}}{\overset{\mathsf{OBn}}}{\overset{\mathsf{OBn}}}{\overset{\mathsf{OBn}}}{\overset{\mathsf{OBn}}}{\overset{\mathsf{OBn}}}{\overset{\mathsf{OBn}}}{\overset{\mathsf{OBn}}}}}}}}}}}}}}}$$

1,2,4,6-tetra-*O***-benzyl-3-sulfogalactose 21:** Carbohydrate **14** (0.13 g, 0.18 mmol), MeOH (1.1 mL), HCO₂NH₄ (0.07 g, 1.1 mmol), Zn (0.08 g, 1.2 mmol), reaction time 8 h. ¹H NMR (300 MHz, DMSO-*d*₆) *d* 3.42-3.51 (m, 3H, H2, H6, H6'), 3.73 (dd, 1H, $J_1 = J_2 = 6.2$ Hz, H5), 4.21 (d, 1H, J = 2.6 Hz, H4), 4.34 (dd, 1H, J = 9.8, 2.9 Hz, H3), 4.43, 4.46 (AB, 2H, J = 12.2 Hz, CH₂Ph), 4.52 (d, 1H, J = 11.5 Hz, CH₂Ph), 4.56 (d, 1H, J = 7.9 Hz, H1), 4.58 (d, 1H, J = 12.6 Hz, CH₂Ph), 4.67 (d, 1H, J = 11.5 Hz, CH₂Ph), 4.78 (d, 1H, J = 12.3 Hz, CH₂Ph), 4.80 (d, 1H, J = 11.5 Hz, CH₂Ph), 4.97 (d, 1H, J = 11.4 Hz, CH₂Ph), 7.08 (brs, 4H, NH₄), 7.22-7.39 (m, 20H, ArH); ¹³C NMR (75 MHz, DMSO-*d*₆) *d* 68.83, 70.31, 72.60, 72.60, 73.71, 74.20, 74.53, 77.85, 78.70, 102.05, 127.36, 127.60, 127.74, 127.78, 127.82, 127.99, 128.17, 128.38, 128.49, 128.59, 138.28, 138.58, 139.51, 139.56; HRMS (ESI) m/z = 619.1982, C₃₄H₃₅O₉S requires 619.2002.

Methyl-2-*O*-benzoyl-3-*O*-sulfo-4:6-*O*-benzylidine-**a**-**D**-glucopyranoside 23: Carbohydrate **16** (0.2 g, 0.33 mmol), MeOH (2.0 mL), HCO₂NH₄ (0.13 g, 2.06 mmol), Zn (0.15 g, 2.29 mmol), reaction time 6h. ¹H NMR (300 MHz, DMSO-*d*₆) *d* 3.31 (s, 3H, CH₃), 3.70-3.85 (m, 3H, H4, H5, H6_{ax}), 4.25 (dd, 1H, J = 9.5, 3.6 Hz, H6_{eq}), 4.78 (brdd, $J_1 = J_2 = 9.3$ Hz, H3), 4.90 (dd, 1H, J = 9.8, 3.6 Hz, H2), 5.04 (d, 1H, J = 3.5 Hz, H1), 5.64 (s, 1H, CHPh), 7.09 (s, 4H, NH₄), 7.36-7.38 (m, 3H, ArH), 7.47-7.52 (m, 4H, ArH), 7.62-7.68 (m, 1H, ArH), 8.14 (d, 2H, J = 7.5 Hz, ArH); ¹³C NMR (75 MHz, DMSO-*d*₆) *d* 55.11, 63.01, 68.18, 72.88, 73.04, 79.36, 97.66, 100.55, 126.64, 128.22, 128.67, 128.94, 130.08, 130.43, 133.54, 138.08, 166.13; HRMS (ESI) m/z = 465.0837, C₂₁H₂₁O₁₀S requires 465.0855.

p-Tolyl-2,3-di-*O*-benzoyl-4-*O*-sulfo-6-*O*-benzyl-1-thio-B-D-glucopyranoside 24:

Carbohydrate **17** (0.11 g, 0.14 mmol), MeOH (1.0 mL), HCO₂NH₄ (0.06 g, 0.95 mmol), Zn (0.09 g, 1.3 mmol), reaction time 4 h. ¹H NMR (300 MHz, DMSO-*d*₆) *d* 3.57 (dd, 1H, J = 11.5, 8.0 Hz, H6), 4.01 (brdd, $J_1 = J_2 = 8.8$ Hz, H5), 4.11 (brd, J = 11.5 Hz, H6'), 4.25 (dd, 1H, $J_1 = J_2 = 9.6$ Hz, H4), 4.52 (s, 2H, CH₂Ph), 5.11 (dd, 1H, $J_1 = J_2 = 9.7$ Hz, H2), 5.39 (d, 1H, J = 9.9 Hz, H1), 5.65 (dd, 1H, $J_1 = J_2 = 9.3$ Hz, H3), 7.02 (d, 2H, J = 8.0 Hz, ArH), 7.08 (brs, 4H, NH₄), 7.27-7.41 (m, 9H, ArH), 7.47-7.66 (m, 4H, ArH), 7.80-7.87 (m, 4H, ArH); ¹³C NMR (75 MHz, DMSO-*d*₆) *d* 20.96, 70.62, 71.44, 72.58, 72.80, 74.89, 78.62, 83.81, 127.64, 127.80, 128.48, 129.10, 129.13, 129.23, 129.57, 129.75, 129.92, 130.37, 131.66, 137.41, 139.08, 164.99, 165.63; HRMS (ESI) m/z = 663.1337, C₃₄H₃₁O₁₀S₂ requires 663.1359.

p-Methoxyphenyl-2-*O*-sulfo-3-*O*-benzyl-4:6-O-benzylidine-β-D-glucospyranoside 25: Carbohydrate **18** (0.20 g, 0.30 mmol), MeOH (1.8 mL), HCO₂NH₄ (0.11 g, 1.8 mmol), Zn (0.16 g, 2.45 mmol), reaction time 5 h. ¹H NMR (300 MHz, DMSO-*d*₆) *d* 3.61-3.68 (m, 2H, H5, H6_{ax}), 3.72 (s, 3H, CH₃), 3.85 (dd, 1H, J = 8.5, 4.0 Hz, H3), 4.11-4.17 (m, 1H, H4), 4.23-4.25 (m, 1H, H6_{eq}), 4.51 (dd, 1H, $J_1 = J_2 = 4.3$ Hz, H2), 4.70, 4.90 (AB, 2H, J = 12.2 Hz, CH₂Ph), 5.40 (d, 1H, J = 4.6 Hz, H1), 5.70 (s, 1H, CHPh), 6.88 (d, 2H, J = 9.1 Hz, ArH), 7.02 (d, 2H, J = 9.0 Hz, ArH), 7.09 (brs, 4H, NH₄), 7.23-7.33 (m, 3H, ArH), 7.38-7.41 (m, 7H, ArH); ¹³C NMR (75 MHz, DMSO-*d*₆) *d* 55.70, 65.11, 68.81, 71.59, 77.13, 79.14, 79.76, 99.98, 100.59, 114.83, 118.96, 126.43, 127.53, 128.02, 128.31, 128.40, 129.11, 138.03, 139.14, 150.98, 155.00; HRMS (ESI) m/z = 543.1305, C₂₇H₂₇O₁₀S requires 543.1325.

