

Supporting Information

© Wiley-VCH 2006

69451 Weinheim, Germany

Synthesis and New Reactions of Highly Strained 2,3-Bridged 2H-Azirines

Klaus Banert and Barbara Meier

Table S1: Methods for the synthesis of cyclic vinyl azides 2.

: vinyl a <i>n</i>	zide 2 R ¹	R ²	х	Method for the synthesis of 2	Reference
5	н	Н	CH₂	Zbiral's sequence ^[a]	[11b]
6	Н	Н	CH₂	Zbiral's sequence ^[a]	[11b]
7	н	Н	CH_2	Hassner's method ^[b,c] (Zbiral's sequence is also possible)	this work (see also [11b])
8	н	Н	CH_2	Hassner's method ^[b]	[4]
12	н	Н	CH_2	Hassner's method ^[b,c]	this work
6	CMe=CH ₂	Ме	CH_2	Epoxid + NaN ₃ followed by dehydration ^[e]	this work
5	н	Ме	CH_2	Radical addition of IN_3 followed by dehydrohalogenation ^[f]	this work
6	Н	Ме	CH_2	Radical addition of IN_3 followed by dehydrohalogenation ^[f]	this work
6	н	Н	C=O	Nucleophilic substitution ^[g]	[6g]
6	н	Ме	C=O	Nucleophilic substitution ^[g]	[6g]
5	Н	Ме	C=O	Nucleophilic substitution ^[9]	[6g]
	vinyl a 5 6 7 8 12 6 5 6 6 6 5 5	$\begin{array}{c} \text{svinyl azide } 2 \\ n \\ R^{1} \\ \hline \\ 5 \\ R \\ 6 \\ R \\ 12 \\ R \\ 6 \\ CMe=CH_{2} \\ \hline \\ 6 \\ R \\ 6 \\ R \\ 6 \\ R \\ 6 \\ R \\ 5 \\ R \\ \end{array}$	$2 \text{ vinyl azide 2}n\mathbb{R}^25HH6HH7HH8HH12HH6CMe=CH2Me5HMe6HMe6HMe6HMe5HMe$	$2 \text{ vinyl azide } 2$ R^1 R^2 X 5HH CH_2 6HH CH_2 7HH CH_2 8HH CH_2 12HH CH_2 6 $CMe=CH_2$ Me CH_2 5HMe CH_2 6HMe CH_2 6HMe $C=O$ 6HMe $C=O$ 5HMe $C=O$ 5HMe $C=O$	evinyl azide 2 n R^2 X Method for the synthesis of 25HHCH2Zbiral's sequence[a]6HHCH2Zbiral's sequence[a]7HHCH2Hassner's method[b,c]7HHCH2Hassner's method[b,c]8HHCH2Hassner's method[b]12HHCH2Hassner's method[b]6CMe=CH2MeCH2Epoxid + NaN3 followed by dehydration[e]5HMeCH2Radical addition of IN3 followed by dehydrohalogenation[f]6HHC=ONucleophilic substitution[g]6HMeC=ONucleophilic substitution[g]5HMeC=ONucleophilic substitution[g]

[a] The corresponding cyclic *trans*-1,2-halohydrins resulting from epoxides are treated with HN₃ under Mitsunobu conditions to give *cis*-1-azido-2-halocycloalkanes, which lead to **2** on base-induced dehydrohalogenation. [b] Generation of iodine azide in situ followed by electrophilic addition of this reagent at cycloalkenes and base-induced elimination of hydrogen iodide. [c] See also footnote [9]. [d] Mixture with (*Z*)-**2e** : (*E*)-**2e** = 2.5:1. [e] See also the upper part of Scheme 2. [f] See also the lower part of Scheme 2. [g] The corresponding chloro compounds are treated with NaN₃.

Selected physical data of compounds

E-2e, *Z*-2e, 2f, 2g, 2h, 3e, 3f, 3h, 3i, 3j, *cis*-9a, *trans*-9g, *cis*-9h, *trans*-9h, 10g, 10h, 11g, 15k, 16k, 17b, 17c, 18b, 18c, 18h, 18l, 19b, 19c, 19j, 20c, 20j, 21c, 21d as well as I, II, III, IV.

Only new compounds are listed in this supporting information. **Caution** should be exercised during isolation of azides, which may be explosive. Therefore, combustion analyses were not performed in the case of azides.

