

Supporting Information © Wiley-VCH 2007

● Wilcy-VOI1 2007

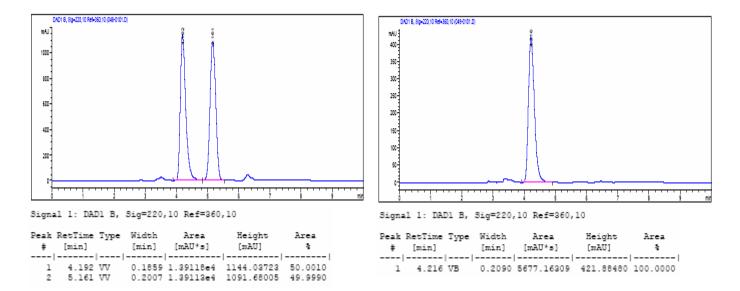
69451 Weinheim, Germany

Diastereoselective Reductive Amination of Aryl-Trifluoromethyl Ketones and α -Amino Esters

Greg Hughes,* Paul N. Devine,* John R. Naber, Paul D. O'Shea, Bruce S. Foster, Daniel J.

McKay, R. P. Volante

General: Unless otherwise noted all reactions were run under an inert atmosphere, and solvents and reagents were transferred by syringe. Anhydrous grade tetrahydrofuran (THF) was purchased from A&C Chemicals Ltd, anhydrous grade methanol was purchased from Acros and anhydrous acetonitrile, 1,2-dimethoxyethane (DME) and *tert*-butyl methyl ether (MTBE) were purchased from Aldrich in Sure/Seal™ bottles and used as received. Unless other wise noted, ¹H NMR (500 MHz), ¹³C NMR (125 Hz) and ¹³F NMR spectra (376.5MHz) were recorded in acetone-d₆ or methanol-d₄ purchased from CDN Isotopes. The ¹H and ¹³C spectra were referenced to residual acetone (2.04 ppm) or methanol (3.30 ppm). ¹³F NMR spectra were referenced to added benzotrifluoride (-67.73 ppm). Coupling constants are reported in hertz (Hz). Multiplicities are as follows: s = singlet, d = doublet, t = triplet, q = quartet. Optical Rotations were recorded on a Perkin Elmer 241 polarimeter. Chiral HPLC was run on a Berger SFC system, reverse phase HPLC's were run on an Agilent 1100 series system. Infrared (IR) spectra were recorded on an Applied Systems Inc. ReactIR 1000, optics model. High resolution mass spectrometry was performed by Merck Analytical Research. Elemental analysis was performed by Prevalere Life Sciences in Whitesboro NY.

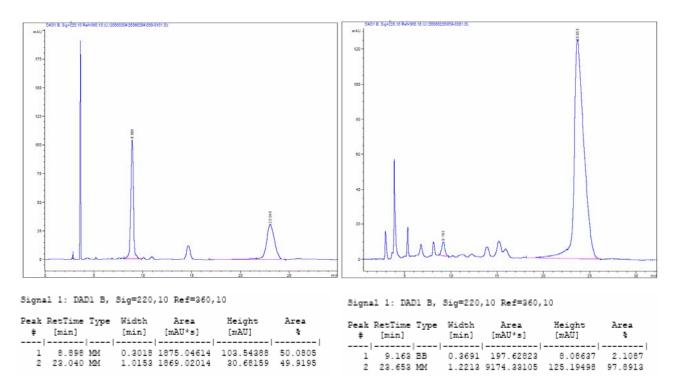

Representative Procedure for the Synthesis of Potassium Imine Carboxylates.

N-(2,2,2-Trifluoro-1-phenylethylidene)-L-valine, potassium salt (1c).

2,2,2-Trifluoroacetophenone (4.03 mL, 28.7 mmol) was added to a mixture of L-Valine methyl ester hydrochloride (5.05 g, 30.2 mmol) and potassium carbonate (9.92 g, 71.8 mmol) in MeOH (50 mL) at ambient temperature. The resulting mixture was warmed to 50 °C for 8 h, then cooled to ambient temperature and filtered through celite. The cake was rinsed with MeOH (10 mL) and the filtrate was concentrated. The residue was suspended in TBME (100 mL) and triturated for 1 h. Filtration afforded 7.84 g of a white solid. This material assayed at ~90 wt% based on the ¹H NMR analysis relative to a standard volume of mesitylene. The remaining 10 wt% is presumed to be residual KHCO₃ and K₂CO₃. ¹H NMR (CD₃OD, δ) 0.81 (d, J = 7 Hz, 3H), 0.91 (d, J = 7 Hz, 3H), 2.26 (apparent octet, J = 6.5 Hz, 1H), 3.64 (d, J = 6 Hz), 7.25-7.35 (m, 2 H), 7.40-7.50 (m, 3H); ¹⁹F NMR (CD₃OD, δ) -75.31; ¹³C NMR (CD₃OD, δ) 18.73, 20.22, 33.38, 75.89, 121.44 (q, J = 287 Hz), 129.23, 129.78, 131.02, 132.17, 158.81 (q, J = 33 Hz), 177.86; IR (2M MeOH soln, cm⁻¹) 1664, 1602, 1390, 1328, 1197, 1135, 703.

$$CF_3$$
 N
 OK
 Mel
 DMF
 iPr
 iPr
 OMe
 iPr
 iPr
 OMe

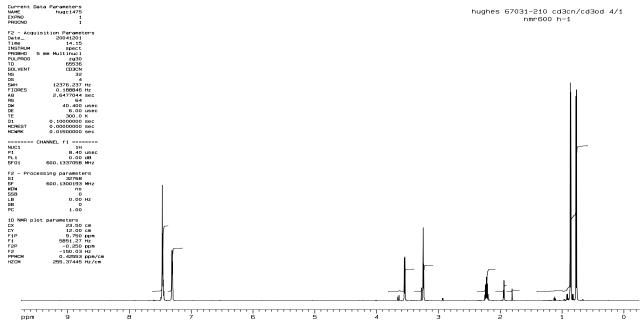
The enantiomeric excess of this compound was measured by converting the potassium caboxylate to its corresponding methyl ester 4c. Carboxylate 1c (1 mmol) was suspended in DMF (1mL) and MeI (1.5 mmol) was added. After 2h, the mixture was partitioned between TBME and H_2O . The organic layer was washed twice with fresh portions of H_2O , once with brine, dried over MgSO₄, filtered and concentrated. The resulting oil (1mg) was dissolved in 2ml of 2% IPA/hexanes and analyzed by chiral HPLC analysis (Chiralcel OJ, 250x4.6mm, 2% IPA/hexanes, 1.0 ml/min, 220nm, 30°C, retention times: 4.2 min for the isomer derived from (S)-valine, 5.2 min for the isomer derived from (R)-valine). None of the enantiomer could be detected. A racemic sample of the ester was prepared by an analogous sequence using commercially available (dl)-valine methylesterhydrochloride. $\delta H(500 \text{ MHz}; CD_3OD)$ 7.55-7.48 (3 H, m), 7.23 (2 H, d, J 7.12), 3.83 (1 H, d, J 5.85), 3.70 (3 H, s), 2.31-2.24 (1 H, m), 0.91 (3 H, d, J 6.78), 0.83 (3 H, d, J 6.86).

