

Supporting Information

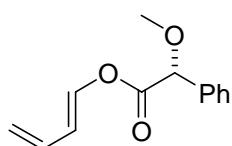
© Wiley-VCH 2007

69451 Weinheim, Germany

A Diels-Alder Approach to (-)-Ovalicin

Konrad Tiefenbacher, Vladimir B. Arion, and Johann Mulzer*

Table of Contents


General:	S2
Experimental Procedures:	S2
Crystal structure of (\pm)-15:.....	S13
NMR spectra of compounds 15, 16, 22, 23, 24, 1:.....	S14

General:

All reactions were carried out in oven or flame-dried glassware under an argon atmosphere, unless otherwise stated. Anhydrous tetrahydrofuran (THF) and diethyl ether (Et_2O) were freshly distilled from sodium/benzophenone under argon; anhydrous dichloromethane (DCM) was freshly distilled from CaH_2 under argon. All other solvents were HPLC grade. Reactions were magnetically stirred and monitored by thin layer chromatography (TLC) with E. Merck silica gel 60-F254 plates. Flash column chromatography was performed with Merck silica gel (0.04-0.063 mm, 240-400 mesh) under pressure. Yields refer to chromatographically and spectroscopically pure compounds, unless otherwise stated. NMR spectra were recorded on either Bruker Avance DRX 400 or DRX 600 MHz spectrometer. Unless otherwise stated, all NMR spectra were measured in CDCl_3 solutions and referenced to the residual CHCl_3 signal (^1H , $\delta = 7.26$; ^{13}C , $\delta = 77.16$). All ^1H and ^{13}C shifts are given in ppm (s = singlet; d = doublet; t = triplet; q = quadruplet; m = multiplet; b = broad signal). Coupling constants J are given in Hz. Assignments of proton resonances were confirmed, when possible, by correlated spectroscopy. Optical rotations were measured on a P 341 Perkin- Elmer polarimeter. Mass spectra were measured on a Micro mass, trio 200 Fisions Instruments. High resolution mass spectra (HRMS) were performed with a Finnigan MAT 8230 with a resolution of 10000.

Experimental Procedures:

(S)-Methoxyphenylacetic acid (E)-buta-1,3-dienyl ester (10)

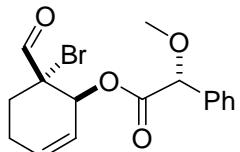
To a solution of (*R*)-methoxyphenylacetic acid¹ (2.15 g, 12.9 mmol) in DCM (67 mL) was added (diethylamino)sulphur trifluoride (2.92 g, 18.1 mmol) at room temperature. After stirring for 50 min. the solution was washed with cold water and brine. The organic layer was dried over magnesium sulfate, filtered and the solvent removed under reduced pressure (20 mbar, 45 °C) to yield a yellow oil (2.21 g), which was employed without further purification for the next step.

The crude acid fluoride was dissolved in THF (17.5 mL) and cooled to 0 °C. After the addition of (Trimethylsiloxy)butadiene² (*E*:*Z* ≥ 10:1; 1.67 g, 11.7 mmol) and TBAF (1.0 M in THF; 0.59 mL) the resulting solution was stirred for 2 h at 0°C. Silica gel (10 g) was added and the solvent was carefully removed under vacuum. Purification of the adsorbed material by column chromatography (100 g silica gel) using hexane:ethylacetate = 20:1 to 10:1 as an eluent yielded diene **10** (*E*:*Z* ≥ 10:1; 2.38 g, 93 %).

$^1\text{H NMR}$ (400 MHz, CDCl_3) δ 7.48-7.34 (m, 6H), 6.24 (dt, $J = 16.9, 10.6$ Hz, 1H), 6.06 (dd, $J = 11.7, 11.7$ Hz, 1H), 5.20 (bd, $J = 16.6$ Hz, 1H), 5.09 (bd, $J = 10.4$ Hz, 1H), 4.84 (s, 1H), 3.44 (s, 3H)

¹ Bulman Page, P. C.; Chan, Y.; Heaney, H.; McGrath, M. J.; Moreno, E. *Synlett* **2004**, 2606; Jones, L. H.; Badger, R. M. *J. Am. Chem. Soc.* **1951**, 73, 3126. (purification of the crude carboxylic acid by extraction with saturated NaHCO_3 solution was sufficient)

² Commercially available. Preparation from crotonaldehyde: Gaonac'h, O.; Maddaluno, J.; Chauvin, J.; Duhamel, L. *J. Org. Chem.* **1991**, 56, 4045.


¹³C NMR (100 MHz, CDCl₃) δ 167.8 (C), 138.4 (CH), 135.6 (C), 131.4 (CH), 129.2 (CH), 128.9 (CH, 2C), 127.5 (CH, 2C), 118.0 (CH₂), 117.3 (CH), 82.4 (CH), 57.6 (CH₃).

IR [cm⁻¹]: 3089, 2931, 1765, 1657, 1455, 1235, 1149, 1113, 994, 924.

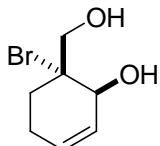
HRMS(EI) calcd. for C₁₃H₁₄O₃: 218.0943, found: 218.0940.

[*α*]_D²⁰ = +5.9 (c = 1.20, DCM).

(1'S, 2S, 6'S)-Methoxyphenylacetic acid 6'-bromo-6'-formylcyclohex-2'-en-1'-yl ester (**11**)

To a solution of diene **10** (1.84 g, 8.43 mmol) in DCM (42 mL) was added 2-bromoacrolein³ (2.28 g, 16.9 mmol) at -78°C. After stirring for 10 min at this temperature BF₃·OEt₂ (350 µL, 2.77 mmol) was added. The reaction was quenched after 5 h by addition of saturated NaHCO₃ solution (20 mL). After the emulsion reached room temperature the organic phase was separated and the aqueous layer was extracted 3 times with DCM. The combined organic phases were washed with saturated NaHCO₃ solution, dried over magnesium sulfate, filtered, silica gel (20 g) was added and the solvent was carefully removed under vacuum. Purification of the adsorbed material by column chromatography (240 g silica gel) using hexane:ethylacetate = 10:1 to 5:1 as an eluent yielded aldehyde **11** (2.23 g, 75 %).

¹H NMR (400 MHz, CDCl₃) δ 9.36 (s, 1H), 7.39-7.32 (m, 5H), 5.98 (dt, J = 9.4, 3.6 Hz, 1H), 5.70-5.67 (m, 1H), 5.64-5.58 (m, 1H), 4.72 (s, 1H), 3.39 (s, 3H), 2.36-2.26 (m, 2H), 2.21-2.14 (m, 2H).


¹³C NMR (100 MHz, CDCl₃) δ 190.0 (CH), 169.9 (C), 135.7 (C), 133.9 (CH), 129.1 (CH), 128.8 (CH, 2C), 127.2 (CH, 2C), 120.6 (CH), 82.5 (CH), 70.6 (CH), 65.7 (C), 57.6 (CH₃), 25.8 (CH₂), 23.4 (CH₂).

IR [cm⁻¹]: 3035, 2930, 1751, 1730, 1456, 1232, 1197, 1164, 1144, 1103, 1030, 997, 920.

HRMS(EI) calcd. for C₁₆H₁₇O₄Br: 352.0310, found: 352.0301.

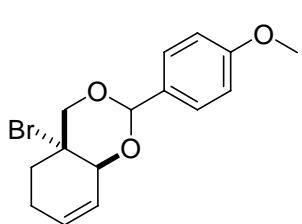
[*α*]_D²⁰ = +199 (c = 1.24, DCM).

(1S, 6R)-6-Bromo-6-hydroxymethyl-cyclohex-2-en-1-ol (**12**)

To a solution of aldehyde **11** (2.06 g, 5.83 mmol) in regular Et₂O (50 mL) was added BH₃·NH₃ (198 mg, 6.41 mmol) at room temperature and stirred for 2.5 h. After quenching by addition of 1N HCl (20 mL) and stirring for additional 30 min the phases were separated. Sodium chloride was added to the aqueous layer which was subsequently extracted 5 times with Et₂O. The combined organic phases were dried over magnesium sulfate, filtered, silica gel (10 g) was added and the solvent was carefully removed under vacuum. Purification of the adsorbed material by column chromatography (120 g silica gel) using pentane:Et₂O = 1:1 to 0:1 as an eluent yielded diol **12** (1.07 g, 89 %) and (*R*)-2-Methoxy-2-phenylethanol (801 mg, 90%).

³ Corey, E.J.; Loh, T.-P. *J. Am. Chem. Soc.* **1991**, *113*, 8966.

¹H NMR (400 MHz, CDCl₃) δ 5.98-5.91 (m, 1H), 5.83-5.75 (m, 1H), 4.53-4.47 (m, 1H), 4.06-3.98 (m, 1H), 3.92-3.85 (m, 1H), 2.57 (d, J = 6.0 Hz, 1H), 2.51 (dd, J = 9.5, 5.8 Hz, 1H), 2.39-2.27 (m, 1H), 2.26-2.15 (m, 1H), 2.10-2.00 (m, 1H), 1.99-1.91 (m, 1H).