p-Methoxyphenyl-2,3-di-*O*-acetyl-4-*O*-benzyl-6-*O*-sulfoglucose 26: Carbohydrate 19 (0.16 g, 0.24 mmol), MeOH (1.4 mL), HCO₂NH₄ (0.09 g, 1.42 mmol), Zn (0.12 g, 1.84 mmol), reaction time 5 h. ¹H NMR (300 MHz, DMSO-*d*₆) *d* 1.95 (s, 3H, CH₃), 2.00 (s, 3H, CH₃), 3.66 (dd, 1H, $J_1 = J_2 = 9.6$ Hz, H4), 3.71 (s, 3H, OCH₃), 3.91 (brd, 1H, J = 9.7 Hz, H5), 4.03 (brs, 2H, H6, H6'), 4.52, 4.71 (AB, 2H, J = 10.8 Hz, CH₂Ph), 4.88 (dd, 1H, J = 9.7, 8.1 Hz, H2), 5.28 (d, 1H, J = 8.0 Hz, H1), 5.28 (dd, 1H, $J_1 = J_2 = 9.6$ Hz, H3), 6.87 (d, 2H, J = 9.2 Hz, ArH), 6.96 (d, 2H, J = 9.1 Hz, ArH), 7.09 (brs, 4H, NH₄), 7.27-7.37 (m, 5H, ArH); ¹³C NMR (75 MHz, DMSO-*d*₆) *d* 20.75, 20.87, 55.73, 64,41, 71.81, 73.44, 73.80, 74.08, 75.35, 98.75, 114.95, 118.27, 128.04, 128.53, 128.66, 138.31, 150.95, 155.25, 169.54, 169.92; HRMS (ESI) m/z = 539.1205, C₂₄H₂₇O₁₂S requires 539.1223.

1,2,4-Tri-O-benzyl-3-trichloroethylsulfo-6-O-acetylgalactose 27: A solution of AcOH:Ac₂O (3 mL, 1:5 v/v) was added to freshly fused ZnCl₂ (0.67 g, 4.9 mmol) with stirring. After 1.5 h, carbohydrate **14** (1.0 g, 1.3 mmol) in AcOH:Ac₂O solution (8 mL, 1:5 v/v) was added slowly via syringe. After 3 h, no starting material remained by TLC. The reaction was cooled to 0° C and slowly quenched with ice. The product was extracted

with EtOAc, washed with NaHCO₃ and condensed to a clear, colourless oil. Flash chromatography (25:75 EtOAc/hexanes) afforded a clear, colourless oil (0.89 g, 95%). ¹H NMR (300 MHz, CDCl₃) **d** 2.03 (s, 3H, CH₃), 3.63 (dd, 1H, $J_1 = J_2 = 6.6$ Hz, H5), 3.98 (dd, 1H, J = 9.9, 7.6 Hz, H2), 4.04 (dd, 1H, J = 11.1, 6.2 Hz, H6), 4.25 (d, 1H, J = 2.9 Hz, H4), 4.31 (dd, 1H, J = 11.1, 6.2 Hz, H6'), 4.50 (brs, 2H, CH₂CCl₃), 4.52 (d, 1H, J = 7.7 Hz, H1), 4.60 (dd, 1H, J = 9.9, 2.9 Hz, H3), 4.65 (d, 1H, J = 11.0 Hz, CH₂Ph), 4.67 (d, 1H, J = 11.8 Hz, CH₂Ph), 4.68 (d, 1H, J = 11.8 Hz, CH₂Ph), 4.96 (d, 1H, J = 11.5 Hz, CH₂Ph), 4.97 (d, 1H, J = 11.8 Hz, CH₂Ph), 5.06 (d, 1H, J = 11.0 Hz, CH₂Ph), 7.28-7.41 (m, 15H, ArH); ¹³C NMR (75 MHz, CDCl₃) **d** 20.63, 61.86, 71.00, 71.27, 73.01, 75.14, 75.15, 76.20, 79.44, 85.41, 92.28, 101.96, 127.96, 127.99, 128.06, 128.09, 128.39, 128.50, 128.55, 136.54, 136.96, 137.31, 170.20; HRMS (ESI) m/z = 720.1215, C₃₁H₃₇Cl₃NO₁₀S (M+NH₄)⁺ requires 720.1204.