1-Azido-2-iodocyclododecane (I): Light-yellow liquid. – IR (CDCl₃): \tilde{v} = 2103 cm⁻¹ (N₃). – ¹H NMR (CDCl₃): δ = 1.20 – 2.15 (m, 20 H), 3.29 (m, 1 H, CHN₃), 4.32 (m, 1 H, CHI). – ¹³C NMR (CDCl₃): δ = 20.98 (t), 22.82 (t), 23.19 (t), 23.38 (t), 23.62 (t), 24.13 (t), 24.16 (t), 24.29 (t), 30.68 (t), 35.66 (t), 36.68 (d, CHI), 62.97 (d, CHN₃).

E-2e

Z-2e

 N_3

N₃

E-/*Z*-1-Azidocyclododecene (**2e**): Yellow liquid. – **IR** (CDCl₃): $\tilde{v} = 2110$ cm⁻¹ (N₃). – ¹**H NMR** (CDCl₃): $\delta = 1.21 - 1.60$ (m, 32 H), 2.08 (m, 4 H, 3-H or 12-H *E*-**2e** and *Z*-**2e**), 2.17 (m, 2 H, 3-H or 12-H, *E*-**2e**), 2.33 (m, 2 H, 3-H or 12-H, *Z*-**2e**), 4.79 (t, ³*J* = 7.4 Hz, 1 H, =CH, *Z*-**2e**), 5.06 (t, ³*J* = 8.0 Hz, 1 H, =CH, *E*-**2e**). – ¹³C **NMR** (CDCl₃): $\delta = 22.12$ (t, *E*-**2e**), 22.36 (t, *E*-**2e**), 23.92 (t, *E*-**2e**), 24.09 (t, *Z*-**2e**), 24.12 (t, *E*-**2e**), 24.42 (t, *E*-**2e**), 24.44 (t, C-3 or C-12, *E*-**2e**), 24.47 (t, *Z*-**2e**), 24.68 (t, *E*-**2e**), 24.91 (t, *E*-**2e**), 24.98 (t, 2 C, *Z*-**2e**), 25.16 (t, *Z*-**2e**), 25.21 (t, C-3 or C-12, *E*-**2e**), 25.49 (t, *Z*-**2e**), 32.50 (t, C-3 or C-12, *Z*-**2e**), 116.41 (d, =CH, *E*-**2e**), 120.00 (d, =CH, *Z*-**2e**), 133.53 (s, *Z*-**2e**), 137.45 (s, *E*-**2e**).

The assignment of the ¹³C NMR signals was performed with the help of ¹³C,¹H shift correlation and ¹³C NMR spectra, for which the signals could be integrated. The γ effect of ¹³C NMR spectroscopy was used to assign *E*- and *Z*-isomers.

(4*R*)-2-Azido-4-isopropenyl-1-methylcyclohexene (2f): Yellow liquid. – IR (CDCl₃): $\tilde{v} = 2099 \text{ cm}^{-1}$ (N₃). – ¹H NMR (CDCl₃): $\delta = 1.43$ (m, 1 H), 1.61 (s, 3 H, CH₃), 1.75 (s, 3 H, CH₃), 1.76 (m, 1 H), 1.99 – 2.21 (m, 3 H), 2.24 – 2.34 (m, 2 H), 4.75 (m, 1 H, =CH₂), 4.77 (m, 1 H, =CH₂). – ¹³C NMR (CDCl₃): $\delta =$ 17.21 (q), 20.62 (q), 27.31 (t), 30.02 (t), 30.93 (t), 41.55 (d), 109.49 (t), 120.33 (s), 125.37 (s), 148.40 (s).

cis-2-Azido-1-iodo-1-methylcyclopentane (*cis*-**9g**): Light-yellow liquid. – **IR** (CDCl₃): $\tilde{v} = 2106 \text{ cm}^{-1}$ (N₃). – ¹**H NMR** (CDCl₃): $\delta = 1.46 - 2.18$ (m, 7 H), therein 2.02 (s, 3 H, CH₃), 2.32 – 2.47 (m, 2 H), 4.26 (m, 1 H, CHN₃). – ¹³**C NMR** (CDCl₃): $\delta = 19.70$ (t), 28.85 (t), 33.27 (q), 44.50 (t), 60.04 (s), 72.38 (d, CHN₃).

trans-2-Azido-1-iodo-1-methylcyclopentane (*trans*-**9g**): Light-yellow liquid. – **IR** (CDCl₃): $\tilde{v} = 2110 \text{ cm}^{-1}$ (N₃). – ¹**H** NMR (CDCl₃): $\delta = 1.72 - 2.00$ (m, 4 H), 2.08 (s, 3 H, CH₃), 2.25 (m, 1 H), 2.40 (m, 1 H), 4.26 (m, 1 H, CHN₃). – ¹³C NMR (CDCl₃): $\delta = 21.97$ (t), 29.37 (t), 30.40 (q), 44.48 (t), 54.64 (s), 75.33 (d, CHN₃).

