

# Angewandte Chemie

*Eine Zeitschrift der Gesellschaft Deutscher Chemiker*

## Supporting Information

© Wiley-VCH 2006

69451 Weinheim, Germany

**Conformationally rigid trifluoromethyl-substituted  
a-amino acid designed for peptide structure analysis  
by solid state  $^{19}\text{F}$  NMR**

Pavel K. Mikhailiuk, Sergii Afonin, Alexander N. Chernega, Eduard B. Rusanov, Maxim O. Platonov, Galina G. Dubinina, Marina Berditsch, Anne S. Ulrich\*, Igor V. Komarov\*

P. K. Mikhailiuk, Prof. I. V. Komarov, Dr. M. O. Platonov, Dr. G. G. Dubinina, Department of Chemistry, Kyiv National Taras Shevchenko University, Volodymyrska 64, 01033 Kyiv (Ukraine). Fax: (+38) 044-225-12-73, E-mail: ik214@yahoo.com

Dr. A. N. Chernega, Dr. E. B. Rusanov, Institute of Organic Chemistry of NAS of Ukraine, Murmanskaya 5, 02094 Kyiv (Ukraine)

Dr. S. Afonin, Forschungszentrum Karlsruhe, Institut für biologische Grenzflächen, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

Prof. A. S. Ulrich, Dr. M. Berditsch, Institute of Organic Chemistry, University of Karlsruhe, Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76133 Karlsruhe (Germany). Fax: (+49) 721-608-48-23, E-mail: anne.ulrich@ibg.fzk.de

### **Abbreviations**

TMS:  $(\text{CH}_3)_4\text{Si}$ ;

TIS: triisopropylsilane;

Fmoc: 9-fluorenylmethyloxycarbonyl;

Boc:  $\text{tbutyloxycarbonyl}$ ;

DIEA: *N,N*-diisopropylethylamine;

DMF: *N,N*-dimethylformamide;

HCTU: 2-(6-chloro-1-*H*-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate;

6-Cl-HOBt: 6-chloro-*N*-hydroxybenzotriazole;

TFA: trifluoroacetic acid.

### **Experimental**

*General:* All air- and moisture-sensitive reactions were performed under an argon atmosphere using standard Schlenk technique. Solvents were purified according to standard procedures. 1,1-dibromo-2,2-bis(chloromethyl)cyclopropane (**8**), tricyclo[1.1.1.0<sup>1,3</sup>]pentane (**9**), and 1-iodo-3-(trifluoromethyl)bicyclo[1.1.1]pentane (**10**) were prepared according to the procedures described in the literature.<sup>[S1]</sup> All other starting

materials were purchased from Acros, Merck and Fluka. Melting points are uncorrected. Analytical TLC was performed using Polychrom SI F<sub>254</sub> plates. Column chromatography was performed using Kieselgel Merck 60 (230-400 mesh) as the stationary phase. Analytical RP-HPLC was done on an Agilent 1100 HPLC device using Zorbax Eclipse<sup>®</sup> XDB-C<sub>8</sub> column (4.6 mm x 150 mm) and MeCN/H<sub>2</sub>O (60:40 v/v) as the eluent. Peptides were analyzed by RP-HPLC (Jasco, Japan) equipped with a diode-array detector and a Vydac C18-column (4.6 mm x 250 mm). <sup>1</sup>H NMR spectra were recorded either on a Varian Unity Plus 400 spectrometer at 400.4 ??z or on a Bruker Avance 500 spectrometer at 499.9 MHz. <sup>13</sup>C NMR and <sup>19</sup>F NMR spectra were recorded on a Varian Unity Plus 400 spectrometer at 100.7 and 376.7 ??z, respectively. Chemical shifts are reported in ppm downfield from TMS (<sup>1</sup>H, <sup>13</sup>C) or C<sub>6</sub>F<sub>6</sub> (<sup>19</sup>F) as internal standards. IR spectra were obtained on a Hewlett Packard UR 20 spectrometer. The  $\nu_{max}$  (cm<sup>-1</sup>) values of the IR spectra are given for the main absorption bands. Mass spectra were recorded either on an Agilent 1100 LCMSD SL instrument by chemical ionization (CI), or on a Bruker Biflex IV instrument (MALDI-TOF). MALDI samples were co-crystallized with a matrix of 3,5-dihydroxy-benzoic acid from acetonitrile/water solutions onto a stainless steel target. Elemental analysis: Mikroanalytisches Labor, Institute of Organic Chemistry, University of Karlsruhe. Optical rotation values were measured on a PerkinElmer 341 polarimeter. The models of amino acids were built using our own X-Ray data for **14**, and from the data deposited in the Cambridge Crystallographic Database.<sup>[S2]</sup> The physical properties of the amino acids in Table 1 were calculated by QikProp (Schrödinger software), [www.schrodinger.com](http://www.schrodinger.com).