¹³C NMR (100 MHz, CDCl₃) δ 131.1 (CH), 125.9 (CH), 75.3 (C), 71.0 (CH), 69.5 (CH₂), 28.8 (CH₂), 24.2 (CH₂).

IR [cm⁻¹]: 3383, 2922, 1426, 1401, 1068, 1053, 1035, 1010, 978.

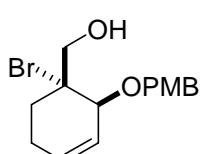
HRMS(EI) calcd. for C₇H₉OB₂ (M-H₂O): 187.9837, found: 187.9832.

[\mathbf{a}]_D^{20} = +82.0 (c = 1.23, DCM)

(4a*R*, 8a*S*)- 4a-Bromo-2-(4'-methoxyphenyl)-4a,5,6,8a-tetrahydro-4*H*-benzo[1,3]dioxine

To a solution of diol **12** (1.03 g, 4.97 mmol) in DCM (56 mL) was added anisaldehyde dimethyl acetal (1.13g, 6.22 mmol) and (±)-camphor-10-sulfonic acid (46mg, 0.20 mmol). After stirring for 3 h at room temperature additional anisaldehyde dimethyl acetal (180 mg, 0.99 mmol) was added. After 30 min. the reaction was quenched by addition of saturated NaHCO₃ solution (5 mL) and water (50 mL). The organic phase was separated and the aqueous layer was extracted 3 times with DCM. The combined organic phases were dried over magnesium sulfate, filtered and the solvent was removed under vacuum. Purification by column chromatography (80 g silica gel) using hexane:ethylacetate = 10:1 as an eluent yielded title acetal (1.44 g, 89 %) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.43-7.37 (m, 2H), 6.91-6.85 (m, 2H), 6.07-6.00 (m, 1H), 5.82-5.76 (m, 1H), 5.63 (s, 1H), 4.44 (bd, J = 5.1 Hz, 1H), 4.39 (d, J = 11.4 Hz, 1H), 4.24 (d, J = 11.4 Hz, 1H), 3.79 (s, 3H), 2.85-2.76 (m, 1H), 2.52-2.39 (m, 1H), 2.37-2.26 (m, 1H), 1.92-1.83 (m, 1H).


¹³C NMR (100 MHz, CDCl₃) δ 160.4 (C), 132.8 (CH), 130.1 (C), 127.7 (CH, 2C), 122.3 (CH), 113.9 (CH, 2C), 102.3 (CH), 77.6 (CH₂), 76.5 (CH), 61.3 (C), 55.5 (CH₃), 28.5 (CH₂), 24.6 (CH₂).

IR [cm⁻¹]: 1615, 1520, 1256, 1171, 1084, 1021, 1001..

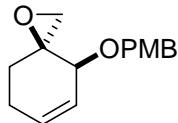
HRMS(EI) calcd. for C₁₅H₁₈O₃Br: 324.0361, found: 324.0366.

[\mathbf{a}]_D^{20} = +124 (c = 1.00, DCM)

(1*R*, 2*S*)- [1-Bromo-2-(4'-methoxybenzyloxy)-cyclohex-3-en-1-yl]-methanol (**13**)

A solution of (4a*R*, 8a*S*)- 4a-Bromo-2-(4'-methoxyphenyl)-4a,5,6,8a-tetrahydro-4*H*-benzo[1,3]dioxine (1.09 g, 3.35 mmol) in DCM (42 mL) was cooled to -10 °C using a sodium chloride/ice cooling bath. DIBAL-H in toluene (1.19 M; 8.45 mL, 10.1 mmol) was added slowly and the resulting solution allowed to reach 0°C within 2.5 h. After stirring was continued for 1h at 0°C, the reaction was quenched by addition of saturated KNa-tartrate solution. Stirring was continued for 45 min. The organic phase was separated and the aqueous layer was extracted 3 times with Et₂O. The combined organic phases were washed with brine, dried over magnesium sulfate, filtered and the solvent was removed under vacuum. Purification by column chromatography (90 g silica gel) using hexane:ethylacetate = 5:1 as an eluent yielded alcohol **13** (1.04 g, 94 %).

¹H NMR (400 MHz, CDCl₃) δ 7.30-7.26 (m, 2H), 6.91-6.86 (m, 2H), 5.98-5.91 (m, 1H), 5.81-5.75 (m, 1H), 4.66 (d, J = 11.1 Hz, 1H), 4.59 (d, J = 11.1 Hz, 1H), 4.23 (bd, J = 4.3 Hz, 1H), 4.01 (dd, J = 12.3, 8.2 Hz, 1H), 3.86 (dd, J = 12.1, 6.1 Hz, 1H), 3.81 (s, 3H), 2.51 (dd, J = 8.2, 5.9 Hz, 1H), 2.37-2.13 (m, 3H), 2.01-1.93 (m, 1H).


¹³C NMR (100 MHz, CDCl₃) δ 159.6 (C), 130.9 (CH), 130.2 (C), 129.8 (CH, 2C), 123.9 (CH), 114.1 (CH, 2C), 77.2 (CH), 73.9 (C), 71.9 (CH₂), 69.3 (CH₂), 55.4 (CH₃), 29.2 (CH₂), 24.2 (CH₂).

IR [cm⁻¹]: 2924, 2867, 1612, 1513, 1465, 1453, 1437, 1424, 1388, 1302, 1249, 1207, 1174, 1110, 1035. .

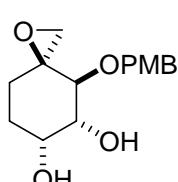
HRMS(EI) calcd. for C₁₅H₁₉O₃Br: 326.0518, found: 326.0512.

[α]_D²⁰ = +145 (c = 1.07, DCM)

(3S, 4S)- 4-(4'-Methoxybenzyloxy)-1-oxaspiro[2.5]oct-5-ene

To a suspension of sodium hydride (washed with hexane, dried; 63mg, 2.63 mmol) in THF (25mL) was added alcohol **13** (660 mg, 2.02 mmol) in THF (9 mL) at 0°C. After addition of methanol (0.7 mL) the suspension was stirred for 10 min. at 0°C and 30 min. at room temperature. The reaction was quenched by addition of saturated NH₄Cl solution (10 mL) and water (100mL). and extracted 4 times with Et₂O. The combined organic phases were dried over magnesium sulfate, filtered and the solvent was removed under vacuum yielding title compound as a slightly yellow oil (484 mg, 98%), which was employed without further purification for the next step.

¹H NMR (400 MHz, CDCl₃) δ 7.32-7.27 (m, 2H), 6.88-6.84 (m, 2H), 5.96-5.90 (m, 1H), 5.83-5.77 (m, 1H), 4.76 (d, J = 11.6 Hz, 1H), 4.59 (d, J = 11.6 Hz, 1H), 3.79 (s, 3H), 3.50 (bd, J = 4.3 Hz, 1H), 2.66 (dd, J = 4.9, 1.1 Hz, 1H), 2.62 (d, J = 4.9 Hz, 1H), 2.42-2.31 (m, 2H), 2.29-2.16 (m, 1H), 1.36-1.30 (m, 1H).


¹³C NMR (100 MHz, CDCl₃) δ 159.3 (C), 132.0 (CH), 131.1 (C), 129.6 (CH, 2C), 126.6 (CH), 113.9 (CH, 2C), 74.3 (CH), 71.7 (CH₂), 60.2 (C), 55.4 (CH₃), 50.5 (CH₂), 26.0 (CH₂), 25.8 (CH₂).

IR [cm⁻¹]: 2930, 2836, 1612, 1513, 1465, 1453, 1302, 1248, 1173, 1062, 1052, 1035.

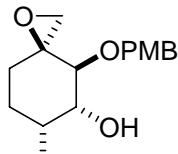
HRMS(EI) calcd. for C₁₅H₁₈O₃: 246.1256, found: 246.1250.

[α]_D²⁰ = +162 (c = 1.00, DCM)

(3S, 4S, 5R, 6R)- 4-(4'-Methoxybenzyloxy)-1-oxaspiro[2.5]octane-5,6-diol (**14**)

To a solution of (3S, 4S)- 4-(4'-Methoxybenzyloxy)-1-oxaspiro[2.5]oct-5-ene (505 mg, 2.05 mmol) in acetone/water (9:1, 12mL) was added 4-methylmorpholine-4-oxide monohydrate (346 mg, 2.56 mmol) and osmium tetroxide (2.5 % (w/w) solution in *t*-butanol; 260 μ L, 0.02 mmol). After stirring for 20 h at room temperature 7.5 mL toluene were added and the solvent was removed under vacuum. The residue was dissolved in DCM, silica gel (5 g) was added and the solvent was carefully removed under reduced pressure. Purification of the adsorbed material by column chromatography (45 g silica gel) using hexane:ethylacetate = 1:3 to 0:1 as an eluent yielded diol **14** (527 mg, 92 %) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.29-7.23 (m, 2H), 6.91-6.86 (m, 2H), 4.69 (d, J = 11.6 Hz, 1H), 4.44 (d, J = 11.6 Hz, 1H), 4.17-4.12 (m, 1H), 3.86-3.78 (m, 1H), 3.80 (s, 3H), 3.67 (d, J = 7.6 Hz, 1H), 2.89 (d, J = 4.8 Hz, 1H), 2.65 (d, J = 4.8 Hz, 1H), 2.37 (bs, 1H), 2.30 (bs, 1H), 1.95-1.75 (m, 3H), 1.60-1.52 (m, 1H).