1-Azido-2-methylcyclopentene (**2g**): Yellow liquid. – **IR** (CDCl₃): $\tilde{\nu}$ = 2107 cm⁻¹ (N₃). – ¹**H** NMR (CDCl₃): δ = 1.57 (m, 3 H), 1.90 (m, 2 H), 2.30 (m, 2 H), 2.53 (m, 2 H). – ¹³C NMR (CDCl₃): δ = 12.50 (q), 20.18 (t), 30.64 (t), 35.95 (t), 123.42 (s), 129.46 (s).

2g

10g

 N_3

trans-9g

5-Azido-1-methylcyclopentene (**10g**): Colorless liquid. – **IR** (CDCl₃): $\tilde{v} = 2105 \text{ cm}^{-1}$ (N₃). – ¹**H NMR** (CDCl₃): $\delta = 1.78$ (m, 3 H), 1.96 (m, 1 H), 2.30 (m, 2 H), 2.41 (m, 1 H), 4.09 (br. s, 1 H, CHN₃), 5.63 (br. s, 1 H, =CH). – ¹³C **NMR** (CDCl₃): $\delta = 14.19$ (q), 30.61 (t), 30.71 (t), 70.49 (d, CHN₃), 129.79 (d, =CH), 137.92 (s).

cis-2-Azido-1-iodo-1-methylcyclohexane (*cis*-9h): Light-yellow liquid. – IR (CDCl₃): $\tilde{v} = 2104 \text{ cm}^{-1}$ (N₃). – ¹H NMR (CDCl₃): $\delta = 1.10 - 2.24$ (m, 11 H), therein 2.07 (s, 3 H, CH₃), 3.96 (m, 1 H, CHN₃). – ¹³C NMR (CDCl₃): $\delta = 24.02$ (t), 24.34 (t), 30.08 (t), 35.75 (q), 44.22 (t), 60.16 (s), 69.52 (d, CHN₃).

trans-2-Azido-1-iodo-1-methylcyclohexane (*trans*-9h): Light-yellow liquid. – **IR** (CDCl₃): $\tilde{v} = 2103 \text{ cm}^{-1}$ (N₃). – ¹H NMR (CDCl₃): $\delta = 1.37 - 2.25$ (m, 11 H), therein 2.01 (s, 3 H, CH₃), 3.96 (m, 1 H, CHN₃). – ¹³C NMR (CDCl₃): $\delta = 22.19$ (t), 23.74 (t), 28.14 (t), 30.77 (q), 43.66 (t), 54.35 (s), 70.95 (d, CHN₃). *trans*-9h

1-Azido-2-methylcyclohexene (**2h**): Yellow liquid. – **IR** (CDCl₃): $\tilde{v} = 2099$ cm⁻¹ (N₃). – ¹**H** NMR (CDCl₃): $\delta = 1.56$ (m, 2 H), 1.60 (s, 3 H), 1.72 (m, 2 H), 1.97 (m, 2 H), 2.22 (m, 2 H). – ¹³C NMR (CDCl₃): $\delta = 17.52$ (q), 22.39 (t), 22.86 (t), 24.83 (t), 30.82 (t), 120.76 (s), 125.92 (s). **2h**

N٦

6-Azido-1-methylcyclohexene (10h): Colorless liquid. – IR (CDCl₃): $\tilde{v} = 2107 \text{ cm}^{-1}$ (N₃). – ¹H NMR (CDCl₃): $\delta = 1.47 - 2.10$ (m, 9 H), therein 1.75 (m, 3 H, CH₃), 3.65 (br. s, 1 H, CHN₃), 5.68 (br. s, 1 H, =CH). – ¹³C NMR 10h (CDCl₃): $\delta = 18.31$ (t), 21.46 (q), 24.98 (t), 29.19 (t), 60.25 (d, CHN₃), 127.46 (d, =CH), 130.96 (s).

Figure 1. Measured and simulated ¹H NMR spectra of **3b** (δ scale).

13-Azabicyclo[10.1.0]tridec-1(13)-ene (**3e**): Colorless liquid; IR (CDCl₃): $\tilde{v} =$ 1748 cm⁻¹ (C=N); ¹H NMR (CDCl₃): $\delta = 1.09$ (m, 1 H), 1.19 – 1.55 (m, 14 H), 1.67 – 1.89 (m, 3 H), 2.02 (m, 1 H), 2.72 – 2.89 (m, 2 H, 2-H); ¹³C NMR (CDCl₃): $\delta = 23.36$ (t), 24.23 (t), 24.72 (t), 25.13 (t), 25.33 (t), 25.67 (t), 26.17 (t), 26.26 (t), 27.00 (t), 31.07 (t), 31.24 (d, ¹*J*_(C,H) = 175 Hz, C-12), 176.76 (s, C-1); HR-MS (ESI): m/z (%): 180.1740 (100) [M + H⁺; ber. 180.1747], 359.3441 (63) [2M + H⁺; ber. 359.3421].

