

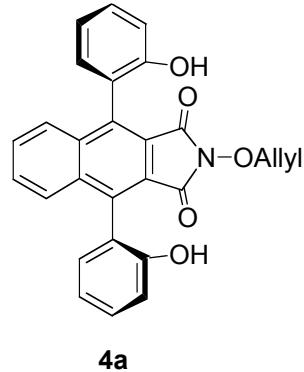
Supporting Information

© Wiley-VCH 2007

69451 Weinheim, Germany

Modulable C_2 Symmetric Analogues of NHPI as Enantioselective Catalysts for Aerobic Oxidation: Kinetic Resolution of Oxazolidines

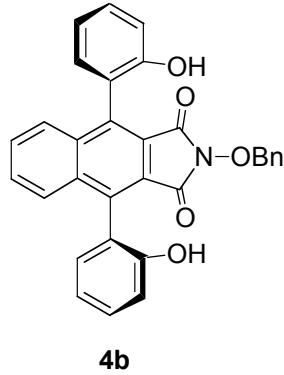
Malek Nechab, Dhondi Naveen Kumar, Christian Philouze, Cathy Einhorn and Jacques Einhorn*


[*] Synthèse Et Réactivité en Chimie Organique (SERCO)
Département de Chimie Moléculaire (DCM)
UMR-5250, ICMG FR-2607, CNRS
Université Joseph Fourier, BP-53, 38041 Grenoble Cedex 9 (France)
Fax: (+33)4-7651-4836
E-mail: Jacques.Einhorn@ujf-grenoble.fr

	Page
1- Synthesis of the precatalysts 4a and 4b	2
2- Synthesis of the catalysts	4
3- Synthesis of the oxazolidines	11
4- General procedures for the oxidations	17
5- Determination of the oxidation conversion and of the <i>ee</i> of <i>N</i> -acyloxazolidines	18
6- ORTEP drawing of (<i>R</i>)- 10l	20
7- References and notes	21

1- Synthesis of the precatalysts **4a** and **4b**

Synthesis of (*aS,aS*)-**4a**


To a suspension of (*aS,aS*)-**1**•1/2AcOEt¹ (1.33 g, 3.14 mmol) in anhydrous acetonitrile (30 mL) at room temperature, were added *di-tert*-butyl dicarbonate (Boc₂O, 2.3 g, 10.5 mmol), followed by DMAP (38 mg, 10 mol %). After 30 min (TLC indicated no remaining starting material), 0.23 mL of an aqueous solution of hydroxylamine (50 wt %, 3.6 mmol) was added, the mixture was stirred overnight at room temperature and concentrated under reduced pressure, giving crude **3**. Crude **3** was dissolved in 30 mL of acetone, K₂CO₃ (0.953 g, 2.2 equiv) was added, followed by allyl bromide (0.570 mL, 2.1 equiv). The reaction mixture was stirred for 6 h then filtered, the solvent was evaporated under reduced pressure and the residue was crystallized by stirring at room temperature in hexane/AcOEt, 9:1 overnight. After filtration and drying, a white solid (2.2 g) was obtained. The solid was dissolved in CH₂Cl₂ (10 mL), TFA (5 mL) was added dropwise at 0 °C (during the addition temperature raised to 25 °C), and the reaction was stirred for 2 h at RT. After completion of the reaction (TLC monitoring), the solvent was removed under reduced pressure. Flash chromatography (elution: hexane/Et₂O, 4:1) gave (*aS,aS*)-**4a** as a solid 1:1 ether solvate (1.44 g, 90 % yield from diphenol **1**). R_f 0.21 (hexane/AcOEt 2:1); m.p. 179-180 °C (from AcOEt); [α]_D²⁵ = +111 (c = 1 in CHCl₃); ¹H NMR (300 MHz, [D₆] DMSO): δ = 4.59 (d, 2H, *J* = 6.5 Hz), 5.31-5.38 (m, 2H), 5.90-6.10 (m, 1H), 6.98-7.67 (m, 12H), 9.44 ppm (s, 2H); ¹³C NMR (75 MHz, CDCl₃): δ = 78.65, 116.45, 120.61, 121.25, 121.53, 122.18, 128.66, 129.43, 130.46, 131.13, 131.31, 135.75, 136.41, 153.69, 163.10 ppm; IR (ATR): $\tilde{\nu}$ = 3359, 3069, 2924, 2839, 1767, 1711, 1590, 1502, 1448, 1372, 1286, 1222, 1143, 1103, 1046, 1019, 943, 840, 744 cm⁻¹; MS (ESI⁺): *m/z* (%): 476 (72) [M+39]⁺, 460 (100) [M+23]⁺, 438 (24) [M+H]⁺; Anal. (determined on the ether solvate) calcd for C₃₁H₂₉NO₆: C, 72.78; H, 5.71; N, 2.74. Found: C, 72.39; H, 5.26, N, 2.9; HRMS (MH⁺, ESI): *m/z* calcd for C₂₇H₂₀NO₅: 438.1336. Found: 438.1334.

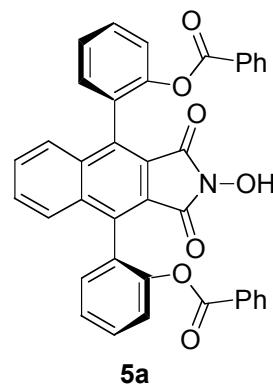
Synthesis of (*aS,aS*)-**4b**

Crude **3**, prepared as described previously from (*aS,aS*)-**1**•1/2AcOEt¹ (1.57 g, 3.69 mmol), was dissolved in 30 mL of DMSO. K₂CO₃ (1.54 g, 3 equiv) was added, followed by benzyl

bromide (0.460 mL, 1.05 equiv), the reaction mixture was stirred for 2 h at RT, then poured into water (30 mL) and extracted with AcOEt (3 x 30 mL). The organic layer was washed with water (2 x 30 mL) and brine (30 mL) and dried over anhydrous sodium sulfate. After evaporation of the solvent at reduced pressure, the residue was dissolved in CH₂Cl₂ (10 mL), TFA (5 mL) was added drop wise at 0 °C (the temperature raised to 25 °C during addition) and the reaction was stirred overnight at RT. After completion of the reaction (TLC monitoring), the solvent was removed under reduced pressure. Flash chromatography (eluent: hexane/AcOEt, 2:1) afforded (*aS,aS*)-**4b**, which was stirred overnight in a hexane/AcOEt/DMSO 80:15:5 mixture, furnishing a crystalline (*aS,aS*)-**4b**•DMSO 1:1 solvate (1.93 g, 88 % yield from diphenol **1**), *R*_f 0.35 (CH₂Cl₂/AcOEt, 95:5); m.p. 194-195 °C (from DMSO); $[\alpha]_D^{25} = +107$ (*c* = 0.85 in CHCl₃); ¹H NMR (300 MHz, [D₆] DMSO) δ = 5.05-5.13 (m, 2H), 6.96-7.68 (m, 17H), 9.48 ppm (s, 2H); ¹³C NMR (75 MHz, CDCl₃, TMS) δ = 79.9, 115.57, 118.85, 121.20, 121.29, 128.04, 128.41, 128.93, 128.99, 129.41, 129.72, 131.07, 134.10, 134.83, 136.47, 154.97, 161.58 ppm; IR (ATR): $\tilde{\nu}$ = 3148, 2868, 2712, 1771, 1726, 1597, 1517, 1490, 1449, 1378, 1285, 1222, 1141, 1101, 1047, 1020, 988, 942, 837, 742, 700 cm⁻¹; MS (ESI⁺): *m/z* (%): 505 (100) [M+18]⁺, 488 (50) [M+H]⁺; Anal. (determined on the DMSO solvate) calcd for C₃₃H₂₇NO₆S: C, 70.07; H, 4.81; N, 2.48. Found: C, 70.09; H, 4.86; N, 2.67; HRMS (M⁺, ESI): *m/z* calcd for C₃₁H₂₂NO₅: 488.1492. Found: 488.1480.