¹³C NMR (100 MHz, CDCl₃) δ 159.6 (C), 130.2 (C), 129.7 (CH, 2C), 114.2 (CH, 2C), 77.9 (CH), 73.8 (CH₂), 73.7 (CH), 69.0 (CH), 59.0 (C), 55.4 (CH₃), 50.5 (CH₂), 27.0 (CH₂), 26.6 (CH₂).

IR [cm⁻¹]: 3441, 2935, 1612, 1515, 1456, 1302, 1249, 1176, 1077, 1033, 1006.

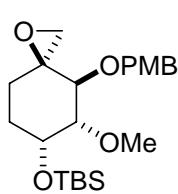
HRMS(EI) calcd. for C₁₅H₂₀O₅: 280.1311, found: 280.1308.

[\mathfrak{a}]_D²⁰ = -57.3 (c = 0.78, DCM)

(3*S*, 4*S*, 5*S*, 6*R*)-6-(*tert*-Butyldimethylsilyloxy)-4-(4'-methoxybenzyloxy)-1-oxaspiro[2.5]octan-5-ol

To a solution of diol **14** (520 mg, 1.86 mmol) in DCM (34 mL) was added imidazol (379 mg, 5.57 mmol) and *t*-butyl dimethylsilylchloride (559 mg, 3.71 mmol) at room temperature. After stirring for 20 h the reaction mixture was washed with saturated NH₄Cl solution and brine. The organic phase was dried over magnesium sulfate, filtered, silica gel (4 g) was added and the solvent was carefully removed under vacuum. Purification of the adsorbed material by column chromatography (35 g silica gel) using hexane:ethylacetate = 5:1 as an eluent yielded title compound (651 mg, 89 %).

¹H NMR (400 MHz, CDCl₃) δ 7.20-7.14 (m, 2H), 6.80-6.75 (m, 2H), 4.62 (d, J = 11.6 Hz, 1H), 4.42 (d, J = 11.6 Hz, 1H), 4.05-3.99 (m, 1H), 3.74-3.68 (m, 1H), 3.70 (s, 3H), 3.35 (d, J = 5.6 Hz, 1H), 2.71 (dd, J = 4.8, 0.8 Hz, 1H), 2.52 (d, J = 4.8 Hz, 1H), 2.16 (d, J = 2.8 Hz, 1H), 1.88-1.77 (m, 1H), 1.76-1.59 (m, 2H), 1.41-1.31 (m, 1H), 0.79 (s, 9H), -0.02 (s, 6H).


¹³C NMR (100 MHz, CDCl₃) δ 159.4 (C), 130.7 (C), 129.6 (CH, 2C), 114.0 (CH, 2C), 79.0 (CH), 74.0 (CH₃), 72.7 (CH₂), 69.9 (CH), 58.8 (C), 55.4 (CH), 51.0 (CH₂), 28.3 (CH₂), 26.4 (CH₂), 25.9 (CH₃, 3C), 18.2 (C), -4.5 (CH₃), -4.7 (CH₃).

IR [cm⁻¹]: 2952, 2930, 1514, 1250, 1084, 1037, 1005.

HRMS(EI) calcd. for C₁₇H₂₅O₅Si (M-C₄H₉): 337.1471, found: 337.1476.

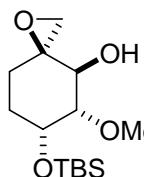
[\mathfrak{a}]_D²⁰ = -25.5 (c = 0.95, DCM)

(3*S*, 4*S*, 5*S*, 6*R*)-*tert*-Butyl-[5-methoxy-4-(4'-methoxybenzyloxy)-1-oxaspiro[2.5]oct-6-yloxy]-dimethylsilane

To a solution of (3*S*, 4*S*, 5*S*, 6*R*)-6-(*tert*-Butyldimethylsilyloxy)-4-(4'-methoxybenzyloxy)-1-oxaspiro[2.5]octan-5-ol (560 mg, 1.42 mmol) in THF (15 mL) was added sodium hydride (washed with hexane, dried; 102mg, 4.26 mmol) at 0 °C. After stirring for 20 min at 0°C methyl iodide (1.01g, 7.10 mmol) was added and the cooling bath removed. The reaction was quenched by the addition of saturated NH₄Cl solution (15 mL) after 16 h. The organic layer was separated

and the aqueous phase extracted 3 times with Et₂O. The combined organic phases were dried over magnesium sulfate, filtered and the solvent was removed under vacuum yielding title compound as a slightly yellow oil (580 mg, 100%), which was employed without further purification for the next step.

¹H NMR (400 MHz, CDCl₃) δ 7.28-7.23 (m, 2H), 6.89-6.84 (m, 2H), 4.62 (bs, 2H), 4.24-4.19 (m, 1H), 3.80 (s, 3H), 3.63-3.55 (m, 1H), 3.44 (s, 3H), 3.38-3.32 (m, 1H), 2.81 (d, J=4.8 Hz, 1H), 2.54 (d, J = 4.8 Hz, 1H), 1.87-1.55 (m, 4H), 0.91 (s, 9H), 0.11 (s, 3H), 0.07 (s, 3H).


¹³C NMR (100 MHz, CDCl₃) δ 159.3 (C), 130.9 (C), 129.6 (CH, 2C), 113.8 (CH, 2C), 84.5 (CH), 76.9 (CH), 73.1 (CH₂), 69.2 (CH), 59.4 (C), 59.1 (CH₃), 55.4 (CH₃), 50.8 (CH₂), 28.7 (CH₂), 26.9 (CH₂), 26.0 (CH₃, 3C), 18.3 (C), -4.5 (CH₃), -4.7 (CH₃).

IR [cm⁻¹]: 2930, 2856, 1514, 1464, 1250, 1114, 1034.

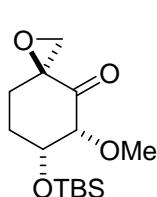
HRMS(EI) calcd. for C₁₈H₂₇O₅Si (M-C₄H₉): 351.1628, found: 351.1634.

[\mathbf{a}]_D^{20} = -13.5 (c = 1.09, DCM)

(3S, 4S, 5S, 6R)-6-(*tert*-Butyldimethylsilyloxy)-5-methoxy-1-oxaspiro[2.5]octan-4-ol (15)

DDQ (351 mg, 1.55 mmol) was added to a solution of (3S, 4S, 5S, 6R)-*tert*-Butyl-[5-methoxy-4-(4'-methoxybenzyloxy)-1-oxaspiro[2.5]oct-6-yloxy]-dimethylsilane (574 mg, 1.41 mmol) in DCM (21 mL) and water (1 mL). After stirring for 2 h saturated NaHCO₃ solution (17 mL) and Et₂O (50 ml) were added and the layers separated. The aqueous phase was extracted 3 times with Et₂O. The combined organic phases were washed with brine, dried over magnesium sulfate, filtered, silica gel (4 g) was added and the solvent was carefully removed under vacuum. Purification of the adsorbed material by column chromatography (40 g silica gel) using hexane:ethylacetate = 3:1 as an eluent yielded alcohol **15** (360 mg, 89 %) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 4.34-4.30 (m, 1H), 4.09 (dd, J = 9.5, 6.1 Hz, 1H), 3.43 (s, 3H), 3.12 (d, J = 5.1 Hz, 1H), 3.08 (dd, J = 9.5, 2.4 Hz, 1H), 2.61 (d, J = 5.1 Hz, 1H), 2.36-2.25 (m, 1H), 1.98 (d, J = 6.1 Hz, 1H), 1.81-1.66 (m, 2H), 1.26-1.18 (m, 1H), 0.90 (s, 9H), 0.25 (s, 3H), 0.21 (s, 3H).


¹³C NMR (100 MHz, CDCl₃) δ 85.5 (CH), 67.5 (CH), 66.9 (CH), 60.1 (C), 57.7 (CH₃), 50.1 (CH₂), 29.0 (CH₂), 26.4 (CH₂), 25.9 (CH₃, 3C), 18.3 (C), -4.5 (CH₃), -4.9 (CH₃).

IR [cm⁻¹]: 3677, 2952, 2929, 1120, 1094, 1025, 986.

HRMS(EI) calcd. for C₁₀H₁₉O₄Si (M-C₄H₉): 231.1053, found: 231.1057.

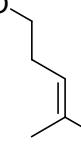
[\mathbf{a}]_D^{20} = -65.0 (c = 1.03, DCM)

(3S, 5R, 6R)-6-(*tert*-Butyldimethylsilyloxy)-5-methoxy-1-oxaspiro[2.5]octan-4-one (16)

Compound **15** (182 mg, 631 μmol) was dissolved in regular DCM (8.0 mL) and cooled to 0 °C. After the addition of NaHCO₃ (530 mg, 6.31 mmol) and Dess-Martin periodinane (348 mg, 820 μmol) the cooling bath was removed and stirred for 2 h. Saturated NaHCO₃ solution (5 mL) and water (5 mL) were added, the layers separated and the aqueous phase extracted 3 times with Et₂O. The combined organic phases were dried over magnesium sulfate, filtered, silica gel (1 g) was added and the solvent was carefully removed under vacuum. Purification of the adsorbed material

by column chromatography (15 g silica gel) using hexane:ethylacetate = 10:1 as an eluent yielded ketone **16** (166 mg, 92 %).

