

Supporting Information

© Wiley-VCH 2006

69451 Weinheim, Germany

Total Synthesis of Paliurine F

Mathieu Toumi, François Couty and Gwilherm Evano*

Institut Lavoisier de Versailles, UMR CNRS 8180 Université de Versailles Saint-Quentin en Yvelines 45, avenue des Etats-Unis 78035 Versailles Cedex France

General information	S2
Experimental procedures	S3
Assignment of stereochemistry for Alcohol 11	S17
Paliurine F Spectral Data Compared to Reported Data	S18
¹ H and ¹³ C NMR spectra of intermediates	
¹ H and ¹³ C NMR spectra of synthetic paliurine F	

General Information. All reactions were carried out in oven or flame-dried glassware under an argon atmosphere employing standard techniques in handling air-sensitive materials. All solvents were reagent grade. Tetrahydrofuran (THF) was freshly distilled from sodium/benzophenone under argon immediately prior to use. Dichloromethane, toluene and acetonitrile were freshly distilled from calcium hydride. Triethylamine, diisopropylethylamine, *N*-methylmorpholine, *N*,*N*'-dimethylethylenediamine, diethylamine and 2,6-lutidine were distilled over calcium hydride. N,N-Dimethylformamide, HMPA, NMP and dimethylsulfoxide were distilled over calcium hydride. n-Butyllithium was purchased from Aldrich and standardized by titration with menthol/1,10-phenanthroline. Copper(I) iodide (99,999 % purity) was purchased from Aldrich and used as supplied. All other reagents were used as supplied. Unless otherwise noted, reactions were magnetically stirred and monitored by thin layer chromatography using Merck-Kiesegel 60F₂₅₄ plates. Flash chromatographies were performed with silica gel 60 (particle size 35-70 µm) supplied by SDS. Yields refer to chromatographically and spectroscopically pure compounds, unless otherwise noted. Proton NMR spectra were recorded using an internal deuterium lock at ambient temperature on a Bruker 300 MHz spectrometer. Internal references of δ_H 7.26 and δ_H 2.50 were respectively used for CDCl₃ and DMSO- d_6 . Data are presented as follows: chemical shift (in ppm on the δ scale relative to δ_{TMS} = 0), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint. = quintuplet, m = multiplet, br = broad, coupling constant (J/Hz) and integration. Resonances that are either partially or fully obscured are denoted obscured (obs.). Carbon-13 NMR spectra were recorded on a Varian 75 MHz spectrometer. Internal references of δ_C 77.16 and δ_C 39.52 were respectively used for CDCl₃ and DMSO-d₆. Infrared spectra were recorded on a Nicolet OPUS IR (impact 400D) spectrophotometer. Optical rotations were recorded on an Perkin Elmer 341 polarimeter at 589 nm and reported as follows: $[\alpha]_{D}^{20}$, concentration (c in g/100 mL) and solvent. Melting points were recorded on an Buchi B-545. UV spectra were recorded in methanol on a Shimadzu UV-160A. Mass spectra were obtained on a GCMS HP MS 5989B spectrometer.

Due to the presence of the *N*-Boc-pyrrolidine moeity, it was necessary to record ¹H and ¹³C NMR spectra of most intermediates in DMSO-*d6* at temperatures ranging from 333 to 345K (see details below; the use of higher temperatures resulted in degradation of intermediates). Even at those temperatures, some ¹³C peaks were poorly resolved and are denoted "broad" (br.).

Experimental Procedures

*N-(tert-*Butoxycarbonyl)-*O-(tert-*butyldimethylsilyl)-D-serine.^{S1} То solution of а commercially available N-Boc-D-serine 9 (17.6 g, 86 mmol) in DMF (170 mL) were added at 0 °C imidazole (17.5 g, 258 mmol) and TBSCI (16.9 g, 112 mmol). The resulting mixture was slowly warmed to rt, stirred overnight, and poured into a mixture of 1M HCl (300 mL) and ether (600 mL) to hydrolyze the silvl ester. The organic layer was separated and the aqueous layer was extracted with ether. The combined organic layers were washed with brine, and extracted with 1M NaOH (120 mL). The aqueous layer was next acidified by slow addition of 1M HCl (200 mL) and extracted with ether. Combined organic layers were finally dried over MgSO₄, filtered and concentrated under vacuum to yield the desired product as a pale yellow and sticky oil (21.3 g, 67 mmol, 78 %). [α]²⁰_D -15 (*c* 8.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 10.43 (br. s, 1H), 5.38 (d, J = 8.5 Hz, 1H), 4.35 (br. d, J = 8.5 Hz, 1H), 4.05 (A of ABX syst., J = 1.9, 10.1 Hz, 1H), 3.82 (B of ABX syst., J = 2.8, 10.1 Hz, 1H), 1.41 (s, 9H), 0.83 (s, 9H), 0.01, 0.00 (s, s, 3H, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 175.4, 155.7, 80.2, 63.6, 55.5, 28.3, 25.8, 18.3, -5.5, -5.6; IR (neat) v_{max} 3447, 2950, 2576, 1685, 1506 cm⁻¹; ESIMS (positive mode): 319.4, 262.3; HRMS (CI, NH₃) m/z calcd for C₁₄H₃₀NO₅Si [M+H]⁺ 320.1893, found 320.1889.

(*R*)-*N-tert*-Butoxycarbonyl-[1-(tert-butyl-dimethyl-silyloxymethyl)-2-oxo-pent-4-enyl]amine 10. To a solution of *N*-(*tert*-Butoxycarbonyl)-*O*-(*tert*-butyldimethylsilyl)-D-serine (5.0 g, 15.7 mmol) in THF (70 mL) was added dropwise at -10 °C a solution of *n*BuLi (1.6 M solution

^{S1} W. R. Ewing, M. M. Joullié, *Heterocycles* 1988, 27, 2843-2850.

in hexanes, 9.8 mL, 15.7 mmol). The resulting thick gelatinous suspension was stirred at -10 °C for 30 minutes, cooled to -78 °C and treated with a solution of allylmagnesium bromide (0.8 M solution in ether, 45.0 mL, 36.0 mmol).^{S2} The obtained light grey slurry was stirred for 1 hour at 78 °C, warmed to rt over 1 hour, stirred at this temperature for 30 minutes and poured into a mixture of saturated NH₄Cl solution, ice and ether. The organic layer was separated and the aqueous layer was extracted with ether. The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated under vacuum to yield the desired product 10 as a colorless oil (5.3 g, 15.4 mmol, 98 %). This unstable product was immediately used without further purification in the next step. $[\alpha]_{D}^{20}$ -55 (c 2.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 5.82-5.98 (m, 1H), 5.45 (d, J = 6.9 Hz, 1H), 5.07-5.18 (m, 2H), 4.30 (app. quint., J = 3.6 Hz, 1H), 4.04 (A of ABX syst., J = 2.8, 10.4 Hz, 1H), 3.79 (B of ABX syst., J = 4.0, 10.4 Hz, 1H), 3.34 (A' of A'B'X' syst., J = 6.8, 17.6 Hz, 1H), 3.25 (B' of A'B'X' syst., J = 6.8, 17.6 Hz, 1H), 1.42 (s, 9H), 0.82 (s, 9H), 0.01 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 205.9, 155.4, 130.0, 119.2, 79.9, 63.4, 61.0, 45.0, 28.4, 25.8, 18.2, -5.5; IR (neat) v_{max} 3441, 2955, 1705, 1639, 1485, 1250, 1163, 840 cm⁻¹; ESIMS (positive mode): 366.3, 329.4, 310.3, 268.3; HRMS (CI, NH₃) m/z calcd for C₁₇H₃₄NO₄Si [M+H]⁺ 344.2257, found 344.2259.