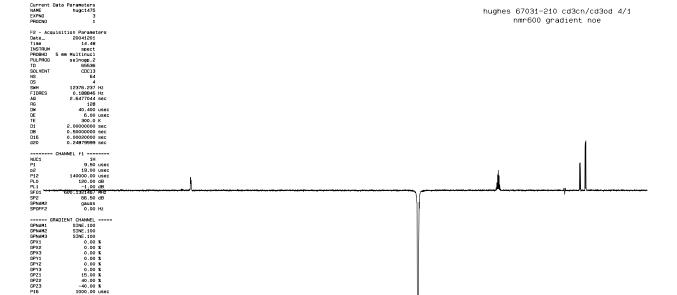


N-(2,2,2-Trifluoro-1-phenylethylidene)-L-alanine, potassium salt (1a).

The standard imine/carboxylate formation protocol was employed accept that the reaction were run at ambient temperature instead of 50°C, 1.2 equiv of alanine methylester hydrochloride was used instead of 1.05 equiv, and 2.5 equiv of K_3PO_4 was used instead of 2.5 equiv of K_2CO_3 . This afforded the desired product as a white solid assaying at ~88 wt%. ¹H NMR (CD₃OD, δ) 1.36 (d, J = 7 Hz, 3H), 3.93 (q, J = 7 Hz, 1H), 7.25-7.35 (m, 2 H), 7.40-7.50 (m, 3H); ¹⁹F NMR (CD₃OD, δ) - 75.79; ¹³C NMR (CD₃OD, δ) 20.60, 64.62, 121.45 (q, J = 287 Hz), 129.00, 129.94, 131.27, 131.76, 158.52 (q, J = 33 Hz), 178.98; IR (2M MeOH soln, cm⁻¹) 1664, 1602, 1390, 1328, 1197, 1135, 703.

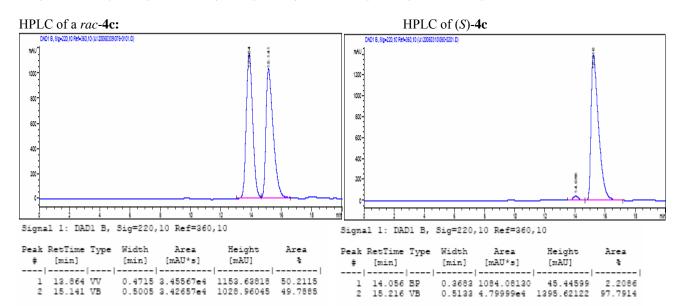
The standard protocol for ester formation was followed. A racemic reference sample was prepared from commercially available dl-alanine methylester hydrochloride. Chiral HPLC (Chiracel OJ, 20% IPA/hexanes, 1ml/min, 30°C, 220nm, (R)-alanine derived imine: 9min, (S)-alanine derived imine: 23 min) showed the material to be 95.8%ee. ¹H NMR δH(500 MHz; CD₃COCD₃) 7.59-7.55 (3 H, m), 7.40-7.37 (2 H, m), 4.16 (1 H, q, J 6.68), 1.35 (3 H, d, J 6.69).


HPLC of a rac-4a: HPLC of (S)-4a



N-(2,2,2-Trifluoro-1-phenylethylidene)-L-leucine, potassium salt (1b).

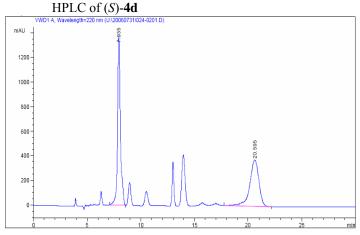
The standard imine/carboxylate formation protocol was employed affording the desired product as a white solid assaying at ~85 wt%. 1 H NMR (CD₃OD, δ) 0.62 (d, J = 7 Hz, 3H), 0.84 (d, J = 7Hz, 3H), 1.35-1.45 (m, 1H), 1.65-1.72 (m, 1H), 1.80-1.90 (m, 1H), 3.92 (dd, J = 10, 4 Hz, 1H), 7.25-7.35 (m, 2H), 3.45-3.55 (m, 3H); 19 F NMR (CD₃OD, δ) -75.29; 13 C NMR (CD₃OD, δ) 19.83, 21.98, 24.26, 42.80, 66.31, 119.60 (q, J = 278 Hz), 127.33, 128.00, 129.44, 130.06, 156.99 (q, J = 33 Hz), 176.88; IR (2M MeOH soln, cm $^{-1}$) 1663, 1602, 1323, 1197, 1139, 707.

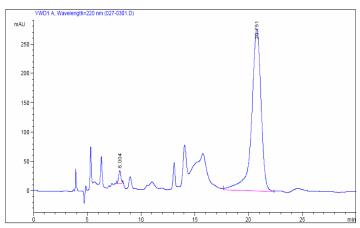


$$CF_3$$
 N
 OK
 Mel
 DMF
 OMe
 OMe
 OMe
 OMe

The standard protocol for ester formation was followed. A racemic reference sample was prepared from racemic dl-leucine ethylester hydrochloride which was in turn prepared as follows: SOCl₂ (50 mL) was added over 1h to a suspension of dlleucine (25g) in EtOH (250 mL). After aging 12h, the mixture was concentrated on a rotovap and the residue was tritureate in TMBE (100 mL) for 1h, then filtered to afford 32g of a white solid. Chiral HPLC (Chiracel OJ, 2% IPA/hexanes, 0.3 ml/min, 30°C, 220nm, (R)-alanine derived imine: 14min, (S)-alanine derived imine: 15 min) showed the material to be 95.6%ee. ¹H NMR: δH(500 MHz; CD₃OD) 7.57-7.50 (3 H, m), 7.30 (2 H, d, J 7.23), 4.12 (1 H, dd, J 8.41 and 5.29), 3.72 (3 H, s), 1.79-1.66 (2 H, m), 1.46-1.37 (1 H, m), 0.80 (3 H, d, J 6.65), 0.64 (3 H, d, J 6.60).

4b




N-(2,2,2-Trifluoro-1-(4-Bromophenyl)ethylidene)-L-alanine, potassium salt (1d).

