

Supporting Information © Wiley-VCH 2007

● Wilcy-VOI1 2007

69451 Weinheim, Germany

Notoamides A-D: new indole alkaloids isolated from a marine-derived fungus, *Aspergillus* sp.

Hikaru Kato, Takushi Yoshida, Takanori Tokue, Yuka Nojiri, Hiroshi Hirota, Tomihisa Ohta, Robert M. Williams, and Sachiko Tsukamoto*

List of Supporting Information

Experimental Section

- 1. Fungal strain
- 2. Culture conditions
- 3. Extraction and isolation
- 4. Spectral data of notoamide A (1)
- 5. Spectral data of notoamide B (2)
- 6. Spectral data of notoamide C (3)
- 7. Spectral data of notoamide D (4)
- 8. Stereochemical analysis of notoamides C (3) and D (4)
- 9. Cytotoxicity assay
- 10. Flow cytometric analysis
- Table S1. ¹H NMR data of notoamides A-D (1-4)
- Table S2. ¹³C NMR data of notoamides A-D (1-4)
- Table S3. Cytotoxicity of notoamides A-D (1-4) against HeLa and L1210 cells
- Figure S1. ¹H NMR spectrum of notoamide A (1)
- Figure S2. ¹H NMR spectrum of notoamide B (2)
- Figure S3. ¹H NMR spectrum of notoamide C (3)
- Figure S4. ¹H NMR spectrum of notoamide D (4)
- Figure S5. ¹H NMR spectrum of notoamide E (5)

1. Fungal strain

Strain of a fungus, *Aspergillus* sp., was isolated from the mussel, *Mytilus edulis*, collected of Noto Peninsula in the Japan Sea and was identified based on the morphological evaluation by TechnoSuruga Co., Ltd. (Shizuoka, Japan). A voucher specimen is deposited at Kanazawa University with the code MF297-2.

2. Culture conditions

The fungus was grown on 200 agar plates composed of 50% seawater with 2.0% malt extract, 0.5% peptone, and 1.5% agar at 25 °C for 14 days.

3. Extraction and isolation

The cultured plates were extracted with EtOH. The extract was concentrated under reduced pressure and extracted with EtOAc, and then *n*-BuOH. The EtOAc layer was partitioned between hexane and 90% MeOH-H₂O. The aq MeOH fraction (2.5 g) and *n*-BuOH fraction (1.4 g) were combined and subjected to ODS chromatography with MeOH-H₂O. The fraction eluted with 80% MeOH-H₂O was purified by reversed-phase HPLC with 60% MeOH-H₂O to afford notoamides A (1, 3.4 mg), B (2, 2.1 mg), C (3, 7.9 mg), and D (4, 8.9 mg) along with sclerotiamide (5, 2.9 mg), stephacidin A (6, 6.1 mg), and desoxybrevianamide E (7, 0.57 mg).

4. Notoamide A (1)

[α]_D²⁷ -112° (c 0.0836, MeOH); UV (MeOH) $λ_{max}$ (log ε) 247.5 (4.3), 283.0 (3.9, sh), 294.0 (3.7, sh), 330 nm (3.2, sh); IR (film) $ν_{max}$ 3500, 1700 cm⁻¹. ¹H and ¹³C NMR (acetone- d_6) see Tables 1 and 2. HMBC cross peaks: H-4/C-6, C-8; H-5/C-6, C-7, C-9; H-10 (δ 2.21)/C-2, C-3, C-11, C-12, C-22; H-10 (δ 3.06)/C-2, C-9, C-11, C-12, C-21; H-15/C-17; H-16 (δ 2.65)/C-14, C-15, C-18; H-20 (δ 1.84)/C-18, C-21, C-22; H-21/C-11, C-12, C-22, C-23; H-25/C-6, C-27; H-26/C-7, C-27; H₃-28/C-26, C-27, C-29; H₃-29/C-26, C-27, C-28.

FABMS (positive) m/z 464 [M + H]⁺, 448 [M + H – 16]⁺; HRFABMS m/z 464.21710 (C₂₆H₃₀N₃O₅, Δ -1.4 mmu).