2- Synthesis of the catalysts

General procedure for allyl deprotection (Method A)

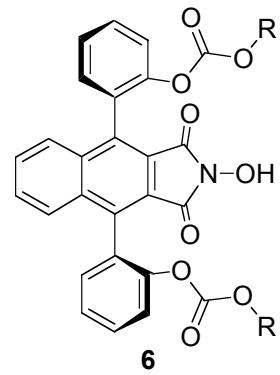

To a solution of *O*-allyl protected *N*-hydroxyimide (0.1 mmol) in CH₂Cl₂ (0.5 mL) was added sodium 2-ethylhexanoate (0.3 mL of a 0.5 M solution in AcOEt, 1.5 equiv), followed by PPh₃ (6 mg, 10 mol %) and tetrakis(triphenylphosphine)palladium(0) (2.5 mg, 2 mol %). The mixture was stirred for 1 h at RT, then 2 mL of acetone was added and the red precipitate formed was filtered. To this precipitate was added acetic acid (1 mL of a 0.1 M aqueous solution) and the aqueous phase was extracted with AcOEt. The organic phase was dried over anhydrous Na₂SO₄ and the solvent removed under vacuum. Pure product was obtained without further purification. Alternatively, if no precipitation occurs after the addition of acetone, acetic acid (2 mL of a 0.1 M aqueous solution) was added to the reaction medium, which was next extracted with AcOEt. The organic phase was dried over Na₂SO₄ and the solvent removed under vacuum. The crude product was purified by column chromatography over silica gel.

General procedure for benzyl deprotection (Method B)

To a solution of *O*-benzyl protected *N*-hydroxyimide (0.1 mmol) in AcOEt (5 mL) was added 10 wt % palladium on carbon (25 mg). The mixture was stirred at room temperature and normal pressure under an hydrogen atmosphere (balloon) until completion (TLC monitoring). The catalyst was removed by filtration over Celite and the solvent was removed under vacuum. Concentration of the filtrate afforded the crude product, which was used with no more purification or purified by flash column chromatography.

Diester (*aS,aS*)-**5a**

To a solution of (*aS,aS*)-**4b**•DMSO (30.3 mg, 0.05 mmol), triethylamine (0.25 mL, 0.11 mmol) and DMAP (1.2 mg, 20 mol %) in anhydrous dichloromethane (3 mL), was added dropwise benzoyl chloride (13 μ L, 0.11 mmol, 2.2 equiv). The reaction mixture was stirred for a few minutes at room temperature until completion of the reaction (TLC monitoring). The solvent was removed under reduced pressure, the residue was purified by flash column chromatography (elution CH₂Cl₂/AcOEt, 99:1). From the resulting white solid (33 mg), 20 mg were subjected to debenzylation by general method B, affording (*aS,aS*)-**5a** as a white powder (15 mg, 80 %

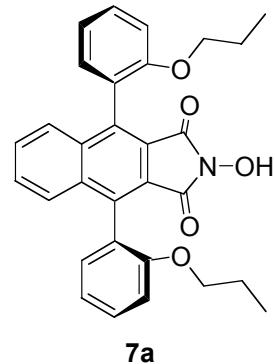


5a

overall yield). R_f 0.3 ($\text{CH}_2\text{Cl}_2/\text{AcOEt}$, 4:1); ^1H NMR (300 MHz, CDCl_3 , TMS): δ = 7.17-7.22 (m, 6H), 7.37-7.48 (m, 6H), 7.52-7.63 (m, 8H), 7.75-7.80 ppm (m, 2H); ^2C NMR (75 MHz, CDCl_3): δ = 121.53, 122.93, 124.63, 125.95, 127.36, 128.48, 128.93, 129.48, 129.81, 130.43, 131.51, 133.58, 135.07, 135.27, 149.18, 162.01, 164.60 ppm; MS (ESI $^+$): m/z (%): 644 (46) [$M+39$] $^+$, 628 (100) [$M+23$] $^+$. HRMS ($M\text{Na}^+$, ESI): m/z calcd for $\text{C}_{38}\text{H}_{23}\text{NO}_7\text{Na}$: 628.1366. Found: 628.1361.

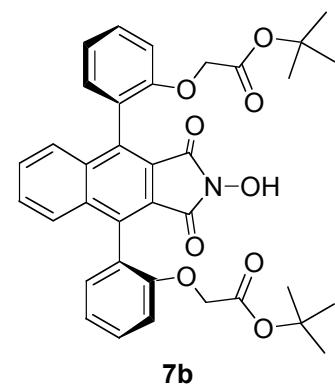
Dicarbonate (*aS,aS*)-6a

To a well-stirred solution of (*aS,aS*)-4a $\cdot\text{Et}_2\text{O}$ (46 mg, 0.09 mmol), triethylamine (0.5 mL, 0.22 mmol) and DMAP (0.55 mg, 5 mol %), in anhydrous dichloromethane (3 mL) at 0 °C, was added methyl chloroformate (17 μL , 0.22 mmol). The reaction mixture was stirred for a few minutes at room temperature until completion of the reaction (TLC monitoring). It was next washed with water and extracted with CH_2Cl_2 . The organic phase was dried over anhydrous Na_2SO_4 then evaporated under reduced pressure. The crude was deallylated using general procedure A, affording (*aS,aS*)-6a ($\text{R} = \text{Me}$) as a yellow powder (36 mg, 78 % overall yield). R_f 0.22 ($\text{CH}_2\text{Cl}_2/\text{AcOEt}$ 4:1); $[\alpha]_D^{25} = +23.4$ ($c = 0.7$ in THF); ^1H NMR (300 MHz, $[\text{D}_6]\text{DMSO}$): δ = 3.47 (s, 6H), 7.48-7.71 (m, 12H). 10.8 ppm (bs, 1H); ^1C NMR (75 MHz, $[\text{D}_6]\text{DMSO}$): δ = 55.30, 121.72, 122.16, 126.02, 126.57, 127.56, 129.38, 130.19, 131.66, 133.21, 134.10, 148.59, 152.69, 162.00 ppm; MS (DCI $^+$, $\text{NH}_3 + \text{isobutane}$): m/z (%): 531 (100) [$M+18$] $^+$, 264 (30).

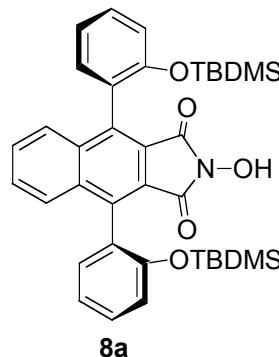


Dicarbonate (*aS,aS*)-6b

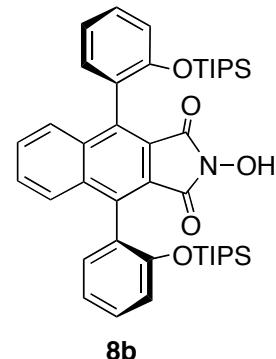
The same procedure used for the synthesis of (*aS,aS*)-6a, replacing methyl chloroformate by phenyl chloroformate (32.5 μL , 0.22 mmol, 2.4 equiv), gave (*aS,aS*)-6b ($\text{R} = \text{Ph}$) as a yellow powder (45 mg, 78 % overall yield). R_f 0.22 ($\text{CH}_2\text{Cl}_2/\text{AcOEt}$, 4:1); $[\alpha]_D^{25} = +24.2$ ($c = 0.45$ in THF); ^1H NMR (300 MHz, CDCl_3 , TMS): δ = 6.67 (m, 4H), 7.41-7.81 ppm (m, 19H); ^1C NMR (75 MHz, CDCl_3 , TMS): δ = 120.61, 121.96, 122.31, 126.37, 126.54, 128.46, 129.51, 129.72, 130.68, 131.67, 134.60, 135.11, 149.02, 150.77, 151.16, 158.86, 161.85 ppm; MS (ESI $^+$): m/z (%): 676 (57) [$M+39$] $^+$, 660 (100) [$M+23$] $^+$, 638 (20) [$M+\text{H}$] $^+$.