3i

(3R,6S)-/(3R,6R)-3-Isopropenyl-6-methyl-7-azabicyclo[4.1.0]hept-1(7)-ene (**3f**, 1:1 mixture of diastereomers): IR (CDCl₃): $\tilde{v} = 1728 \text{ cm}^{-1}$ (C=N); ¹H NMR (CDCl₃): $\delta = 0.75 - 0.95$ (m, 2 H), 1.26 - 1.82 (m, 18 H), therein 1.45 (s, 3 H, CH₃) and 1.46 (s, 3 H, CH₃) and 1.69 (s, 3 H, CH₃) and 1.73 (s, 3 H, CH₃), 2.00 (m, 1 H), 2.38 (m, 1 H), 2.72 (m, 1 H, 2-H), 2.92 (m, 2 x 1 H, 2-H), 3.47 (m, 1 H, 2-H), 4.72 (m, 1 H, **3f** = CH₂), 4.73 (m, 1 H, =CH₂), 4.77 (m, 1 H, =CH₂), 4.81 (m, 1 H, =CH₂); ¹³C NMR (CDCl₃): $\delta = 20.46$ (q), 20.61 (q), 21.80 (q), 22.18 (q), 27.25 (t), 27.69 (t), 29.97 (t), 32.41 (s, C-6), 33.02 (t), 33.37 (s, C-6), 34.92 (t), 34.97 (t), 41.89 (d), 46.28 (d), 110.35 (t, =CH₂), 110.65 (t, =CH₂), 147.16 (s), 147.91 (s), 184.23 (s, C-1), 184.60 (s, C-1).

6-Methyl-7-azabicyclo[4.1.0]hept-1(7)-ene (**3h**): IR (CDCl₃): $\tilde{v} = 1720 \text{ cm}^{-1}$ (C=N); ¹H NMR (CDCl₃): $\delta = 0.95$ (m, 1 H), 1.35 – 1.61 (m, 7 H), therein 1.45 (s, 3 H, CH₃), 1.74 (m, 1 H), 2.78 (ddd, ²J = 12.9 Hz, ³J = 6.8 Hz, ³J = 6.7 Hz, 1 H, 2-H_{exo}), 3.20 (ddd, ²J = 12.9 Hz, ³J = 8.0 Hz, ³J = 4.4 Hz, 1 H, 2-H_{endo}); ¹³C NMR (CDCl₃): δ **3h** = 21.97 (t), 22.12 (q), 24.07 (t), 27.75 (t), 33.08 (s), 33.97 (t), 185.39 (s, C-1).

7-Azabicyclo[4.1.0]hept-6-en-2-one (**3i**): ¹H NMR (CDCl₃, -50° C): $\delta = 1.79 - 2.30$ (m, 4 H), 2.89 (s, 1 H), 3.30 (m, 1 H, 5-H), 3.47 (m, 1 H, 5-H).

1-Methyl-7-azabicyclo[4.1.0]hept-6-en-2-one (**3j**): IR (CDCl₃): $\tilde{v} = 1763 \text{ cm}^{-1}$ (C=N), 1696 (C=O); ¹H NMR (CDCl₃): $\delta = 1.53$ (s, 3 H), 1.58 – 2.65 (m, 4 H), 3.15 (m, 1 H, 5-H), 3.36 (m, 1 H, 5-H); ¹³C NMR (CDCl₃): $\delta = 13.73$ (q), 18.77 (t), 26.91 (t), 39.89 (t), 41.28 (s, C-1), 174.25 (s, C-6), 207.38 (s, C=O). **3j**

cis-/trans-3a,7a-Dimethyl-1,2,3,3a,5,6,7,7a-octahydro-4,8-diaza-*s*indacene **11g**: Orange oil.– **IR** (CDCl₃): $\tilde{v} = 1658 \text{ cm}^{-1}$ (C=N). – ¹**H NMR** (CDCl₃): $\delta = 0.73 - 2.68$ (m, 2 x 18 H), therein 1.21 (s, 6 H, CH₃) and 1.27 (s, 6 H, CH₃). – ¹³**C NMR** (CDCl₃): $\delta = 15.16$ (t), 18.42 (t), 25.01 (q), 27.94 (q), 29.54 (t), 29.97 (t), 35.19 (t), 39.45 (t), 61.17 (s), 62.29 (s), 176.92 (s), 180.33 (s). – **HR-MS** (ESI): m/z: 191.1543 [M + H⁺; calc. 191.1543].