5. Notoamide B (2)

[α]_D²⁷ -118° (c 0.0640, MeOH); UV (MeOH) $λ_{max}$ (log ε) 246.0 (4.3), 283.0 (3.8, sh), 294.0 (3.6, sh), 330.0 nm (3.1, sh); IR (film) $ν_{max}$ 3500, 1700 cm⁻¹. ¹H and ¹³C NMR (acetone- d_6) see Tables 1 and 2. HMBC cross peaks: H-4/C-6, C-8; H-5/C-4, C-7, C-9; H-10 (δ 2.21)/C-2, C-11, C-12; H-10 (δ 3.04)/C-2, C-11, C-12; H-15/C-14; H-16 (δ 1.83)/C-17, C-18; H-20 (δ 1.83)/C-17, C-18; H-21/C-11, C-12, C-22, C-23, C-24; H₃-23/C-3, C-21, C-22, C-24; H₃-24/C-3, C-21, C-22, C-23; H-25/C-6, C-27; H-26/C-7, C-27; H₃-28/C-26, C-27, C-29; H₃-29/C-26, C-27, C-28. FABMS (positive) m/z 448 [M + H]; HRFABMS m/z 448.22429 ($C_{26}H_{30}N_3O_4$, Δ +0.7 mmu).

6. Notoamide C (3)

[α]_D²⁷ +23° (c 0.255, MeOH); UV (MeOH) $λ_{max}$ (log ε) 247.5 (4.3), 283.0 (3.9, sh), 294.0 (3.7, sh), 319.5 nm (3.4, sh); IR (film) $ν_{max}$ 3500, 1700, 1650 cm⁻¹. ¹H and ¹³C NMR (acetone- d_6) see Tables 1 and 2. HMBC cross peaks: H-1/C-3, C-9; H-4/C-3, C-6, C-8; H-5/C-6, C-7, C-9; H-10 (δ 2.65)/C-2, C-3, C-11; H-10 (δ 2.76)/C-2, C-3, C-9, C-11, C-12; H-11/C-3, C-12; H-14 (δ 3.19)/C-15, C-16; H-14 (δ 3.40)/C-15, C-16; H-16 (δ 1.30)/C-17; H-17/C-16, C-18; H-20 (δ 4.98)/C-21, C-22; H-20 (δ 5.04)/C-22; H-21/C-24; H₃-23/C-3, C-21, C-22, C-24; H₃-24/C-3, C-21, C-22, C-23; H-25/C-6, C-7, C-8, C-27; H-26/C-7, C-27, C-28, C-29; H₃-28/C-26, C-27, C-29; H₃-29/C-26, C-27, C-28. FABMS (positive) m/z 450 [M + H]; HRFABMS m/z 450.24152 (C₂₆H₃₂N₃O₄, Δ +2.2 mmu).

7. Notoamide D (4)

 $[\alpha]_D^{27}$ -163° (*c* 0.321, MeOH); UV (MeOH) λ_{max} (log ϵ) 237.5 (4.5), 286.5 (4.0), 331.0 nm (3.8); IR (film) ν_{max} 3500, 1700 cm⁻¹. ¹H and ¹³C NMR (acetone- d_6) see Tables 1 and 2. HMBC cross peaks: H-1/C-3, C-9; H-4/C-3, C-6, C-8; H-5/C-7, C-9; H-10 (δ

2.47)/C-2, C-3, C-9; H-10 (δ 2.75)/C-3, C-9, C-11, C-12; H-11/C-10, C-12, C-18; H-14 (δ 3.35)/C-16; H-14 (δ 3.47)/C-15, C-16; H-15/C-17; H-16 (δ 2.05)/C-18; H-16 (δ 2.18)/C-14; H-17/C-16, C-18; H-20 (δ 4.88)/C-22; H-20 (δ 4.93)/C-21, C-22; H-21/C-22, C-23, C-24; H₃-23/C-2, C-21, C-22, C-24; H₃-24/C-2, C-21, C-22, C-23; H-25/C-6, C-7, C-8, C-27; H-26/C-7, C-27; H₃-28/C-26, C-27, C-29; H₃-29/C-26, C-27, C-28; 3-OH/C-10. NOE correlations: H-10/H-21; 3-OH/H-4, H-21, H₃-23. FABMS (positive) m/z 450 [M + H]; HRFABMS m/z 450.23999 (C₂₆H₃₂N₃O₄, Δ -0.7 mmu).