¹H NMR (400 MHz, CDCl₃) δ 4.45-4.41 (m, 1H), 3.97 (d, J = 2.5 Hz, 1H), 3.43 (s, 3H), 3.28 (d, J = 4.8 Hz, 1H), 2.75 (d, J = 4.8 Hz, 1H), 2.54-2.45 (m, 1H), 2.13-1.95 (m, 2H), 1.55 (dt, J = 14.5, 4.4 Hz, 1H), 0.85 (s, 9H), 0.07 (s, 3H), 0.06 (s, 3H).


¹³C NMR (100 MHz, CDCl₃) δ 202.4 (C), 87.4 (CH), 72.3 (CH), 60.6 (C), 58.4 (CH₃), 51.3 (CH₂), 28.9 (CH₂), 27.0 (CH₂), 25.8 (CH₃, 3C), 18.3 (C), -4.5 (CH₃), -5.1 (CH₃).

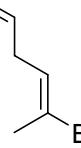
IR [cm⁻¹]: 2953, 2929, 2856, 1745, 1253, 1097, 1066, 1021.

HRMS(EI) calcd. for C₁₀H₁₇O₄Si (M-C₄H₉): 229.0896, found: 229.0902.

[\alpha]_D²⁰ = -1.20 (c = 1.00, DCM)

(E)-4-Bromopent-3-en-1-ol

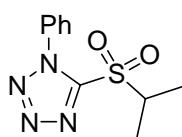
 To a stirred solution of (*E*)-4-(tri-n-butylstannyl)pent-3-en-1-ol (**19**) (1.00g, 2.66 mmol) in DCM (30 mL) was added N-bromosuccinimide (474 mg, 2.66 mmol) at 0 °C. After stirring the solution for 1 h at this temperature saturated Na₂SO₃ solution (20 mL) was added. The organic layer was separated and the aqueous phase extracted 2 times with DCM. The combined organic phases were dried over magnesium sulphate, filtered and the solvent was removed under vacuum (300 mbar, 45 °C) Purification by column chromatography (12 g silica gel) using pentane:Et₂O = 1:1 as an eluent yielded, after removing solvent under vacuum (300 mbar, 45 °C) 578 mg of a clear liquid consisting of (*E*)-4-bromopent-3-en-1-ol (434 mg, 99 %) and Et₂O.


¹H NMR (400 MHz, CDCl₃) δ 5.91-5.85 (m, 1H), 3.67 (q, J = 6.1 Hz, 2H), 2.33-2.27 (m, 2H), 2.27-2.24 (m, 3H), 1.43 (t, J = 5.7 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 128.3 (CH), 122.0 (C), 61.7 (CH₂), 33.2 (CH₂), 23.5 (CH₃).

IR [cm⁻¹]: 3351 (bs), 2953, 2923, 1429, 1380, 1051, 1012.

HRMS(EI) calcd. for C₅H₉OB_r: 163.9837, found: 163.9839.


(E)-4-Bromopent-3-enal (**20**)

 To a stirred solution of (*E*)-4-bromopent-3-en-1-ol (430 mg, 2.61 mmol) in regular DCM (24 mL) was added NaHCO₃ (2.19 g, 26.1 mmol) and Dess-Martin periodinane (1.33 mg, 3.13 mmol) at 0 °C. The cooling bath was removed and after stirring for 2.5 h additional Dess-Martin periodinane (330 mg, 0.78 mmol) was added. The stirring was continued until TLC showed complete consumption of the starting material (ca. 1 h) when saturated solution of NaHCO₃ (10 mL), saturated solution of Na₂S₂O₃ (10 mL) and water (20 mL) were added. After stirring for 15 min the layers were separated and the aqueous phase extracted 2 times with DCM. The combined organic phases were dried over magnesium sulphate, filtered and the solvent was removed under vacuum (300 mbar, 45 °C) yielding 680 mg of a yellow liquid consisting of aldehyde **20** (400 mg, 94 %) and DCM. It was used without further purification.

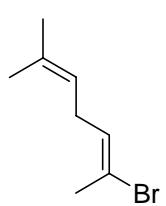
¹H NMR (400 MHz, CDCl₃) δ 9.65 (t, J = 1.6 Hz, 1H), 6.06 (qt, J = 7.4, 1.3 Hz, 1H), 3.17 (bd, J = 7.4 Hz, 2H), 2.24 (d, J = 1.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 197.4 (CH), 124.0 (C), 121.3 (CH), 44.2 (CH₂), 23.8 (CH₃).
IR [cm⁻¹]: 2922, 2854, 1725, 1380, 1108, 1065.

1-Phenyl-5-(propane-2-sulfonyl)-1*H*-tetrazole (21)

To a stirred solution of 2-propanol (5.00 g, 83.2 mmol), triphenyl phosphine (21.8 g, 83.2 mmol) and 1-phenyl-1*H*-tetrazole-5-thiol (14.8 g, 83.2 mmol) in anhydrous THF (300 mL) at 0°C was added DIAD (19.3 mL, 99.8 mmol) dropwise and stirred for 2 h. at 0°C. The mixture was diluted with Et₂O (200 mL) and saturated aq. NaHCO₃ solution (100 mL) and extracted with Et₂O (3 x 100 mL), washed with brine (1 x 100 mL), dried over magnesium sulfate, filtered and concentrated under vacuum. The residue was then treated with 1:1 hexanes:Et₂O (500 mL) and stored at -20°C for a 2 h. period. The precipitate was filtered off, washed with 1:1 hexanes:Et₂O (2 x 50 mL), silica gel (30 g) was added and the solvent carefully removed under vacuum. Purification of the adsorbed material by column chromatography (350 g silica gel) using hexanes:ethyl acetate (10:1 to 3:1) as the mobile phase afforded 5-Isopropylsulfanyl-1-phenyl-1*H*-tetrazole as white solid (7.5 g g, 41%).

To a suspension of 5-Isopropylsulfanyl-1-phenyl-1*H*-tetrazole (6.75 g, 30.6 mmol) and sodium hydrogen carbonate (25.7g, 306 mmol) in DCM (550 mL), 77% mCPBA (34.3 g, 153 mmol) was added in portions and stirred for 16 h. Saturated aq. NaHCO₃ solution (200 mL) and saturated aq. Na₂S₂O₃ solution (200 mL) was added and stirred for 10 min. After extraction with DCM (4 x 150 mL), the combined organic layers were washed with brine (50 mL), dried over MgSO₄, filtered, silica gel (20 g) was added and the solvent carefully removed under vacuum. Purification of the adsorbed material by column chromatography (200 g silica gel) using hexanes:ethyl acetate (3:1) as the mobile phase afforded 1-Phenyl-5-(propane-2-sulfonyl)-1*H*-tetrazole (21) as a pale yellow solid (6.59 g, 85%).


¹H NMR (400 MHz, CDCl₃) δ 7.70-7.56 (m, 5H), 4.02 (hept., J = 6.9 Hz, 1H), 1.52 (d, J = 6.9 Hz, 6H).

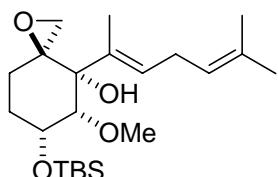
¹³C NMR (100 MHz, CDCl₃) δ 152.8 (C), 133.3 (C), 131.6 (CH), 129.7 (CH, 2C), 125.5 (CH, 2C), 57.0 (CH), 15.2 (CH₃, 2C).

IR [cm⁻¹]: 2985, 2943, 1497, 1333, 1169, 1147, 1056.

HRMS(EI) calcd. for C₁₀H₁₂O₂N₄S: 252.0681, found: 252.0676.

(E)-2-Bromo-6-methylhepta-2,5-diene (17)

To a solution of **21** in THF (19 mL) was added a 1.0M solution of LHMDS in hexane (2.70 mL, 2.70 mmol) slowly at -78 °C and stirred for 35 min. at this temperature. In a separate flask aldehyde **20** (400 mg, 2.45 mmol) in THF (9 mL) was cooled to -78 °C and dropwise added via double-ended needle. The reaction was allowed to warm to room temperature over night (16 h). After addition of Et₂O (100 mL) and extraction with saturated aq. NH₄Cl solution (20 mL), the organic phase was dried over MgSO₄, filtered, silica gel (3 g) was added and the solvent carefully removed under vacuum. Purification of the adsorbed material by column chromatography (30 g silica gel) using pentane as the mobile phase and concentration under vaccum (300 mbar, 45 °C) yielded 430 mg of a colourless liquid consisting of **17** (325 mg, 70 %) and pentane.


¹H NMR (400 MHz, CDCl₃) δ 5.83-5.77 (m, 1H), 5.11-5.04 (m, 1H), 2.73-2.66 (m, 2H), 2.24-2.23 (m, 3H), 1.71-1.68 (m, 3H), 1.62 (bs, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 133.2 (C), 131.0 (CH), 121.0 (CH), 119.3 (C), 28.8 (CH₂), 25.8 (CH₃), 23.3 (CH₃), 17.9 (CH₃).

