Engineering Polymeric Chiral Catalyst Using Hydrogen Bonding and Coordination Interactions

Lei Shi,¹,² Xingwang Wang,¹ Christian A. Sandoval,¹ Mingxing Li,² Qiaoyan Qi¹
Zhatning Li,¹ and Kuiling Ding*¹

¹ State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, China
² Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China

* To whom correspondence should be addressed, E-mail: kding@mail.sioc.ac.cn
Methods

1H-NMR and 13C-NMR spectroscopies were taken in deuteriochloroform on a Varian Mercury 300 (1H: 300 MHz; 13C: 75 MHz) spectrometer. Chemical shifts are reported in ppm relative to an internal standard: tetramethylsilane (0 ppm) for 1H-NMR and deuteriochloroform (77.0 ppm) for 13C NMR. Coupling constants, J, are listed in hertz. 31P-NMR spectra were referenced with an external 85% H$_3$PO$_4$ sample. 31P NMR CP/MAS spectra were measured with a Bruker dsx300 NMR spectrometer (125 MHz) and the chemical shift of spectra were determined by taking the 31P of 70% H$_3$PO$_4$ (0.0 ppm) as an external reference standard. EI (70 ev) and ESI mass spectra were obtained on HP5989A and Mariner LC-TOF spectrometers respectively. HRMS spectra were determined on a Q-Tof micro instrument or APEXIII 7.0 TESLA FTMS. Elemental analysis was preformed with an Elemental VARIO EL apparatus. Optical rotations were measured on a Perkin-Elmer 341 automatic polarimeter. Infrared spectra were obtained on a BIO-RAD FTS-185 Fourier transform spectrometer in KBr pellelt. Scanning electron micrographs were taken on a Hitachi S-570 Scanning electron microscope. Powder X-ray diffraction (XRD) spectra were carried out on a Bruker-AXS D8Advance. ICP analysis of Rh and P leaching was performed with Varian spectra AA. Liquid chromatographic analyses were conducted on a JASCO 1580 system. GC analyses were measured on Agilent 6890N network system. All the experiments sensitive to moisture or air were carried out under argon atmosphere using standard Schlenk techniques. Commercial reagents were used as received without further purification unless otherwise noted. Dichloromethane, chloroform were freshly distilled from calcium hydride and THF, diethyl ether and toluene from sodium benzophenone ketyl. Compound 1a was prepared following a literature method.1
Scheme S1. Preparation of ligands 1b and 1c. Conditions and reagents: 1) K$_2$[Fe(CN)$_6$] (0.25 equiv.), Pd(OAc)$_2$ (0.5 mol%), dppf (1.0 mol%), Na$_2$CO$_3$ (1.0 eq.), NMP, 120°C, 5 h, 84%; 2) LiAlH$_4$, dry THF, 60°C, 10 h, 99%; 3) CHCl$_3$, 60°C, 5 h, 95%; 4) CHCl$_3$, MeOH, HCl (12M), 40°C, 92%; 5) Toluene, HMPT, 80°C, 4 h, 65%

Synthesis of 6-cyano-2,2'-bismethoxymethoxy-1,1'-binaphthalene (S2): To a solution of S1 (4.5 g, 10.0 mmol) and K$_2$[Fe(CN)$_6$] (920.0 mg, 2.5 mmol) in NMP (10 ml) were added Pd(OAc)$_2$ (11.2 mg, 0.05 mmol), dppf (55.4 mg, 0.1 mmol) and Na$_2$CO$_3$ (1.06 g, 10.0 mmol) successively. The resulting mixture was heated at 120 °C for 5 h under argon atmosphere until the starting material was almost consumed as monitored by TLC (hexane: ethyl acetate = 5:1). After being cooled
to room temperature, the reaction mixture was passed through a pad of Celite and the filtrate was then evaporated under reduced pressure. The residue was added water (40 ml) and dichloromethane (50 ml). The organic phase was separated and the water phase was extracted with dichloromethane (40 ml \times 3). The combined organic phase was washed with saturated aqueous NaHCO₃ (60 ml), water (80 ml), and brine (50 ml), respectively. The organic phase was dried over Na₂SO₄ and then concentrated. The residue was purified by column chromatography on silica gel with hexane-ethyl acetate (10:1) as eluent to afford S₂ in 84% yield as a white solid. M.p. 76 – 77°C. \([\alpha]_D^{20} = +27.9\ (c = 0.50\ \text{in CHCl}_3)\