(1*R*,2*S*)-*N-tert*-Butoxycarbonyl-[1-(tert-butyl-dimethyl-silyloxymethyl)-2-hydroxy-pent-4enyl]-amine 11.^{S3} A solution of 10 (5.3 g, 15.4 mmol) in absolute ethanol (160 mL) was treated with sodium borohydride (1.15 g, 30.4 mmol) at -78 °C. The resulting mixture was stirred for 80 minutes, carefully quenched by addition of a saturated aqueous solution of NH₄Cl, warmed to rt, concentrated under vacuum and diluted with 1M NaOH solution and ether. The organic layer was separated and the aqueous layer was extracted with ether. The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated under vacuum to yield the

^{S2} P. Mazerolles, P. Boussaguet, V. Huc, Organic Syntheses 1999, 76, 221-224.

^{S3} For assignment of relative stereochemisty, see p. S17.

desired product **11** as a colorless oil (5.2 g, 15.0 mmol, 98 %). Diastereoisomeric excess was determined by analysis of crude ¹H NMR spectra and was found to be higher than 95%. $[\alpha]_{D}^{20}$ -30 (*c* 2.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 5.69-5.85 (m, 1H), 5.19 (d, *J* = 8.3 Hz, 1H), 5.02-5.11 (m, 2H), 3.89 (A of ABX syst., *J* = 2.6, 10.5 Hz, 1H), 3.72 (B of ABX syst., *J* = 2.4, 10.5 Hz, 1H), 3.64 (app. quint., *J* = 6.2 Hz, 1H), 3.44-3.53 (br. m, 1H), 3.10 (d, *J* = 7.2 Hz, 1H), 2.27 (app. t, *J* = 6.7 Hz, 2H), 1.36 (s, 9H), 0.82 (s, 9H), 0.00 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 155.7, 134.6, 117.7, 79.3, 72.6, 63.1, 53.9, 39.3, 28.4, 25.8, 18.1, -5.6; IR (neat) v_{max} 3375, 2971, 2879, 1716, 1491, 1173, 840 cm⁻¹; ESIMS (positive mode): 713.6, 384.4, 368.4, 329.4, 268.3, 246.3; HRMS (CI, NH₃) *m/z* calcd for C₁₇H₃₆NO₄Si [M+H]⁺ 346.2414, found 346.2407.

(1R,2S)-1-tert-Butoxycarbonyl-2-(tert-butyl-dimethyl-silyloxymethyl)-3-hydroxy-

pyrrolidine 7. To a solution of **10** (3.5 g, 10.1 mmol) in THF (150 mL) and water (10 mL) was added osmium tetroxide (4% wt solution in water, 3.2 mL, 0.5 mmol) and sodium periodate (8.65 g, 40.4 mmol). The resulting white slurry was vigorously stirred at rt for 90 minutes and quenched by addition of a 10% wt aqueous solution of sodium thiosulfate. The organic layer was separated and the aqueous layer was extracted with ether. The combined organic layers were successively washed with 10% wt aqueous sodium thiosulfate solution and brine, dried over MgSO₄, filtered and concentrated under vacuum to yield the intermediate *N*-Boc-aminal as a complex mixture of rotamers and diastereoisomers.

The resulting brownish oil was dissolved in dry dichloromethane, treated with triethylsilane (1.9 mL, 12.0 mmol) and $BF_3 \cdot OEt_2$ (1.3 mL, 12.0 mmol) dropwise at -78 °C, and stirred for 3h30 while carefully keeping the temperature below -75 °C. The reaction mixture was finally quenched by addition of a saturated aqueous solution of NaHCO₃ (20 mL), warmed to rt and diluted with water. The organic layer was separated and the aqueous layer was extracted with dichloromethane. The combined organic layers were washed brine, dried over MgSO₄, filtered

and concentrated. The crude residue was purified by flash chromatography over silica gel (petroleum ether/AcOEt: 8/2) to yield the cyclized product **7** as a white solid (2.4 g, 7.2 mmol, 72 %). Mp: 110 °C; $[\alpha]_D^{20}$ -38 (*c* 2.3, CHCl₃); ¹H NMR (300 MHz, DMSO-*d*₆, 343 K): δ 4.66 (s, 1H), 4.18 (br. s, 1H), 3.67 (app. q, *J* = 6.8 Hz, 1H), 3.53 (br. s, 2H), 3.39 (td, *J* = 9.8, 7.3 Hz, 1H), 3.23 (td, *J* = 9.8, 2.6 Hz, 1H), 1.92-20.4 (m, 1H), 1.62-1.73 (m, 1H), 1.42 (s, 9H), 0.88 (s, 9H), 0.05, 0.03 (s, s, 3H, 3H); ¹³C NMR (75 MHz, DMSO-*d*₆, 343 K): δ 153.4, 77.7, 71.7 (br.), 66.6, 61.8 (br.), 44.4, 31.4 (br.), 27.8, 25.3, 17.4, -5.9, -6.0; IR (KBr) v_{max} 3375, 2925, 2756, 2592, 1675, 1424, 1096, 835 cm⁻¹; ESIMS (positive mode): 354.3, 298.3, 254.2; HRMS (CI, NH₃) *m/z* calcd for C₁₆H₃₄NO₄Si [M+H]⁺ 332.2257, found 332.2252.