Diether (*aS,aS*)-7a

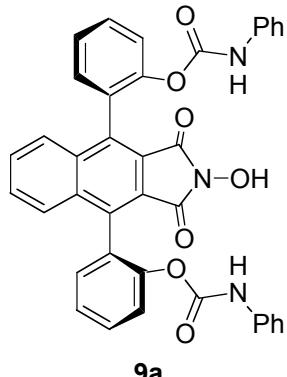
Diphenol (*aS,aS*)-4b•DMSO (24.3 mg, 0.041 mmol) was dissolved in DMSO (2 mL). K₂CO₃ (170 mg, 30 equiv) was added, followed by allyl bromide (8 μ L, 2.2 equiv), the reaction was stirred for 6 h at RT, then filtered. To the filtrate was added water (20 mL) and the mixture was extracted with AcOEt. After drying of the organic phase with Na₂SO₄, the solvent was evaporated and the residue was purified on a silica gel column to afford 13 mg of product. After debenzylation according to general method B, (*aS,aS*)-7a has been obtained as a yellow amorphous solid (9 mg, 46 % overall yield). R_f 0.25 (CH₂Cl₂/AcOEt, 4:1); ¹H NMR (300 MHz, CDCl₃, TMS): δ = 0.56-0.64 (m, 6H), 1.42-1.48 (m, 4H), 3.82-3.90 (m, 4H), 7.05-7.79 ppm (m, 13H); MS (ESI⁺): *m/z* (%): 520 (99) [M+39]⁺, 504 (100) [M+23]⁺, 482 (22) [M+H]⁺. HRMS (MNa⁺, ESI): *m/z* calcd for C₃₀H₂₇NO₅Na: 504.1781. Found: 504.1777.


Diether (*aS,aS*)-7b

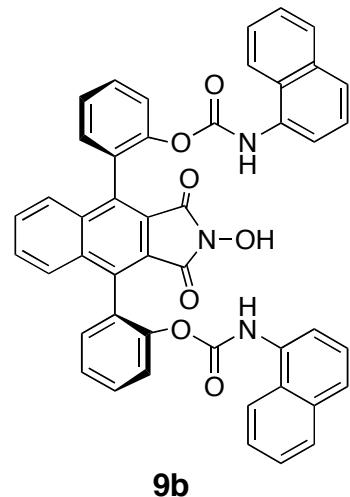
Diphenol (*aS,aS*)-4b•DMSO (243 mg, 0.41 mmol) was dissolved in acetone (15 mL). K₂CO₃ (1.7 g, 30 equiv) was added, followed by bromo-*tert*-butylacetate (0.466 mL, 3.2 mmol), the reaction mixture was stirred overnight at RT. After filtration of solids, the reaction mixture was poured into water (50 mL), extracted with AcOEt and dried over anhydrous Na₂SO₄. The solvent was evaporated under vacuum and the residue was purified on a silica gel column (eluent: hexane/AcOEt, 2:1), affording 240 mg of a white solid. Debenzylation of 40 mg of this compound has been performed according to general method B. Catalyst (*aS,aS*)-7b has been obtained as a yellowish solid (34 mg, 80 % overall yield). R_f 0.35 (CH₂Cl₂/AcOEt, 4:1); ¹H NMR (300 MHz, CDCl₃, TMS): δ = 1.37 (s, 18H), 4.38-4.45 (m, 4H), 6.90-7.86 ppm (m, 13H); ¹³C NMR (75 MHz, CDCl₃, TMS): δ = 28.17, 66.62, 82.18, 112.27, 121.35, 121.71, 124.03, 128.44, 128.79, 130.22, 131.68, 135.99, 156.18, 156.23, 162.66, 167.90 ppm; IR (ATR): $\tilde{\nu}$ = 3442, 2953, 1772, 1718, 1635, 1500, 1420, 1370, 1218, 1154, 1103, 1042, 1022, 996, 744 cm⁻¹; MS (ESI⁺): *m/z* (%): 664 (61) [M+39]⁺, 648 (100) [M+23]⁺. HRMS (MNa⁺, ESI): *m/z* calcd for C₃₆H₃₅NO₉Na: 648.2204. Found: 648.2201.


Disilylether (*aS,aS*)-**8a**

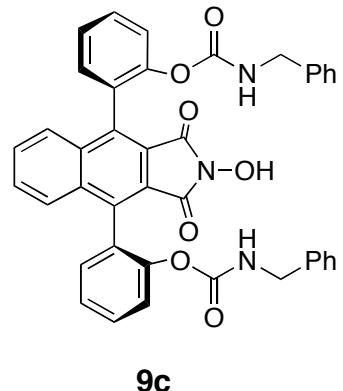
To a solution of (*aS,aS*)-**4b**•DMSO (170 mg, 0.287 mmol) in anhydrous THF (3 mL), was added TBDMSCl (216 mg, 1.43 mmol) and imidazole (100 mg, 1.43 mmol). The mixture was stirred at room temperature overnight, then water (250 mL) was added and the mixture was extracted with 200 mL of AcOEt. The organic layer was separated, washed with brine (250 mL), and dried over anhydrous Na_2SO_4 . The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (elution hexane/AcOEt, 9:1) to give 200 mg of a white solid. Debenzylation of 110 mg of this compound has been performed according to general method B, affording catalyst (*aS,aS*)-**8a** as a white solid (95 mg, 97 % overall yield). R_f 0.27 (Hexane/AcOEt, 4:1); m.p. 223-224 °C; $[\alpha]^{25}_D = +18.5$ ($c = 1$ in MeOH): ^1H NMR (300 MHz, DMSO [D₆], TMS): $\delta = -0.06$ (s, 6H), -0.05 (s, 6H), 0.33 (s, 18H), 7.03-7.66 (m, 12H), 10.74 ppm (s, 1H); ^{13}C NMR (75 MHz, [D₆] DMSO, TMS): $\delta = -4.9, -4.65, 17.04, 24.55, 118.87, 121.17, 121.37, 126.07, 127.73, 128.87, 130.04, 130.82, 134.67, 135.93, 152.63, 162.36$ ppm; IR (ATR): $\tilde{\nu} = 3129, 3064, 2925, 2852, 1776, 1707, 1598, 1577, 1489, 1452, 1365, 1277, 1249, 1145, 1103, 1051, 1024, 915, 835, 747$ cm^{-1} ; MS (ESI $^+$) m/z (%): 727 (100), 664 (78) [$M+39$] $^+$, 648 (95) [$M+23$] $^+$, 626 (48) [$M+1$] $^+$, 550 (35), 534 (32); HRMS ($M\text{H}^+$, ESI): m/z calcd for $\text{C}_{36}\text{H}_{44}\text{NO}_5\text{Si}_2$: 626.2752. Found: 626.2731.


Disilylether (*aS,aS*)-**8b**

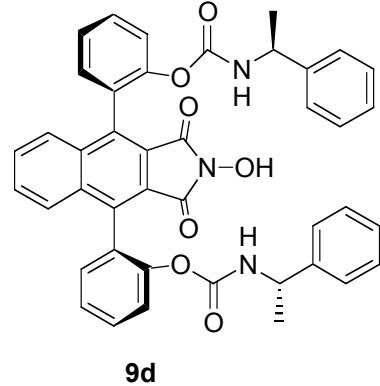
The same procedure as above was used, starting from (*aS,aS*)-**4b**•DMSO (116 mg, 0.197 mmol) and replacing TBSCl by TIPSCl (193 mg, 1 mmol). Catalyst (*aS,aS*)-**8b** was obtained as a white solid (70 mg, 50 % overall yield). R_f 0.29 (Hexane/AcOEt, 4:1); m.p. 193-195 °C; ^1H NMR (300 MHz, CDCl_3 , TMS): $\delta = 0.72-0.76$ (m, 36H), 0.94-1.04 (m, 6H), 6.97- 7.75 ppm (m, 13H); ^{13}C NMR (75 MHz, CDCl_3 , TMS): $\delta = 12.77, 17.74, 118.34, 120.70, 121.34, 125.69, 128.68, 128.73, 130.15, 131.22, 135.57, 138.01, 153.62, 162.18$ ppm; IR (ATR): $\tilde{\nu} = 3432, 3067, 2941, 2864, 1773, 1730, 1597, 1575, 1491, 1453, 1366, 1281, 1256, 1140, 1104, 1047, 1019, 918, 881, 826, 740$ cm^{-1} ; MS (ESI $^+$): m/z (%): 749 (100) [$M+39$] $^+$, 733 (95) [$M+23$] $^+$; HRMS ($M\text{H}^+$, ESI): m/z calcd for $\text{C}_{42}\text{H}_{56}\text{NO}_5\text{Si}_2$: 710.3691. Found: 710.3696.