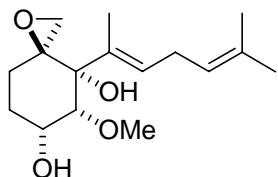
IR [cm⁻¹]: 2970, 2924, 2854, 1448, 1430, 1378, 1106, 1083.

HRMS(EI) calcd. for C₈H₁₃Br: 188.0201, found: 188.0194.

(3*S*, 4*R*, 5*R*, 6*R*)-6-(*tert*-Butyldimethylsilyloxy)-4-((E)-1',5'-dimethylhexa-1',4'-dienyl)-5-methoxy-1-oxaspiro[2.5]octan-4-ol (**22**)

To a solution of **17** (110 mg, 582 μmol) in Et₂O (2.4 mL) was added dropwise a 1.5M solution of *t*-Butyllithium in pentane (0.77 mL, 1.16 mmol) at -78 °C. After stirring for 40 min. at this temperature, the cooling bath was removed for 1 min. A solution of **16** (128 mg, 447 μmol) in toluene (total 2 mL) was added slowly to the slightly yellow solution at -78 °C. After stirring at this temperature for 1 h the reaction was quenched by the addition of saturated NH₄Cl solution (5 mL) and water (5 mL). The organic layer was separated and the aqueous phase extracted 3 times with Et₂O. The combined organic phases were washed with brine, dried over magnesium sulfate, filtered and the solvent was removed under vacuum. Purification by column chromatography (18 g silica gel) using hexane:ethylacetate = 10:1 as an eluent yielded alcohol **22** (135 mg, 76 %).

¹H NMR (400 MHz, CDCl₃) δ 5.70 (bt, J = 7.1 Hz, 1H), 5.15-5.08 (m, 1H), 4.81 (bs, 1H), 4.47-4.41 (m, 1H), 3.50 (d, J = 2.5 Hz, 1H), 3.44 (s, 3H), 2.84-2.66 (m, 2H), 2.80 (d, J = 5.1 Hz, 1H), 2.57-2.44 (m, 1H), 2.42 (d, J = 5.1 Hz, 1H), 1.95-1.87 (m, 1H), 1.86-1.75 (m, 1H), 1.66 (s, 6H), 1.61 (s, 3H), 1.22-1.11 (m, 1H), 0.92 (s, 9H), 0.14 (s, 3H), 0.13 (s, 3H).


¹³C NMR (100 MHz, CDCl₃) δ 132.7 (C), 131.6 (C), 127.7 (CH), 123.0 (CH), 80.6 (CH), 79.2 (C), 68.6 (CH), 62.1 (C), 57.8 (CH₃), 50.6 (CH₂), 28.6 (CH₂), 27.3 (CH₂), 25.9 (CH₃, 3C), 25.8 (CH₃), 25.5 (CH₂), 18.0 (C), 17.9 (CH₃), 14.1 (CH₃), -4.7 (CH₃), -4.9 (CH₃).

IR [cm⁻¹]: 3467, 2955, 2929, 2857, 1472, 1464, 1444, 1376, 1254, 1132, 1102, 1068.

HRMS(EI) calcd. for C₂₂H₄₀O₄Si: 396.2696, found: 396.2704.

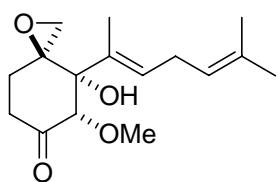
[\mathfrak{a}]_D^{20} = -74.0 (c = 1.04, DCM)

(3*S*, 4*R*, 5*R*, 6*R*)-4-((E)-1', 5'-Dimethylhexa-1',4'-dienyl)-5-methoxy-1-oxaspiro[2.5]octane-4,6-diol (**23**)

To a stirred solution of **22** (96 mg, 242 μmol) in THF (5.5 mL) was added a 1.0M solution of *n*-tetraburtyammonium fluoride (310 μL, 310 μmol) at 0 °C. After stirring for 25 min. at this temperature additional 1.0M solution of *n*-tetraburtyammonium fluoride (50 μL, 50 μmol) was added. After 5 min. the reaction was quenched by the addition of brine (18 mL). The organic layer was separated and the aqueous phase extracted 3 times with Et₂O. The combined organic phases were dried over magnesium sulfate, filtered and the solvent was removed under

vacuum Purification by column chromatography (6 g silica gel) using hexane:ethylacetate = 1:1 as an eluent yielded alcohol **23** (65 mg, 94 %).

¹H NMR (600 MHz, CDCl₃) δ 5.65 (bt, J = 7.1 Hz, 1H), 5.10 (tt, J = 7.0, 1.3 Hz, 1H), 4.37-4.32 (m, 1H), 3.61 (d, J = 3.3 Hz, 1H), 3.49 (s, 3H), 3.17 (bs, 1H), 3.07 (bs, 1H), 2.79 (d, J = 5.1 Hz, 1H), 2.79-2.69 (m, 2H), 2.45 (d, J = 5.1 Hz, 1H), 2.45-2.37 (m, 1H), 2.04-2.00 (m, 1H), 1.89-1.81 (m, 1H), 1.68 (s, 3H), 1.67 (s, 3H), 1.62 (s, 3H), 1.24-1.18 (m, 1H).


¹³C NMR (150 MHz, CDCl₃) δ 133.9 (C), 132.2 (C), 127.5 (CH), 122.5 (CH), 80.0 (CH), 79.8 (C), 67.0 (CH), 61.4 (C), 57.7 (CH₃), 50.3 (CH₂), 27.7 (CH₂), 27.2 (CH₂), 25.8 (CH₃), 25.1 (CH₂), 17.9 (CH₃), 14.3 (CH₃).

IR [cm⁻¹]: 3400 (bs), 2929, 1443, 1376, 1199, 1100, 1074, 1018..

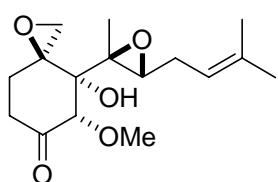
HRMS(EI) calcd. for C₁₆H₂₆O₄: 282.1831, found: 282.1821.

[\mathbf{a}]_D^{20} = -53.2 (c = 0.70, DCM)

(3*S*, 4*R*, 5*S*)-4-((E)-1',5'-Dimethylhexa-1',4'-dienyl)-4-hydroxy-5-methoxy-1-oxaspiro[2.5]octan-6-one (**24**)

Compound **23** (40 mg, 142 µmol) was dissolved in regular DCM (1.8 mL) and cooled to 0 °C. After the addition of NaHCO₃ (119 mg, 1.42 mmol) and Dess-Martin periodinane (78 mg, 184 µmol) the cooling bath was removed. After stirring for 1.5 h. additional Dess-Martin periodinane (24 mg, 57 µmol) was added. The stirring was continued until TLC showed complete consumption of the starting material (ca. 30 min). The reaction mixture was directly loaded onto a column and purified by column chromatography (6 g silica gel) using hexane:ethylacetate = 5:1 as an eluent yielded ketone **24** (36 mg, 90 %).

¹H NMR (600 MHz, CDCl₃) δ 5.66-5.62 (m, 1H), 5.10-5.06 (m, 1H), 4.26 (d, J = 1.1 Hz, 1H), 3.50 (s, 3H), 2.85 (d, J = 4.9 Hz, 1H), 2.80-2.62 (m, 4H), 2.61 (d, J = 4.9 Hz, 1H), 2.51-2.47 (m, 2H), 1.70-1.68 (m, 6H), 1.62 (s, 3H), 1.52-1.48 (m, 1H).


¹³C NMR (150 MHz, CDCl₃) δ 207.6 (C), 133.8 (C), 132.5 (C), 127.8 (CH), 122.3 (CH), 85.8 (CH), 83.0 (C), 61.0 (C), 59.6 (CH₃), 51.1 (CH₂), 37.0 (CH₂), 30.4 (CH₂), 27.1 (CH₂), 25.8 (CH₃), 17.9 (CH₃), 14.5 (CH₃).

IR [cm⁻¹]: 3418, 2964, 2924, 1732, 1439, 1379, 1259, 1112.

HRMS(EI) calcd. for C₁₆H₂₄O₄: 280.1675, found: 280.1669.