2-Hydroxy-5-iodo-benzaldehyde.^{S4} To a solution of salicylaldehyde (20.0 g, 164 mmol) in glacial acetic acid (200 mL) was added iodine monochloride (9.2 mL, 181 mmol). The resulting brown mixture was stirred at rt for 2 days and at 40 °C for a day, concentrated under vacuum, and the residue was diluted with water and dichloromethane. The organic layer was separated and the aqueous layer was extracted with dichloromethane. The combined organic layers were successively washed with 10% wt aqueous sodium thiosulfate solution and brine, dried over MgSO₄, filtered and concentrated under vacuum to yield a yellow-brown solid which was stored in the dark (38.0 g, 153 mmol, 93%). Mp: 83 °C; ¹H NMR (300 MHz, CDCl₃): δ 10.98 (s, 1H), 9.87 (d, *J* = 0.3 Hz, 1H), 7.88 (d, *J* = 2.2 Hz, 1H), 7.80 (dd, *J* = 2.2, 8.7 Hz, 1H), 6.84 (d, *J* = 8.7 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 195.5, 161.3, 145.4, 141.9, 122.6, 120.3, 80.5; IR (KBr) v_{max} 3216, 1670, 1460, 1270, 1265, 1142 cm⁻¹; ESIMS (positive mode): 248.3, 219.3, 127.5; HRMS (CI, NH₃) *m/z* calcd for C₇H₅IO₂ [M]⁺ 247.9334, found 247.9329.

^{S4} procedure adapted from: Y. J. Cho, K. Y. Rho, S. R. Keum, S. H. Kim, C. M. Yoon, *Synth. Commun.* **1999**, *29*, 2061-2068.

5-Iodo-2-methoxy-benzaldehyde 8. To a solution of 2-hydroxy-5-iodo-benzaldehyde (29.6 g, 119 mmol) in dry acetone (700 mL) was added potassium carbonate (24.9 g, 180 mmol) and dimethylsulfate (12.5 mL, 132 mmol). The resulting orange mixture was refluxed for 2 hours, cooled to rt, concentrated in vacuo and diluted with water and CH₂Cl₂. The aqueous layer was extracted with CH₂Cl₂, combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated. The crude residue was finally washed with pentane to give the desired ether as a brown solid which was stored in the dark (31.2 g, 180 mmol, quant.). Mp: 145 °C; ¹H NMR (300 MHz, CDCl₃): δ 10.25 (s, 1H), 7.98 (d, *J* = 2.3 Hz, 1H), 7.71 (dd, *J* = 2.3, 8.8 Hz, 1H), 6.70 (d, *J* = 8.8 Hz, 1H), 3.83 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 188.3, 161.5, 144.1, 136.9, 126.5, 114.3, 83.0, 55.9; IR (KBr) v_{max} 2960, 2865, 1689, 1474 cm⁻¹; ESIMS (positive mode): 262.5, 244.3, 202.7; HRMS (CI, NH₃) *m/z* calcd for C₈H₇IO₂ [M+H]⁺ 261.9491, found 261.9490.

(2R,3S)-1-(tert-Butoxycarbonyl)-2-(tert-butyldimethylsilyloxy)methyl-3-(3-formyl-4-

methoxy-phenoxy)-pyrrolidine 12. A 15 mL pressure tube was charged with 5-iodo-2methoxy-benzaldehyde **8** (1.3 g, 5.0 mmol), alcohol **7** (1.8 g, 5.4 mmol), cesium carbonate (3.25 g, 10.0 mmol), 1,10-phenanthroline (180 mg, 1.0 mmol) and copper(I) iodide (95 mg, 0.5 mmol). Toluene (3 mL) was added, the pressure tube was closed and the brownish suspension was heated to 125°C for 24 hours. Another portion of 5-iodo-2-methoxy-benzaldehyde **8** (650 mg, 2.5 mmol) was then added and the reaction mixture was heated for an additional 24 hours and cooled to rt. Crude reaction mixture was finally filtrated over a plug of silica gel (washed with AcOEt), concentrated and purified by flash chromatography over silica gel (gradient from CH₂Cl₂ to CH₂Cl₂/EtOH: 95/5) to yield the aryl ether as a pale yellow sticky oil (1.9 g, 4.1 mmol, 75 %); $[\alpha]_{D}^{20}$ -5 (*c* 1.2, CHCl₃); ¹H NMR (300 MHz, DMSO-*d*₆, 345 K): δ 10.33 (s, 1H), 7.27 (d, *J* = 3.1 Hz, 1H), 7.22-7.25 (m, 1H), 7.13 (d, *J* = 8.8 Hz, 1H), 4.82 (d, *J* = 4.1 Hz, 1H), 3.78-3.93 (m, 2H), 3.88 (s, 3H), 3.58-3.63 (m, 1H), 3.34-3.51 (m, 2H), 2.23 (app. qt, *J* = 9.8, 4.7 Hz, 1H), 2.10 (app. dd, *J* = 13.4, 6.2 Hz, 1H), 1.42 (s, 9H), 0.88 (s, 9H), 0.06 (s, 6H); ¹³C NMR (75 MHz, DMSO-*d*₆, 345 K): δ 186.9, 155.2, 152.2, 149.4, 123.8, 123.0, 113.0, 112.5, 78.8 (br.), 77.2, 62.6, 60.7 (br.), 55.0, 43.3, 27.0 (br.), 26.7, 24.2, 16.4, -7.1; IR (neat) v_{max} 2883, 2755, 1694, 1490, 1398 cm⁻¹; ESIMS (positive mode): 970.0, 953.7, 599.5, 583.5, 488.4; HRMS (CI, NH₃) *m/z* calcd for C₂₄H₃₉NO₆Si [M]⁺ 465.2547, found 465.2552.

[2R,3S,3(3Z)]-1-(tert-Butoxycarbonyl)-2-(tert-butyldimethylsilyloxy)methyl-3-[3-(2-

iodovinyl)-4-methoxy-phenoxy]-pyrrolidine 13. To a suspension of methyltriphenylphosphonium iodide^{S5} (1.05 g, 1.98 mmol) in THF (11 mL) was added dropwise at rt a solution of NaHMDS (2.0 M solution in THF, 990 μ L, 1.98 mmol). The resulting red-orange solution was stirred at rt for 20 min and cooled to -78 °C before adding HMPA (1.3 mL) and a solution of 12 (700 mg, 1.5 mmol) in THF (7 mL). The reaction mixture was stirred at -78 °C for two hours and quenched at -78 °C by addition of a saturated aqueous solution of NaHCO₃. The mixture was warmed to rt, diluted with Et₂O and filtered through a plug of Celite[®] which was thoroughly washed with ether. The biphasic filtrate was separated and the organic layer was dried over MgSO₄, filtered and concentrated. The crude residue was purified by flash chromatography over silica gel (AcOEt/petroleum ether: 1/9) to give the desired vinyl iodide 13 as a yellow oil (860 mg, 1.46 mmol, 97 %). Diastereoisomeric excess was determined by analysis of crude ¹H NMR

^{S5} M. C. Hillier, A. T. Price, A. I. Meyers, J. Org. Chem. 2001, 66, 6037-6045.