The standard imine/carboxylate formation protocol was employed accept that the reaction were run at ambient temperature instead of 50°C, 1.2 equiv of alanine methylester hydrochloride was used instead of 1.05 equiv, and 2.5 equiv of K_3PO_4 was used instead of 2.5 equiv of K_2CO_3 . This afforded the desired product as a white solid. ¹H NMR: δ H(400 MHz; CD $_3$ OD) 7.68-7.63 (2 H, d, J 8.20), 7.26 (2 H, d, J 8.17), 3.88 (1 H, q, J 6.77), 1.37 (3 H, d, J 6.75); ¹³C NMR: δ C(126 MHz; CD $_3$ OD) 20.47, 64.74, 121.20 (q, 125.56, J 278 Hz) 130.66, 130.94, 133.15, 157.32 (q, J 33 Hz), 178.55.; ¹⁹F NMR: δ F(377 MHz; CD $_3$ OD) -75.88.

The standard protocol for ester formation was followed. A racemic reference sample was prepared from commercially available dl-alanine methylester hydrochloride. Chiral HPLC (Chiracel OJ, 10% IPA/hexanes, 0.75 ml/min, 30°C, 220nm, (R)-alanine derived imine: 9min, (S)-alanine derived imine: 23 min) showed the material to be 95.8%ee. 1 H NMR δ H(500 MHz; CD $_3$ COCD $_3$) 7.59-7.55 (3 H, m), 7.40-7.37 (2 H, m), 4.16 (1 H, q, J 6.68), 1.35 (3 H, d, J 6.69).

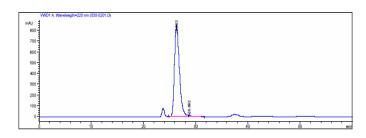
HPLC of a rac-4d:

Signal 1: VWD1 A, Wavelength=220 nm

	RetTime [min]						•	Area %
1	8.004	MM	0.2533	353.	09906	23.2	3479	2.0342
2	20.751	MM	1.0272	1.700	52e4	275.9	1458	97.9658

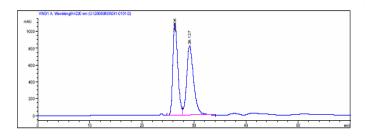
Signal 1: VWD1 A, Wavelength=220 nm

Peak	RetTime	Туре	Width	Aı	rea	Heig	ght	Area
#	[min]		[min]	mAU	*s	[mAU]	8
1	7.935	MM	0.3101	2.558	322e4	1375.0	3979	53.3305
2	20.595	MM	0.9911	2.238	370e4	376.4	15303	46.6695


N-(2,2,2-Trifluoro-1-(4-bromophenyl)ethylidene)-L-leucine, potassium salt (1e).

The standard imine/carboxylate formation protocol was employed affording the desired product as a white solid. ^{1}H NMR: $\delta H(400 \text{ MHz}; \text{CD}_{3}\text{OD})$ 7.66 (2 H, d, J 8.28), 7.26 (2 H, d, J 8.15), 3.87 (1 H, dd, J 9.66 and 4.07), 1.90-1.80 (1 H, m), 1.71 (1 H, ddd, J 13.42 and 9.25 and 4.13), 1.48-1.35 (1 H, m), 0.85 (3 H, d, J 6.64), 0.64 (3 H, d, J 6.58).; ^{13}C NMR: $\delta C(101 \text{ MHz}; \text{CD}_{3}\text{OD})$ 21.71, 23.77, 26.12, 44.53, 68.34, 121.19 (q, J 278), 125.60, 130.84, 131.08, 133.09, 157.65 (q, J 34), 178.25. ^{19}F NMR: $\delta F(377 \text{ MHz}; \text{CD}_{3}\text{OD})$ -75.32.; IR.

The standard protocol for ester formation was followed. A racemic reference sample was prepared from racemic dl-leucine ethylester hydrochloride. Chiral HPLC (Chiracel OJ, 0.2% IPA/hexanes, 0.2 ml/min, 30°C, 220nm, (S)-leucine derived imine: 28min, (R)-leucine derived imine: 29 min) showed the material to be 97%ee. ¹H NMR: δH(500 MHz; Acetone) 7.78 (2 H, d, J 8.56), 7.37 (2 H, d, J 8.24), 4.12 (1 H, dd, J 8.31 and 5.30), 3.69 (3 H, s), 1.82-1.69 (2 H, m), 1.50-1.42 (1 H, m), 0.81 (3 H, d, J 6.60), 0.68 (3 H, d, J 6.59).


HPLC of a rac-4e:

HPLC of (S)-4e

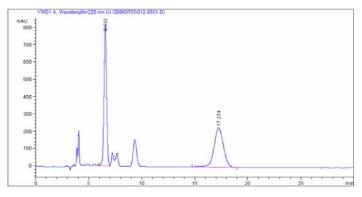
Signal 1: VWD1 A, Wavelength=220 nm

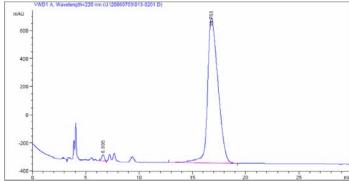
Peak	RetTime	Type	Width	Area	He	ight	Area
#	[min]		[min]	mAU *s	[mAU]	8
1	26.293	MM	1.0997	5.60711e	4 849	.82697	98.5398
2	28.692	MM	0.8745	830.858	03 11	.32398	1.4602

Peak	RetTime	Type	Width	Ar	ea	Heig	ght	Area
#	[min]		[min]	mAU	*3	[mAU]	용
1	26.306	BV	1.0180	7.190	85e4	1090.9	95581	48.4890
2	29.127	VB	1.3800	7.639	02e4	819.5	59369	51.5110

N-(2,2,2-trifluoro-1-(4-Bromophenyl)ethylidene)-L-valine, potassium salt (1f).

The standard imine/caboxylate formation protocol was employed affording the desired product as a white solid assaying at 95 wt%. 1 H NMR δ (ppm)(CD₃OD): 0.82 (d, J = 7 Hz, 3H), 0.92 (d, J = 7Hz, 3H), 2.27 (nonet, J = 7Hz, 1H), 3.58 (d, J = 6 Hz, 1H), 7.21 (d, J = 8Hz, 2H), 7.64 (d, J = 8Hz, 2H); 19F NMR (CD3OD, δ) -75.39; 13 C NMR (101 MHz, CD₃OD): δ 18.67, 20.21, 33.31, 76.02, 121.21 (q, J = 278 Hz), 125.35, 131.15, 133.06, 133.07, 157.69 (q, J = 34 Hz), 177.47; IR (2M MeOH soln, cm $^{-1}$) 1660, 1602, 1390, 1328, 1247, 1197, 1134. By inference from chiral HPLC analysis of the reduction product **2f**, **1f** is >99.5 % ee.