\(^1\text{H NMR}\ (300\ \text{MHz, CDCl}_3): \delta = 8.26\ (s, 1\text{H}), 8.02-7.96\ (m, 2\text{H}), 7.89\ (d, 1\text{H}, J = 6), 7.72\ (d, J = 9, 1\text{H}), 7.65\ (d, J = 30, 1\text{H}), 7.37-7.32\ (m, 2\text{H}), 7.27-7.07\ (m, 2\text{H}), 7.06\ (d, 1\text{H}, J = 6), 5.16 – 4.98\ (m, 4\text{H}), 3.18\ (s, 3\text{H}), 3.14\ (s, 3\text{H}); \(^{13}\text{C NMR}\ (75\text{MHz, CDCl}_3): \delta = 154.9, 152.4, 135.4, 134.0, 133.4, 129.8, 129.8, 129.6, 128.2, 127.9, 126.5, 126.4, 124.7, 124.0, 121.0, 119.4, 119.3, 117.9, 116.6, 107.0, 94.7, 94.3, 55.8, 55.6 ; FTIR (KBr pellet): \nu = 3050, 2991, 2962, 2905, 2831, 2233, 1619, 1591, 1479, 1351, 1200, 1151, 1092, 1073, 1024, 918, 884, 808, 759, 692, 681\ \text{cm}^{-1}; \ ESI-MS\ (m/z): [M'] = 399.1; \ HRMS\ (MALDI - DHB) calcd. for C_{25}H_{21}NO_{4}Na^{+1} [M' + Na]: 422.1376; Found: 422.1362.

Synthesis of 6-aminomethyl-2,2'-bismethoxymethoxy-1,1'-binaphthalene (S₃): In a 25-ml round-bottomed flask, S₂ (400 mg, 1 mmol) was dissolved in THF (8 ml) under argon atmosphere. LiAlH₄ (114 mg, 3 mmol) was then added to the solution portion wise. The mixture was heated to 60°C and stirred for 10 h. After cooling to room temperature, methanol (1 ml) was added slowly and stirred for 10 min to quench the reaction. The reaction mixture was then passed through a pad of Celite and the filtrate was evaporated under reduced pressure to yield a compound S₃ in 99% yield. The compound is pure enough for the next reaction without further purification. \([\alpha]_D^{20} = -26.3\ (c = 0.50\ \text{in CHCl}_3)\n
\(^1\text{H NMR}\ (300\ \text{MHz, CDCl}_3): \delta = 7.93-7.85\ (m, 3\text{H}), 7.78\ (s, 1\text{H}), 7.58-7.54\ (m, 2\text{H}), 7.36-7.31\ (m, 2\text{H}), 7.24-7.10\ (m, 4\text{H}), 5.06\ (d, 2\text{H}, J = 9), 4.98-4.94\ (m, 2\text{H}), 3.97\ (s, 1\text{H}), 3.15-3.12\ (m, 6\text{H}). \ FTIR (KBr pellet): \nu = 3404, 2924, 1594, 1506, 1481, 1358, 1243, 1198,
Synthesis of 1c: The CDI-activated 6-(1-ethylpentyl)isocytosine S4 (260 mg, 1.2 mmol) was mixed with S3 (403 mg, 1 mmol) in chloroform (10 ml) and the mixture was heated at 60°C for 5 h. After cooling to room temperature, the solution was filtrated to remove the unreacted S4, and the filtrate was evaporated in vacuo. Finally, the residue was recrystallized from dichloromethane / hexane to yield 1c in 95% yield as a white solid. M.p. 164 – 166°C. \([\alpha]_D^{20} = -34.4\) (c = 0.60 in CHCl₃); 1H NMR (300 MHz, CDCl₃): δ = 12.99 (s, 1H), 12.02 (s, 1H), 10.88 (s, 1H), 7.94-7.80 (m, 4H); 7.57-7.52 (m, 2H), 7.35-7.18 (m, 3H), 7.12-7.08 (m, 2H), 5.78 (s, 1H), 5.05 (q, 2H, J = 3.5), 4.95 (q, 2H, J = 3.2), 4.55 (d, 2H, J = 5.4), 3.15-3.12 (m, 6H), 2.18 (s, 3H); 13C NMR (75MHz, CDCl₃): δ = 172.9, 156.7, 154.5, 152.5, 152.4, 148.2, 134.3, 133.9, 133.1, 129.7, 129.2, 127.7, 126.1, 125.9, 125.5, 123.9, 121.2, 121.1, 117.3, 117.2, 106.6, 95.1, 55.79, 55.72, 43.3, 18.8; FTIR (KBr pellet): ν = 3200, 3050, 1699, 1663, 1586, 1506, 1245, 1198, 1149, 1070, 1015, 921, 811, 751 cm$^{-1}$; ESI-MS (m/z): [M$^+$], 555; HRMS (MALDI - DHB) calcd. for C$_{31}$H$_{31}$N$_4$O$_6$ +1 [M$^+$]: 555.2242; Found: 555.2238.