Dicarbamate (*aS,aS*)-**9a**

To a solution of (*aS,aS*)-**4b**•DMSO (52.2 mg, 0.088 mmol) in anhydrous dichloromethane (2 mL) was added DMAP (4.3 mg, 40 mol %) and phenylisocyanate (23.4 μ L, 0.22 mmol, 2.5 equiv). The reaction mixture was stirred at room temperature until completion of the reaction (1 day, TLC monitoring). The solvent was removed under reduced pressure. The residue was purified by flash column chromatography (elution $\text{CH}_2\text{Cl}_2/\text{AcOEt}$, 98:2), giving 58 mg of a white solid. Debenzylation of 45 mg of this compound was performed using general procedure B, affording (*aS,aS*)-**9a** as a white solid (36.5 mg, 84 % overall yield). R_f 0.20 ($\text{CH}_2\text{Cl}_2/\text{AcOEt}$, 4:1); m.p. 165-166 $^{\circ}\text{C}$; $[\alpha]_D^{25} = +200$ ($c = 0.85$ in CHCl_3). ^1H NMR (300 MHz, CDCl_3 , TMS): $\delta = 6.95\text{-}7.57$ (m, 23H) 7.80 ppm (bs, 2H); ^{13}C NMR (75 MHz, CDCl_3 , TMS): $\delta = 118.94, 121.54, 122.68, 123.77, 125.52, 127.35, 128.71, 128.89, 129.69, 130.12, 131.56, 133.84, 135.28, 137.39, 148.78, 152.37, 162.18$ ppm; IR (ATR): $\tilde{\nu} = 3372, 2912, 1771, 1717, 1594, 1539, 1449, 1378, 1316, 1194, 1048, 1020, 825, 780$ cm^{-1} ; MS (ESI $^+$): m/z (%): 674 (100) $[M+39]^+$, 658 (75) $[M+23]^+$; HRMS ($M\text{Na}^+$, ESI): m/z calcd for $\text{C}_{38}\text{H}_{25}\text{N}_3\text{O}_7\text{Na}$: 658.1584. Found: 658.1582.

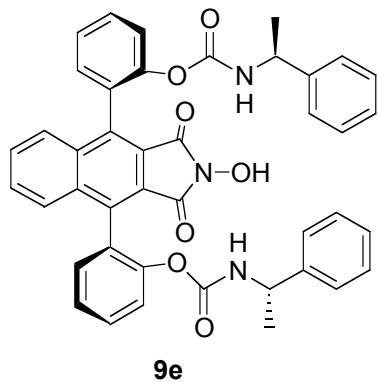

Dicarbamate (*aS,aS*)-**9b**

The same procedure as for the synthesis of (*aS,aS*)-**9a** was followed, starting from (*aS,aS*)-**4b**•DMSO (85.4 mg, 0.144 mmol) and replacing phenylisocyanate by 1-naphthylisocyanate (43 μ L, 0.3 mmol). Catalyst (*aS,aS*)-**9b** was obtained as a yellow solid (33 mg, 31 % overall yield). R_f 0.26 ($\text{CH}_2\text{Cl}_2/\text{AcOEt}$ 4:1); ^1H NMR (300 MHz, CDCl_3 , TMS): $\delta = 7.05\text{-}7.83$ ppm (m, 27H); IR (ATR): $\tilde{\nu} = 3446, 3059, 2910, 1772, 1717, 1540, 1488, 1215, 1193, 1051, 1021$ cm^{-1} ; MS (ESI $^+$) m/z (%): 775 (60.7) $[M+39]^+$, 758 (100) $[M+23]^+$; HRMS ($M\text{Na}^+$, ESI): m/z calcd for $\text{C}_{46}\text{H}_{29}\text{N}_3\text{O}_7\text{Na}$: 758.1897. Found: 758.1894.


Dicarbamate (*aS,aS*)-9c

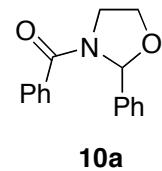
The same procedure as for the synthesis of (*aS,aS*)-9a was followed, starting from (*aS,aS*)-4a·Et₂O (51 mg, 0.1 mmol) and replacing phenylisocyanate by benzylisocyanate (0.27 μ L, 0.22 mmol). Deallylation by general procedure A gave catalyst (*aS,aS*)-9c as a yellow powder (45 mg, 68 % overall yield). R_f 0.22 (CH₂Cl₂/AcOEt, 4:1); m.p. 130-131°C; ¹H NMR (300 MHz, CDCl₃, TMS): δ = 3.60-4.10 (m, 4H), 5.85 (bs, 1H), 6.74-7.70 ppm (m, 24H); IR (ATR): $\tilde{\nu}$ = 3339, 2922, 1773, 1721, 1599, 1539, 1486, 1451, 1384, 1217, 1198 cm⁻¹; MS (DCI⁺, NH₃+ isobutane): *m/z* (%): 681 (42) [M+18]⁺, 548 (100), 414 (55), 315 (64); HRMS (MNa⁺, ESI): *m/z* calcd for C₄₀H₂₉N₃O₇Na: 686.1897. Found: 686.1892.

Dicarbamate (*aS,aS,S,S*)-9d

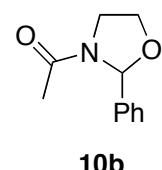

The same procedure as for the synthesis of (*aS,aS*)-9a was followed, starting from (*aS,aS*)-4b·DMSO (118 mg, 0.199 mmol) and replacing phenylisocyanate by (*S*)-1-phenylethylisocyanate (61 μ L, 0.44 mmol). Catalyst (*aS,aS*)-9d was obtained as a white powder (132 mg, 96 % overall yield). R_f 0.27 (CH₂Cl₂/AcOEt 4:1); m.p. 136-137°C; $[\alpha]_D^{25}$ = -30.8 (c = 1 in CHCl₃); ¹H NMR (300 MHz, [D₆] DMSO, TMS): δ = 1.19 (d, 6H, *J* = 7.02 Hz), 4.39-4.44 (m, 2H), 6.71-7.74 (m, 24H), 10.83 ppm (bs, 1H); ¹³C NMR (75 MHz, CDCl₃, TMS): δ = 21.87, 50.45, 121.22, 122.56, 123.04, 125.25, 125.66, 127.06, 127.46, 128.46, 129.5, 130.04, 131.56, 134.90, 135.62, 142.83, 149.02, 153.22, 163.12 ppm; IR (ATR): $\tilde{\nu}$ = 3322, 3063, 2972, 2927, 1771, 1712, 1602, 1519, 1485, 1444, 1363, 1214, 1194, 1147, 1100, 1068, 1050, 1021, 955, 906 cm⁻¹; MS (ESI) *m/z* (%): 764 (13), 730 (57) [M+39]⁺, 714 (100) [M+23]⁺; Anal. calcd for C₄₂H₃₅N₃O₈ (H₂O solvate): C, 71.07; H, 4.97; N, 5.92. Found: C, 71.73; H, 5.07; N, 5.91; HRMS (MNa⁺, ESI): *m/z* calcd for C₄₂H₃₃N₃O₇Na: 714.2210. Found: 714.2204.

Dicarbamate (*aR,aR,S,S*)-9e

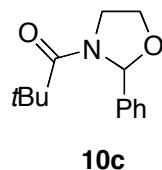
To a solution of (*aS,aS*)-4a·Et₂O (prepared from (*aR,aR*)-1) (78.2 mg, 0.153 mmol) in anhydrous dichloromethane (4 mL) was added DMAP (14.3 mg, 80 mol %) and (*S*)-1-


phenylethylisocyanate (46 μ L, 0.33 mmol). The reaction mixture was stirred at room temperature until completion of the reaction (about 1 day, TLC monitoring). The solvent was removed under reduced pressure. The residue was purified by flash column chromatography (elution $\text{CH}_2\text{Cl}_2/\text{AcOEt}$, 98:2), giving 99 mg of a white solid. Deallylation of 40 mg of this compound was performed using general procedure A, affording catalyst (*aR,aR,S,S*)-**9e** as a yellow solid (36 mg, 84 % overall yield). R_f 0.27 ($\text{CH}_2\text{Cl}_2/\text{AcOEt}$ 4:1); m.p. 131-132°C; $[\alpha]_D^{25} = -84$ ($c = 0.5$ in CHCl_3); ^1H NMR (300 MHz, CDCl_3 , TMS): $\delta = 0.94$ (d, 6H), 4.50 (m, 2H), 6.82 (bs, 2H), 7.09-7.81 (m, 24H), 8.45 ppm (bs, 1H); IR (ATR): $\tilde{\nu} = 3322, 3063, 2972, 2927, 1771, 1712, 1602, 1519, 1485, 1444, 1363, 1214, 1194, 1147, 1100, 1068, 1050, 1021, 955, 906 \text{ cm}^{-1}$; MS (ESI) m/z (%): 764 (13), 730 (57) [$M+39$] $^+$, 714 (100) [$M+23$] $^+$.