N-(2,2,2-Trifluoro-1-(4-Methoxyphenyl)ethylidene)-L-alanine, potassium salt (1g).


The standard imine/carboxylate formation protocol was employed accept that the reaction were run at ambient temperature instead of 50°C, 1.2 equiv of alanine methylester hydrochloride was used instead of 1.05 equiv, and 2.5 equiv of K_3PO_4 was used instead of 2.5 equiv of K_2CO_3 . This afforded the desired product as a white solid. ¹H NMR: δ H(500 MHz; Acetone) 7.26 (2 H, d, J 8.80), 7.03-6.98 (2 H, d, J 8.92), 3.99 (1 H, q, J 6.80), 3.82 (3 H, s), 1.36 (3 H, d, J 6.76); ¹³C NMR: δ C(101 MHz; CD₃OD) 20.61, 55.89, 64.49, 115.25, 121.53 (q, J 275 Hz), 123.43, 130.58, 158.39 (q, J 32 Hz), 162.45, 179.14.; ¹⁹F NMR: δ F(377 MHz; CD₃OD) -75.69.

The standard protocol for ester formation was followed. A racemic reference sample was prepared from commercially available dl-alanine methylester hydrochloride. Chiral HPLC (Chiracel OJ, 40% IPA/hexanes, 1.0 ml/min, 30°C, 220nm, (R)-alanine derived imine: 6.5min, (S)-alanine derived imine: 17 min) showed the material to be 97.8 %ee. 1 H NMR δ H(500 MHz; CD $_{3}$ OD) 7.24 (2 H, d, J 8.52), 7.08-7.04 (2 H, d, J 8.99), 4.22 (1 H, q, J 6.72), 3.84 (3 H, s), 3.71 (3 H, s), 1.35 (3 H, d, J 6.71).

HPLC of a rac-4d:

HPLC of (S)-4d

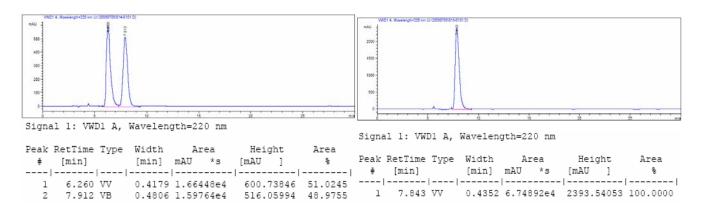
Signal 1: VWD1 A, Wavelength=220 nm

			Width [min]				ght]	
1	6.533	MM	0.2836	1.381	07e4	811.	69037	49.3644
2.	17.224	VP	0.9618	1.416	63e4	227.	68146	50.6356

Signal 1: VWD1 A, Wavelength=220 nm								
Peak RetTime	Туре	Width	Area	Height	Area			
# [min]		[min]	mAU *s	[mAU]	8			
1 6.605	MM	0.2937	782.98822	44.42649	1.0888			
2 16 762	77D	1 0621	7 1127254	1024 12512	00 0112			

N-(2,2,2-Trifluoro-1-(4-Methoxyphenylethylidene)-L-leucine, potassium salt (1h).

The standard imine/carboxylate formation protocol was employed affording the desired product as a white solid assaying at ~85 wt%. ¹H NMR: ; ¹⁹F NMR (CD₃OD, δ) -75.29; ¹³C NMR (CD₃OD, δ) 19.83, 21.98, 24.26, 42.80, 66.31, 119.60 (q, J = 278 Hz), 127.33, 128.00, 129.44, 130.06, 156.99 (q, J = 33 Hz), 176.88; IR (2M MeOH soln, cm⁻¹) 1663, 1602, 1323, 1197, 1139, 707.


N-(2,2,2-Trifluoro-1-(4-Methoxyphenyl)ethylidene)-L-valine, potassium salt (1i).

The standard imine/carboxylate formation protocol was employed affording the desired product as a white solid. ¹H NMR: ; ¹³C NMR: δC(126 MHz; CD₃OD); ¹⁹F NMR: δF(377 MHz; CD₃OD).

The standard protocol for ester formation was followed. A racemic reference sample was prepared from commercially available dl-alanine methylester hydrochloride. Chiral HPLC (Chiracel OJ, 40% IPA/hexanes, 1.0 ml/min, 30°C, 220nm, (R)-valnine derived imine: 6.3min, (S)-valine derived imine: 7.9 min) showed the material to be >99.5 %ee. ¹H NMR δH(500 MHz; CD₃OD) 7.24 (2 H, d, J 8.52), 7.08-7.04 (2 H, d, J 8.99), 4.22 (1 H, q, J 6.72), 3.84 (3 H, s), 3.71 (3 H, s), 1.35 (3 H, d, J 6.71).

HPLC of a rac-4d:

HPLC of (S)-4d

Representative procedure for the (R,S)-selective reductive amination.

N-[(1R)-2,2,2-trifluoro-1-phenylethyl]-L-alanine ((R, S)-2a.)

2,2,2-Trifluoroacetophenone (871 mg, 5.00 mmol) was added to a suspension of L-alanine, methyl ester hydrochloric acid salt (803 mg, 5.75 mmol) and potassium carbonate (2.25 g, 15 mmol) in MeOH (10 mL) at ambient temperature. The resulting mixture was warmed to 50 °C for 18 h. The mixture was cooled to ambient temperature and the MeOH was removed on a rotovap. The residue was suspended in THF (20 mL) and added to a 50 mL RBF which had been charged with NaBH₄ (1.51g, 40.0 mmol). A 20% (v/v) solution of water/THF was added via syringe pump over 3 h. 1N HCl (10 mL) was added and the mixture was extracted with TBME (50 mL). The TBME layer was washed with brine, dried over MgSO₄, concentrated and dissolved in a 50/50 mixture of TBME and hexanes (20 mL). This solution was extracted with 0.5M NaOH (3 x 25 mL) and acidified the aqueous layer and extracted 3 x 10 mL collected 717 mg of a white solid (58% yield). Analysis by ¹⁹F NMR showed a 10 : 1 mixture of diastereomers. $[\alpha]_D^{23} = +10.5^{\circ}$ (c=1.0, CH₃COCH₃); ¹H NMR 7.44 – 7.47 (m, 2H), 7.37 – 7.41 (m, 3H), 4.44 (q, J = 7Hz, 1H), 2.95 (q, J = 7Hz, 1H), 1.17 (d, J = 7Hz, 3H); ¹⁹F NMR -79.06 (d, 8Hz, minor), -79.79 (d, 8Hz, major); ¹³C NMR (DMSO-d₆, δ) 19.30, 53.19, 61.93 (q, J = 28 Hz), 125.76 (q, J = 281 Hz), 128.90, 129.23, 129.33, 134.17, 175.82; IR (neat, cm⁻¹) 1737; HRMS: calc for C₁₁H₁₃F₃NO₂ (M+H) : 248.0898; found 248.0892.