1,2,4-Tri-*O***-benzyl-3-trichloroethylsulfogalactose 28:** Carbohydrate **27** (0.19 g, 0.27 mmol) was subjected to a 0.025 M solution of NaOMe in MeOH (1.7 mL). After 3 h, no starting material remained by TLC. Residual solvent was removed *in vacuo*, the residue was dissolved in ethyl acetate, washed with water, NaHCO₃ and brine, and condensed to a clear, colourless oil. Flash chromatography (25:75 EtOAc/hexanes) provided a white foam (0.15 g, 85%). ¹H NMR (300 MHz, CDCl₃) *d* 3.44-3.53 (m, 2H, H5, H6), 3.72-3.80 (m, 1H, H6'), 3.98 (dd, 1H, J = 10.1, 7.6 Hz, H2), 4.26 (d, 1H, J = 3.0 Hz, H4), 4.50 (s, 2H, CH₂CCl₃), 4.55 (d, 1H, J = 7.6 Hz, H1), 4.61 (dd, 1H, J = 10.1, 3.1 Hz, H3), 4.66 (d, 1H, J = 11.9 Hz, CH₂Ph), 4.67 (d, 1H, J = 11.0 Hz, CH₂Ph), 4.71 (d, 1H, J = 11.8 Hz, CH₂Ph), 4.95 (d, 1H, J = 11.7 Hz, CH₂Ph), 4.96 (d, 1H, J = 11.9 Hz, CH₂Ph), 5.07 (d, 1H, J = 11.0 Hz, CH₂Ph), 7.28-7.44 (m, 15H, ArH); ¹³C NMR (75 MHz, CDCl₃) *d* 61.17, 71.32, 72.63, 73.88, 74.86, 75.16, 76.39, 77.46, 85.60, 92.29, 102.37, 127.95, 127.99, 128.01, 128.06, 128.30, 128.39, 128.49, 128.51, 128.53, 128.67, 128.80, 136.71, 137.03, 137.34; HRMS (ESI) m/z = 661.0857, C₂₉H₃₁Cl₃O₉S (M+H)⁺ requires 661.0833.

Methyl-2-*O*-benzoyl-3-*O*-trichloroethylsulfo-6-*O*-benzyl-**a**-D-glucopyranoside 29:

Carbohydrate **16** (0.5 g, 0.86 mmol) in CH₂Cl₂ (11 mL, 0.08 M) and activated 4Å molecular sieves (1.2 g) were stirred for 1 h at room temperature. The solution was cooled to -78° C and Et₃SiH (0.41 mL, 2.6 mmol) and TfOH (0.26 mL, 2.9 mmol) were added successively. The reaction was stirred at -78° C for 1h, quenched with NEt₃ (1 mL) and methanol (1 mL), diluted with CHCl₃ then warmed to room temperature. Solids were removed by filtering reaction contents through Celite, the organic layer was washed with NaHCO₃, dried over MgSO₄ and condensed to a clear yellow oil. Flash chromatography (25:75 EtOAc/ hexanes) provided a clear colourless glassy compound (0.48 g, 96%). ¹H NMR (300 MHz, CDCl₃) *d* 3.13-3.16 (brs, 1H, OH), 3.40 (s, 3H, OCH₃), 3.41-3.79 (m, 1H, H6), 3.85-3.92 (m, 2H, H5, H6'), 4.02 (brdd, 1H, J = 9.0 Hz,

H4), 4.63, 4.76 (AB, 2H, J = 12.0 Hz, CH₂Ph), 4.73, 4.75 (AB, 2H, J = 11.0 Hz, CH₂CCl₃), 5.09-5.13 (m, 2H, H1, H2), 5.26 (dd, 1H, $J_1 = J_2 = 9.2$ Hz, H3), 7.36-7.61 (m, 8H, ArH), 8.16 (dd, 2H, J = 8.4, 1.3 Hz, ArH); ¹³C NMR (75 MHz, CDCl₃) *d* 55.50, 68.83, 69.70, 70.74, 70.90, 73.82, 79.77, 85.83, 92.48, 96.91, 127.77, 128.05, 128.46, 128.53, 128.74, 130.09, 133.55, 137.11; HRMS (ESI) m/z = 599.0302, C₂₃H₂₆Cl₃O₁₀S (M+H)⁺ requires 599.0132.