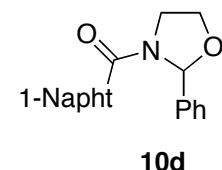
3- Synthesis of the oxazolidines


Oxazolidine (\pm)-**10a**³

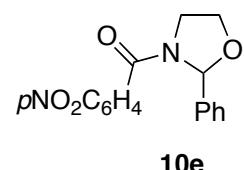
A solution of benzaldehyde (3.4 mL, 33 mmol) and ethanolamine (2.1 mL, 35 mmol) in toluene (200 mL) was refluxed in a Dean-Stark apparatus for 6 h. The solvent was evaporated giving the crude imine as a yellow oil (4.62 g, 94 %). ¹H NMR (300 MHz, CDCl₃): δ = 2.94 (bs, 1H), 3.72 (t, 2H, J=5.1 Hz), 3.89 (t, 2H, J=5.1 Hz), 7.37-7.39 (m, 3H), 7.66-7.69 (m, 2H), 8.26 ppm (s, 1H). ¹³C NMR (75 MHz, CDCl₃): δ = 62.31, 63.45, 128.28, 128.66, 130.90, 135.89, 163.29 ppm. To the stirred solution of imine (1.38 g, 9.2 mmol) in AcOEt (50 mL) was added pyridine (1.56 g, 20 mmol) and benzoyl chloride (1.4 g, 10 mmol). The solution was allowed to stir for 2.5 h at RT, then filtered and the solvent removed at reduced pressure. Flash chromatography of the crude afforded pure (\pm)-**10a** (2 g, 87 %) as a viscous oil. R_f 0.55 (hexane/AcOEt, 1:1); ¹H NMR (300 MHz, CDCl₃, TMS): δ = 3.80-4.15 (bm, 4H), 6.47 (bs, 1H), 7.34-7.50 ppm (bm, 10H); ¹H NMR (300 MHz, [D₆] DMSO, TMS, 80 °C): δ = 3.76-4.16 (m, 4H), 6.50 (s, 1H), 7.32-7.40 ppm (m, 10H); ¹³C NMR (75 MHz, CDCl₃): δ = 48.48 (broad peak), 66.7 (broad peak), 89.54 (broad peak), 126.80, 127.59, 128.41, 128.91, 130.09, 130.80, 135.92, 138.69, 169.73 ppm; IR (KBr disk): $\tilde{\nu}$ = 3506, 3061, 3034, 2985, 2943, 2886, 1717, 1640, 1578, 1491, 1448, 1406, 1368, 1218, 1194, 1067, 1027, 938, 946, 784, 756, 718, 698 cm⁻¹; MS (DCI, NH₃ + isobutane) m/z = 254 (100) [M+1]⁺, 149 (13); Anal. calcd for C₁₆H₁₅NO₂: C, 75.87; H, 5.97; N, 5.53. Found: C, 75.86; H, 6.04; N, 5.47.


Oxazolidine (\pm)-**10b**

The same procedure as for (\pm)-**10a** was used, replacing benzoyl chloride by acetyl chloride (776 μ L, 10 mmol), furnishing (\pm)-**10b** as a yellow liquid (1.52 g, 80 % yield). R_f 0.36 (hexane/AcOEt, 1:1); ¹H NMR (300 MHz, CDCl₃, TMS): δ = 1.85 (s, 1.7H, 1st rotamer) 2.16 (s, 1.3H, 2nd rotamer), 3.62-4.15 (m, 4H), 6.07 (s, 0.42H, 1st rotamer), 6.38 (s, 0.58H, 2nd rotamer), 7.30-7.41 ppm (m, 5H); ¹³C NMR (75 MHz, CDCl₃, TMS): δ (major rotamer) = 22.64, 45.83, 64.69, 89.55, 126.47, 128.70, 129.41, 132.93, 168.14 ppm; IR (KBr disk): $\tilde{\nu}$ = 3315, 3064, 3034, 2955, 2888, 1718, 1652, 1558, 1450, 1419, 1370, 1273, 1238, 1177, 1087, 1049, 1027, 989, 945, 759, 716, 619 cm⁻¹; MS (DCI⁺, NH₃ + isobutane) m/z = 192 (100) [M+1]⁺, 150 (12).


Oxazolidine (\pm)-10c

The same procedure as for (\pm)-10a was used, replacing benzoyl chloride by pivaloyl chloride (123 μ L, 1 mmol), furnishing (\pm)-10c as a colorless liquid (175 mg, 75 % yield). R_f 0.40 (hexane/AcOEt, 1:1); 1 H NMR (300 MHz, CDCl₃, TMS): δ = 1.24 (s, 9H), 3.63-3.73 (m, 1H), 3.92-4.04 (m, 3H), 6.35 (s, 1H), 7.24-7.35 ppm (m, 5H); 13 C NMR (75 MHz, CDCl₃, TMS): δ = 26.95, 38.76, 45.78, 65.70, 90.10, 126.05, 127.94, 128.05, 138.88, 175.35 ppm; IR (KBr disk): $\tilde{\nu}$ = 3373, 3055, 3033, 2967, 2877, 1720, 1632, 1529, 1480, 1407, 1363, 1208, 1159, 1071, 1028, 938, 950, 757, 699 cm⁻¹; MS (DCI⁺, NH₃ + isobutane) *m/z* = 234 (100) [M+1]⁺, 128 (7).

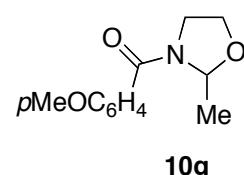

Oxazolidine (\pm)-10d

The same procedure as for (\pm)-10a was used, replacing benzoyl chloride by 1-naphthoyl chloride (190 mg, 1 mmol), furnishing (\pm)-10d as an amorphous solid (209 mg, 69 % yield). R_f 0.49 (hexane/AcOEt, 1:1); 1 H NMR (300 MHz, CDCl₃, TMS): δ = 3.87-4.16 (bm, 4H), 5.70 (bs, 1H), 7.41-7.60 ppm (bm, 12H); 13 C NMR (75 MHz, CDCl₃, TMS): δ = 47.09, 66.17, 88.98, 124.49, 125.40, 126.47, 126.60, 127.21, 128.04, 128.48, 128.77, 129.53, 129.89, 133.50, 134.00, 138.81, 168.82 ppm; IR (ATR): $\tilde{\nu}$ = 3290, 3055, 2944, 2884, 1714, 1633, 1585, 1508, 1461, 1418, 1365, 1215, 1176, 1064, 912, 782, 754, 698 cm⁻¹; MS (DCI⁺, NH₃ + isobutane) *m/z* = 321 (20) [M+18]⁺, 304 (100) [M+1]⁺, 155 (5).

Oxazolidine (\pm)-10e

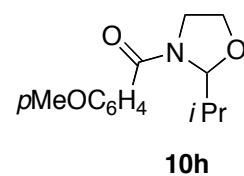
The same procedure as for (\pm)-10a was used, replacing benzoyl chloride by *p*-nitrobenzoyl chloride (1.85 g, 10 mmol), furnishing (\pm)-10e as a white solid (2.29 g, 77 % yield). R_f 0.40 (hexane/AcOEt, 1:1); 1 H NMR (300 MHz, CDCl₃, TMS): δ = 3.65-4.22 (bm, 4H), 5.97 (bs, 0.4H, 1st rotamer), 6.5 (bs, 0.6H, 2nd rotamer), 7.35-8.3 ppm (bm, 9H); 13 C NMR (75 MHz, CDCl₃, TMS): δ = 123.76, 126.85, 128.75, 129.37, 167.38 ppm;⁴ IR (ATR): $\tilde{\nu}$ = 3111, 3070, 2935, 2894, 1617, 1638, 1597, 1351 cm⁻¹; MS (DCI⁺, NH₃ + isobutane) *m/z* = 298 (100) [M]⁺, 193 (10), 150 (7).