N-[(1R)-2,2,2-trifluoro-1-phenylethyl]-L-leucine ((R,S)-2b)

[α]_D²³ = -11.1° (c=1.0, CH₃COCH₃); ¹H NMR (CD₃COCD₃, δ) 7.51 – 7.55 (m, 2H), 7.41 – 7.44 (m, 3H), 4.42 (q, J = 8Hz, 1H), 3.01 (dd, J = 10Hz, 5Hz, 1H), 1.92 (st, J = 7Hz, 2Hz, 1H), 1.54 (AB, ddd, J = 15Hz, 10Hz, 5Hz, 1H), 1.44 (AB, ddd, J = 15Hz, 10Hz, 5Hz, 1H), 0.87 (d, J = 7Hz, 3H), 0.72 (d, J = 7Hz, 3H); ¹⁹F NMR -78.81 (d, 7Hz, minor), -79.76 (d, 7Hz, major), dr = 1 : 19; ¹³C NMR (CD₃COCD₃, δ) 22.27, 23.80, 25.60, 43.81, 56.99, 63.91 (q, J = 29 Hz), 126.77 (q, J = 280 Hz), 129.84, 130.59, 130.64, 134.82, 176.33; IR (neat, cm⁻¹) 1737; HRMS: calc for C₁₄H₁₉F₃NO₂ (M+H) : 290.1368; found 290.1361; Elemental Analysis: calc: %C = 58.12, %H = 6.27, %N = 4.70, found %C = 57.93, %H = 6.17, %N = 4.70.

N-[(1R)-2,2,2-trifluoro-1-phenylethyl]-L-valine ((R,S)-2c)

[α]_D = -11.6° (c=1.0, CH₃COCH₃); ¹H NMR 7.52 – 7.54 (m, 2H), 7.41 – 7.43 (m, 3H), 4.36 (q, J = 7Hz, 1H), 2.84 (d, J = 5Hz, 1H), 1.99 (vo, J = 6Hz, 1H), 0.93 (d, J = 7Hz, 6H); ¹⁹F NMR -78.94 (d, 8Hz, minor), -79.82 (d, 8Hz, major), dr = 1: 25; ¹³C NMR (CD₃COCD₃, δ) 18.57, 20.22, 32.47, 64.17, 64.28 (q, J = 28 Hz), 126.83 (q, J = 281 Hz), 129.81, 130.53, 130.68,

134.79, 175.49; IR (neat, cm⁻¹) 1733; HRMS: calc for $C_{13}H_{17}F_3NO_2$ (M+H) : 276.1211; found 276.1204; Elemental Analysis: calc: %C = 40.51, %H = 3.40, %N = 4.30, found %C = 40.95, %H = 3.40, %N = 4.16.

N-[(1R)-1-(4-bromophenyl)-2,2,2-trifluoroethyl]-L-alanine ((R,S)-2d)

[\square]_D²³ = +7.8° (c=1.0, CH₃COCH₃); ¹H NMR 7.62 (AB, d, J = 9Hz, 2H), 7.50 (AB, d, J = 8Hz, 2H), 4.53 (q, J = 8Hz, 1H), 3.13 (q, J = 7Hz, 1H), 1.29 (d, J = 7Hz, 3H); ¹⁹F NMR -79.22 (d, 7Hz, minor), -79.89 (d, 7Hz, major), dr = 1 : 4; ¹³C NMR (101 MHz, CD₃COCD₃, δ) 19.51, 53.77, 62.70 (q, J = 29 Hz), 123.64, 126.04 (q, J = 280 Hz), 132.01, 132.50, 134.12, 175.64; IR (neat, cm⁻¹) 1737; HRMS: calc for C₁₁H₁₀BrF₃NO₂ (M-H) : 323.9847; found 323.9848.

N-[(1R)-1-(4-bromophenyl)-2,2,2-trifluoroethyl]-L-leucine ((R,S)-2e)

 $[\Box]_D^{23} = -9.7^{\circ}$ (*c*=1.0, CH₃COCH₃); ¹H NMR 7.62 (AB, d, *J* = 9Hz, 2H), 7.50 (AB, d, *J* = 9Hz, 2H), 4.45 (q, *J* = 7Hz, 1H), 2.98 (dd, *J* = 9Hz, 5Hz, 1H), 1.91 (st, *J* = 7Hz, 2Hz, 1H), 1.53 (AB, ddd, *J* = 14Hz, 9Hz, 5Hz, 1H), 1.44 (AB, ddd, *J* = 14Hz, 9Hz, 5Hz, 1H), 0.87 (d, *J* = 7Hz, 3H), 0.74 (d, *J* = 7Hz, 3H); ¹⁹F NMR -78.97 (d, 7Hz, minor), -79.83 (d, 7Hz, major), dr = 1 : 17; ¹³C NMR (CD₃COCD₃, δ) 22.34, 23.82, 25.61, 43.79, 57.17, 63.27 (q, *J* = 29 Hz), 124.22, 126.46 (q, *J* = 280 Hz), 132.66, 132.98, 134.35, 176.56; IR (neat, (cm⁻¹) 1733; HRMS: calc for C₁₄H₁₈BrF₃NO₂ (M+H) : 368.0473; found 368.0479.

N-[(1R)-1-(4-bromophenyl)-2,2,2-trifluoroethyl]-L-valine ((R,S)-2f)

[\square]_D²³ = -10.6° (c=1.0, CH₃COCH₃); ¹H NMR 7.61 (AB, d, J = 8Hz, 2H), 7.50 (AB, d, J = 8Hz, 2H), 4.38 (q, J = 7Hz, 1H), 2.83 (d, J = 5Hz, 1H), 1.97 – 2.01 (m, 1H), 0.92 (d, J = 7Hz, 3H); ¹⁹F NMR -79.06 (d, 7Hz, minor), -79.88 (d, 7Hz, major), DR 1.0:45.8; ¹³C NMR (CD₃COCD₃, δ) 18.55, 20.23, 32.45, 63.62 (q, J = 29 Hz), 64.32, 124.21, 126.50 (q, J = 281 Hz), 132.69, 132.97, 134.25, 175.34; IR (neat, cm⁻¹) 1733; HRMS: calc for C₁₃H₁₆BrF₃NO₂ (M-H): 354.0316; found 354.0310; Chiral HPLC (Chiracel AD-H, 14% ¹PrOH/ CO₂^{sc}, 2 ml/min, 35°C, 220 nm, retention times: (S,R) = 2.4 min, (R,S) = 2.6 min, (S,S) = 2.9 min, (S,S) = 4.3 min) >99% ee.