Synthesis of S5: To a solution of 1c (403 g, 1.0 mmol) in mixed solvent of chloroform (30 ml) and methanol (10 ml) was added aqueous HCl (12 M, 0.5 ml, ~ 6 mmol). The resulting solution was stirred for 10 h at room temperature until the complete conversion of 1c (monitored by TLC, dichloromethane: methanol = 15 : 1). The saturated aqueous NaHCO$_3$ solution was added to neutralize the reaction mixture and the precipitation was filtered off. The resulting precipitation was washed with water and dried under reduced pressure to give the product S5 in 92 % yield as a white powder. M.p. 216 – 218°C. \([\alpha]_D^{20} = -82.7\) (c = 0.507 in DMSO); 1H NMR (300 MHz, DMSO-d$_6$): δ = 8.29 (s, 1H), 7.84-7.79 (m, 3H), 7.71 (s, 1H), 7.30-7.26 (m, 2H) 7.21-7.09 (m, 3H), 6.90-6.86 (m, 2H), 5.67 (s, 1H), 4.41 (s, 2H), 2.06 (d, 3H, J = 2.7); 13C NMR (75MHz, DMSO-d$_6$): δ = 155.2, 153.0, 152.9, 151.9, 134.1, 133.3, 132.7, 128.6, 128.1, 127.9, 127.8, 125.85, 125.80, 124.8, 124.3, 122.2, 118.8, 118.5, 115.4, 104.5, 79.1, 42.8, 30.6; FTIR (KBr
pellet): $\nu = 3510, 3208, 3054, 1697, 1508, 1435, 1382, 1340, 1248, 1215, 1144, 817, 751, 607 \text{ cm}^{-1}$; ESI-MS ($m/z$): $[M^+]$, 467; HRMS (MALDI - DHB) calcd. for $C_{27}H_{23}N_4O_4^{+1}$ $[M^+]$: 467.1716; Found: 467.1713.

Synthesis of 1b: A solution of $S5$ (370 mg, 0.8 mmol) and hexamethyolphosphorustriamide (0.2 ml, 1mmol) in dry toluene (2 ml) was heated at 80°C under Argon for 5h until the complete conversion of substrate $S5$ (monitored by TLC, dichloromethane : methanol = 15 : 1). After cooling to room temperature, the mixture was concentrated under vacuum and the residue was purified by a flash column chromatography on silica gel with dichloromethane / acetone (20 / 1) as eluent to give the product 1b in 65% yield as white powder. M.p. 190 – 191°C. $[\alpha]_D^{20} = +348.6$ (c = 0.50 in CHCl$_3$); 1H NMR (300 MHz, CDCl$_3$): $\delta = 12.98$ (s, 1H), 12.06 (s, 1H), 10.94 (s, 1H), 7.95-7.83 (m, 4H), 7.49-7.44 (m, 1H), 7.42-7.32 (m, 4H), 7.28-7.23 (m, 2H), 5.79, (s, 1H), 4.60-4.56 (m, 2H), 2.55-2.51 (m, 6H), 2.19 (s, 1H); 31P NMR (121 MHz, CDCl$_3$) δ 149.69, 149.56 ppm; FTIR (KBr pellet): $\nu = 3051, 1700, 1662, 1588, 1507, 1468, 1333, 1251, 1068, 982, 945, 821, 751, 691 \text{ cm}^{-1}$; ESI-MS ($m/z$): $[M^+]$, 540.45; HRMS (MALDI - DHB) calcd. for $C_{29}H_{27}N_5O_4P^2 \cdot [M^+]$: 540.1819; Found: 540.1795.