[\mathbf{a}]_D^{20} = -106 (c = 0.55, DCM)

(-)-Ovalicin (**1**)

Ketone **24** (33 mg, 118 µmol) was dissolved in benzene (0.5 mL) and the solvent removed under vacuum. After repeating this process once, the residue was dissolved in benzene (0.9 mL) and cooled in a water bath (5 °C). After the addition of vanadyl acetylacetone (5.3 mg, 20 µmol) and a 5.5M solution of *t*-butyl hydroperoxide (36 mg, 236 µmol) the cooling bath was removed and the mixture stirred for 1.5 h. The reaction mixture was directly loaded

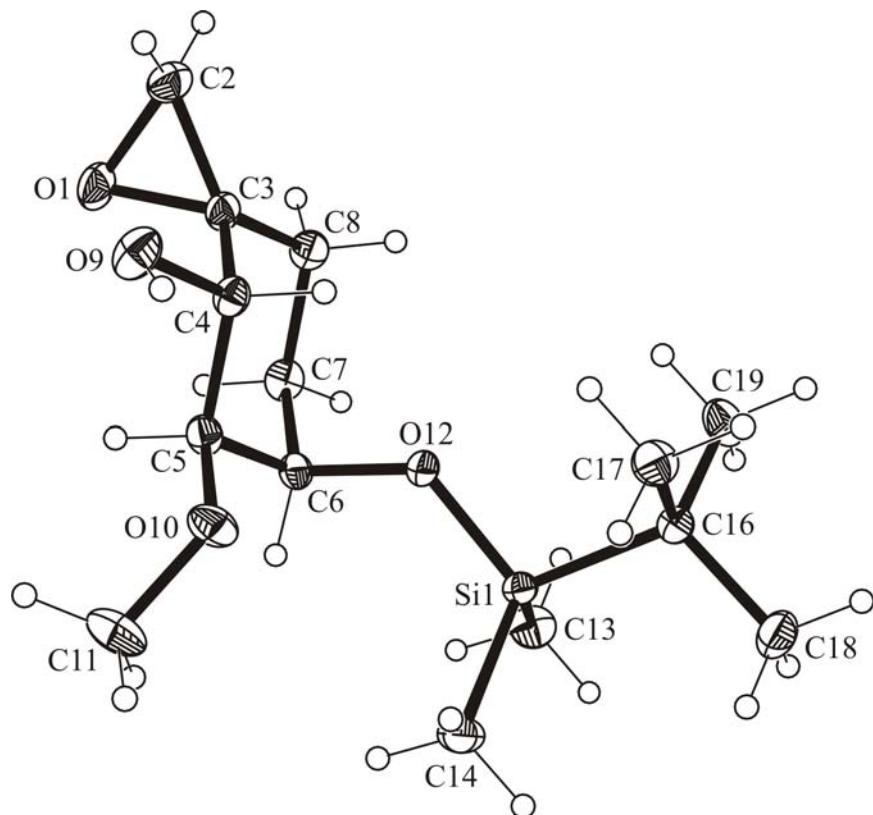
onto a column and purified by column chromatography (6 g silica gel) using hexane:ethylacetate = 6:1 as an eluent yielded (-)-ovalicin (**1**) (25 mg, 71 %).

¹H NMR (600 MHz, CDCl₃) δ 5.21-5.16 (m, 1H), 4.23 (s, 1H), 3.57 (s, 3H), 3.14 (s, 1H), 3.10 (d, J = 4.2 Hz, 1H), 2.90 (dd, J = 7.0 Hz, 6.2 Hz, 1H), 2.73 (d, J = 4.2 Hz, 1H), 2.71-2.61 (m, 2H), 2.51-2.47 (m, 1H), 2.45-2.39 (m, 1H), 2.18-2.12 (m, 1H), 1.75 (d, J = 1.1 Hz, 3 H), 1.66 (s, 3H), 1.45-1.41 (m, 1H), 1.37 (s, 3H).

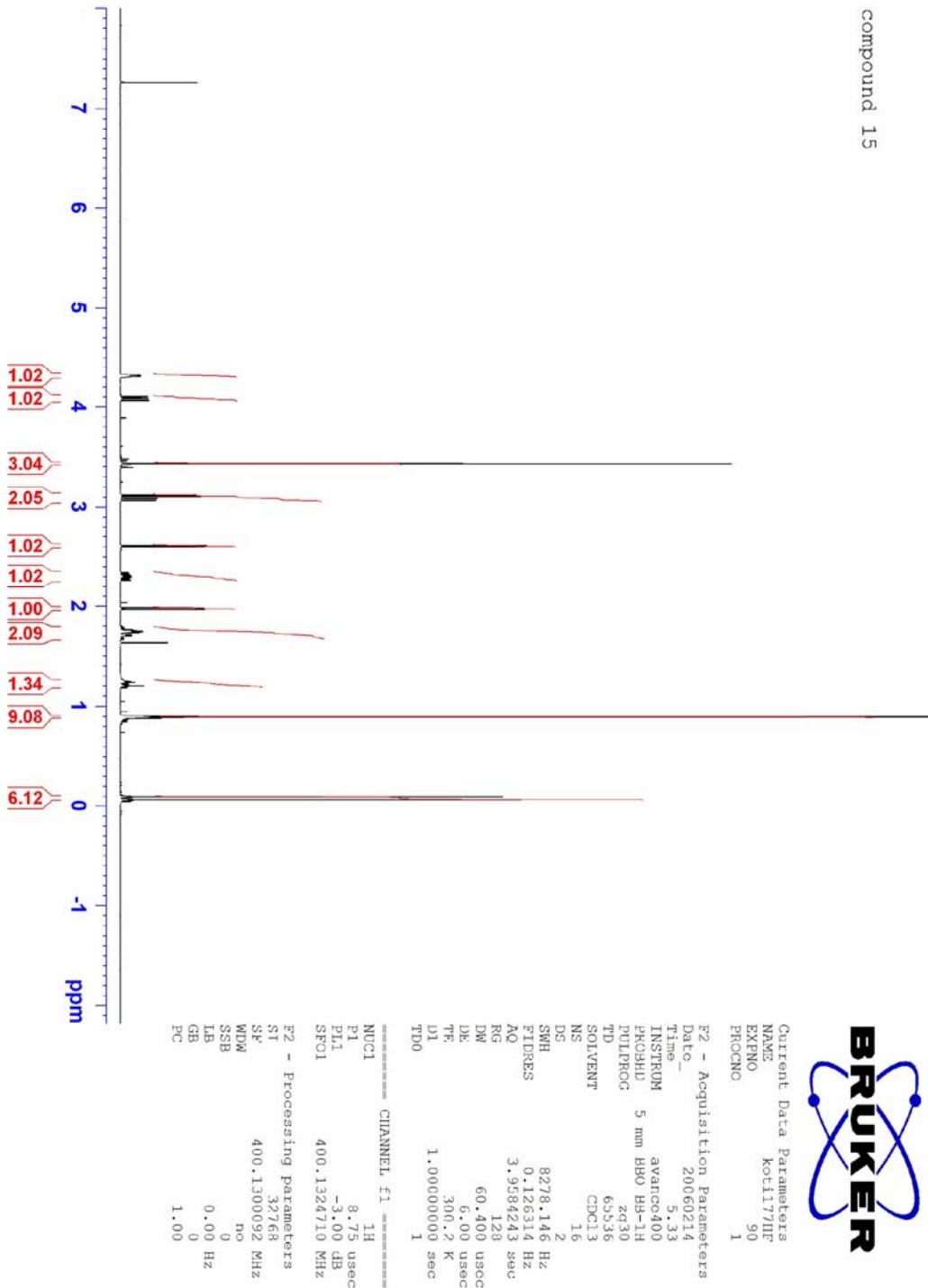
¹³C NMR (150 MHz, CDCl₃) δ 206.8 (C), 135.6 (C), 118.1 (CH), 86.3 (CH), 78.7 (C), 60.7 (C), 60.5 (C), 59.4 (CH₃), 56.9 (CH), 51.4 (CH₂), 36.8 (CH₂), 30.5 (CH₂), 27.2 (CH₂), 25.9 (CH₃), 18.2 (CH₃), 14.5 (CH₃).

IR [cm⁻¹]: 3501, 2926, 1733, 1441, 1382, 1247, 1205, 1169, 1108, 1032.

HRMS(EI) calcd. for C₁₆H₂₄O₅: 296.1624, found: 296.1628.


$\alpha_D^{20} = -115$ (c = 0.10, CHCl₃) [Lit.⁴: $\alpha_D^{20} = -117$ (c = 0.40, CHCl₃); Lit.⁵: $\alpha_D^{25} = -112.9$ (c = 0.21, CHCl₃)]

⁴ H. Sigg, H. Weber, *Helv. Chim. Acta* **1968**, *51*, 1395.