N-[(1R)-1-(4-methoxyphenyl)-2,2,2-trifluoroethyl]-L-alanine ((R,S)-2g)

[□]_D²³ = -1.9° (c=1.0, CH₃COCH₃); ¹H NMR 7.43 (d, J = 8Hz, 2H), 6.96 (d, J = 8Hz, 2H), 4.47 (q, J = 7Hz, 1H), 3.80 (s, 3H), 3.51 (q, J = 7Hz, 1H), 1.35 (d, J = 7Hz, 3H); ¹⁹F NMR -79.00 (d, 7Hz, major), -79.77 (d, 7Hz, minor), dr = 4 : 1; ¹³C NMR (101 MHz, CD₃COCD₃, δ) 19.52, 53.62, 55.52, 62.71 (q, J = 29 Hz), 114.78, 126.16, 126.44 (q, J = 280 Hz), 131.11, 161.30, 175.78; IR (neat)(cm⁻¹) 1737; HRMS: calc for C₁₂H₁₅F₃NO₃ (M+H) : 278.1004; found 278.1004.

N-[(1R)-1-(4-methoxyphenyl)-2,2,2-trifluoroethyl]-L-leucine ((R,S)-2h)

[□]_D²³ = -10.4° (c=1.0, CH₃COCH₃); ¹H NMR 7.43 (d, J = 9Hz, 2H), 6.97 (d, J = 9Hz, 2H), 4.35 (q, J = 8Hz, 1H), 3.81 (s, 3H), 3.02 (dd, J = 10Hz, 5Hz, 1H), 1.92 (septet of triplets, J = 7Hz, 2Hz, 1H), 1.41 – 1.56 (m, 1H), 0.87 (d, J = 7Hz, 3H), 0.74 (d, J = 7Hz, 3H); ¹⁹F NMR -79.04 (d, 8Hz, minor), -80.09 (d, 8Hz, major), dr = 1 : 19; ¹³C NMR (CD₃COCD₃, δ) 22.29, 23.82, 25.61, 43.83, 55.98, 56.90, 63.29 (q, J = 29 Hz), 115.18, 126.37, 126.87 (q, J = 280 Hz), 131.78, 161.85, 176.37;IR (neat, cm⁻¹) 1737; HRMS: calc for C₁₅H₂₁F₃NO₃ (M+H) : 320.1474; found 320.1472.

N-[(1R)-1-(4-methoxyphenyl)-2,2,2-trifluoroethyl]-L-valine ((R,S)-2i)

[\Box]_D²³ = -11.1° (c=1.0, CH₃COCH₃); ¹H NMR 7.43 (AB, d, J = 8Hz, 2H), 6.96 (AB, d, J = 8Hz, 2H), 4.28 (q, J = 8Hz, 1H), 3.81 (s, 3H), 2.82 (d, J = 5Hz, 1H), 1.97 (apparent octet, J = 6Hz, 1H), 0.92 (d, J = 9Hz, 6H); ¹⁹F NMR -79.14 (d, 7Hz, minor), -80.12 (d, 7Hz, major), dr = 1 : 33; ¹³C NMR (CD₃COCD₃, δ) 18.58, 20.26, 32.40, 55.96, 63.57 (q, J = 28 Hz), 64.07, 115.14, 126.31, 126.92 (q, J = 280 Hz), 131.85, 161.81, 175.49; IR (neat, cm⁻¹) 1733; HRMS: calc for C₁₄H₁₉F₃NO₃ (M+H) : 306.1317; found 306.1315.

Representative procedure for the (S,S)-selective reductive amination.

N-[(1S)-2,2,2-trifluoro-1-phenylethyl]-L-valine ((S,S)-2c)

Sodium borohydride (869 mg, 23.0 mmol) was added to a 0 °C suspension of ZnCl₂ (1.57 g, 11.5 mmol) in DME (11.5 mL). The mixture was allowed to warm to ambient temperature and age for 18 h. In the meantime, 2,2,2-trifluoroacetophenone (1.00 g, 5.74 mmol) was added to a suspension of L-leucine methylester hydrochloride salt (1.11 g, 6.61 mmol) and potassium carbonate (1.98 g, 14.4 mmol) in MeOH (17 mL) the resulting mixture was warmed to 50 °C for 8 h, then allowed to cool to ambient temperature. The mixture was diluted with CH₃CN (170 mL) and added to the Zn(BH₄)₂ suspension, which had been cooled to -40 °C over 10 min. After 4 h at -40°C, 10 mL of acetone was added and the mixture was allowed to warm to ambient temperature for 1 h. Hydrochloric acid (1M, 50 mL) was added slowly. The acetonitrile was removed on a rotovap and the mixture was extracted with TBME (3 x 30 mL). The organic fractions were washed with brine, dried over Na₂SO₄, filtered and concentrated. ¹⁹F NMR analysis of the crude mixture revealed a 21:1 mixture of diastereomers. The residue was dissolved in 0.5 M NaOH (50 mL) and extracted with TMBE (50 mL). The aqueous layer was acidified with 6N HCl and extracted with TBME (2x25mL). The organic layers were washed with brine, dried over Na_2SO_4 , filtered and concentrated to afford 1.45 g of a white solid (92%). mp (88-89 °C); $[\alpha]_D^{23} = +3.2^\circ$ (c=1.0, CH_3COCH_3); ¹H NMR 7.51 (d, J = 4Hz, 2H), 7.39 (d, J = 4Hz, 3H), 4.37 (q, J = 8Hz, 1H), 3.31 (d, J = 5Hz, 1H), 2.11 (apparent octet, J = 6Hz, 1H), 1.03 (d, J = 7Hz, 3H), 0.95 (d, J = 7Hz, 3H); ¹⁹F NMR -77.98 (s, major), -78.90 (s, minor), dr = 21 : 1; 13 C NMR (CD₃COCD₃, δ) 18.39, 19.93, 32.77, 65.04 (q, J = 29 Hz), 66.45, 127.32 (q, J = 281 Hz), 129.73, 129.84, 130.14, 136.63, 175.92; IR (neat, cm⁻¹) 1733; HRMS: calc for C₁₃H₁₇F₃NO₂ (M+H): 276.1211; found 276.1214.

N-[(1S)-2,2,2-trifluoro-1-phenylethyl]-L-alanine ((S, S)-2a.)