Synthesis of 2. To a dichloromethane (1.0 mL) solution of 1b (11.3 mg, 0.021 mmol) was added [Rh(COD)$_2$]BF$_4$ (4.1 mg, 0.01 mmol) in dichloromethane (0.5 mL). The resulting mixture was stirred at room temperature for 1 h to afford the yellow precipitate. After removal of the solvent at 50 °C under reduced pressure, the resulting yellow powder was washed with toluene to remove the trace amount of soluble low molecular weight species. The isolated yellow solids (2) were dried in vacuo for 2 h at RT. IR (KBr): 3510, 3208, 3054, 2933, 1699, 1662, 1507, 1469, 1326, 1226, 1071, 988, 947, 828, 753 cm$^{-1}$; Anal. calcd (%) for $[C_{58}H_{52}N_{10}O_8P_2 \cdot Rh(COD)BF_4 \cdot CH_2Cl_2]$$_n$: C, 55.05; H, 4.55; N, 9.58; P, 4.24. Found: C, 55.36; H, 4.96; N, 8.99; P, 4.16. 31P CPMAS (125 MHz): 135.7 ppm.

Hydrogenation. (a) Standard. For example, polymeric solid 2 (0.01 mmol, 10 mM), 3b (1 mmol, 1.0 M) in anhydrous toluene (1.0 mL) were placed in a test
tube under argon atmosphere. The test tube was placed in a stainless steel autoclave, and then sealed. After purging with hydrogen for 3 times, final H₂ pressure was adjusted to 40 atm and stirring commenced. Following a period of 20 h, H₂ was released and the catalyst recovered by cannula filtration under an argon atmosphere. The product was analyzed following removal of toluene under the reduced pressure. Conversion and enantiomeric excess were determined by ¹H NMR and chiral GC (Supelco BETA-DEX225 column), respectively.

¹H NMR of products 4a-e.

Product 4a: ¹H NMR (300 MHz, CDCl₃): δ = 6.57 (s, 1H), 4.63-4.54 (m, 1H), 3.76 (s, 3H), 2.02 (s, 3H), 1.40 (d, 3H) ppm.

Product 4b: ¹H NMR (300 MHz, CDCl₃): δ = 6.35 (s, 1H), 4.62-4.56 (m, 1H), 3.72 (s, 3H), 2.01 (s, 3H), 2.03-1.67 (m, 2H), 0.88 (t, 3H) ppm.

Product 4c: ¹H NMR (300 MHz, CDCl₃): δ = 6.08 (s, 1H), 4.61-4.53 (m, 1H), 3.72 (s, 3H), 2.01 (s, 3H), 1.88-1.72 (m, 2H), 1.76-1.62 (m, 2H), 1.47-1.32 (m, 3H) ppm.

Product 4d: ¹H NMR (300 MHz, CDCl₃): δ = 5.88 (s, 1H), 4.76-4.61 (m, 1H), 3.73 (s, 3H), 2.01 (s, 3H), 1.78-1.62 (m, 2H), 1.65-1.54 (m, 1H), 0.94-0.93 (m, 6H) ppm.

Product 4e: ¹H NMR (300 MHz, CDCl₃): δ = 7.28-7.17 (m, 5H), 6.32 (s, 1H), 5.04-4.99 (q, 1H), 1.87 (s, 3H), 1.40-1.37 (d, 3H) ppm.

(b) Reaction Profile. Procedure as (a) above. An autoclave equipped with a sampling needle allowed for aliquots to be analyzed during hydrogenation under an atmosphere of H₂.³ Conditions: [2] = 2 mM, [3b]= 0.2 M, P (H₂) = 15 atm. Conversion and ee% determined by GC (Supelco BETA-DEX225 column). Note, ¹H NMR and chiral GC analysis gave the same conversion results.
(c) Turn over frequency (TOF) determination. Procedure as (a) above. Reaction was stopped at ca. >50% conversion estimated from reaction profile above and the product mixture analyzed by 1H NMR and chiral GC (Supelco BETA-DEX225 column). Following catalyst recovery by filtration under argon atmosphere the next hydrogenation was conducted. TOF = TON/reaction time (TON = mol of product/mol of catalyst).