spectra and was found to be higher than 95%. $[\alpha]_{D}^{20}$ -4 (*c* 1.2, CHCl₃); ¹H NMR (300 MHz, DMSO-*d*₆, 333 K): δ 7.27 (d, *J* = 8.5 Hz, 1H), 7.14 (d, *J* = 2.5 Hz, 1H), 6.86-6.87 (m, 2H), 6.66 (d, *J* = 8.5 Hz, 1H), 4.68 (d, *J* = 4.1 Hz, 1H), 3.74 (A of ABX syst., *J* = 3.2, 10.8 Hz, 1H), 3.68-3.73 (m, 1H), 3.66 (s, 3H), 3.45-3.55 (m, 1H), 3.25-3.37 (m, 2H), 2.07-2.20 (m, 1H), 1.92-1.98 (m, 1H), 1.32 (s, 9H), 0.77 (s, 3H), 0.79 (s, 6H), 0.03 (s, 3H), -0.12 (s, 3H); ¹³C NMR (75 MHz, DMSO-*d*₆, 333 K): δ 153.3, 151.1, 149.6, 134.2, 126.3, 117.0, 115.9, 112.4, 82.5, 80.3, 78.4, 63.6, 61.7 (br.), 55.8, 44.4, 28.5 (br.), 27.8, 25.4, 17.4, -3.6, -5.9; IR (neat) v_{max} 2960; 1685; 1486; 1394; 1235; 1117; 830 cm⁻¹; CIMS (NH₃ gas): 590; 534; 476; HRMS (CI, NH₃) *m*/*z* calcd for C₂₅H₄₀INO₅Si [M]⁺ 589.1720, found: 589.1724.

[2R,3S,3(3Z)]-1-(tert-Butoxycarbonyl)-2-hydroxymethyl-3-[3-(2-iodovinyl)-4-methoxy-

phenoxy]-pyrrolidine. A solution of **13** (860 mg, 1.46 mmol) in THF (18 mL) was treated with a solution of TBAF (1M solution in THF, 2.2 mL, 2.2 mmol) at -10 °C. The resulting light yellow mixture was warmed to rt over 50 minutes and quenched with water. The aqueous layer was extracted with Et₂O and the combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated to give the crude unprotected alcohol (contaminated with *tert*-butyldimethyl-silanol) as an orange oil (694 mg, 1.46 mmol, quant.) which was used without further purification in the next step. An analytical sample was purified by flash chromatography over silica gel (EtOH/DCM: 3/97). $[\alpha]_D^{20}$ -7 (*c* 1.1, CHCl₃); ¹H NMR (300 MHz, DMSO-*d*₆, 333 K): δ 7.37 (d, *J* = 8.5 Hz, 1H), 7.25 (d, *J* = 2.3 Hz, 1H), 6.98-6.99 (m, 2H), 6.76 (d, *J* = 8.5 Hz, 1H), 4.78-4.90 (m, 2H), 3.82-3.86 (app. dd, *J* = 3.7, 7.6 Hz, 1H), 3.76 (s, 3H), 3.59-3.71 (m, 1H), 3.31-3.43 (m, 3H), 2.14-2.28 (m, 1H), 1.99-2.09 (m, 1H), 1.41 (s, 9H); ¹³C NMR (75 MHz, DMSO-*d*₆, 333 K): δ 153.5, 150.9, 149.7, 134.2, 126.3, 116.7, 115.7, 112.4, 82.5, 79.4 (br.), 78.2, 64.1, 60.3 (br.), 55.8, 44.2, 28.5 (br.), 27.9; IR (neat) v_{max} 3406, 2950, 1675, 1491, 1414,

1214, 1035, 866, 764 cm⁻¹; ESIMS (positive mode): 514.3, 498.2; HRMS (CI, NH₃) m/z calcd for C₁₉H₂₇INO₅ [M+H]⁺ 476.0934, found: 476.0921.

[2R,3S,3(3Z)]-1-(tert-Butoxycarbonyl)-2-formyl-3-[3-(2-iodovinyl)-4-methoxy-phenoxy]pyrrolidine. DMSO (265 µL, 3.7 mmol) was added to a solution of oxalyl chloride (270 µL, 3.1 mmol) in dichloromethane (10 mL) at -78 °C. The resulting solution was stirred at -78 °C for 30 minutes and a solution of [2R,3S,3(3Z)]-1-(tert-butoxycarbonyl)-2-hydroxymethyl-3-[3-(2iodovinyl)-4-methoxy-phenoxy]-pyrrolidine (694 mg, 1.46 mmol) in dichloromethane (15 mL) was added dropwise via cannula. The reaction mixture was stirred for 40 minutes at -78 °C before adding triethylamine dropwise (880 µL, 6.3 mmol), and the mixture was warmed to -10 °C over 2 hours. The reaction was next quenched at -10 °C with water and diluted with CH₂Cl₂. The aqueous layer was extracted with CH₂Cl₂ and the combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated to give the desired aldehyde as an orange oil (691 mg, 1.46 mmol, quant.) which was used without purification in the next step. An analytical sample was purified by flash chromatography over silica gel (AcOEt/petroleum ether: 35/65) to give a colorless oil. $[\alpha]_{D}^{20}$ -27 (c 1.3, CHCl₃); ¹H NMR (300 MHz, DMSO-d₆, 335 K): δ 9.60 (s, 1H), 7.38 (d, J = 8.5 Hz, 1H), 7.30 (d, J = 2.3 Hz, 1H), 7.00-7.01 (m, 2H), 6.78 (d, J = 8.5 Hz, 1H), 5.00 (br. s, 1H), 4.35 (app. s, 1H), 3.77 (s, 3H), 3.50-3.57 (m, 2H), 2.03-2.12(m, 2H), 1.40 (s, 9H); ¹³C NMR (75 MHz, DMSO-*d*₆, 333 K): δ 198.7, 151.4, 150.8 and 149.9 (rotamers), 149.7, 134.1, 126.4, 117.1, 116.3, 112.3, 82.9, 79.2, 78.1 (br.), 70.1, 55.8, 44.3, 29.6 (br.), 27.7; IR (neat) v_{max} 2971, 1726, 1675, 1482, 1388, 1276, 1045, 748 cm⁻¹; ESIMS (positive mode): 512.1, 496.1, 440.0, 312.8, 311.2; HRMS (CI, NH₃) *m/z* calcd for C₁₉H₂₅INO₅ [M+H]⁺ 474.0777, found: 474.0773.