[\square]_D²³ = -2.5° (c=1.0, CH₃COCH₃); 1 H NMR 7.44 - 7.47 (m, 2H), 7.37 - 7.41 (m, 3H), 4.43 (q, J = 7Hz, 1H), 3.28 (q, J = 7Hz, 1H), 1.23 (d, J = 7Hz, 3H); 19 F NMR -79.05 (d, 8Hz, major), -79.78 (d, 8Hz, minor), dr = 15 : 1; 13 C NMR (DMSO-d₆, δ) 18.76, 54.65, 61.40 (q, J = 28 Hz), 126.27 (q, J = 282 Hz), 128.79, 128.83, 129.09, 129.33, 135.10, 176.03; IR (neat, cm⁻¹) 1737; HRMS: calc for C₁₁H₁₃F₃NO₂ (M+H) : 248.0898; found 248.0892.

N-[(1S)-2,2,2-trifluoro-1-phenylethyl]-L-leucine ((S,S)-2b)

[\square]_D²³ = +0.74° (c=1.0, CH₃COCH₃); ¹H NMR 7.47 – 7.50 (m, 2H), 7.37 – 7.40 (m, 3H), 4.33 (q, J = 8Hz, 1H), 3.51 (t, J = 7Hz, 1H), 1.98 (vs, J = 7Hz, 1H), 1.53 (dd, J = 8Hz, 7Hz, 2H), 0.95 (d, J = 7Hz, 3H), 0.93 (d, J = 7Hz, 3H); ¹⁹F NMR -78.81 (d, 7Hz, major), -79.76 (d, 7Hz, minor), dr = 11 : 1; ¹³C NMR (CD₃COCD₃, δ) 22.56, 23.67, 25.81, 43.69, 59.76, 64.26 (q, J = 29 Hz), 127.46 (q, J = 281 Hz), 129.78, 129.84, 130.11, 136.70, 176.83; IR (neat, cm⁻¹) 1737; HRMS: calc for C₁₄H₁₉F₃NO₂ (M+H) : 290.1368; found 290.1358.

A sample of (*S*,*S*)-2b (289 mg, 1.00 mmol) was dissolved in THF (5 mL) and BH₃·DMS (2.0 mL, 21.0 mmol) was added. After 2h, the mixture was quenced by the careful addition of 1M HCl and TBME. The organic later was washed with brine dried over MgSO₄, filtered and concentrated. The crude mixture was purified by flash chromatography to afford 240mg of the desired compound whose spectral data were consistant with those reported in the supporting information of reference 5a.

N-[(1S)-1-(4-bromophenyl)-2,2,2-trifluoroethyl]-L-alanine ((S,S)-2d)

[\square]_D²³ = -2.8° (c=1.0, CH₃COCH₃); ¹H NMR 7.60 (AB, d, J = 8Hz, 2H), 7.49 (AB, d, J = 8Hz, 2H), 4.51 (q, J = 8Hz, 1H), 3.49 (q, J = 7Hz, 1H), 1.34 (d, J = 7Hz, 3H); ¹⁹F NMR -79.22 (d, 7Hz, major), -79.89 (d, 7Hz, minor), dr = 8 : 1; ¹³C NMR (101 MHz, CD₃COCD₃, δ) 18.94, 55.32, 62.51 (q, J = 29 Hz), 123.33, 126.60 (q, J = 279 Hz), 131.47, 132.49, 135.25, 175.83; IR (neat)(cm⁻¹) 1737; HRMS: calc for C₁₁H₁₂BrF₃NO₂ (M+H) : 326.0003; found 325.9994.

N-[(1S)-1-(4-bromophenyl)-2,2,2-trifluoroethyl]-L-leucine ((S,S)-2e)

 $[\Box]_D^{23} = +2.4^{\circ} (c=1.0, \text{CH}_3\text{COCH}_3);$ ¹H NMR 7.58 (AB, d, J=9Hz, 2H), 7.47 (AB, d, J=9Hz, 2H), 4.42 (q, J=8Hz, 1H), 3.51 (dd, J=8Hz, 6Hz, 1H), 1.95 (septet, J=7Hz, 1H), 1.52 – 1.55 (m, 2H), 0.94 (d, J=7Hz, 3H), 0.91 (d, J=7Hz, 3H);

¹⁹F NMR -78.93 (d, 7Hz, major), -79.82 (d, 7Hz, minor), dr = 12 : 1; ¹³C NMR (CD₃COCD₃, δ) 22.51, 23.62, 25.79, 43.54, 59.73, 63.61 (q, J = 29 Hz), 123.76, 127.09 (q, J = 281 Hz), 131.94, 132.87, 176.53; IR (neat)(cm⁻¹) 1733; HRMS: calc for C₁₄H₁₈BrF₃NO₂ (M+H) : 368.0473; found 368.0473.

N-[(1S)-1-(4-bromophenyl)-2,2,2-trifluoroethyl]-L-valine ((S,S)-2f)

 $[\Box]_D^{23} = +3.9^{\circ}$ (*c*=1.0, CH₃COCH₃); ¹H NMR 7.58 (AB, d, *J* = 8Hz, 2H), 7.47 (AB, d, *J* = 8Hz, 2H), 4.38 (q, *J* = 7Hz, 1H), 3.26 (d, *J* = 5Hz, 1H), 2.06 – 2.08 (m, 1H), 1.02 (d, *J* = 7Hz, 3H), 0.93 (d, *J* = 7Hz, 3H); ¹⁹F NMR -79.04 (d, 7Hz, major), -79.88 (d, 7Hz, minor), dr = 12 : 1; ¹³C NMR (CD₃COCD₃, δ) 18.39, 19.88, 32.73, 64.49 (q, *J* = 29 Hz), 66.56, 123.77, 126.99 (q, *J* = 281 Hz), 131.86, 132.89, 135.92, 175.76 IR (neat, cm⁻¹) 1733; HRMS: calc for C₁₃H₁₆BrF₃NO₂ (M-H) : 354.0316; found 354.0316; Chiral HPLC (Chiracel AD-H, 14% ⁱPrOH/ CO₂^{sc}, 2 ml/min, 35°C, 220 nm, retention times: (*R*,*R*) = 2.4 min, (*S*,*S*) = 2.6 min, (*R*,*S*) = 2.9 min, (*S*,*R*) = 4.3 min) >99%ee.