Methyl-2-O-benzoyl-3-O-trichloroethylsulfo-4-O-benzyl-a-D-glucopyranoside 30: Carbohydrate 16 (0.6 g, 1.0 mmol) in CH₂Cl₂ (20 mL, 0.05 M) and activated 4Å molecular sieves (2 g) were stirred for 1 h at room temperature. The solution was cooled to -78°C and Et₃SiH (0.50 mL, 3.0 mmol) and PhBCl₂ (0.46 mL, 3.5 mmol) were added successively. The reaction was stirred at -78° C for 1 h, quenched with NEt₃ (1 mL) and methanol (1 mL), diluted with CHCl₃ then warmed to room temperature. Solids were removed by filtering reaction contents through Celite, the organic layer was washed with NaHCO₃, dried over MgSO₄ and condensed to a clear yellow oil. Flash chromatography (25:75 EtOAc/hexanes) provided a white foam (0.52 g, 87%). ¹H NMR (300 MHz, CDCl₃) **d** 3.38 (s, 3H, CH₃), 3.85 (m, 4H, H4, H5, H6, H6'), 4.53, 4.63 (AB, 2H, J = 11.1 Hz, CH₂CCl₃), 4.70, 4.99 (AB, 2H, *J* = 10.7 Hz, CH₂Ph), 5.12 (d, 1H, *J* = 3.6 Hz, H1), 5.14 (dd, 1H, J = 9.7, 3.6 Hz, H2), 5.45 (dd, 1H, $J_1 = J_2 = 9.3$ Hz, H3), 7.31-7.50 (m, 7H, ArH), 7.58-7.63 (m, 1H, ArH), 8.16-8.19 (m, 2H, ArH); ¹³C NMR (75 MHz, CDCl₃) **d** 55.38, 60.91, 70.63, 71.36, 74.99, 75.02, 79.82, 85.53, 92.34, 96.87, 128.13, 128.19, 128.48, 128.72, 133.62, 136.92, 165.74; HRMS (ESI) m/z = 616.0588, $C_{23}H_{29}Cl_3NO_{10}S$ $(M+NH_4)^+$ requires 616.0578.

Methyl-2-O-benzoyl-3-O-trichloroethylsulfo-a-D-glucopyranoside 31: A suspension of carbohydrate **16** (0.30 g, 0.5 mmol) in 1:2 CH₂Cl₂/MeOH (2.4 mL, 4.8 mL) was equipped with a reflux condenser and placed in an oil bath at 40°C. The suspension was stirred until all starting material had dissolved then *p*-TsOH (9.0 mg, 0.05 mmol) was added. The temperature was increased to 45°C and the reaction was stirred O/N (approximately 16 hours) until no starting material remained by TLC. The reaction was neutralized with NEt₃ and condensed to a yellow oil. Flash chromatography (60:40 EtOAc/hexanes) provided a white foam (0.24 g, 94%). ¹H NMR (300 MHz, CDCl₃) **d** 3.14 (s, 3H, CH₃), 3.78-3.84 (m, 1H, H5), 3.97 (brd, *J* = 3.3 Hz, 2H, H6, H6'), 4.06 (dd, 1H, $J_1 = J_2 = 9.3$ Hz, H4), 4.63, 4.71 (AB, 2H, J = 10.9 Hz, CH₂CCl₃), 5.09-5.15 (m, 2H, H1, H2), 5.30 (dd, 1H, $J_1 = J_2 = 9.1$ Hz, H3), 7.46 (t_{app}, 2H, J = 7.5 Hz, ArH), 7.61 (t_{app}, 1H, J = 7.4 Hz, ArH), 8.15 (d, 2H, J = 7.1 Hz, ArH); ¹³C NMR (75 MHz, CDCl₃) **d** 55.51, 61.68, 68.96, 70.56, 70.90, 79.81, 85.73, 92.32, 96.96, 128.52, 128.65, 130.07, 133.66, 165.68; HRMS (ESI) m/z = 508.9852, C₁₆H₂₀Cl₃O₁₀S (M+H)⁺ requires 508.9843.