[2R,3S,3(3Z)]-1-(tert-Butoxycarbonyl)-3-[3-(2-iodovinyl)-4-methoxy-phenoxy]-proline. To a [2R,3S,3(3Z)]-1-(tert-butoxycarbonyl)-2-formyl-3-[3-(2-iodovinyl)-4-methoxysolution of phenoxy]-pyrrolidine (691 mg, 1.46 mmol) in a mixture of THF (5 mL) and *tert*-butanol (14 mL) was added 2-methylprop-2-ene (90 %, 1.6 mL, 13.2 mmol), followed by a solution of sodium chlorite (80 %, 400 mg, 3.5 mmol) and sodium dihydrogen phosphate dihydrate (485 mg, 3.1 mmol) in water (10 mL). The yellow reaction mixture was then stirred for 1 hour, carefully quenched with a 1M HCl solution and diluted with ether. The aqueous layer was extracted with ether, combined organic layers were dried over MgSO₄, filtered and concentrated. The crude residue was purified by flash chromatography over silica gel (EtOH/DCM: 6/94) to give the free carboxylic acid as a yellow oily solid (486 mg, 0.99 mmol, 68 % over three steps). $\left[\alpha\right]_{D}^{20}$ -24 (c 1, CHCl₃); ¹H NMR (300 MHz, DMSO- d_6 , 345 K): δ 7.38 (d, J = 8.5 Hz, 1H), 7.29 (d, J = 2.3Hz, 1H), 7.01-7.02 (m, 2H), 6.77 (d, J = 8.5 Hz, 1H), 4.90 (br. s, 1H), 4.28 (app. s, 1H), 3.77 (s, 3H), 3.44-3.60 (m, 2H), 2.09-2.19 (m, 2H), 1.39 (br. s, 9H); ¹³C NMR (75 MHz, DMSO-*d*₆, 345 K): δ 170.7, 153.0, 151.3, 149.2, 134.2, 126.5, 116.7, 116.2, 112.5, 82.7, 80.1 (br.), 78.8, 64.5 (br.), 55.8, 44.0, 28.9 (br.), 27.7; IR (neat) v_{max} 3441, 2919, 1731, 1680, 1419, 1214 cm⁻¹; HRMS (CI, NH₃) m/z calcd for C₁₉H₂₅INO₆ [M+H]⁺ 490.0727, found: 490.0733.

[2R,3S,3(3Z)]-{1-(tert-Butoxycarbonyl)-3-[3-(2-iodovinyl)-4-methoxy-phenoxy]-prolyl}isoleucinamide 6. To a solution of [2R,3S,3(3Z)]-1-(tert-butoxycarbonyl)-3-[3-(2-iodovinyl)-4methoxy-phenoxy]-proline (1.09 g, 2.23 mmol) and isoleucinamide acetate^{S6} (424 mg, 2.23 mmol) in DMF (20 mL) was added 1-hydroxybenzotriazole (HOBt, 316 mg, 2.34 mmol). 1-(3-Dimethylaminopropyl)-3-ethyl-carbodiimide hydrochloride (EDC, 470 mg, 2.45 mmol) and *N*-methylmorpholine (620 µL, 5.60 mmol) were next added at 0 °C and the solution was stirred for 16 hours while progressively warmed to rt. The yellow reaction mixture was quenched with water and diluted with ether. The aqueous layer was extracted with ether and the combined organic layers were successively washed with a 1M HCl aqueous solution, saturated aqueous solution of NaHCO₃ and brine, dried over MgSO₄, filtered and concentrated. The crude residue was purified by flash chromatography over silica gel (AcOEt/petroleum ether: 9/1) to give the desired peptide 6 (992 mg, 1.65 mmol, 75 %) as a pale yellow solid. Mp: 87 °C; $[\alpha]_{D}^{20}$ -31 (c 1, CHCl₃); ¹H NMR (300 MHz, DMSO-*d*₆, 343 K): δ7.65 (d, *J* = 8.5 Hz, 1H), 7.38 (d, *J* = 8.5 Hz, 1H), 7.28 (d, J = 2.3 Hz, 1H), 7.00-7.06 (m, 2H), 6.80-7.20 (br. s, 2H), 6.77 (d, J = 8.5 Hz, 1H), 4.83 (br. s, 1H), 4.36, 4.43 (rotamers, s, s, 1H), 4.19 (dd, J = 6.7, 8.4 Hz 1H), 3.80, 3.77 (rotamers, s, s, 3H), 3.46-3.56 (m, 2H), 2.05-2.10 (m, 2H), 1.72-1.84 (m, 1H), 1.47-1.50 (m, 1H), 1.41 (s, 9H), 1.05-1.20 (m, 1H), 0.87 (t, J = 6.4 Hz, 3H), 0.84 (d, J = 7.3 Hz, 3H); ¹³C NMR (75) MHz, DMSO-*d*₆, 343 K): δ172.1, 168.6, 153.5, 151.2, 149.3, 134.1, 126.3, 116.8, 116.0, 112.5, 83.7, 79.5 (br.), 79.0, 65.7 (br.), 56.6, 55.9, 44.3, 36.4, 28.8 (br.), 27.7, 23.9, 15.1, 10.6; IR (KBr) v_{max} 3314, 2960, 2720, 1680, 1486, 1394, 1214, 1168, 1025 cm⁻¹; ESIMS (positive mode): 624.2, 640.2; HRMS (CI, NH₃) m/z calcd for C₂₅H₃₇IN₃O₆ [M+H]⁺ 602.1727, found: 602.1741.

^{S6} T. Moriguchi, T. Yanagi, M. Kunimori, T. Wada, M. Sekine, J. Org. Chem. 2000, 65, 8229-8238.

cyclopeptide core 5. A 100 mL flask was charged with iodo-amide 6 (350 mg, 0.59 mmol), copper(I) iodide (23 mg, 0.12 mmol) and cesium carbonate (285 mg, 0.88 mmol). The flask was evacuated under high vacuum, backfilled with argon and closed with a rubber septa. Dry and degassed THF (78 mL) and N,N'-dimethylethylene-1,2-diamine (26 µL, 0.24 mmol) were next added, the rubber septa was replaced by a glass stopper and the light blue suspension was heated to 60°C for 20 hours. The reaction mixture was cooled to rt and filtrated over a plug of silica gel (washed with AcOEt) and concentrated. The crude residue was purified by flash chromatography over silica gel (gradient from Et₂O/EtOH: 99/1 to Et₂O/EtOH: 95/5) to give the recovered starting peptide 6 (70 mg, 0.12 mmol, 20 %) and the desired cyclized product 5 (193 mg, 0.41 mmol, 70 %, 89 % based on recovered starting material) as a white solid. Mp: 188 °C; $[\alpha]_{p}^{20}$ -436 (c 0.54, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 8.43 (d, J = 11.2 Hz, 1H), 7.22 (d, J = 5.0 Hz, 1H), 6.87 (dd, J = 6.9, 11.2 Hz, 1H), 6.83 (d, J = 9.2 Hz, 1H), 6.74 (dd, J = 2.9, 8.9 Hz, 1H), 6.65 (d, J = 2.9 Hz, 1H), 5.85 (d, J = 9.1 Hz, 1H), 5.43 (dt, J = 2.7, 8.1 Hz, 1H), 4.25 (app. t, J = 4.6 Hz, 1H), 4.15 (d, J = 2.6 Hz, 1H), 3.70-3.78 (m, 1H), 3.73 (s, 3H), 3.30-3.39 (m, 1H), 2.39-2.50 (m, 1H), 2.14-2.24 (m, 1H), 2.00-2.10 (m, 1H), 1.38 (s, 9H), 1.05-1.32 (m, 2H), 0.93 (d, J = 7.0 Hz, 3H), 0.81 (t, J = 9.8 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 171.4, 167.6, 155.3, 151.6, 151.4, 124.5, 121.7, 117.8, 113.9, 111.5, 106.7, 81.2, 78.0, 64.9, 60.4, 56.2, 46.0, 35.3, 32.2, 28.4, 24.6, 16.2, 11.9; IR (KBr) v_{max} 3319, 2919, 1706, 1650, 1506, 1404, 1214, 1163, 1122, 1030, 764 cm⁻¹; CIMS (NH₃ gas): 491.0, 473.0, 418.0 ; HRMS (CI, NH₃) m/z calcd for $C_{25}H_{36}N_{3}O_{6}[M+H]^{+}474.2604$, found: 474.2607.