<table>
<thead>
<tr>
<th>run</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>time/min</td>
<td>35</td>
<td>45</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>120</td>
<td>150</td>
<td>210</td>
<td>240</td>
<td>480</td>
</tr>
<tr>
<td>Conv./%</td>
<td>99</td>
<td>83</td>
<td>97</td>
<td>91</td>
<td>66</td>
<td>65</td>
<td>62</td>
<td>69</td>
<td>44</td>
<td>65</td>
</tr>
<tr>
<td>TOF/h$^{-1}$</td>
<td>>180</td>
<td>111</td>
<td>83</td>
<td>68</td>
<td>44</td>
<td>32</td>
<td>24</td>
<td>19</td>
<td>11</td>
<td>8</td>
</tr>
</tbody>
</table>

References

Figure S1. XRD pattern of solid-state catalyst 2

Figure S2. DSC-TG Curve of catalyst 2.
Figure S3. a) Polymeric supramolecular catalyst 2 (yellow solids at the bottom of the reactor) in toluene prior to hydrogenation. b) The colorless toluene filtrate obtained by simple filtration of solid catalyst 2 following the hydrogenation.
Figure S4. Chiral GC analysis of products 4a-4e

product 4a

--
Area Percent Report
Sorted By : Signal
Multiplier : 1.0000
Dilution : 1.0000

Signal 1: FID1 A,
Peak RetTime Type Width Area Height Area
[min] [min] [pA*s] [pA] %
---|------|------|--------|------|------|
1 9.217 BB 0.0704 395.34988 67.47271 45.97357
2 10.485 BB 0.0998 355.72717 45.18896 50.02653
Totals : 711.07706 112.66167

--
Area Percent Report
Sorted By : Signal
Multiplier : 1.0000
Dilution : 1.0000

Signal 1: FID1 A,
Peak RetTime Type Width Area Height Area
[min] [min] [pA*s] [pA] %
---|------|------|--------|------|------|
1 9.354 BB 0.0629 63.61109 18.09677 57.63435
2 10.762 BB 0.0488 2.02587 4.96968e-1 2.36565
Totals : 85.63696 18.59546

12
product 4c

NHAc

CO₂Me

Area Percent Report

Sorted By: Signal
Multiplier: 1.0000
Dilution: 1.0000

Signal 1: FID1 A,

<table>
<thead>
<tr>
<th>Peak Ret Time</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.74 s</td>
<td>BB</td>
<td>0.106</td>
<td>141.137</td>
<td>18.17094</td>
<td>80.2788</td>
</tr>
<tr>
<td>15.75 s</td>
<td>DP</td>
<td>0.105</td>
<td>139.846</td>
<td>17.22581</td>
<td>49.7214</td>
</tr>
</tbody>
</table>

Totals: 200.09145 35.40076

Area Percent Report

Sorted By: Signal
Multiplier: 1.0000
Dilution: 1.0000

Signal 1: FID1 A,

<table>
<thead>
<tr>
<th>Peak Ret Time</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.70 s</td>
<td>BB</td>
<td>0.022</td>
<td>248.28708</td>
<td>34.04500</td>
<td>97.3355</td>
</tr>
<tr>
<td>15.77 s</td>
<td>EP</td>
<td>0.032</td>
<td>7.25755</td>
<td>1.04035</td>
<td>2.6444</td>
</tr>
</tbody>
</table>

Totals: 275.57457 35.10539

Product 4e

NHAc
Ph

File name: sl-4-17003.CH2

Info:

Vial # = 1 Rack # = 1
Injection Date: 24-Sep-2005 12:39:02
Curr. Date: 27-Sep-2005 11:29:30
User: SL
Group: DATA
Control Method: BENJI-XIAN

#	Name	RT [min]	Area [μV·Sec]	%Area
1 | | 11.525 | 1870171.121 | 51.24
2 | | 14.750 | 1779842.750 | 48.78

Total Area of Peak = 3650013.072 [μV·Sec]

File name: sl-3-90002.CH2

Info:

AD, i-PrOH:HEX=50:50, 250 nm,

Vial # = 1 Rack # = 1
Injection Date: 13-Aug-2005 12:15:04
Curr. Date: 27-Sep-2005 11:31:18
User: SL
Group: DATA
Control Method: BENJI-XIAN

#	Name	RT [min]	Area [μV·Sec]	%Area
1 | | 11.867 | 3748201.000 | 95.31
2 | | 14.875 | 184541.272 | 4.69

Total Area of Peak = 3932742.272 [μV·Sec]