8. Stereochemical analysis of notoamides C (3) and D (4)

A solution of **3** or **4** (50 μ g) in 6 M HCl (100 μ L) was heated at 110 °C for 12 h. The freeze-dried solution dissolved in H₂O was analyzed on CHIRALPLATE[®] for enatiomeric resolution by TLC (Macherey-Nagel) with the solvent system MeOH-CH₃CN-H₂O in the ratio of 5:3:5.

9. Cytotoxicity assay

Cytotoxicity test was carried out with HeLa, KB, and L1210 cells. Cells were grown in Dulbecco's modified Eagle's medium supplemented with 10% fetal calf serum, penicillin (50 units/mL), and streptomycin (50 µg/mL) under a humidified atmosphere of 5% CO₂ at 37 °C. For cytotoxicity assay using HeLa or KB cells, the cells were seeded into 96-well microplates $(3 \times 10^3 \text{ cells/well})$ and pre-cultured for a day. The medium was replaced with that containing test compounds at various concentrations and the cells were further cultured at 37 °C for 3 days. The medium was then replaced with 50 μL of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) solution (0.2 mg/mL in medium) and the cells were incubated under the same conditions for 4 h. After addition of 200 µL of DMSO, the optical density at 570 nm was measured with a microplate reader. For cytotoxicity assay using L1210 cells, samples were added to the culture medium containing cells $(5 \times 10^4 \text{ cells/mL})$ as DMSO solutions, and the concentration of DMSO was 0.1% in the medium. The cells (1×10^4 cells) in 200 μL of the medium were seeded into 96-well microplates. After incubation at 37 °C for 3 days, 25 µL of MTT solution (2 mg/mL in PBS) were added to the cell culture, and the mixture was further incubated under the same conditions for 4 h. After removal of the

solution, 200 μL of DMSO was added to the plate, and the optical density at 570 nm was measured with a microplate reader.

10. Flow cytometric analysis

Cells were harvested by trypsin digestion, washed with cold phosphate-buffered saline (PBS). The cells were collected by brief centrifugation and treated with PBS containing 500 μ g/mL RNase A at 37 $^{\circ}$ C for 20 min and then with 10 μ g/mL propidium iodide at room temperature for 15 min. Samples were then subjected to flow cytometric analysis.

Table S1. 1 H NMR data for compounds **1-4** in acetone- d_6 .

No.	1	2	3	4
1		9.47 br s	10.30 br s	6.60 br s
4	7.09 d 8.5	7.08 d 8.5	7.00 d 8.3	7.01 d 8.0
5	6.45 d 8.5	6.41 d 8.5	6.34 d 8.3	6.15 d 8.0
10	2.21 d 15.0	2.21 d 14.5	2.65 dd 14.7, 4.9	2.47 dd 13.0, 8.0
	3.06 d 15.0	3.04 d 14.5	2.76 dd 14.7, 4.9	2.75 dd 13.0, 11.0
11			3.99 br t 4.9	3.82 dd 11.5, 8.0
14	3.45 dt 11.5, 6.5	3.45 dt 11.5, 6.5	3.19 dt 11.7, 5.9	3.35 ddd
				11.0, 8.0, 5.0
	3.49 ddd	3.49 ddd	3.40 dt 11.7, 8.3	3.47 dt 11.0, 8.0
	11.5, 7.5, 5.0	11.5, 7.5, 5.0		
15	1.82 m	1.83 m	1.71 m	1.88 m
	1.90 m	1.90 m	1.71 m	1.88 m
16	1.82 m	1.83 m	1.30 m	2.05 m
	2.65 ddd	2.65 ddd	2.00 m	2.18 ddd
	13.0, 7.0, 4.5	13.0, 7.0, 4.5		18.0, 7.0, 6.0
17			3.89 dd 10.3, 6.4	4.07 t 8.0
19	8.17 br s	7.99 br s	6.27 br s	
20	1.84 m	1.83 m	4.98 dd 17.6, 1.0	4.88 dd 11.0, 1.5
	2.00 m	2.02 m	5.04 dd 10.3, 1.0	4.93 dd 17.5, 1.5
21	3.32 dd 10.5, 8.5	3.36 dd 10.5, 8.5	6.13 dd 17.6, 10.3	6.34 dd 17.5, 11.0
23	0.75 s	0.80 s	1.00 s	1.25 s
24	0.81 s	0.83 s	1.07 s	1.28 s
25	7.72 d 10.5	6.64 d 10.0	6.59 d 10.7	6.40 d 10.0
26	5.72 d 10.5	5.74 d 10.0	5.73 d 10.7	5.63 d 10.0
28	1.38 s	1.39 s	1.39 s	1.36 s
29	1.41 s	1.40 s	1.42 s	1.38 s
3-OH				4.33 br s