**3-(Trifluoromethyl)bicyclo[1.1.1]pentane-1-carbaldehyde (11) and methoxy[3-(trifluoromethyl)bicyclo[1.1.1]pent-1-yl]methanol (12).**

A solution of *t*BuLi in Et<sub>2</sub>O (2.0 ml of 1.6 M, 3.2 mmol) was added dropwise to the stirred solution of **10** (424 mg, 1.6 mmol) in Et<sub>2</sub>O (10 ml) at -78°C. The addition was completed in 10 min, and the mixture was stirred for an additional 30 min at -78°C. The cooled to -78°C reaction mixture was added dropwise to the stirred solution of HCOOMe (0.40 ml, 6.8 mmol) in Et<sub>2</sub>O (15 ml) at -78°C over 10 min. Once the addition was complete, the stirred mixture was allowed to warm to room temperature. It was extracted with H<sub>2</sub>O (3 x 10 ml), and the water phase was discarded. The organic layer was separated, dried over MgSO<sub>4</sub> and concentrated in vacuum at 0°C to ~10 ml (the products are very volatile!). The resulting solution of **11** and **12** in Et<sub>2</sub>O was used in the next step without further purification. Compound **11**: <sup>1</sup>H NMR (400 MHz, <sup>3</sup>D?I<sub>3</sub>):  $\delta$ =9.61 (s, 1H; CHO), 2.25 (s, 6H;

$3 \times CH_2$ );  $^{19}F$  NMR (377 MHz,  $D_3$ ): 88.24 (s,  $CF_3$ ). Compound **12**:  $^1H$  NMR (400 MHz,  $D_3$ ):  $d=4.51$  (s, 1H;  $CH$ ); 3.41 (s, 3H;  $OCH_3$ ), 1.90 (s, 6H;  $3 \times CH_2$ );  $^{19}F$  NMR (377 MHz,  $CD_3$ ): 88.24 (s,  $CF_3$ ). The ratio of **11** to **12** was ~1/1 according to the NMR data. When the NMR spectra were measured in  $CDCl_3$  in the presence of  $CH_3OH$  (2-3 drops of  $CH_3OH$  in 0.6 ml of  $CDCl_3$ ) both  $^1H$  NMR and  $^{19}F$  NMR spectra showed only the signals of compound **12**.

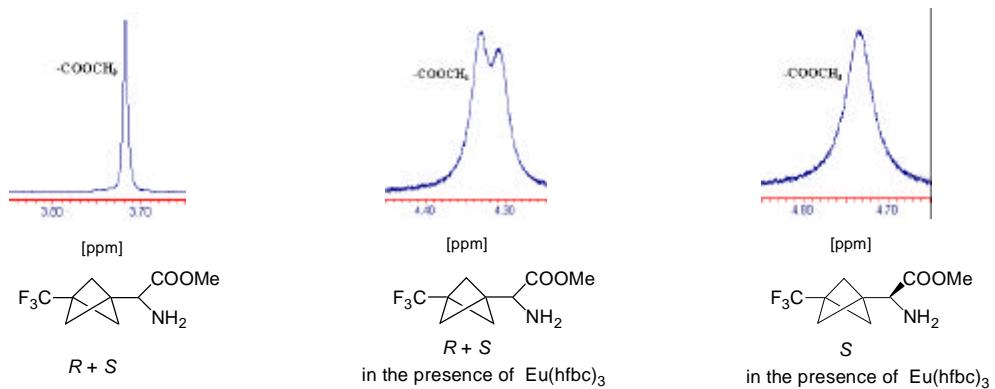
**2(S)-{[(1R)-2-hydroxy-1-phenylethyl]amino}-2-[3-(trifluoromethyl)bicyclo[1.1.1] pent-1-yl]acetonitriles (14) and 2(R)-{[(1R)-2-hydroxy-1-phenylethyl]amino}-2-[3-(trifluoromethyl)bicyclo[1.1.1] pent-1-yl]acetonitriles (13)**