2,3-di-*O*-benzoyl-4-trichloroethylsulfo-6-*O*-benzyl-D-glucose **32**: To carbohydrate **17** (0.2 g 0.25 mmol) in acetone / H₂O (9:1, 5.1mL) at 0°C was added NBS (0.18 g, 1.0 mmol). The reaction was stirred for 20 min at 0°C, at which point no starting material remained by TLC. Solvents were evaporated at room temperature *in vacuo* until turbidity developed. The remaining residue was dissolved in EtOAc, washed with H₂O, NaHCO₃ and brine, dried over MgSO₄ and condensed to a clear, colourless oil. Flash chromatography (33:67 EtOAc/hexanes) provided a white foam (0.13 g, 74%). ¹H NMR (300 MHz, CDCl₃) *d* 3.61 (brs, 1H, OH), 3.84 (d, 2H, *J* = 3.0 Hz, H6, H6'), 4.40-4.46 (m, 1H, H5), 4.37, 4.79 (AB, 2H, *J* = 14.1 Hz, CH₂CCl₃), 4.61, 4.68 (AB, 2H, *J* = 11.4 Hz, CH₂Ph), 5.20 (dd, 1H, *J* = 10.2, 3.6 Hz, H2), 5.24 (dd, 1H, *J*₁ = *J*₂ = 9.7 Hz, H4), 5.70 (brs, 1H, H1), 6.19 (dd, 1H, *J*₁ = *J*₂ = 9.8 Hz, H3), 7.33-7.55 (m, 9H, ArH), 7.97 (d, 2H, *J* = 7.2 Hz, ArH), 8.04 (d, 2H, *J* = 7.2 Hz, ArH); ¹³C NMR (75 MHz, CDCl₃) *d* 67.62, 68.02, 69.51, 72.02, 73.76, 73.83, 79.51, 79.99, 89.99, 92.23, 127.85, 128.03, 128.36, 128.61, 128.5, 128.80, 129.85, 129.92, 133.44, 137.20, 165.53, 165.79; HRMS (ESI) *m*/*z* = 689.0443, C₂₉H₂₈Cl₃O₁₁S (M+H)⁺ requires 689.0418.

2,3-di-O-benzoyl-4-trichloroethylsulfo-6-O-benzyl-a-D-

glucopyranotrichloracetimidate 33: To carbohydrate **32** (0.4 g, 0.58 mmol) in CH₂Cl₂ (5 mL, 0.13 M) at -40° C was added trichloroacetonitrile (0.93 mL, 9.28 mmol), followed by a slow dropwise addition of DBU (0.12 mL, 1.0 M solution in CH₂Cl₂). The reaction was stirred at -40° C for 2 h then gradually warmed to -10° C over 1 h, at which point no starting material remained by TLC. The solvent was removed *in vacuo* at room temperature, and crude material was applied directly to a short silica gel column. Flash chromatography (25:75 EtOAc/hexanes) afforded a white foam (0.38 g, 80%). ¹H NMR (300 MHz, CDCl₃) *d* 3.91 (brs, 2H, H6, H6'), 4.37 (brd, 1H, *J* = 10.0 Hz, H5), 4.55, 4.66 (AB, 2H, *J* = 11.1 Hz, CH₂CCl₃), 4.62, 4.72 (AB, 2H, *J* = 11.7 Hz, CH₂Ph), 5.49 (dd, 1H, *J* = 10.1, 3.6 Hz, H2), 5.49 (dd, 1H, *J*₁ = *J*₂ = 9.8 Hz, H4), 6.24 (dd, 1H, *J*₁ = *J*₂ = 9.9 Hz, H3), 6.79 (d, 1H, *J* = 7.3 Hz, ArH), 8.65 (s, 1H, NH). ¹³C NMR (75 MHz, CDCl₃) *d* 66.93, 69.53, 70.56, 71.15, 73.76, 77.34, 78.34, 80.09, 90.49, 92.19, 92.79, 127.81, 128.01, 128.24, 128.34, 128.36, 128.60, 129.79, 129.90, 129.96, 133.52, 133.57, 137.29, 160.27, 165.08, 165.61.