Table S2. 13 C NMR data for compounds **1-4** in acetone- d_6 .

No.	1	2	3	4
2	178.8 C	184.0 C	182.3 C	92.7 C
3	60.2 C	62.6 C	56.6 C	89.4 C
4	126.9 CH	127.4 CH	128.8 CH	124.7 CH
5	110.3 CH	109.6 CH	108.8 CH	108.3 CH
6	154.3 C	153.7 C	153.8 C	155.3 C
7	106.4 C	105.8 C	105.7 C	106.5 C
8	138.5 C	139.2 C	139.9 C	146.8 C
9	120.2 C	123.5 C	121.3 C	124.9 C
10	34.7 CH ₂	34.8 CH ₂	32.9 CH ₂	36.1 CH ₂
11	66.9 C	67.1 C	54.7 CH	60.0 CH
12	170.3 C	170.0 C	164.8 C	166.5 C
14	44.3 CH ₂	44.3 CH ₂	45.5 CH ₂	45.7 CH ₂
15	25.4 CH ₂	25.4 CH ₂	22.1 CH ₂	24.3 CH ₂
16	30.4 CH ₂	30.4 CH ₂	29.1 CH ₂	29.0 CH ₂
17	69.3 C	69.3 C	59.0 CH	62.2 CH
18	174.1 C	174.1 C	169.0 C	173.2 C
20	31.0 CH ₂	31.0 CH ₂	113.7 CH ₂	111.7 CH ₂
21	57.1 C	56.8 CH	144.4 CH	146.4 CH
22	46.6 C	46.4 C	43.3 C	45.3 C
23	23.9 CH ₃	23.8 CH ₃	21.8 CH ₃	24.8 CH ₃
24	20.4 CH ₃	20.3 CH ₃	22.8 CH ₃	25.2 CH ₃
25	118.1 CH	117.6 CH	117.6 CH	117.9 CH
26	130.5 CH	131.2 CH	131.0 CH	129.5 CH
27	76.3 C	76.6 C	76.7 C	76.5 C
28	27.8 CH ₃	28.03 CH ₃	28.0 CH ₃	27.9 CH ₃
29	28.1 CH ₃	28.02 CH ₃	28.4 CH ₃	28.4 CH ₃

Table S3. Cytotoxicity of 1-4 against HeLa and L1210 cell lines.

Compound	IC ₅₀ (μg/mL)	
	HeLa	L1210
1	27	29
2	52	36
3	50	22
4	a	a

 $a \text{ IC}_{50}$ value was more than 100 µg/mL.

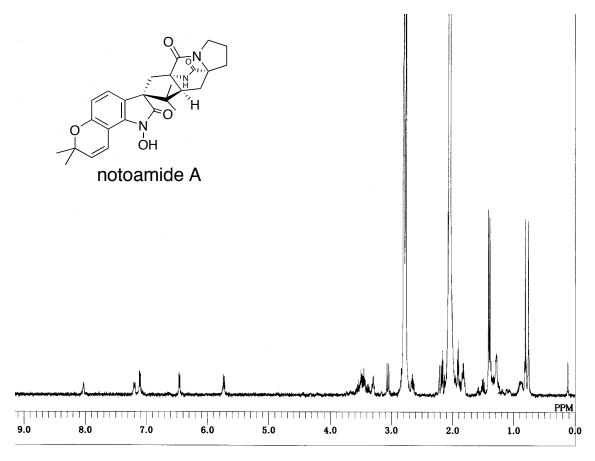


Figure S1. 1 H NMR spectrum of notoamide A (1) in acetone- d_6 .