E-5-(2-Methyl-3-oxocyclopent-1-enylimino)-4-oxohexanenitrile **15k**: Yellow oil. – **IR** (CDCl₃): $\tilde{v} = 1700 \text{ cm}^{-1}$ (C=O). – ¹**H NMR** (CDCl₃): $\delta = 1.49$ (t, ⁵*J* = 1.7 Hz, 3 H, 2'-Me), 1.99 (s, 3 H, 6-H), 2.55 (m, 2 H, 4'-H or 5'-H), 2.62 (m, 2 H, 4'-H or 5'-H), 2.66 (t, ³*J* = 7.1 Hz, 2 H, 2-H), 3.33 (t, ³*J* = 7.1 Hz, 2 H, 3-H). – ¹³**C NMR** (CDCl₃): δ = 7.17 (q), 11.61 (t, C-2), 15.38 (q), 27.61 (t), 32.71 (t), 33.57 (t), 118.74 (s), 120.79 (s), 162.26 (s), 172.67 (s), 196.00 (s, C=O), 205.47 (s, C=O). – **GC** (1 min 50°C, 10°C/min, 220°C): t_R = 19.4 min. – **GC-MS**: m/z (%): 218 (5) [M⁺], 136 (56), 95 (77), 67 (100), 53 (32), 41 (69), 39 (49). – **HR-MS** (ESI): m/z: 219.1098 [M + H⁺; calc. 219.1128].

The structure of 15k is proved not only by its spectroscopic data but also by hydrolysis to yield the products II and III. Moreover, II was prepared from 2k via IV in a control experiment.

3-Amino-2-methylcyclopent-2-enone II: Colorless solid, m.p. $131 - 135^{\circ}$ C (CHCl₃/hexane). – IR (CDCl₃): $\tilde{v} = 3521$, 3419 cm^{-1} (NH₂), 1601 (C=O). – ¹H NMR (CDCl₃): $\delta = 1.57$ (t, ⁵*J* = 1.4 Hz, 3 H), 2.37 (m, 2 H), 2.49 (m, 2 H), 5.05 (br. s, NH₂). – ¹³C NMR (CDCl₃): $\delta = 5.98$ (q), 26.47 (t), 33.19 (t), 109.24 (s, C-2), 171.90 (s, C-3), 203.98 (s, C=O). – C₆H₉NO (111.14): calc. C 64.84, H 8.16, N 12.60; found C 64.42, H 7.97, N 12.51.

4,5-Dioxohexanenitrile III: Yellow oil. – IR (CCl₄): $\tilde{v} = 1721 \text{ cm}^{-1}$ (C=O). – ¹H NMR (CDCl₃): $\delta = 2.36$ (s, 3 H), 2.60 (t, ³*J* = 7.1 Hz, 2 H), 3.14 (t, ³*J* = 7.1 Hz, 2 H). – ¹³C NMR (CDCl₃): $\delta = 10.97$ (t, C-2), 23.47 (q, C-6), 31.92 (t, C-3), 118.39 (s, C=N), 194.53 (s, C=O), 195.87 (s, C=O). – C₆H₇NO₂ (125.13): III calc. C 57.59, H 5.64, N 11.19; found C 57.55, H 5.75, N 11.07.

N-(2-Methyl-3-oxocyclopent-1-enyl)-triphenyl-iminophosphorane **IV**: Colorless solid, m.p. 195 – 199°C (CHCl₃/diethylether). – **IR** (CDCl₃): $\tilde{v} =$ 1555 cm⁻¹ (C=O), 1419 (N=P). – ¹**H** NMR (CDCl₃): $\delta = 1.86$ (s, 3 H), 1.94 (m, 2 H), 2.20 (m, 2 H), 7.45 – 7.79 (m, 15 H, Ph). – ¹³C NMR (CDCl₃): $\delta =$ 7.41 (q), 31.37 (t and d, ³ $J_{(P,C)} = 9$ Hz, C-5), 33.82 (t, C-4), 119.79 (s and d, ³ $J_{(P,C)} = 22$ Hz, C-2), 128.73 (d and d, ³ $J_{(P,C)} = 13$ Hz, *m*-Ph), 129.54 (s and d, ¹ $J_{(P,C)} = 100$ Hz, *i*-Ph), 132.23 (d and d, ² $J_{(P,C)} = 10$ Hz, *o*-Ph), 132.29 (d and d, ⁴ $J_{(P,C)} = 2$ Hz, *p*-Ph), 180.94 (s, C-1), 205.22 (s, C=O). – C₂₄H₂₂NOP (371.41): calc. C 77.61, H 5.97, N 3.77; found C 77.68, H 6.16, N 3.66. *E*-Bis(2-methyl-3-oxocyclopent-1-enyl)-diazene **16k**: Red-brown crystals, m.p. 157 – 165°C (diethylether/CH₂Cl₂). – **IR** (CDCl₃): \tilde{v} = 1686 cm⁻¹ (C=O). – ¹**H NMR** (CDCl₃): δ = 2.22 (t, ⁵*J* = 1.9 Hz, 3 H), 2.60 (m, 2 H), 2.79 (m, 2 H). – ¹³C **NMR** (CDCl₃): δ = 8.27 (q), 22.98 (t), 33.95 (t), 146.19 (s), 173.33 (s), 208.47 (s, C=O). – **GC** (1 min 50°C, 10°C/min, 220°C): t_R = 23.4 min. – **GC-MS**: m/z (%): 218 (43) [M⁺], 55 (64), 54 (92), 53 (88), 52 (85), 41 (93), 39 (100). – **HR-MS** (ESI): m/z: 219.1103 [M + H⁺; calc. 219.1128].