N-[(1S)-1-(4-methoxyphenyl)-2,2,2-trifluoroethyl]-L-alanine ((S,S)-2g)

[\square]_D²³ = -1.9° (c=1.0, CH₃COCH₃); ¹H NMR 7.43 (d, J = 8Hz, 2H), 6.96 (d, J = 8Hz, 2H), 4.47 (q, J = 7Hz, 1H), 3.80 (s, 3H), 3.51 (q, J = 7Hz, 1H), 1.35 (d, J = 7Hz, 3H); ¹⁹F NMR -79.00 (d, 7Hz, major), -79.77 (d, 7Hz, minor), dr = 8 : 1; ¹³C NMR (CD₃COCD₃, δ) 18.46, 55.55, 62.22 (q, J = 29 Hz), 114.83, 126.72 (q, J = 282 Hz), 126.75, 130.67, 161.19, 175.44; IR (neat, cm⁻¹) 1737; HRMS: calc for C₁₂H₁₅F₃NO₃ (M+H) : 278.1004; found 278.1002.

N-[(1S)-1-(4-methoxyphenyl)-2,2,2-trifluoroethyl]-L-leucine ((S,S)-2h)

[\square]_D = +1.2° (c=1.0, CH₃COCH₃); ¹H NMR 7.39 (AB, d, J = 8Hz, 2H), 6.93 (AB, d, J = 8Hz, 2H), 4.26 (q, J = 8Hz, 1H), 3.79 (s, 3H), 3.48 (dd, J = 7Hz, 7Hz, 1H), 1.92 (vs, J = 7Hz, 1H), 1.52 (t, J = 7Hz, 1H), 0.94 (d, J = 9Hz, 3H), 0.92 (d, J = 9Hz, 3H); ¹⁹F NMR -79.02 (d, 7Hz, major), -80.08 (d, 7Hz, minor), dr = 16 : 1; ¹³C NMR (CD₃COCD₃, δ) 22.59, 23.65, 25.81, 43.72, 55.96, 59.68, 63.63 (q, J = 29 Hz), 115.11, 127.52 (q, J = 281 Hz), 128.54, 130.94, 161.44, 176.82; IR (neat, cm⁻¹) 1710; HRMS: calc for C₁₅H₂₁F₃NO₃ (M+H) : 320.1474; found 320.1481.

N-[(1S)-1-(4-methoxyphenyl)-2,2,2-trifluoroethyl]-L-valine ((S,S)-2i)

[\Box]_D²³ = +4.5° (*c*=1.0, CH₃COCH₃); ¹H NMR 7.39 (d, *J* = 8Hz, 2H), 6.93 (d, *J* = 8Hz, 2H), 4.22 (q, *J* = 8Hz, 1H), 3.79 (s, 3H), 3.23 (d, *J* = 5Hz, 1H), 2.02 (apparent octet, *J* = 7Hz, 1H), 1.02 (d, *J* = 7Hz, 3H), 0.93 (d, *J* = 7Hz, 3H); ¹⁹F NMR -79.08 (d, 8Hz, major), -79.81 (d, 8Hz, minor), dr = 8 : 1; ¹³C NMR (CD₃COCD₃, δ) 18.40, 19.90, 32.77, 55.95, 64.42 (q, *J* = 28 Hz), 66.38, 115.13, 127.40 (q, *J* = 280 Hz), 128.49, 130.89, 161.44, 175.94; IR (neat, cm⁻¹) 1733; HRMS: calc for C₁₄H₁₉F₃NO₃ (M+H) : 306.1317; found 306.1313.

Rationale for the Observed Stereochemisty

Ab Initio calculations on imine-carboxylate 1a have been employed in order to strengthen our understanding of the sense of the diastereoselectivity. The G03 package was used for the ab initio calculations. Full optimization was preformed with the ROHF method. The basis set used was 6-31+G(d,p) on all atoms other than Zn. The Zn atom was treated with the LANL2DZ basis set and the LANL2 effective core potential. Geometry optimizations were performed for both the E and Z imine isomers. The E isomer was found to be favored by 6 kcal/mol. The lowest energy conformation shows the aromatic ring to be out of conjugation with the imine, having a dihedral angle between the imine and phenyl planes of 66°. The methine proton H₁ in this conformer is eclipsing the aromatic group (Figure 1, C₁). Both of these orientations result in a minimization of $A_{1,3}$ strain between the aryl group and the substituents on C_1 . A plot of ground state energies versus the torsion angle defined by C₂-N₁-C₁-H₁ shows this rotomer to be favored by ~5 kcal/mol relative to the next most stable conformer (\mathbb{C}_2) in which the Methyl group is eclipsing the aromatic group.

Figure 1. Geometry optimization of the imine carboxylates.

$$C_1$$
 H¹ Eclipsing

 C_2 CH₃ Eclipsing

 C_3
 C_4
 C_5
 C_5
 C_5
 C_5
 C_7
 C_7

Rel. Energy = 0kcal/mol

Perhaps the simplest explanation for the reversal in facial selectivity observed with Zn(BH₄)₂ reductions would be to invoke equilibration between the E to Z imine isomers, followed by reduction of the Z isomer at a rate which is faster than reduction of the E imine isomer. In the Z isomer, the si face would now be flanked by the carboxylate moiety and would be expected to afford the S,S isomer preferentially. While this possibility can not be ruled out completely, it seems unlikely for the following reasons: (1) Mixing the imine/ carboxylate with zinc salts (eg. ZnCl₂, Zn(OTf)₂) in CD₃CN shows a change in the ¹H NMR spectra, but the new compound was also shown by nOe to be the E isomer. (2) Ab Initio studies suggest that there is a large difference in energy between the two isomers, with the E isomer being strongly preferred. (3) It has been shown that similar imine substrates do not equilibrate below ambient temperature.²

¹ The Gaussian 03 package was used for the *ab initio* calculations. Full optimization was preformed with the ROHF method. The basis set used was 6-31+G(d,p) on all atoms other than Zn. The Zn atom was treated with the LANL2DZ basis set and the LANL2 effective core potential. Gaussian 03, Revision C.01: Frisch, M. J.: Trucks, G. W.: Schlegal, H. B.: Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Kiu, G.; Lasshenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.; Gaussian, Inc., Wallingford CT, 2004.

² Gosselin, F.; Roy, A.; O'Shea, P.D.; Chen, C.; Volante, R.P. Org. Lett. **2004**, 6, 641.

Figure 2. Ab Initio geometry optimized orientation (6-31+G(d,p))

$$CF_3$$
 $N \rightarrow ZnX$
 $R^2 \stackrel{!}{\rightarrow} O$
 $X = CI, R^2 = CH_3$

An association between the imine lone pair and ZnX fragment further rigidifies the geometry in the orientation having H_1 eclipsing the aryl ring (*Figure 2*). This arrangement will also significantly increase the effective steric contribution of the carboxylate moiety relative to the α -amino ester substituent. This is clearly demonstrated in the *Ab Initio* geometry optimization studies which show that the ZnCl⁺ fragment has a weak affiliation with the imine lone pair.