Oxazolidine (\pm)-10f


The same procedure as for (\pm)-10a was used, replacing benzoyl chloride by *p*-methoxybenzoyl chloride (1.35 mL, 10 mmol), furnishing (\pm)-10f as a white solid (1.86 g, 66 % yield). R_f 0.40 (hexane/AcOEt, 1:1); ^1H

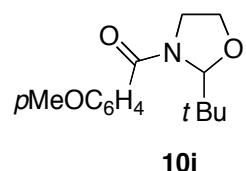
NMR (300 MHz, CDCl_3 , TMS): δ = 3.78-4.14 (bm, 4H), 3.82 (s, 3H), 6.44 (bs, 1H), 6.86 (bd, 2H), 7.35-7.55 ppm (bm, 7H); IR (ATR): $\tilde{\nu}$ = 3072, 2951, 2880, 1621, 1605, 1571 cm^{-1} ; MS (DCI $^+$, NH_3 + isobutane) m/z = 283 (100) $[M]^+$, 135 (7); Anal. calcd for $\text{C}_{17}\text{H}_{17}\text{NO}_3$: C, 72.02; H, 6.05; N, 4.95. Found : C, 70.22; H, 6.11; N, 5.05.

Oxazolidine (\pm)-10g

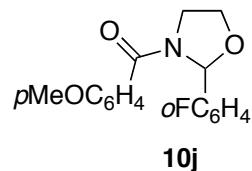

The same procedure as for (\pm)-10a was used, replacing benzaldehyde and benzoyl chloride by acetaldehyde (170 μL , 3 mmol) and *p*-methoxybenzoyl chloride (400 μL , 3 mmol), furnishing (\pm)-10g as a colorless liquid (265 mg, 40 % yield). R_f 0.33 (hexane/AcOEt, 1:1); ^1H

NMR (300 MHz, $[\text{D}_6]\text{DMSO}$, TMS): δ = 1.37 (d, 3H, J = 5.4 Hz), 3.38-4.09 (m, 4H), 3.81 (s, 3H), 5.39 (q, 1H, J = 5.4 Hz), 6.99 (d, 2H), 7.57 ppm (d, 2H); IR (ATR): $\tilde{\nu}$ = 3067, 2993, 2939, 2882, 2848, 1620, 1604, 1570, 1510, 1419, 1400, 1372, 1302, 1249, 1216, 1184, 1113, 1059, 1015, 967, 884, 844, 762 cm^{-1} ; MS (DCI $^+$, NH_3 + isobutane) m/z = 222 (100) $[M+1]^+$, 135 (5).

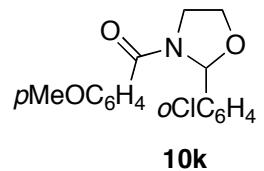
Oxazolidine (\pm)-10h


The same procedure as for (\pm)-10a was used, replacing benzaldehyde and benzoyl chloride by isobutyraldehyde (456 μL , 5 mmol) and *p*-methoxybenzoyl chloride (670 μL , 5 mmol), furnishing (\pm)-10h as a colorless liquid (846 mg, 68 % yield). R_f 0.52 (hexane/AcOEt, 1:1); ^1H

NMR (300 MHz, CDCl_3 , TMS): δ = 0.86 (d, 3H), 0.94 (d, 3H), 2.15 (b peak, 1H), 3.80 (s, 3H), 3.6-4.04 (m, 4H), 5.27 (d, 1H), 6.99 (d, 2H), 7.57 ppm (d, 2H); ^{13}C NMR (75 MHz, CDCl_3 , TMS): δ = 17.98, 30.87, 55.39, 66.28, 92.85, 113.61, 128.49, 129.66, 161.57, 169.38 ppm; IR (ATR): $\tilde{\nu}$ = 3465, 2962, 2874, 1788, 1727, 1620, 1604, 1573, 1511, 1419, 1402, 1383, 1304, 1252, 1171, 1110, 1065, 1027, 942, 905, 842, 767, 618 cm^{-1} ; MS (DCI $^+$, NH_3 + isobutane) m/z = 250 (100) $[M+1]^+$, 135 (7); Anal. calcd for $\text{C}_{14}\text{H}_{19}\text{NO}_3$: C, 67.45; H, 7.68; N, 5.62. Found : C, 67.4; H, 7.66; N, 5.43.

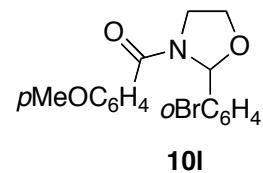

Oxazolidine (\pm)-10i

The same procedure as for (\pm)-10a was used, replacing benzaldehyde and benzoyl chloride by pivaldehyde (833 μ L, 7.5 mmol) and *p*-methoxybenzoyl chloride (1 mL, 7.5 mmol), furnishing (\pm)-10i as a white solid (1.42 g, 72 % yield). R_f 0.64 (hexane/AcOEt, 1:1); m.p. 84-85°C; 1 H NMR (300 MHz, [D₆] DMSO, TMS): δ = 0.92 (s, 9H), 3.61-4.00 (m, 4H), 3.82(s, 3H), 5.43(s, 1H), 7.01 (d, 2H), 7.60 ppm (d, 2H); 13 C NMR (75 MHz, CDCl₃, TMS): δ = 25.40, 37.94, 50.18, 55.47, 66.59, 94.14, 113.66, 128.49, 130.21, 161.88, 171.53 ppm; IR (ATR): $\tilde{\nu}$ = 2966, 2860, 1617, 1640, 1605, 1571 cm⁻¹; MS (DCI⁺, NH₃ + isobutane) *m/z* = 264 (100) [M+1]⁺, 135 (7); Anal. calcd for C₁₅H₂₁NO₃: C, 68.42; H, 8.04; N, 5.32. Found: C, 68.56; H, 8.08; N, 5.43.

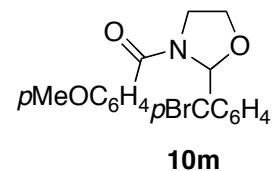

Oxazolidine (\pm)-10j

The same procedure as for (\pm)-10a was used, replacing benzaldehyde and benzoyl chloride by *o*-fluorobenzaldehyde (1.06 mL, 10 mmol) and *p*-methoxybenzoyl chloride (1.35 mL, 10 mmol), furnishing (\pm)-10j as a white solid (2.98 g, 95 % yield). R_f 0.41 (hexane/AcOEt, 1:1); m.p. 95-96°C; 1 H NMR (300 MHz, CDCl₃, TMS): δ = 3.77 (s, 3H), 3.91-4.16 (m, 4H), 6.53 (bs, 1H), 6.83-7.51 ppm (m, 8H); 13 C NMR (75 MHz, CDCl₃, TMS): δ = 47.73 (broad peak), 55.30, 66.64 (broad peak), 86.52, 113.51, 115.99 (d, J (13 C, 19 F) = 21 Hz), 123.92 (d, J (13 C, 19 F) = 3 Hz), 125.63 (d, J (13 C, 19 F) = 12 Hz), 127.76, 128.81 (broad peak), 129.53 (broad peak), 130.66 (d, J (13 C, 19 F) = 8 Hz), 160.95 (d, J (13 C, 19 F) = 249 Hz), 161.58, 168.88 ppm; IR (ATR): $\tilde{\nu}$ = 3069, 2985, 2888, 1622, 1602, 1570, 1514, 1423, 1403, 1368, 1307, 1256, 1231, 1183, 1111, 1072, 1020, 983, 855, 757 cm⁻¹; MS (DCI⁺, NH₃ + isobutane) *m/z* = 302 (100) [M+1]⁺, 135 (15); Anal. calcd for C₁₇H₁₆ClNO₃: C, 67.76; H, 5.35; N, 4.65. Found: C, 67.91; H, 5.36; N, 4.66.