A solution of (*R*)-2-phenylglycinol (222 mg, 1.6 mmol) in  $MeOH$  (20 ml) was added to the solution of **11** and **12** in  $Et_2O$  (10 ml), obtained in the previous step, and the resulting mixture was stirred for 2 hours at room temperature. The reaction mixture was then cooled ( $0^\circ C$ ),  $(CH_3)_3SiCN$  (634 mg, 6.4 mmol) was added, and the mixture was stirred at room temperature for 10 h. Evaporation of the solvent in vacuum gave a residue, which was submitted to column chromatography. Elution with hexane-ethyl acetate (3:2) afforded **14** first (244 mg, 0.78 mmol, 49%) as a colourless solid.  $R_f = 0.7$ ; m.p.  $99-100^\circ C$ ;  $[a]_D = -133.1$  ( $c = 0.26$  in  $MeOH$ );  $^1H$  NMR (400 MHz,  $CD_3$ ):  $d=7.38-7.30$  (m, 5H;  $Ph$ ); 4.80 (dd,  $J=9.6$ ; 4 Hz, 1H;  $CH-CH_2$ ); 3.80 (dd,  $J=10.4$ ; 4 Hz, 1H;  $CH-CH_2$ ), 3.58 (dd,  $J = 10.4$ ; 9.6 Hz, 1H;  $CH-CH_2$ ), 3.42 (s, 1H;  $CH(CN)-N$ ), 2.35 (bs, 2H;  $OH+NH$ ), 2.06-2.00 (AB system,  $J = 9.6$  Hz, 6H;  $3 \times CH_2$ );  $^{19}F$  NMR (377 MHz,  $D_3$ ):  $d=88.66$  (s,  $CF_3$ );  $^{13}C$  NMR (101 MHz,  $D_3$ ):  $d=137.97$  (s, C,  $Ph$ ), 129.21 (s, CH,  $Ph$ ), 128.73 (s, CH,  $Ph$ ), 127.27 (s, CH,  $Ph$ ), 122.65 (q,  $CF_3$ ,  $^1J(H, F)=274$  Hz), 117.86 (s, CN); 67.53 (s, N-CH-CH<sub>2</sub>-OH); 63.19 (s,  $CH_2$ ); 48.67 (s,  $CH_2$ ); 47.52 (q,  $CH(CN)-N$ ,  $^5J(H, F)=2$  Hz); 38.87 (s,  $CH_2-C-CH$ ); 37.40 (q,  $CF_3-C$ ,  $^2J(H, F)=40$  Hz); IR (KBr),  $\nu$  ( $cm^{-1}$ )=3487, 3306, 3003, 2950, 2232, 1960, 1900, 1830, 1780, 1503, 1393, 1195, 1175, 1120, 1067, 753, 710, 553; MS (Cl):  $m/z$  311.2 ( $M^+$ ), 284.4 ( $M^+ - CH_2OH$ ), 282 ( $M^+ - HCN$ ), 164, 138, 124, 121, 106, 99, 95; Anal. calcd for  $C_{16}H_{17}F_3N_2O$ : C, 61.93; H, 5.52; N, 9.03. Found: C, 61.63; H, 5.45; N, 8.90. Further elution with the same solvent yielded **13** (202 mg, 0.62 mmol, 40%) as a colourless solid.  $R_f = 0.6$ ; m.p.  $101-102^\circ C$ .  $[a]_D = -21.4$  ( $c = 0.25$  in  $MeOH$ );  $^1H$  NMR (400 MHz,  $D_3$ ):  $d=7.34-7.26$  (m, 5H;  $Ph$ ), 3.92 (dd,  $J=8$ ; 4 Hz, 1H;  $CH-CH_2$ ), 4.00 (s, 1H;  $CH(CN)-N$ ), 3.72 (dd,  $J=11.2$ ; 4 Hz, 1H,  $CH-CH_2$ ), 3.63 (dd,  $J=11.2$ ; 8 Hz, 1H,  $CH-CH_2$ ), 3.2-2.3 (bs, 2H,  $OH+NH$ ), 2.00-1.95 (AB system,  $J=9.6$  Hz, 6H,  $3 \times CH_2$ );  $^{19}F$  NMR (377 MHz,  $CD_3$ ):  $d=88.64$  (s,  $CF_3$ );  $^{13}C$  NMR (101 MHz,  $[D_6]DMSO$ ):  $d=141.64$  (s, C,  $Ph$ ), 128.71 (s, CH,  $Ph$ ), 128.22 (s, CH,  $Ph$ ), 127.87 (s, CH,  $Ph$ ), 122.83 (q,  $CF_3$ ,  $^1J(H, F)=274$  Hz), 119.07 (s,