Alternate procedure for macrocyclization using CuTc. A 15 mL pressure tube was charged with iodo-amide 6 (50 mg, 0.083 mmol), copper(I) thiophenecarboxylate^{S7} (CuTc, 5.0 mg, 0.025

^{S7} prepared according to G. D. Allred, L. S. Liebeskind, J. Am. Chem. Soc. 1996, 118, 2748-2749.

mmol) and cesium carbonate (40.7 mg, 0.125 mmol). The pressure was evacuated under high vacuum, backfilled with argon and closed with a rubber septa. Dry and degassed NMP (11.5 mL) was next added and the tube was sealed and the yellow suspension was heated to 90°C for 20 hours. The reaction mixture was cooled to rt, and diluted with ether and water. The aqueous layer was extracted with ether and the combined organic layers were washed brine, dried over MgSO₄, filtered and concentrated. The crude residue was purified by flash chromatography over silica gel (gradient from $Et_2O/EtOH$: 99/1 to $Et_2O/EtOH$: 95/5) to give the desired cyclized product **5** (23.5 mg, 0.050 mmol, 60 %) as a white solid.

deprotected cyclopeptide core 14. To a solution of **5** (100 mg, 0.21 mmol) in dichloromethane (4.7 mL) were added at -10 °C 2,6-lutidine (25 μ L, 21.1 mmol) and a solution of trimethylsilyl trifluoromethanesulfonate (1.4 M solution in dichloromethane, 600 μ L, 84.0 mmol). The resulting light pink solution was stirred for 1 hour while progressively warmed to 0 °C. The mixture was next hydrolyzed at 0 °C by addition of a saturated aqueous solution of NaHCO₃ and diluted with dichloromethane. The aqueous layer was extracted with dichloromethane and the combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated. The crude residue was purified by flash chromatography over silica gel (AcOEt/EtOH/Et₃N: 85/14/1) to give the desired *N*-deprotected macrocycle **14** (63 mg, 0.17 mmol, 80 %) as a white solid. Mp: 218 °C; $[\alpha]_{D}^{20}$ -452 (*c* 0.49, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 8.50 (br. s, 1H), 6.91 (dd, *J* = 9.2, 11.3 Hz, 1H), 6.92 (d, *J* = 9.1 Hz, 1H), 6.82 (dd, *J* = 2.9, 9.0 Hz, 1H·), 6.65 (br. s, 1H), 5.95 (d, *J* = 8.9 Hz, 1H), 5.09-5.11 (m, 1H), 4.32 (br. s, 1H), 3.79 (s, 3H), 3.43 (br. s, 1H), 3.13-3.20 (m, 1H), 2.90-2.95 (m, 1H), 2.16-2.26 (m, 3H), 1.95-2.03 (br. m, 1H), 1.37-1.47 (m, 1H), 1.02-1.14 (m, 1H), 0.94 (d, *J* = 6.9 Hz, 3H), 0.87 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 173.0, 167.0 (br.), 151.2, 151.1, 124.1, 121.5, 117.5, 113.8, 111.1, 107.2, 80.9,

69.6, 60.1 (br.), 56.1, 47.5 (br.), 35.6 (br.), 32.0, 25.3, 16.0, 11.7; ESIMS (positive mode): 412.3, 396.4, 374.4, 359.4, 346.4 ; HRMS (CI, NH₃) m/z calcd for C₂₀H₂₈N₃O₄ [M+H]⁺ 374.2080, found: 374.2069.

Paliurine F 4

Paliurine F 4. To a cooled solution of *N*-Fmoc-L-isoleucine (90 mg, 0.25 mmol) and 1-hydroxyazabenzotriazole (HOAt, 42 mg, 0.31 mmol) in DMF (2 mL) were added *O*-(7-azabenzotriazol-1-yl)-*N*,*N*,*N'*,*N'*-tetramethyluronium hexafluorophosphate (HATU, 90 mg, 0.24 mmol) and diisopropylamine (125 μ L, 0.72 mmol) at 0 °C. The resulting yellow solution was stirred at 0 °C for 20 minutes and added dropwise *via* cannula to a cooled solution of **14** (63 mg, 0.17 mmol) in DMF (2 mL) at 0 °C. The flask containing the activated acid was rinced with an additional portion of DMF (2 mL) which was cannulated into the solution of the amine. The resulting yellow solution was warmed to rt and stirred overnight. The mixture was quenched at 0 °C with a saturated aqueous solution of NH₄Cl and diluted with ether. The aqueous layer was extracted with ether and the combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated to give an orange oil which was used in the next step without further purification.

This oil was dissolved in CH₃CN (2.5 mL) and diethylamine was added (630 μ L, 6.1 mmol) at rt. After 40 minutes, the crude yellow mixture was concentrated under vacuum and residue was immediately engaged in the next step without further purification.

To a cooled solution of *N*,*N*-dimethyl-L-leucine (50 mg, 0.25 mmol) and 1-hydroxyazabenzotriazole (HOAt, 44 mg, 0.32 mmol) in DMF (2 mL) were added