Oxazolidine (\pm)-10k

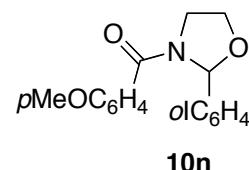

The same procedure as for (\pm)-10a was used, replacing benzaldehyde and benzoyl chloride by *o*-chlorobenzaldehyde (1.12 mL, 10 mmol) and *p*-methoxybenzoyl chloride (1.35 mL, 10 mmol), furnishing (\pm)-10k as a white solid (3.05 g, 96 % yield). R_f 0.41 (hexane/AcOEt, 1:1); m.p. 105-106°C; 1 H NMR (300 MHz, CDCl₃, TMS): δ = 3.79 (s, 3H), 3.94-4.14 (m, 4H), 6.63 (bs, 1H),

6.83-7.44 ppm (m, 8H); ^{13}C NMR (75 MHz, CDCl_3 , TMS): δ = 48.0 (broad peak), 55.41, 66.3 (broad peak), 88.42, 113.66, 126.88, 127.79, 128.29 (broad peak), 129.63 (broad peak), 130.37, 132.10, 133.78, 135.47, 161.72, 169.18 ppm; IR (ATR): $\tilde{\nu}$ = 3068, 2961, 2893, 1620, 1604, 1569, 1511, 1422, 1402, 1364, 1302, 1252, 1213, 1178, 1068, 1017, 984, 843, 755 cm^{-1} ; MS (DCI^+ , $\text{NH}_3 + \text{isobutane}$) m/z = 318 (100) $[M+1]^+$, 282 (13), 135 (18); Anal. calcd for $\text{C}_{17}\text{H}_{16}\text{ClNO}_3$: C, 64.26; H, 5.08; N, 4.417. Found: C, 64.22; H, 5.06; N, 4.31.


Oxazolidine (\pm)-10l

The same procedure as for (\pm)-10a was used, replacing benzaldehyde and benzoyl chloride by *o*-bromobenzaldehyde (1.17 mL, 10 mmol) and *p*-methoxybenzoyl chloride (1.35 mL, 10 mmol), furnishing (\pm)-10l as a white solid (3.36 g, 93 % yield). R_f 0.41 (hexane/AcOEt, 1:1); m.p. 117-118°C; ^1H NMR (300 MHz, CDCl_3 , TMS): δ = 3.54- 4.12 (bm, 7H), 6.58 (bs, 1H), 7.18-7.74 ppm (m, 8H); ^{13}C NMR (75 MHz, CDCl_3 , TMS): δ = 42.99 (broad peak), 55.46, 62.73 (broad peak), 90.29, 113.71, 123.408, 127.54, 127.90, 128.33 (broad peak), 129.68 (broad peak), 130.54, 133.73, 137.00, 161.77, 169.30 ppm; IR (ATR): $\tilde{\nu}$ = 3309, 2948, 2890, 2839, 1620, 1606, 1569, 1509, 1422, 1402, 1364, 1303, 1252, 1213, 1181, 1068, 1017, 847, 762 cm^{-1} ; MS (DCI^+ , $\text{NH}_3 + \text{isobutane}$) m/z = 362 (100) $[M]^+$, 282 (24); Anal. calcd for $\text{C}_{15}\text{H}_{21}\text{NO}_3$: C, 56.38; H, 4.46; N, 3.87. Found: C, 56.84; H, 4.51; N, 3.63.

Oxazolidine (\pm)-10m


The same procedure as for (\pm)-10a was used, replacing benzaldehyde and benzoyl chloride by *p*-bromobenzaldehyde (0.925 g, mmol) and *p*-methoxybenzoyl chloride (675 μL , 5 mmol), furnishing as (\pm)-10m a white solid (1.08 g, 60 % yield). R_f = 0.41 (hexane/AcOEt, 1/1); m.p. 81-82°C; ^1H NMR (300 MHz, CDCl_3 , TMS): δ = 3.75-4.15 (m, 4H), 3.81 (s, 3H), 6.40 (bs, 1H), 6.88 (bd, 2H), 7.361-7.503 ppm (m, 6H); ^1H NMR (300 MHz, $[\text{D}_6]\text{DMSO}$, TMS): δ = 3.80- 4.12 (m, 4H), 3.83 (s, 3H), 6.24 (bs, 1H), 6.97 (d, 2H), 7.43(d, 2H), 7.57 ppm (d, 4H); ^{13}C NMR (75 MHz, CDCl_3 , TMS): δ = 47.77 (broad peak), 55.47, 66.38 (broad peak), 89.29, 113.71, 122.92, 127.75, 128.68 (broad peak), 129.78 (broad peak), 131.66, 138.03, 161.84, 169.52 ppm; IR (ATR): $\tilde{\nu}$ = 3071, 2985, 2959, 2931, 2897, 2838, 1623, 1602, 1570, 1512,

1422, 1393, 1357, 1307, 1255, 1220, 1178, 1075, 1027, 983, 852, 838, 804 cm^{-1} ; MS (DCI $^+$, $\text{NH}_3 + \text{isobutane}$) $m/z = 362$ (100) $[M]^+$, 282 (27).

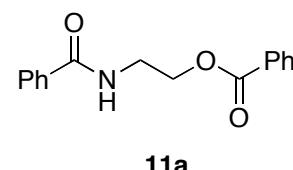
Oxazolidine (\pm)-10n

The same procedure as for (\pm)-10a was used, replacing benzaldehyde and benzoyl chloride by *o*-iodobenzaldehyde (0.46 g, 2 mmol) and *p*-methoxybenzoyl chloride (270 μL , 2 mmol), furnishing (\pm)-10n as a white solid (720 mg, 88 % yield). R_f 0.41 (hexane/AcOEt, 1:1); m.p.

112-113°C; ^1H NMR (300 MHz, CDCl_3 , TMS): $\delta = 3.82$ (s, 3H), 4.04-4.13 (m, 4H), 6.43 (bs, 1H), 7.03-7.88 ppm (m, 8H); ^{13}C NMR (75 MHz, CDCl_3 , TMS): $\delta = 55.43$, 93.9, 97.88, 113.73, 127.80, 128.38 (broad peak), 129.00, 129.70 (broad peak), 130.72, 139.72, 140.40, 161.76, 169.32 ppm; ^4IR (ATR): $\tilde{\nu} = 3317, 3060, 2955, 2884, 1617, 1605, 1568, 1509, 1420, 1399, 1360, 1302, 1252, 1213, 1178, 1065, 1014, 984, 842, 755 \text{ cm}^{-1}$; MS (DCI $^+$, $\text{NH}_3 + \text{isobutane}$) $m/z = 310$ (100) $[M-99]^+$ 282 (50); Anal. calcd for $\text{C}_{17}\text{H}_{16}\text{INO}_3$: C, 49.9; H, 3.95; N, 3.43. Found: C, 50.17; H, 4.06; N, 3.42.

4- General procedures for the oxidations

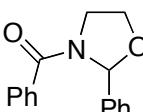
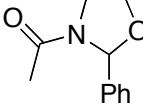
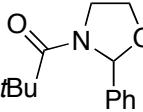
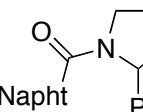
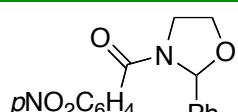
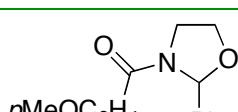
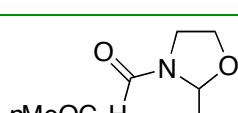
Reaction on a 1 mmol scale

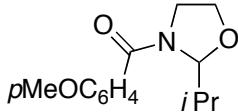
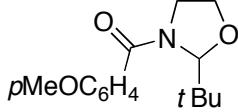
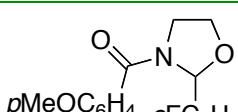
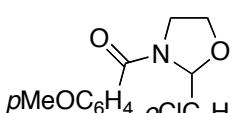
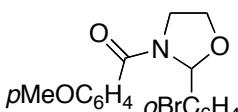
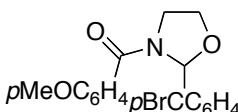
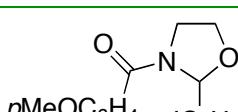

In 50 mL round bottom flask equipped with a stirring bar, acetonitrile (10 mL), oxazolidine (1 mmol), CuCl (5 mg, 0.05 mmol, 5 mol %) and catalyst (1 to 4 mol %) were combined. The flask was closed with a septum and flushed with oxygen. A balloon filled with oxygen was then connected to the flask and stirring was maintained at a controlled temperature. Samples were analyzed using GC and/or TLC. After reaction, a standard was added and the conversion was measured relative to the standard by GC or NMR. The enantiomeric excess of the remaining oxazolidine was determined after purification by column chromatography.