CN), 66.55 (s, N-CH-CH<sub>2</sub>-OH), 63.75 (s, CH<sub>2</sub>), 49.19 (bs, CH<sub>2</sub>), 47.61 (q, CH(CN)-N, <sup>5</sup>J(H, F)=2 Hz), one signal (CH<sub>2</sub>-CH) is overlapped with the residual peak of [D<sub>6</sub>]DMSO, 36.76 (q, CF<sub>3</sub>-C, <sup>2</sup>J(H, F)=38 Hz); IR (KBr),  $\nu$  (cm<sup>-1</sup>)=3750-3000, 3300, 3273, 3003, 2924, 2851, 2240, 1955, 1905, 1830, 1785, 1482, 1359, 1197, 1172, 1130, 701; MS (Cl): *m/z* 311.2 (M<sup>+</sup>), 284.4 (M<sup>+</sup> - CH<sub>2</sub>OH), 282 (M<sup>+</sup> - HCN), 164, 138, 124, 121, 106, 99, 95. Anal. calcd. for C<sub>16</sub>H<sub>17</sub>F<sub>3</sub>N<sub>2</sub>O: C, 61.93; H, 5.52; N, 9.03. Found: C, 61.70; H, 5.40; N, 8.95.

### Isomerization of (2*R*)-2-[(1*R*)-2-hydroxy-1-phenylethyl]amino)-2-[3-(trifluoromethyl)bicyclo[1.1.1]pent-1-yl]ethanenitrile (13)

A solution of **13** (202 mg, 0.62 mmol) in ? ? ? (5 ml) was refluxed (~3 h) until a constant ratio of **14** to **13** (~4:1) was observed (analysis by HPLC). Evaporation of the solvent in vacuum gave a residue, which was submitted to column chromatography as described above. Compound **14** (145 mg, 0.47 mmol) and **13** (36 mg, 0.12 mmol) were obtained. Overall yield of **14** is 349 mg (80% calculating on **10**).


### (2*S*)-2-Amino-2-[3-(trifluoromethyl)bicyclo[1.1.1]pent-1-yl]ethanoic acid (7)

Pb(OAc)<sub>4</sub> (0.200 mg, 0.45 mmol) was added to a solution of **14** (100 mg, 0.32 mmol) in CH<sub>2</sub>Cl<sub>2</sub>-MeOH (20 ml, 1/1, v/v) stirred at 0°C. After being stirred at this temperature for 5 min, the reaction was quenched by addition of saturated aqueous NaHCO<sub>3</sub> (5 ml). The resulting insoluble material was removed by filtration and washed with CH<sub>2</sub>Cl<sub>2</sub> (10 ml). The organic layer was separated, and the aqueous layer was extracted with CH<sub>2</sub>Cl<sub>2</sub> (2 x 15 ml). The combined organic layers were evaporated in vacuum to give the yellow oil. The residue was dissolved in aqueous ? ? I (6M, 20 ml) and refluxed for 2 h. After cooling, the reaction mixture was washed with Et<sub>2</sub>O (3 x 5 ml), and the aqueous layer was evaporated to give a white solid. The residue was dissolved in H<sub>2</sub>O (~5 ml), neutralized with aqueous NaOH (0.3M) and submitted to ion exchange resin chromatography (Dowex<sup>®</sup> 50 x 400 cation-exchange). Elution with water and then with aqueous NH<sub>3</sub> (10%) afforded **7** (47 mg, 0.22 mmol, 70%); m.p. 210-215°C; [α]<sub>D</sub> = +14.0 (c = 0.84 in H<sub>2</sub>O); <sup>1</sup>H NMR (400 MHz D<sub>2</sub>O): *d*=3.70 (s, 1H; CH), 1.94 (s, 6H; 3 x CH<sub>2</sub>); <sup>19</sup>F NMR (377 MHz D<sub>2</sub>O): *d*=87.66 (s, CF<sub>3</sub>); <sup>13</sup>C NMR (101 MHz, D<sub>2</sub>O): *d*=171.64 (s, COOH), 122.61 (q, CF<sub>3</sub>, <sup>1</sup>J(H, F)=274 Hz), 54.71 (s, CH<sub>2</sub>), 47.75 (q, CH, <sup>5</sup>J(H, F)=2 Hz), 37.35 (q, CH<sub>2</sub>-C-CH, <sup>4</sup>J(H, F)=2 Hz), 36.05 (q, CF<sub>3</sub>-C-CH, <sup>2</sup>J(H, F)=40 Hz); IR (KBr),  $\nu$  (cm<sup>-1</sup>)=3700-2000, 3695, 3327, 3019, 2950, 2900, 2560, 1982, 1650, 1493, 1390, 1344, 1248, 1202, 1142, 1121, 1038, 998, 857, 775, 728, 699, 511. Anal. calcd. for C<sub>8</sub>H<sub>10</sub>F<sub>3</sub>NO<sub>2</sub>: C, 45.94; H, 4.82; N, 6.70. Found: C, 45.78; H, 4.53; N, 6.59.