2-Azatetracyclo[7.2.1.0^{2,8}.0^{3,8}]dodec-10-ene **17b**: Light-yellow oil. $-^{1}$ H **NMR** (CDCl₃): $\delta = 1.05 - 2.03$ (m, 10 H), therein 1.45 (dd, J = 6.0 Hz, J= 1.6 Hz, 1 H, 3-H) and 1.59 (br. d, $^{2}J = 7.7$ Hz, 1 H, 12-H'), 2.07 (dt, ^{2}J = 7.7 Hz, J = 1.6 Hz, 1 H, 12-H), 2.66 (m, 1 H, 9-H), 3.98 (s, 1 H, 1-H), 12 5.56 (m, 1 H, 11-H), 5.98 (m, 1 H, 10-H). $-^{13}$ C **NMR** (CDCl₃): $\delta =$ **17b** 21.03 (t), 21.81 (t), 25.51 (t), 28.66 (t), 41.86 (s, C-8), 46.15 (d, C-3), 50.42 (d, C-9), 57.91 (t, C-12), 66.05 (d, C-1), 126.54 (d, C-11), 131.77 (d, C-10). - **HR-MS** (ESI): m/z: 162.1263 [M + H⁺; calc. 162.1277].

The assignment of NMR signals was performed with the help of ¹³C, ¹H correlation and ¹H-NMR NOE difference spectra (see Figure 2).

Irradiated at	NOE effect (%)										
the signal	1 - H	3 - H	7 - H	9-H	10-H	11 - H	12-Н	12 - H′			
1 - H	_	_	_	_	_	2.2	0.9	1.2			
3- H	0.3	_	_	_	1.0	1.1	—	_			
7 - H	_	_	_	_	—	_	—	_			
9 - H	_	_	2.1	_	1.7	_	1.2	1.3			
10-Н	_	1.3	_	1.4	—	1.6	—	_			
11-Н	2.3	1.9	_	_	2.1	_	—	_			
12-Н	0.7	_	_	0.8	_	_	_	8.7			
12-H'	0.4	_	_	0.5	0.05	0.03	4.9	_			

Figure 2: NOE effects based on ¹H NMR experiments with **17b**. The structure of shown molecule of **17b** is resulting from MOPAC minimizing of energy with CS Chem3D 7.0.

2-Azatetracyclo[8.2.1.0^{2,9}.0^{3,9}]tridec-11-ene **17c**: Light-yellow oil. $-^{1}$ **H NMR** (CDCl₃): $\delta = 1.12 - 1.99$ (m, 13 H), 2.66 (m, 1 H, 10-H), 3.92 (s, 1 H, 1-H), 5.54 (m, 1 H, 12-H), 5.97 (m, 1 H, 11-H). $-^{13}$ **C NMR** (CDCl₃): $\delta = 26.64$ (t), 27.09 (t), 30.21 (t), 32.01 (t), 34.49 (t), 46.77 (s, 1 C-9), 49.91 (d), 50.85 (d), 58.50 (t, C-13), 65.92 (d, C-1), 126.80 (d, C-12), 132.14 (d, C-11). - **HR-MS** (ESI): m/z: 176.1421 [M + H⁺; calc. 176.1434]. The assignment of NMR signals is based on comparison with the data of **17b**. 7-Azabicyclo[4.1.0]heptane-1-carbonitrile **18b**: Colorless oil. – **IR** (CCl₄): $\tilde{v} = 3317 \text{ cm}^{-1}$ (NH), 2234 (C=N). – ¹H NMR (C₆D₆): $\delta = 0.50$ (br. s, 1 H, NH), 0.65 (m, 2 H), 0.97 (m, 2 H), 1.14 (m, 1 H), 1.28 (m, 1 H), 1.53 (m, 1 H), 1.70 (m, 1 H), 1.87 (m, 1 H). – ¹H NMR (CDCl₃): $\delta = 1.18 - 1.41$ (m, 5 H, 2 x CH₂ **18b** and NH), 1.79 (m, 1 H), 1.88 (m, 1 H), 2.05 (m, 2 H), 2.74 (br. s, 1 H, 6-H). – ¹³C NMR (CDCl₃): $\delta = 18.43$ (t), 19.11 (t), 23.41 (t), 24.95 (s), 26.98 (t), 37.47 (d), 122.38 (s, C=N). – C₇H₁₀N₂ (122.17): calc. C 68.82, H 8.25, N 22.93; found C 68.52, H 8.24, N 22.79. If D₂O is added to the NMR solution (C₆D₆), the NH signal at $\delta = 0.50$ is lost. The assignment of the signal of 6-H is based on ¹³C, ¹H shift correlation.