O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HATU, 90 mg, 0.24 mmol) and diisopropylethylamine (125 µL, 0.72 mmol) at 0 °C. The resulting yellow solution was stirred at 0 °C for 20 minutes and added dropwise via cannula to a solution of the previously deprotected amine in DMF (2 mL) at 0 °C. The flask containing the activated acid was rinced with an additional portion of DMF (2 mL) which was cannulated into the solution of the amine. The vellow solution was warmed to rt and stirred overnight. The mixture was hydrolyzed at 0 °C with a saturated aqueous solution of NH₄Cl and diluted with ether. The aqueous layer was extracted with ether and the combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated. The crude residue was purified by flash chromatography over silica gel (AcOEt/EtOH: 99.5/0.5) to give the desired synthetic paliurine F 4 (61 mg, 97 μ mol, 57 % over three steps) as a white solid. R_f: 0.26 (Merck-Kiesegel 60F₂₅₄ TLC plates, AcOEt/EtOH: 99/1); Mp: 192 °C {Lit.: unreported}; $[\alpha]_{D}^{20}$ -468 (c 1.1, CH₃CN) {Lit.: natural paliurine F: $[\alpha]_{D}^{20}$: -323 (c 1.0, CH₃CN)}^{S8}; ¹H NMR (300 MHz, CDCl₃):^{S9} δ 8.46 (d, J = 11.4 Hz, 1H), 7.41 (d, J = 9.0 Hz, 1H), 7.20 (d, J = 5.0 Hz, 1H), 6.93 (dd, J = 9.2, 11.3)Hz, 1H), 6.88 (d, J = 9.2 Hz, 1H), 6.80 (dd, J = 2.9, 9.0 Hz, 1H), 6.69 (d, J = 2.9 Hz, 1H), 5.92 (d, J = 9.0 Hz, 1H), 5.53 (dt, J = 3.2, 7.3 Hz, 1H), 4.56 (app. t, J = 8.5 Hz, 1H), 4.49 (d, J = 3.2)Hz, 1H), 4.38 (dt, J = 2.2, 8.5 Hz, 1H), 4.27 (app. t, J = 4.4 Hz, 1H), 3.78 (s, 3H), 3.55 (app. dt, J = 6.6, 10.8 Hz, 1H), 2.89 (dd, J = 5.3, 8.6 Hz, 1H), 2.59 (ddt, J = 13.1, 2.3, 7.1 Hz, 1H), 2.24-2.38 (m, 1H), 2.25 (s, 6H), 2.02-2.15 (m, 1H), 1.65-1.83 (m, 1H), 1.47-1.60 (m, 1H), 1.40-1.49 (m, 1H), 1.36-1.46 (m, 1H), 1.31-1.39 (m, 1H), 1.03-1.18 (m, 2H), 1.06-1.10 (m, 1H), 0.96 (d, J = 7.0 Hz, 3H), 0.93 (d, J = 6.4 Hz, 3H), 0.91 (d, J = 6.3 Hz, 3H), 0.87 (t, J = 7.5 Hz, 3H), 0.85 (t, J = 7.5 Hz, 3H), 0.82 (d, J = 6.6 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃); ⁸⁹ δ 174.0, 172.0, 170.4, 167.2, 151.6, 151.2, 124.4, 121.6, 117.8, 113.9, 111.3, 106.8, 76.9, 67.4, 64.5, 60.4, 56.1, 53.8, 46.9, 42.4, 37.5, 37.1, 35.2, 32.7, 26.0, 24.8, 24.6, 23.4, 22.2, 16.3, 15.4, 11.8, 10.8; UV λ_{max} (log ε): 220 (4.62), 296 (4.09), 320 (4.39); IR (KBr) ν_{max} 3406, 3324, 2955, 2883, 1690, 1640, 1506, 1429, 1261, 1225, 1178, 1035, 820, 764 cm⁻¹ CIMS (NH₃ gas): 628, 487, 416, 402, 374, 324, 227; HRMS (FAB) *m/z* calcd for C₃₄H₅₄N₅O₆ [M+H]⁺ 628.4074, found: 628.4061.

^{S8} H. Y. Lin, C. H Chen, B. J. You, K. C. S. C. Liu, S. S. Lee, *J. Nat. Prod.* **2000**, *63*, 1338-1343.

^{\$9} See Paliurine F Spectral Data Compared to Reported Data page \$18.

Assignment of stereochemistry for Alcohol 11.

(4*R*,5*S*)-5-Allyl-4-(tert-butyl-dimethyl-silanyloxymethyl)-oxazolidin-2-one. A solution of 11 (200 mg, 0.58 mmol) in DMF (6 mL) was treated with sodium hydride (60% wt in mineral oil, 25.5 mg, 0.64 mmol) at 0°C. The resulting mixture was slowly warmed to rt over 1 hour and quenched by addition of a saturated aqueous solution of NH₄Cl. The organic layer was separated and the aqueous layer was extracted with ether. The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated under vacuum. The crude residue was purified by flash chromatography over silica gel (AcOEt/petroleum ether: 35/65) to give the corresponding oxazolidinone (69 mg , 0.25 mmol, 43 %) as a colorless oil. $[\alpha]_D^{20}$ 19 (*c* 0.4, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 6.05 (s, 1H), 5.69-5.90 (m, 1H), 5.07-5.19 (m, 2H), 4.66 (td, *J* = 7.9, 5.6 Hz, 1H), 3.76-3.86 (m, 1H), 3.60-3.70 (m, 2H), 2.53-2.63 (m, 1H), 2.41-2.50 (m, 1H), 0.87 (s, 9H), 0.05 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 159.6, 133.1, 118.3, 78.4, 61.7, 56.6, 33.5, 25.8, 18.2, -5.4; IR (neat) v_{max} 3375, 2963, 1716 1164 cm⁻¹; HRMS (CI, NH₃) *m/z* calcd for C₁₃H₂₆NO₃Si [M+H]⁺ 272.1682, found 272.1671.

Selected nuclear Overhauser effects:

Paliurine F Spectral Data Compared to Reported Data

¹H NMR (Synthetic at 300 MHz; Natural at 400 MHz)

Paliurine F

		Synthetic		Natural	
Position	δ	multiplicity	δ	multiplicity	Δδ
1 (1H)	5.91	d, $J = 9.0 \text{ Hz}$	5.91	d, <i>J</i> = 9.0 Hz	0.00
2 (1H)	6.92	dd, <i>J</i> = 11.3, 9.2 Hz	6.92	dd, <i>J</i> = 11.3, 9.0 Hz	0.00
3 (1H)	8.45	d, <i>J</i> = 11.4 Hz	8.44	d, <i>J</i> = 11.3 Hz	0.01
5 (1H)	4.26	app. t, <i>J</i> = 4.4 Hz	4.26	dd, <i>J</i> = 4.4, 4.8 Hz	0.00
6 (1H)	7.19	d, $J = 5.0 \text{ Hz}$	7.19	d, <i>J</i> = 4.8 Hz	0.00
8 (1H)	4.48	d, <i>J</i> = 3.2 Hz	4.48	d, <i>J</i> = 3.2 Hz	0.00
9 (1H)	5.52	dt, $J = 3.2, 7.3$ Hz	5.52	dt, <i>J</i> = 3.2, 7.2 Hz	0.00
12 (1H)	6.68	d, <i>J</i> = 2.9 Hz	6.68	d, $J = 2.9 \text{ Hz}$	0.00
12' (1H)	6.79	dd, <i>J</i> = 9.0, 2.9 Hz	6.79	dd, <i>J</i> = 9.0, 2.9 Hz	0.00
13' (1H)	6.87	d, $J = 9.2 \text{ Hz}$	6.87	d, $J = 9.0 \text{ Hz}$	0.00
15 (1H)	2.01-2.14	m	2.08	m	0.00
16 (1H)	1.02-1.17	m	1.09	m	0.01
16 (1H)	1.30-1.38	m	1.34	m	0.00
17 (3H)	0.86	t, <i>J</i> = 7.5 Hz	0.86	t, <i>J</i> = 7.4 Hz	0.00
18 (3H)	0.95	d, <i>J</i> = 7.0 Hz	0.95	d, <i>J</i> = 7.0 Hz	0.00
19α (1H)	2.23-2.37	m	2.32	m	-0.02
19β (1H)	2.58	ddt, J = 13.1, 2.3, 7.1 Hz	2.58	ddt, J = 12.9, 2.3, 6.8 Hz	0.00