**(2S)-2-{{[(9H-fluoren-9-ylmethoxy)carbonyl]amino}-2-[3-(trifluoromethyl)bicyclo[1.1.1]pent-1-yl]ethanoic acid (Fmoc-L-CF<sub>3</sub>-Bpg-OH)}**

A solution of Fmoc-Cl in dioxane (1.30 g, 5.01 mmol) was added dropwise over 15 min to a solution (stirred at 0°C) of **7** (1.00 g, 4.77 mmol) and Na<sub>2</sub>CO<sub>3</sub> (2 g) in dioxane-water (50 ml, 2/3, v/v). After being stirred at this temperature for 30 min, the reaction was left overnight at RT. Water (500 ml) was added and the formed mixture was extacted with Et<sub>2</sub>O (2 x 50 ml). Organic layer was discarded, water phase was acidified with aqueous HCl to pH 1 and extracted with EtOAc (3 x 100 ml). After being dried (MgSO<sub>4</sub>) the solvent was evaporated to produce 1.87 g of a white solid (4.29 mmol, 90%). The compound was pure according to HPLC (the sole peak was observed). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): *d*=7.71 (dd, *J*=7.5; 2.5 Hz, 2H), 7.52 (d, *J*=7.5 Hz, 2H), 7.34 (m, 2H), 7.25 (dd, *J*=12; 7.5 Hz, 2H), 5.19 (d, *J*=8.5 Hz, 1H, NH), 4.48 (d, *J*=8.5 Hz, 1H, CH-COOH), 4.45 (dd, *J*=11.5; 6.5 Hz, 1H, CH-O), 4.37 (dd, *J*=11.5; 6.5 Hz, 1H, CH-O), 4.45 (t, *J*=6.5 Hz, 1H, CH-CH<sub>2</sub>-O), 1.89 (AB system, *J*=9.7 Hz, 6H, 3 x CH<sub>2</sub>).

**Determination of optical purity of (2S)-2-Amino-2-[3-(trifluoromethyl)bicyclo[1.1.1]pent-1-yl]ethanoic acid (7)**



Relevant regions of the <sup>1</sup>H NMR spectra of **7**-OMe (racemate and optically active samples, ~10<sup>-1</sup>M solutions in CDCl<sub>3</sub>, 20°C) without and in the presence of Eu(hfbc)<sub>3</sub> (~5·10<sup>-2</sup>M), hfbc=3-heptafluorobutyryl-(R)-camphorate.