8-Azabicyclo[5.1.0]octane-1-carbonitrile **18c**: Colorless solid, m.p. 49°C (diethylether/hexane). – **IR** (CCl₄): $\tilde{v} = 3317 \text{ cm}^{-1}$ (NH), 2232 (C=N). – ¹H **NMR** (C₆D₆): $\delta = 0.53$ (br. s, 1 H, NH), 0.86 – 1.08 (m, 4 H), 1.14 – 1.32 (m, 4 H), 1.45 (m, 1 H), 1.80 (m, 1 H), 1.88 (m, 1 H). – ¹H NMR (CDCl₃): δ = 1.29 – 1.73 (m, 9 H, 4 x CH₂ and NH), 2.16 (m, 1 H), 2.32 (m, 1 H), 2.69 (m, 1 H). – ¹³C **NMR** (CDCl₃): $\delta = 25.22$ (t), 25.35 (t), 29.83 (t), 30.23 (s), 31.29 (t), 32.44 (t), 42.06 (d), 122.79 (s, C=N). – C₈H₁₂N₂ (136.19): calc. C 70.55, H 8.88, N 20.57; found C 70.16, H 8.86, N 20.27. If D₂O is added to the NMR solution (C₆D₆), the NH signal at $\delta = 0.53$ is lost.

6-Methyl-7-Azabicyclo[4.1.0]heptane-1-carbonitrile **18h**: Colorless solid,m.p. 48 – 52°C (diethylether/hexane). – **IR** (CCl₄): $\tilde{v} = 3302 \text{ cm}^{-1}$ (NH), 2230 (C=N). – ¹**H NMR** (C₆D₆): $\delta = 0.29$ (br. s, 1 H, NH), 0.68 (m, 1 H), 0.81 (m, 1 H), 0.99 – 1.18 (m, 6 H), therein 1.01 (s, 3 H, CH₃), 1.41 (m, 1 H), 1.68 (m, 1 **18h** H), 1.75 (m, 1 H). – ¹³C NMR (CDCl₃): $\delta = 19.40$ (t), 19.74 (t), 24.55 (q), 27.81 (t), 29.78 (t), 31.56 (s), 42.18 (s), 121.35 (s, C=N). – **HR-MS** (ESI): m/z: 137.1094 [M + H⁺; calc. 137.1073]. If D₂O is added to the NMR solution (C₆D₆), the signal at $\delta = 0.29$ is lost.

4,4,6-Trimethyl-2-oxo-7-azabicyclo[4.1.0]heptane-1-carbonitrile **18**I: Orange oil. –**IR** (CCl₄): $\tilde{v} = 3299 \text{ cm}^{-1}$ (NH), 2244 (C=N), 1725 (C=O). – ¹H NMR (C₆D₆): $\delta = 0.43$ (s, 6 H, 2 x CH₃), 0.88 (br. d, ²J = 13.9 Hz, 1 H), 0.94 (s, 3 H, CH₃), 0.99 (br. s, 1 H, NH), 1.28 (br. d, ${}^{2}J = 13.9$ Hz, 1 H), 1.57 (br. d, ${}^{2}J = 13.9$ Hz, 1 H), 2.22 (br. d, ${}^{2}J = 13.6$ Hz, 1 H). – 13 C NMR (CDCl₃): $\delta = 25.49$ (q), 27.22 (q), 30.60 (q), 35.79 (s), 41.18 (s), 43.39 (t), 46.77 (t), 50.51 (s), 115.62 (s, C=N), 200.79 (s, C=O). – HR-MS (ESI): m/z: 179.1153 [M + H⁺; calc. 179.1179]. If D₂O is added to the NMR solution (C₆D₆), the signal at $\delta = 0.99$ is lost.