20α (1H)	4.37	dt, <i>J</i> = 2.2, 8.5 Hz	4.37	dt, $J = 2.1, 8.4$ Hz	0.00
20β (1H)	3.54	app. dt, <i>J</i> = 6.6, 10.8 Hz	3.54	m	0.00
OMe (3H)	3.77	S	3.78	S	-0.01
2' (1H)	4.55	app. t, <i>J</i> = 8.5 Hz	4.55	dd, <i>J</i> = 8.9, 8.5 Hz	0.00
3' (1H)	1.65-1.83	m	1.77	m	-0.03
4' (1H)	1.05-1.09	m	1.06	m	-0.01
4' (1H)	1.39-1.48	m	1.44	m	0.00
5' (3H)	0.84	t, <i>J</i> = 7.5 Hz	0.84	t, <i>J</i> = 7.5 Hz	0.00
6' (3H)	0.81	d, $J = 6.6 \text{ Hz}$	0.81	d, $J = 6.8 \text{ Hz}$	0.00
7' (1H)	7.40	d, $J = 9.0 \text{ Hz}$	7.41	d, $J = 8.9 \text{ Hz}$	-0.01
2" (1H)	2.88	dd, <i>J</i> = 8.6, 5.3 Hz	2.89	dd, <i>J</i> = 8.4, 5.0 Hz	-0.01
3" (1H)	1.35-1.45	m	1.40	m	0.00
3" (1H)	1.47-1.59	m	1.53	m	0.00
4" (1H)	1.02-1.17	m	1.10	m	0.00
5" (3H)	0.90	d, $J = 6.3$ Hz	0.90	d, $J = 6.4 \text{ Hz}$	0.00
6" (3H)	0.92	d, $J = 6.4 \text{ Hz}$	0.92	d, $J = 6.5 \text{ Hz}$	0.00
NMe_2 (6H)	2.24	S	2.24	S	0.00

¹³C NMR (Synthetic at 75 MHz; Natural at 100 MHz)

Paliurine F

	Synthetic	Natural	
Position	δ	δ	Δδ
1	106.6	106.8	-0.2
2	121.6	121.6	0.0
4	167.0	167.2	-0.2
5	60.3	60.4	-0.1
7	170.5	170.4	0.1
8	64.7	64.5	0.2
9	76.9	76.9	0.0
11	151.4	151.2	0.2
12	111.5	111.3	0.2
12'	117.8	117.8	0.0
13	124.8	124.4	0.4
13'	114.3	113.9	0.4
14	151.8	151.6	0.2
15	35.4	35.2	0.2
16	24.8	24.8	0.0
17	11.7	11.8	-0.1
18	16.2	16.3	-0.1
19	32.7	32.7	0.0
20	46.8	46.9	-0.1

OMe	56.2	56.1	-0.1
1'	172.0	172.0	0.0
2'	53.9	53.8	0.1
3'	37.6	37.5	0.1
4'	24.7	24.6	0.1
5'	10.8	10.8	0.0
6'	15.4	15.4	0.0
1"	173.7	174.0	-0.3
2"	67.7	67.4	0.3
3"	37.2	37.1	0.1
4"	26.0	26.0	0.0
5"	23.3 ^a	23.4	-0.1
6"	22.2 ^a	22.2	0.0
NMe ₂	42.3	42.4	-0.1

^a both assignments can be interchanged

Supporting Information

¹H and ¹³C NMR spectra of intermediates and synthetic paliurine F

	Current Data Parameters NAME fc26t253P EXPNO 11 PROCNO 1 F2 - Acquisition Parameters Date 11.15 Time 11.15	PLICE THE COLOR THE COLOR THE COLOR TO 2930 TO 2930 TO 22768 SOLVENT COC13 NS 16 COC13 NS 15 COC13 NS 16 COC13 NS	MCREST 0.0000000 sec MCWRK 0.0150000 sec ======= CHANNEL f1 ======= NUC1 1H P1 6.20 USEC PL1 0.00 dB SF01 300.1328512 MHz	F2 - Processing parameters SI 32768 SF 300.1300149 MHz MDW EM SSB 0 LB 0.10 Hz 68 0.10 Hz 68 1.00	CX 12.22 Cm F1P 12.22 Cm F1P 300.000 ppm F2 -0.500 ppm F2 -0.500 ppm/Cm H2CM 157.56825 H2/Cm	
						0
OMe	∽ <u>H</u>			MMM	1.175 6.920 1.198 7.981 1.198 1.198 1.8.287	- - 0J
		,,z			000.1 000.1 000.1 000.1 000.1 000.1 000.1 000.1 000.1 000.1	- 7
	,				£26°0	- 9
					1.000 0.965 1.006	-
					000.1	
					lengəjnI	- mdd

Current Data Parameters NAME fc26t253P EXPMO 10 PROCNO 1	F2 - Acquisition Parameters Date20060702 Time20060702 Time11.13 INSTRUM INSTRUM PROBHD 5 PULPROG SOLVENT CO0033 SOLVENT CO003 SOLVENT CO000 SMH 17985.611 Hz FIDRES SMH 1.8219508 stc AG 1.8219508 stc AG 1.8219500 stc C O CO000000 stc D1 2.00000000 stc	DELTA 1.89999999 scc MCREST 0.0000000 sec MCNRK 0.0150000 sec MUCI 1.350000 sec NUCI 1.35000 sec PL 9.00 usec PL 75.4752953 Mrz SF01 75.4752953 Mrz	CPDPRG2 HANNEL f2 ===================================	SF 75.487432 MHz MDM EN EN EN SSB 0 1.00 Hz 68 1.00 Hz 68 1.40 PC 1.40 PC 1.40 FC 2.50 Cm	F1 200.000 ppm F1 15093.55 H2 F2P -10.000 ppm F2 -754.68 H2 PPMCH 10.5000 ppm/ct H2CM 792.4133 H32.An
					-0
) Z-	L I Z				100
					150
					u u u u u u u u u u u u u u u u u u u

OMe