p-Methoxyphenyl-2,3-di-*O*-acetyl-6-*O*-trichloroethylsulfo-β-D-glucopyranoside 34: To carbohydrate 19 (0.220 g, 0.28 mmol) in CCl₄/H₂O (15 mL, 9.5 mL) was added NBS (0.157 g, 0.88 mmol) and CaCO₃ (0.149 g, 1.5 mmol). The system was purged with argon for 15 minutes and the reaction was irradiated with a 250 W incandescent lamp for The reaction was poured into ice water (50 mL) and extracted with CHCl₃. 1h. Combined organics were dried over MgSO₄ and concentrated to crude residue. Flash chromatography (50:50 EtOAc/hexanes) provided a white foam (0.173 g, 91%). ¹H NMR (300 MHz, CDCl₃) **d** 2.10 (s, 3H, CH₃), 2.15 (s, 3H, CH₃), 3.09 (d, 1H, J = 4.3 Hz, OH), 3.78 (s, 3H, OCH₃), 3.78-3.87 (m, 2H, H4, H5), 4.61 (dd, 1H, *J*₁ = 10.9 Hz, *J*₂ = 4.5 Hz, H6), 4.67 (s, 2H, CH₂), 4.70 (dd, 1H, *J*₁ = *J*₂ = 10.5 Hz, H6'), 5.02 (d, 1H, *J* = 7.7 Hz, H1), 5.10 (brdd, 1H, *J*₁ = *J*₂ = 8.7 Hz, H3), 5.20 (brdd, 1H, *J*₁ = *J*₂ = 8.6 Hz, H2), 6.03 (d, 2H, J = 9.1 Hz, ArH), 6.94 (d, 2H, J = 9.1 Hz, ArH); ¹³C NMR (75 MHz, CDCl₃) **d** 20.55, 20.71, 55.57, 68.40, 70.69, 71.55, 73.20, 75.81, 79.60, 92.27, 99.82, 114.60, 118.24, 150.55, 155.73, 169.33, 171.82; HRMS (ESI) $m/z = 598.0320 (M+NH_4)^+$ C₁₉H₂₇NO₁₂SCl₃ requires 598.0314.

Methyl-(2,3-di-O-benzoyl-4-trichloroethylsulfo-6-O-benzyl-ß-D-glucopyranoside)-(1 6)-(2-O-benzoyl-3-O-trichlorethylsulfo-4-O-benzyl-a-D-glucopyranoside) 35: Donor 33 (0.36 g, 0.43 mmol) and acceptor 30 (0.22 g, 0.36 mmol) were dissolved in CH₂Cl₂ (9.4 mL). Powdered 4Å molecular sieves were added, and the mixture was stirred at room temperature for 1.5 h. The solution was then cooled to -40° C, stirred for an additional 30 min. TMSOTf (72 μ L, 1.0 M solution in CH₂Cl₂) was added dropwise. The reaction was stirred for 30 min at -40° C at which point no starting acceptor remained by TLC. The reaction was quenched with NEt₃ (0.1 mL), warmed to room temperature, filtered through Celite and condensed to a yellow crude oil. Flash chromatography (25:75 EtOAc/hexanes) followed by gravity chromatography (80:20 PhH/EtOAc) provided product as a white foam (0.38 g, 68%). ¹H NMR (500 MHz, CDCl₃) d 3.24 (s, 3H, OCH₃), 3.73 (dd, 1H, $J_1 = J_2 = 9.5$ Hz, H4_(II)), 3.81 (dd, 1H, J = 10.9, 4.1 Hz, H6), 3.86-3.98 (m, 4H, H5_(I), H5_(II), H6, H6'), 4.20 (dd, 1H, *J* = 10.9, 1.8 Hz, H6'), 4.34, 4.59 (AB, 2H, J = 10.7 Hz, CH₂Ph), 4.43, 4.52 (AB, 2H, J = 11.1 Hz, CH₂CCl₃), 4.53, 4.63 (AB, 2H, *J* = 11.1 Hz, CH₂CCl₃), 4.68, 4.71 (AB, 2H, *J* = 11.9 Hz, CH₂Ph), 4.78 (d, 1H, J = 7.8 Hz, H1_(I)), 5.03 (d, 1H, J = 3.1 Hz, H1_(II)), 5.25 (brdd, 1H, $J_1 = J_2 = 9.3$ Hz, H4_(I)), 5.35 (dd, 1H, $J_1 = J_2 = 9.7$ Hz, H3_(II)), 5.53 (dd, 1H, J = 9.6, 7.8 Hz, H2_(I)), 5.87 (dd, 1H, $J_1 = J_2 = 9.4$ Hz, H3_(I)), 7.18 (d, 2H, J = 5.7 Hz, ArH), 7.27-7.61 (m, 17H, ArH), 7.93, 8.00, 8.15 (3d, 3x2H, J = 7.2 Hz, ArH). ¹³C NMR (125 MHz, CDCl₃) **d** 55.29, 67.78, 67.92, 69.40, 71.21, 71.74, 72.18, 73.45, 73.73, 74.17, 75.44, 79.43, 79.80, 80.82, 85.56, 92.29, 92.38, 96.73, 100.96, 127.78, 127.85, 128.00, 128.28, 128.44, 128.48, 128.53, 128.86, 129.72, 130.07, 130.24, 133.50, 133.63, 133.69, 136.90, 137.57, 164.80, 165.61, 165.82; HRMS (ESI) m/z = 1269.0546, $C_{52}H_{51}Cl_6O_{20}S_2$ (M+H)⁺ requires 1269.0546.