3,4,5-Triazatricyclo[4.4.0.0^{1,5}]dec-3-ene **19b**: ¹**H NMR** (CDCl₃, – 50°C): $\delta = 1.33$ (m, 4 H), 1.68 (s, 1 H, 6-H), 1.78 (m, 2 H), 2.04 (m, 2 H), 4.36 (d, ²*J* = 18.6 Hz, 1 H, 2-H'), 4.78 (d, ²*J* = 18.6 Hz, 1 H, 2-H). – ¹³C NMR (CDCl₃, –50°C): $\delta = 19.56$ (t), 20.70 (t), 23.42 (t), 24.02 (t), 45.13 (s, C-1), 49.39 (d, C-6), 79.52 (t, C-2).

8,9,10-Triazatricyclo[6.3.0.0^{1,7}]undec-9-ene **19c**: ¹**H NMR** (CDCl₃, – 50°C): $\delta = 1.24 - 2.18$ (m, 11 H), 4.36 (d, ²*J* = 18.7 Hz, 1 H, 11-H), 4.78 (d, ²*J* = 18.7 Hz, 1 H, 11-H). – ¹³C NMR (CDCl₃, –50°C): $\delta = 25.26$ (t), 27.12 (t), 28.75 (t), 30.93 (t), 31.54 (t), 49.62 (s, C-1), 53.48 (d, C-7), 81.01 (t, C-11). **19c**

1-Azidomethylcycloheptene **20c** and 1-Azido-2-methylenecycloheptane **21c**: Colorless liquid. – **IR** (CDCl₃): $\tilde{v} = 2099 \text{ cm}^{-1}$ (N₃). – ¹**H** NMR (CDCl₃): $\delta = 1.19 - 2.33$ (m, 2 x 10 H), 3.63 (s, 2 H, CH₂N₃, **20c**), 4.07 (m, 1 H, CHN₃, **21c**), 4.95 (br. s, 1 H, =CH₂, **21c**), 5.05 (br. s, 1 H, =CH₂, **21c**), 5.85 (t, ³J = 6.5 Hz, 1 H, =CH, **20c**). – ¹³C NMR (CDCl₃): $\delta = 24.07$ (t), 26.47 (t), 26.95 (t), 28.25 (t), 29.82 (t), 30.04 (t), 31.23 (t), 32.22 (t), 32.23 (t), 33.18 (t), 59.73 (t, CH₂N₃, **20c**), 67.27 (d, CHN₃, **21c**), 115.79 (t, =CH₂, **21c**), 132.33 (d, =CH, **20c**), 138.39 (s, **20c**), 148.23 (s, **21c**). 1-Azido-2-methylenecyclooctane **21d**: ¹**H NMR** (CDCl₃): $\delta = 1.31 - 2.31$ (m, 12 H), 3.95 (m, 1 H, CHN₃), 5.05 (br. s, 1 H, =CH₂), 5.09 (br. s, 1 H, =CH₂). – ¹³**C NMR** (CDCl₃): $\delta = 24.08$ (t), 25.23 (t), 25.35 (t), 29.57 (t), 30.33 (t), 30.52 (t), 68.25 (d, CHN₃), 116.14 (t, =CH₂), 147.90 (s).

6-Methyl-3,4,5-triazatricyclo[4.4.0.0^{1,5}]dec-3-en-7-one **19j**: ¹H NMR (CDCl₃, -50°C): $\delta = 0.90$ (s, 3 H), 1.55 – 2.70 (m, 6 H), 4.61 (d, ²*J* = 20.1 Hz, 1 H, 2-H), 4.70 (d, ²*J* = 20.1 Hz, 1 H, 2-H). – ¹³C NMR (CDCl₃, – 50°C): $\delta = 6.87$ (q), 20.45 (t), 24.38 (t), 36.39 (t), 53.43 (s), 53.61 (s), 78.56 (t, C-2), 203.55 (s, C-7).

19j

3-Azidomethyl-2-methylcyclohex-2-enone **20j**: Yellow liquid. – **IR** (CDCl₃): $\tilde{v} = 2103 \text{ cm}^{-1}$ (N₃), 1668 (C=O). – ¹H NMR (CDCl₃): $\delta = 1.79$ (s, 3 H), 1.97 (m, 2 H), 2.41 (m, 4 H), 4.02 (s, 2 H). – ¹³C NMR (CDCl₃): δ = 10.74 (q), 22.02 (t), 28.96 (t), 37.55 (t), 53.00 (t, CH₂N₃), 133.45 (s), 149.67 (s), 199.03 (s, C-1).