Fast screening on a 10-20 μ mol scale

Oxazolidine (10 μ L or 20 μ L of a 1 M solution in acetonitrile), CuCl (25 μ L or 50 μ L of a 0.02 M solution in acetonitrile, 5 mol %) and catalyst (10 μ L to 40 μ L of a 0.01 M solution in acetonitrile, 1 to 4 mol %) were combined in 2 mL flask. The appropriate volume of acetonitrile was added to adjust the concentration of oxazolidine to 10^{-1} or 10^{-2} M. The flask was closed with a septum, flushed with oxygen and 1 mL of gaseous oxygen was introduced using a syringe. The flask was kept at controlled temperature (no stirring required). Samples were analyzed by GC and/or TLC. At appropriate time, the reaction was quenched by hydroquinone (1 equiv relative to the initial amount of oxazolidine) and a standard was added. Conversions were measured relative to the standard by GC or NMR. The enantiomeric excess of the remaining oxazolidine was determined after purification by semi-preparative TLC.

Oxidation product **11a**⁵








Oxidative ring opening product **11a** of oxazolidine (\pm)-**10a** has been isolated after column chromatography purification, as a white solid; R_f 0.52 (hexane/AcOEt, 1:1); m.p. 83-84 °C (lit³: m.p. 85-88 °C); 1H NMR (300 MHz, CDCl₃, TMS): δ = 3.88 (t, 2H), 4.56 (t, 2H), 6.64

(bs, 1H), 7.42-8.07 ppm (m, 10H); IR (ATR): $\tilde{\nu}$ = 3385, 3065, 2985, 2939, 2896, 1696, 1642, 1602, 1581, 1519, 1484, 1453, 1337, 1281, 1261, 1131, 1071, 1027, 976, 923, 703, 681 cm⁻¹; MS (DCI⁺, NH₃ + isobutane) *m/z* = 287 (39) [M+18]⁺, 270 (100), 148 (99).

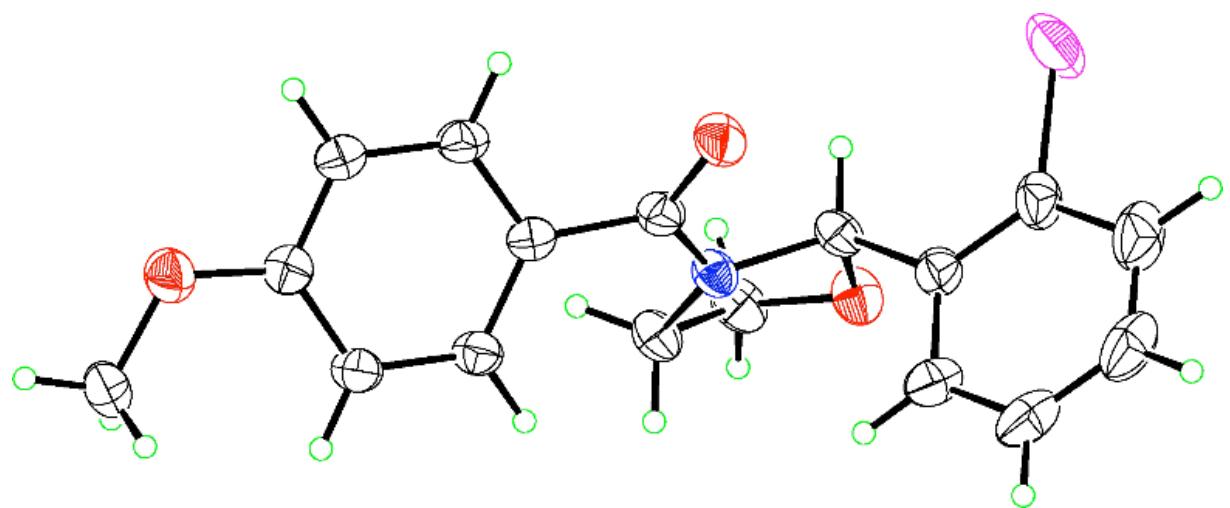

5- Determination of the oxidation conversion and of the *ee* of *N*-acyloxazolidines

Table SM 1. Methods used for the determination of conversions and *ee*

Oxazolidine	Assay	Method	Conditions	Retention times (min)
	Conversion	GC BPX5 column	150 °C 2 min, 20 °C/min to 250 °C, 10 min	9.9
1a	<i>ee</i>	HPLC Chiraldak AS	<i>i</i> PrOH/Hexane 50:50 1.0 mL/min	9.0 13.9
	Conversion	GC BPX5 column	150 °C 2 min, 20 °C/min to 250 °C, 10 min	7.1
1b	<i>ee</i>	HPLC Chiraldak AS	<i>i</i> PrOH/Hexane 33:67 1.0 mL/min	14.9 21.5
	Conversion	GC BPX5 column	150 °C 2 min, 20 °C/min to 250 °C, 10 min	8
1c	<i>ee</i>	HPLC Chiraldak AS	<i>i</i> PrOH/Hexane 5:95 1.0 mL/min	9.1 13.3
	Conversion	GC BPX5 column	150 °C 2 min, 20 °C/min to 280 °C, 15 min	15.3
1d	<i>ee</i>	HPLC Chiraldak AS	<i>i</i> PrOH/Hexane 50:50 1.0 mL/min	22.3 24.6
	Conversion	NMR [D ₆] DMSO	Triphenylmethane used as a standard	
1e	<i>ee</i>	HPLC Chiraldak AS	<i>i</i> PrOH/Hexane 50:50 1.0 mL/min	19.3 25.6
	Conversion	NMR [D ₆] DMSO	Triphenylmethane used as a standard	
1f	<i>ee</i>	HPLC Chiraldak AS	<i>i</i> PrOH/Hexane 50:50 1.0 mL/min	9.8 19.3
	Conversion	¹ H NMR [D ₆] DMSO	Triphenylmethane used as a standard	
1g	<i>ee</i>	HPLC Chiraldak AS	<i>i</i> PrOH/Hexane 20:80 1.0 mL/min	10.3 15.6

Oxazolidine	Assay	Method	Conditions	Retention times (min)
 10h	Conversion	¹ H NMR [D ₆] DMSO	Triphenylmethane used as a standard	
	<i>ee</i>	HPLC Chiralpak AS	<i>i</i> PrOH/Hexane 10:90 1.0 mL/min	13.4 26.9
 10i	Conversion	¹ H NMR [D ₆] DMSO	Triphenylmethane used as a standard	
	<i>ee</i>	HPLC Chiralpak AS	<i>i</i> PrOH/Hexane 10:90 1.0 mL/min	7.0 10.5
 10j	Conversion	¹ H NMR [D ₆] DMSO	Triphenylmethane used as a standard	
	<i>ee</i>	HPLC Chiralpak AS	<i>i</i> PrOH/Hexane 50:50 1.0 mL/min	8.4 23.6
 10k	Conversion	¹ H NMR [D ₆] DMSO	Triphenylmethane used as a standard	
	<i>ee</i>	HPLC Chiralpak AS	<i>i</i> PrOH/Hexane 50:50 1.0 mL/min	10.6 31.5
 10l	Conversion	¹ H NMR [D ₆] DMSO	Triphenylmethane used as a standard	
	<i>ee</i>	HPLC Chiralpak AS	<i>i</i> PrOH/Hexane 50:50 1.0 mL/min	9.0 13.9
 10m	Conversion	¹ H NMR [D ₆] DMSO	Triphenylmethane used as a standard	
	<i>ee</i>	HPLC Chiralcel OD-H	<i>i</i> PrOH/Hexane 5:95 1.0 mL/min	40.7 49.5
 10n	Conversion	¹ H NMR [D ₆] DMSO	Triphenylmethane used as a standard	
	<i>ee</i>	HPLC Chiralpak AS	<i>i</i> PrOH/Hexane 50:50 1.0 mL/min	14.0 34.6

6- ORTEP drawing of *(R)*-**10l**

7- References and notes

- [1] M. Néchab, B. M. Panchal, C. Philouze, C. Einhorn, J. Einhorn, *Tetrahedron: Asymmetry* **2005**, *16*, 1681-1684.
- [2] The NOH signal was not detected.
- [3] S. G. Kon'kova, A.E. Badasyan, O. S. Attaryan, A. K. Khachatryan, M. S. Sargsyan, V. V. Dovlatyan, *Khim. Zh. Armenii* **1997**, *50*, 161-166.
- [4] Under standard NMR conditions, some signals were not detected because of too large peak broadening.
- [5] H. Stamm, T. Mall, R. Falkenstein, J. Werry, D. Speth, *J. Org. Chem.* **1989**, *54*, 1603-1607.