**Table 1. Calculated physical properties for compounds 1-7 and some hydrophobic natural amino acids.**

| Molecule              | SASA [ $\text{\AA}^2$ ] <sup>[a]</sup> | FOSA [ $\text{\AA}^2$ ] <sup>[b]</sup> | Volume [ $\text{\AA}^3$ ] <sup>[c]</sup> | QlogP <sub>o/w</sub> |
|-----------------------|----------------------------------------|----------------------------------------|------------------------------------------|----------------------|
| CF <sub>3</sub> -Bpg  | 384.8                                  | 136.2                                  | 624.9                                    | -0.72                |
| 4CF <sub>3</sub> -Phg | 405.3                                  | 15.7                                   | 647.0                                    | -0.53                |
| 4F-Phg                | 359.7                                  | 15.6                                   | 561.4                                    | -1.23                |
| 4F-Phe                | 382.6                                  | 48.9                                   | 613.6                                    | -0.89                |
| 5F-Trp                | 424.1                                  | 43.3                                   | 698.5                                    | -0.73                |
| F <sub>3</sub> -Ala   | 276.9                                  | 20.1                                   | 407.7                                    | -2.0                 |
| F <sub>3</sub> -Aib   | 301.3                                  | 69.4                                   | 454.1                                    | -1.73                |
| Met                   | 357.8                                  | 167.4                                  | 549.5                                    | -1.63                |
| Ile                   | 338.6                                  | 204.5                                  | 527.5                                    | -1.65                |
| Leu                   | 334.5                                  | 205.7                                  | 522.9                                    | -1.64                |
| Val                   | 311.8                                  | 176.1                                  | 474.0                                    | -1.96                |
| Ala                   | 260.8                                  | 105.3                                  | 368.5                                    | -2.63                |
| Pro                   | 301.6                                  | 175.8                                  | 449.0                                    | -2.04                |
| Phe                   | 364.9                                  | 60.7                                   | 592.3                                    | -1.06                |
| Trp                   | 416.3                                  | 43.3                                   | 683.8                                    | -0.92                |

[a] total solvent-accessible surface area; [b] hydrophobic component of SASA; [c] total solvent-accessible volume; [d] octanol/water partition coefficient.

### Solid phase peptide synthesis

The fluorinated amino acid L-CF<sub>3</sub>-Bpg was incorporated in the antimicrobial peptide PGLa (GMASKAGAIAGKIAKVALKAL-NH<sub>2</sub>) at the position of either Ile9, Ala10, Ile13, or Ala14. Four labeled peptides were thus produced, namely PGLa-Ile9/CF<sub>3</sub>-Bpg (**15**), PGLa-Ala10/CF<sub>3</sub>-Bpg (**16**), PGLa-Ile13/CF<sub>3</sub>-Bpg (**17**), PGLa-Ala14/CF<sub>3</sub>-Bpg (**18**). All peptides were synthesized on an Applied Biosystems (Foster City, CA) 433A instrument, using standard solid phase Fmoc-protocols.<sup>[S3]</sup> While incorporating Lys or Ser into the peptide sequence, side chain protected Fmoc-(Boc)Lys and Fmoc-(tBu)Ser were used. A MBHA polystyrene resin was employed to obtain the peptides in the amidated form. Deprotection was carried out with 20% piperidine in DMF, and pre-activation was performed with HCTU and 6-CI-HOBt in the presence of the base DIEA. In some cases the deprotection and coupling efficiency was monitored by performing a Kaiser test.<sup>[S4]</sup> The peptides were cleaved from the resin at room temperature by treatment with a cocktail of TFA (95%),

water (2.5%) and TIS (2.5%) for 3-5 h with occasional shaking. The resin was filtered off and washed with pure TFA twice. The combined filtrates were evaporated under a gentle stream of nitrogen, and the products were precipitated with cold diethyl ether. After centrifugation the supernatant (diethyl ether) was decanted. The solid precipitate was re-dissolved in H<sub>2</sub>O and lyophilized. Peptides were purified by semi-preparative RP-HPLC (Jasco, Japan; 10 x 250 mm Vydac C18-column). The H<sub>2</sub>O/MeCN gradients were individually optimized for each peptide at 30-40 °C. The crude peptides were loaded on the column as 7 mg/ml solution in MeOH. To remove TFA and to avoid any <sup>19</sup>F NMR background, 5 mmol HCl was used as ion-pairing agent instead of conventional TFA.<sup>[S3c]</sup> After purification, all peptides were of >95% purity according to analytical HPLC, and they were stored as lyophilized powders at -40°C until use.

**PGLa-Ile9/CF<sub>3</sub>-Bpg (GMASKAGA-CF<sub>3</sub>-Bpg-AGKIAKVALKAL-NH<sub>2</sub>) (15)**

MALDI-TOF: *m/z*: 2045.9 [M]<sup>+</sup>, calcd mass 2046.49.

**PGLa-Ala10/CF<sub>3</sub>-Bpg (GMASKAGAI-CF<sub>3</sub>-Bpg-GKIAKVALKAL-NH<sub>2</sub>) (16)**

MALDI-TOF: *m/z*: 2088.1 [M]<sup>+</sup>, calcd mass 2088.57.