Methyl-(2,3-di-O-benzoyl-4-sulfo-6-O-benzyl-B-D-glucopyranoside)-(1 ® 6)-(2-Obenzoyl-3-O-sulfo-4-O-benzyl-a-D-glucopyranoside) 36: To disaccharide 35 (0.05 g, 0.039 mmol) in reagent grade MeOH (0.4 mL) was added ammonium formate (0.03 g, 0.48 mmol) followed by zinc dust (0.04 g, 0.55 mmol). The reaction was stirred for 9h at room temperature, at which point no starting material was detected by TLC. The reaction was filtered through Celite, and condensed to crude product. Flash chromatography $(20:4:1 \text{ CH}_2\text{Cl}_2/\text{MeOH}/\text{NH}_4\text{OH})$ afforded a white solid, which was lyophilized (3x) to yield a light white product (0.038 g, 92%). ¹H NMR (500MHz, DMSO- d_6) **d** 2.99 (s, 3H, OCH₃), 3.28 - 3.32 (m, 1H, H3(II)), 3.56-3.59 (m, 3H, H6'(I), H4(II), H5(II)), 3.65 (dd, 1H, $J_1 = 10.7$ Hz, $J_2 = 5.5$ Hz, H6'_(II)), 3.87 (br-dd, 1H, $J_1 = J_2 = 9.4$ Hz, H5_(I)), 4.01 (br-d, 1H, J = 9.4 Hz, H6_(II)), 4.06 (d, 1H, J = 10.3 Hz, CH₂PH_(I)), 4.08 (d, 1H, J = 10.0 Hz, H6_(I)), 4.26 (dd, 1H, $J_1 = J_2 = 9.5$ Hz, H4_(I)), 4.52 , 4.55 (AB, 2H, J = 11.9 Hz, CH₂PH_(I)), 4.68 - 4.72 (m, 2H, H1_(II), H2_(II)), 4.85 (d, 1H, J = 10.3 Hz, CH₂PH_(II)), 4.96 (d, 1H, J = 10.38.0 Hz, H1_(I)), 5.09 (dd, 1H, $J_1 = 9.8$ Hz, $J_2 = 8.0$ Hz, H2_(I)), 5.57 (dd, 1H, $J_1 = J_2 = 9.5$ Hz, H3_(I)), 7.10 (br-s, 8H, NH₄), 7.14 – 7.20 (m, 7H, ArH), 7.25 – 7.38 (m, 8H, ArH), 7.43 - 7.46 (m, 2H, ArH), 7.48 - 7.52 (m, 2H, ArH), 7.57 - 7.59 (m, 1H, ArH), 7.76 -7.80 (m, 4H, ArH), 8.07 – 8.09 (m, 1H, ArH); ¹³C NMR (125 MHz, D₂O) **d** 54.87, 67.61, 68.33, 69.00, 71.43, 71.89, 73.26, 73.37, 73.48, 74.25, 74.83, 75.43, 78.89, 96.67, 100.33, 127.81, 128.25, 128.41, 128.45, 128.57, 128.58, 128.70, 128.74, 128.79, 128.88, 129.43, 129.51, 129.90, 133.93, 134.32, 136.96, 137.40, 166.99, 167.43, 167.62; HRMS (ESI) m/z = 1006.2000, $C_{48}H_{46}O_{20}S$ requires 1006.2024.