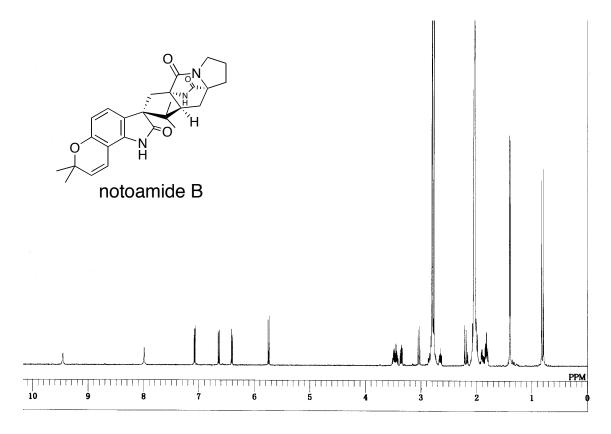


Figure S2. 1 H NMR spectrum of notoamide B (**2**) in acetone- d_{6} .

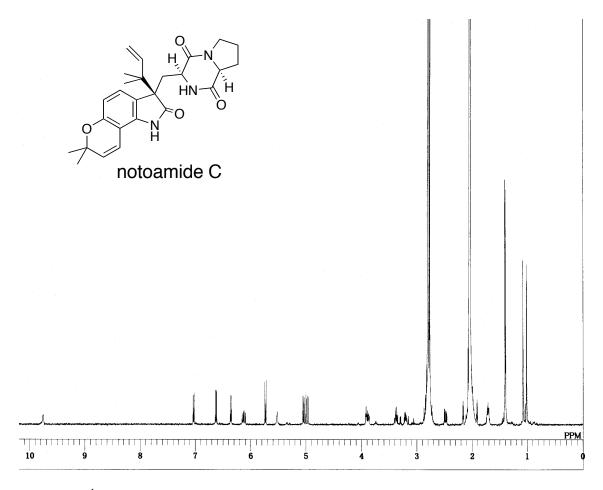


Figure S3. 1 H NMR spectrum of notoamide C (3) in acetone- d_6 .

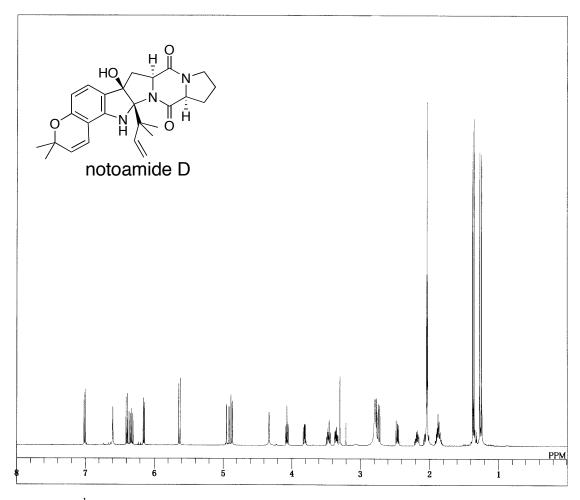


Figure S4. 1 H NMR spectrum of notoamide D (4) in acetone- d_{6} .

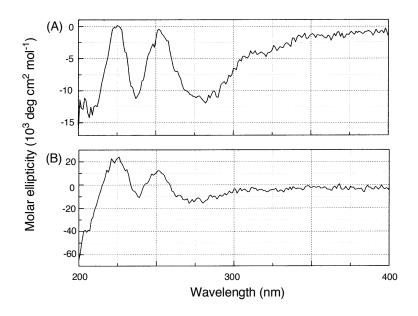


Figure S5. CD spectra of 1 (A) and 2 (B) in MeOH.