**PGLa-Ile13/CF<sub>3</sub>-Bpg (GMASKAGAIAGK-CF<sub>3</sub>-Bpg-AKVALKAL-NH<sub>2</sub>) (17)**

MALDI-TOF: *m/z*: 2046.1 [M]<sup>+</sup>, calcd mass 2046.49.

**PGLa- Ala14/CF<sub>3</sub>-Bpg (GMASKAGAIAGKI-CF<sub>3</sub>-Bpg-KVALKAL-NH<sub>2</sub>) (18)**

MALDI-TOF: *m/z*: 2087.8 [M]<sup>+</sup>, calcd mass 2088.57.

**Circular dichroism spectroscopy.**

Circular dichroism spectra were recorded on a Jasco 800 instrument with a 1 mm cuvette in aqueous buffer of 10 mmol NaH<sub>2</sub>PO<sub>4</sub>/Na<sub>2</sub>HPO<sub>4</sub>, pH 7.0. The peptides (0.25 mg) were dissolved in CHCl<sub>3</sub>/MeOH 1:1 (v:v), the solvent was removed with a gentle N<sub>2</sub> stream, followed by vacuum overnight. To the dried peptide films either pure buffer or buffer containing SDS (5 mmol) was added. The solutions were transferred into the cuvettes and equilibrated 30 min at 20°C prior to measurements.

**Minimal inhibitory concentration**

Antimicrobial activity was characterized by the standard minimal inhibitory concentration (MIC) assay,<sup>[S5]</sup> carried out with gram-positive bacteria *Staphylococcus aureus* ATCC 25923, *Bacillus subtilis* ATCC 6633, *Micrococcus luteus* ATCC10240, *Kocuria rhizophila* ATCC 9341, and the gram-negative bacteria *Escherichia coli* ATCC 25922, *Escherichia coli* DH5a, *Acinetobacter* sp. ATCC 33304. Bacterial cells were first grown (overnight, 37°C) in standard Luria-Bertani-Medium (LB). The cultures were then used as an inoculum for further cultivation in LB (3-4 h, until OD<sub>550</sub> = 1-2). The cells were then diluted to the inoculum range with salt-free LB.<sup>[S6]</sup> Microtiter plates (Nunc No. 167008, 96 wells of 200 µl/Well) were filled with 50 µl of salt-free LB medium, and serial 2-fold dilutions of peptides (512 µg/ml stocks in salt-free LB) were arranged in quadruple. Two rows of each plate were used for the positive (no peptide) and negative controls (not inoculated). 50 µl of bacterial suspension were added to the wells (except for the negative control) to give a final concentration of 10<sup>5</sup>-10<sup>6</sup> colony forming units per ml. The plates were incubated at 37°C for 24 h, and the MIC was determined visually on the basis of turbidity as the lowest (among four repetitions) concentration that reduced growth by more than 50%.

## Supplementary references

- [S1] a) K. Mondanaro Lynch, W. P. Dailey, *J. Org. Chem.* 1995, **60**, 4666; b) K. B. Wiberg, S. T. Waddel, *J. Am. Chem. Soc.* 1990, **112**, 2194; c) J. L. Adcock, A. A. Gack, *J. Org. Chem.* 1992, **57**, 6206.
- [S2] F. H. Allen, J. E. Davies, J. J. Galloy, O. Johnson, O. Kennard, C. F. Macrae, E. M. Mitchell, J. M. Smith, D. G. Watson, *J. Chem. Inf. Comp. Sci.* 1991, **31**, 187.
- [S3] a) C. D. Chang, J. Meienhofer, *Int. J. Peptide Protein Res.* 1978, **11**, 246; b) G. B. Fields, R. L. Noble, *Int. J. Peptide Protein Res.* 1990, **35**, 161; c) S. Afonin, R. W. Glaser, M. Berdichevskaia, P. Wadhwani, K. H. Gürs, U. Möllmann, A. Perner, A. S. Ulrich, *Chembiochem.* 2003, **4**, 1151.
- [S4] E. Kaiser, R. L. Colescot, C. D. Bossinge, P.I. Cook, *Anal. Biochem.* 1970, **34**, 595.
- [S5] D. Amsterdam In *Antibiotics in laboratory medicine* (Ed. V. Loman), Williams and Wilkins, 1996.
- [S6] L. H. Kondejewski, D. H. Lee, M. Jelokhani-Niaraki, S. W. Farmer, R. E. Hancock, R. S. Hodges, *J. Biol. Chem.* 2002, **277**, 67.