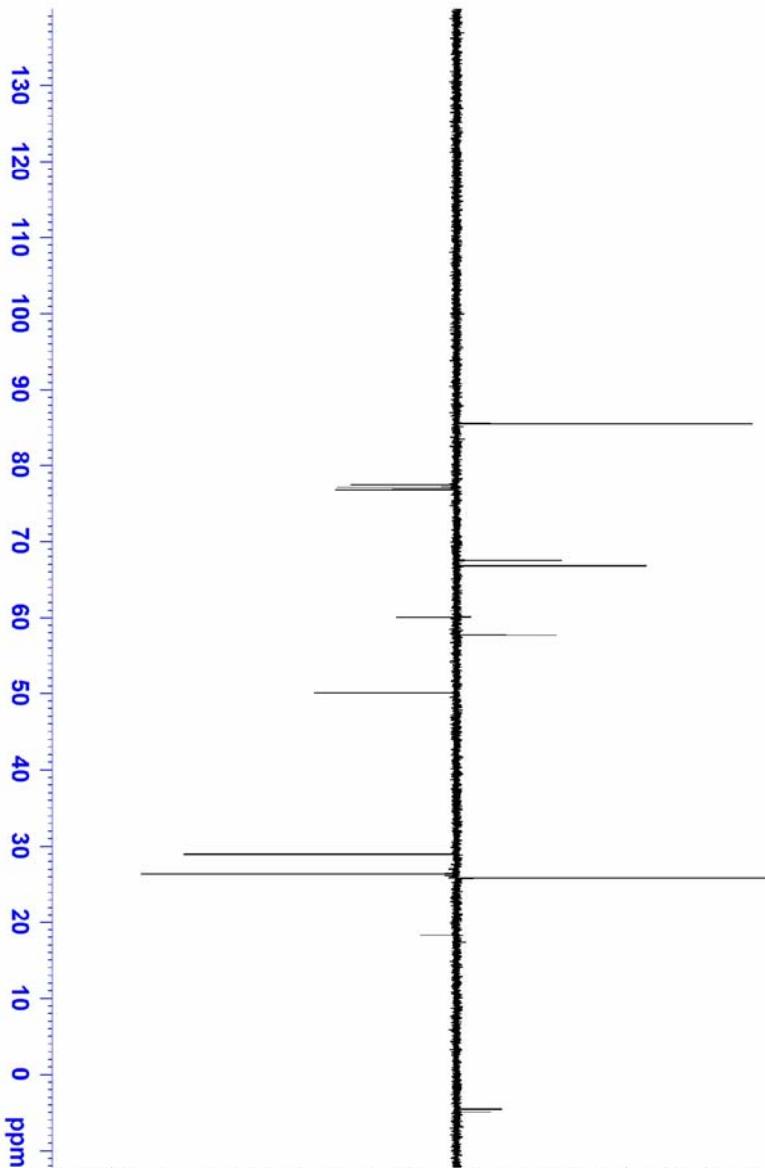

⁵ S. Takahashi, N. Hishinuma, H. Koshino, T. Nakata, *J. Org. Chem.* **2005**, *70*, 10162 (Supporting Information).

Crystal structure of (\pm)-15:

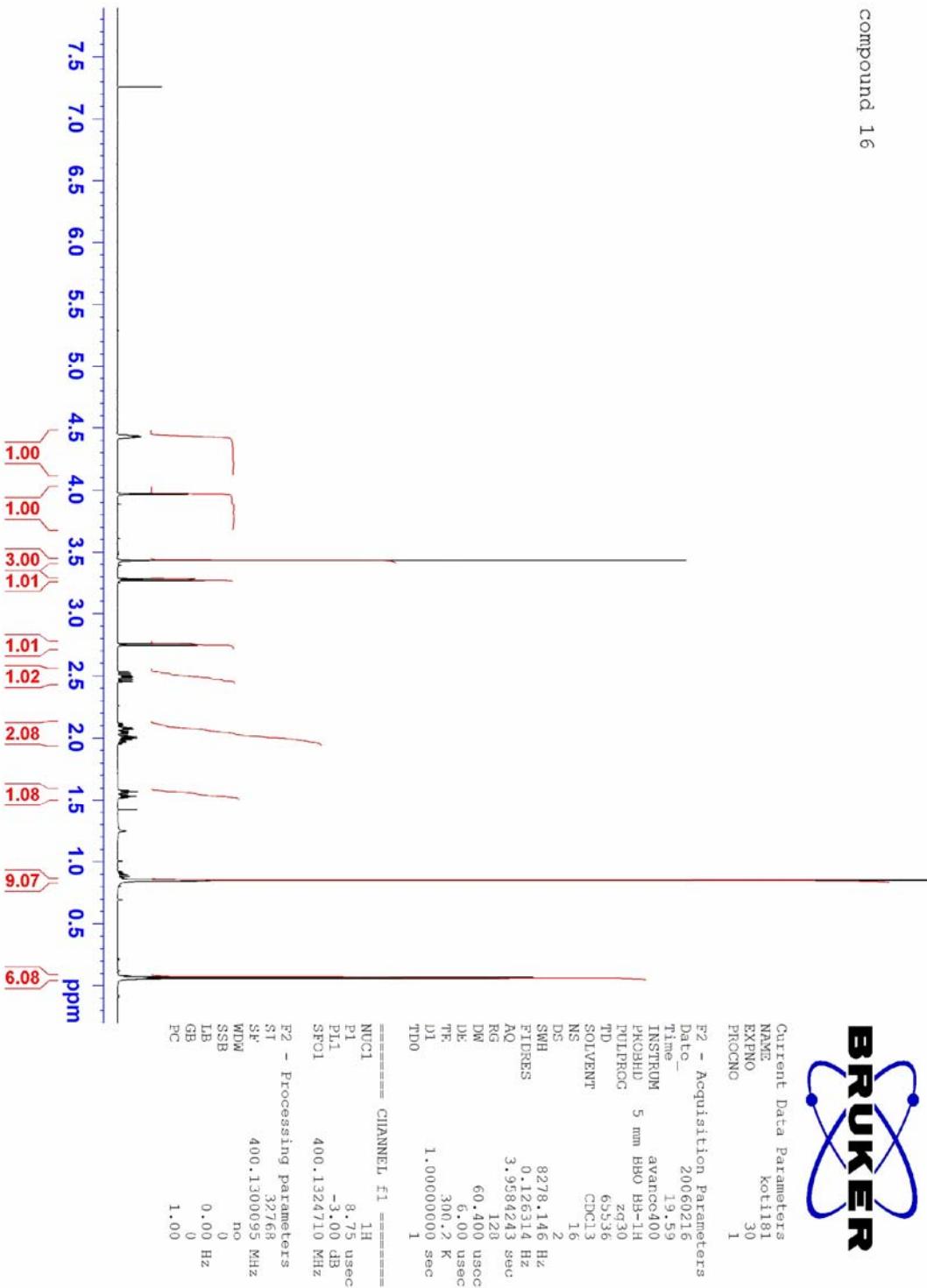
Figure S1. ORTEP view of one enantiomer in the crystal structure of (\pm)-15 with labelling scheme. The thermal ellipsoids are drawn at 50% probability level.

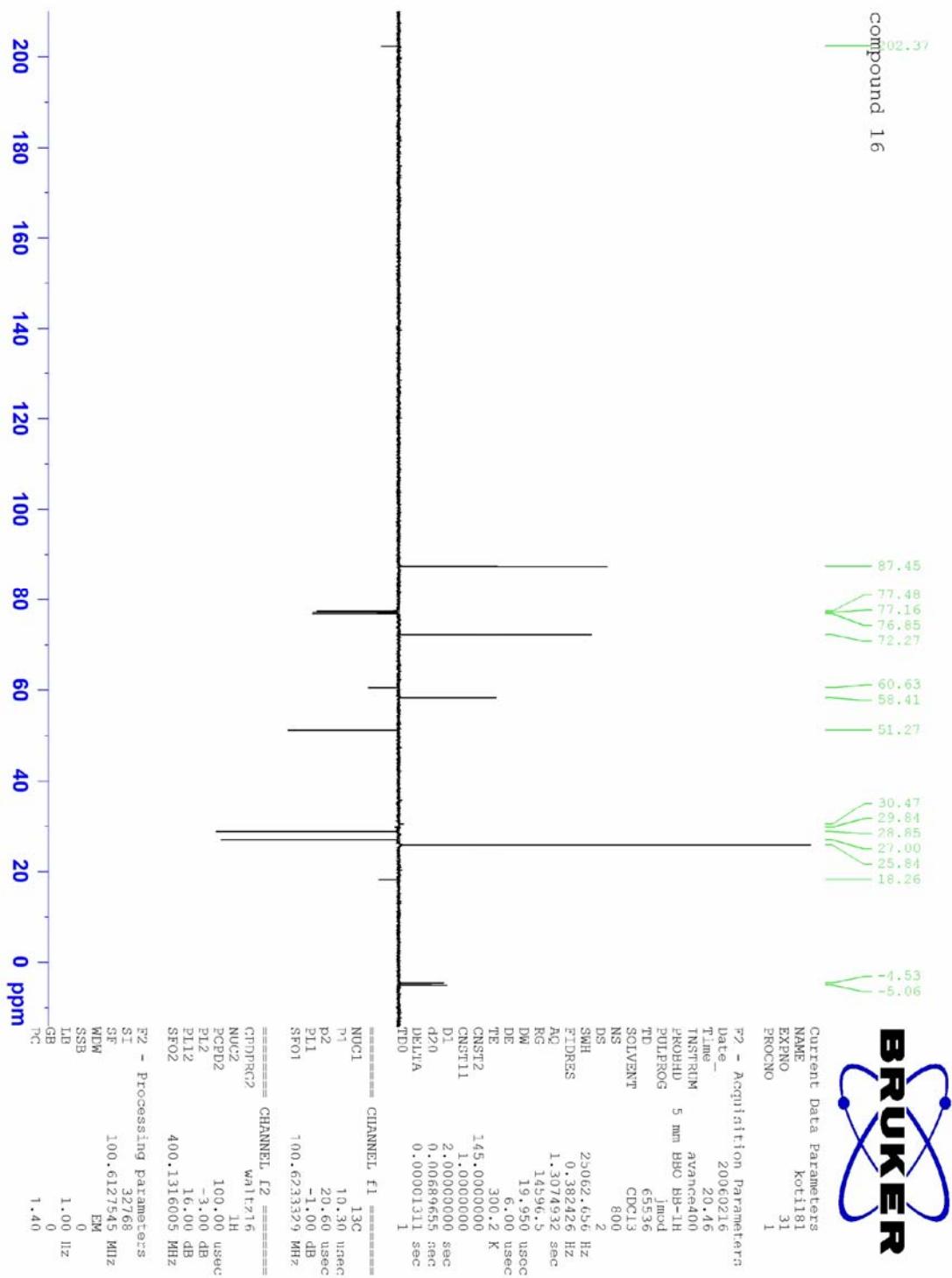
NMR spectra of compounds 15, 16, 22, 23, 24, 1:

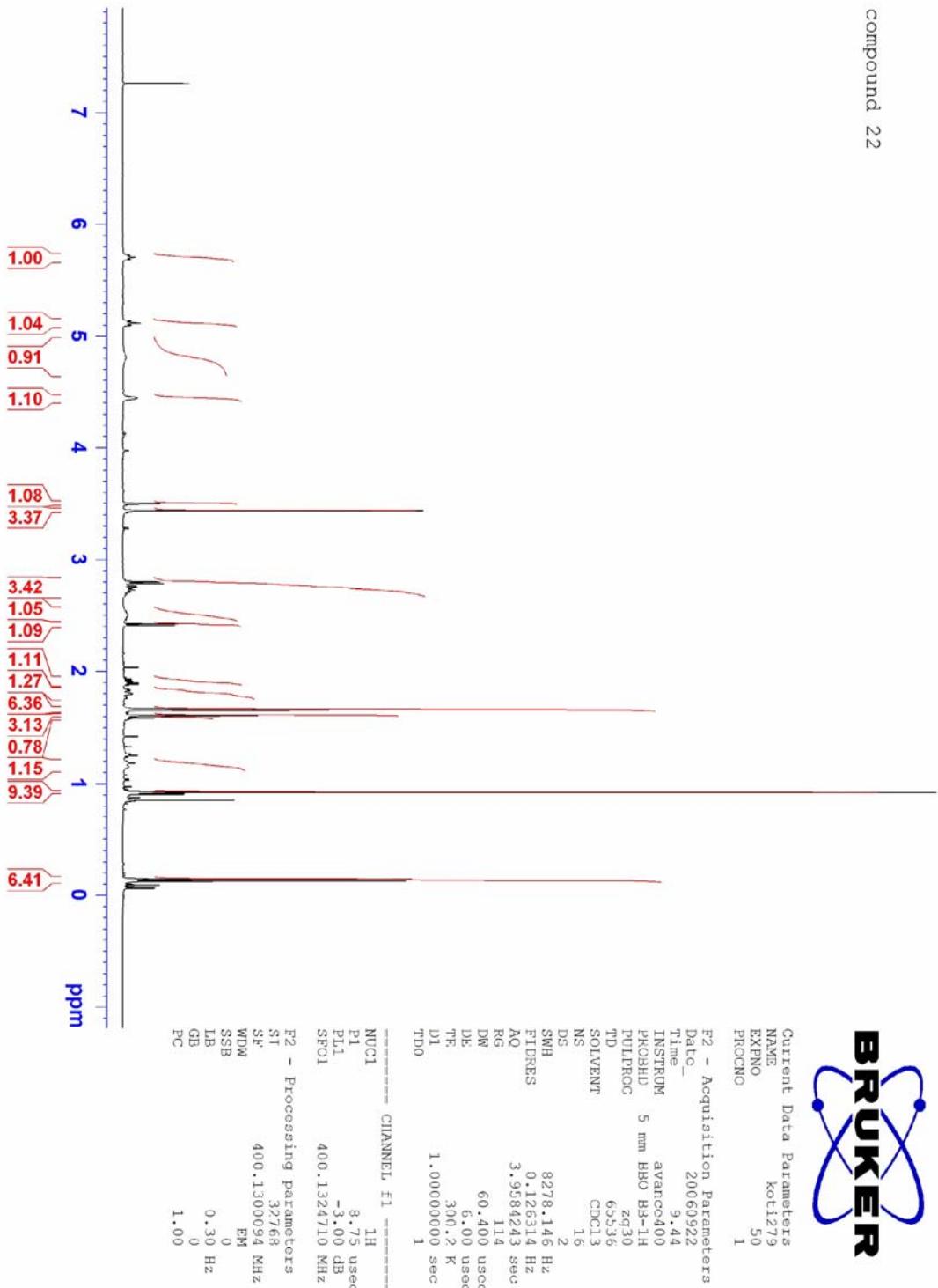
compound 15


85.47
77.46
77.16
76.84
67.54
66.88
60.10
57.75
50.08
28.99
26.43
26.20
25.90
18.28
-4.53
-4.88

Current Data Parameters
NAME k0117HF
EXPNO 91
PROCNO 1
F2 - Acquisition Parameters
Date 2006214
Time 6.19
INSTRUM avance400
PRBHD 5 mm BBO BB-1H
PULPROG jmod
TD 65536
SOLVENT CDCl3
NS 800
DS 2
SWH 22062.656 Hz
ETDRGS 0.383426 Hz
AQ 1.3071932 sec
RG 11555.2
DW 19.950 usec
DE 6.00 usec
TE 300.2 K
CNUST2 1.45.000000
CNST11 1.000000
D1 2.000000 sec
d2 0.000689655 sec
DELLA 0.00001311 sec
TD0 1


===== CHANNEL f1 =====
NUCL 13C
T1 10.30 msec
p2 20.60 usec
21L -1.00 dB
SF01 100.6233329 MHz
===== CHANNEL f2 =====
CT77RG2 wait:7.6
NUC2 1H
PCPD2 100.00 usec
PL2 -3.00 dB
21L2 16.00 dB
SF02 400.1316005 MHz


F2 - Processing parameters
ST 32768
SF 100.6127545 MHz
MW no
SSB 0
LB 0.00 Hz
GB 0
TC 1.40


compound 16

The logo for Bruker, featuring the company name in a bold, black, sans-serif font with a blue stylized atomic or molecular structure graphic integrated into the letter 'B'.

compound 22

compound 22

132.70
131.58
127.71
122.99

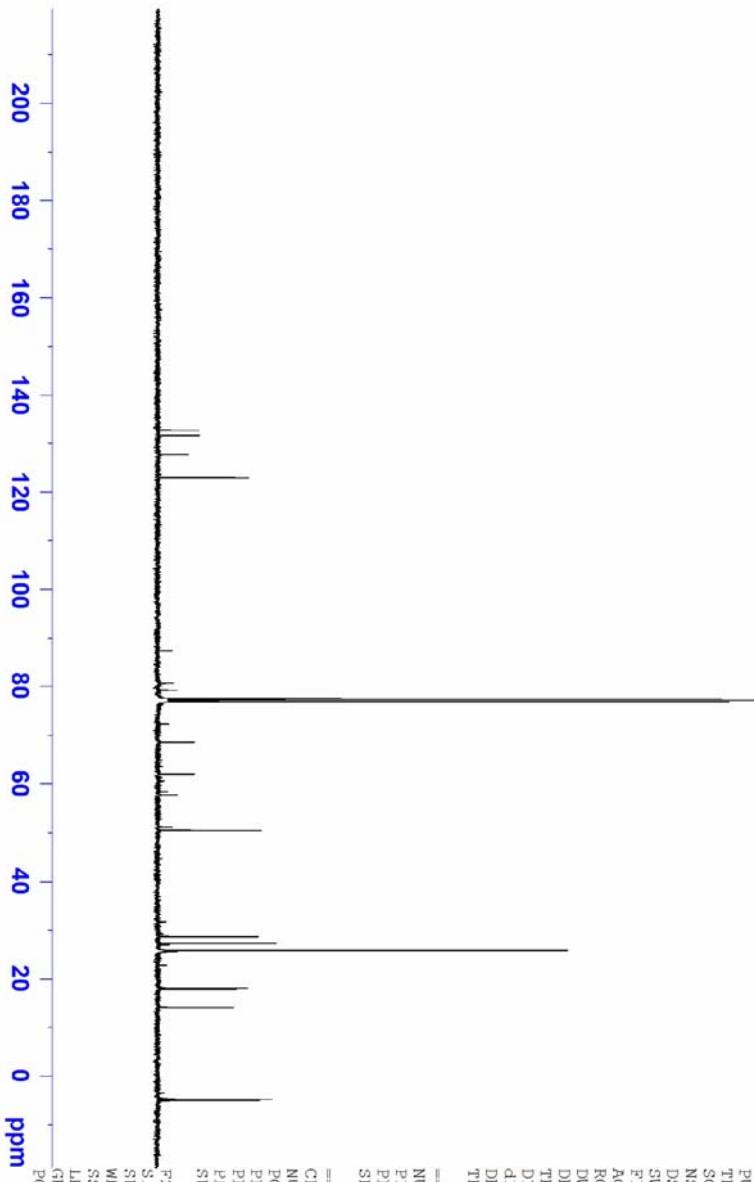
80.63
79.21
68.62
62.10
57.80
50.59

28.64
27.30
25.88
25.76
25.53
18.05
17.89
14.10

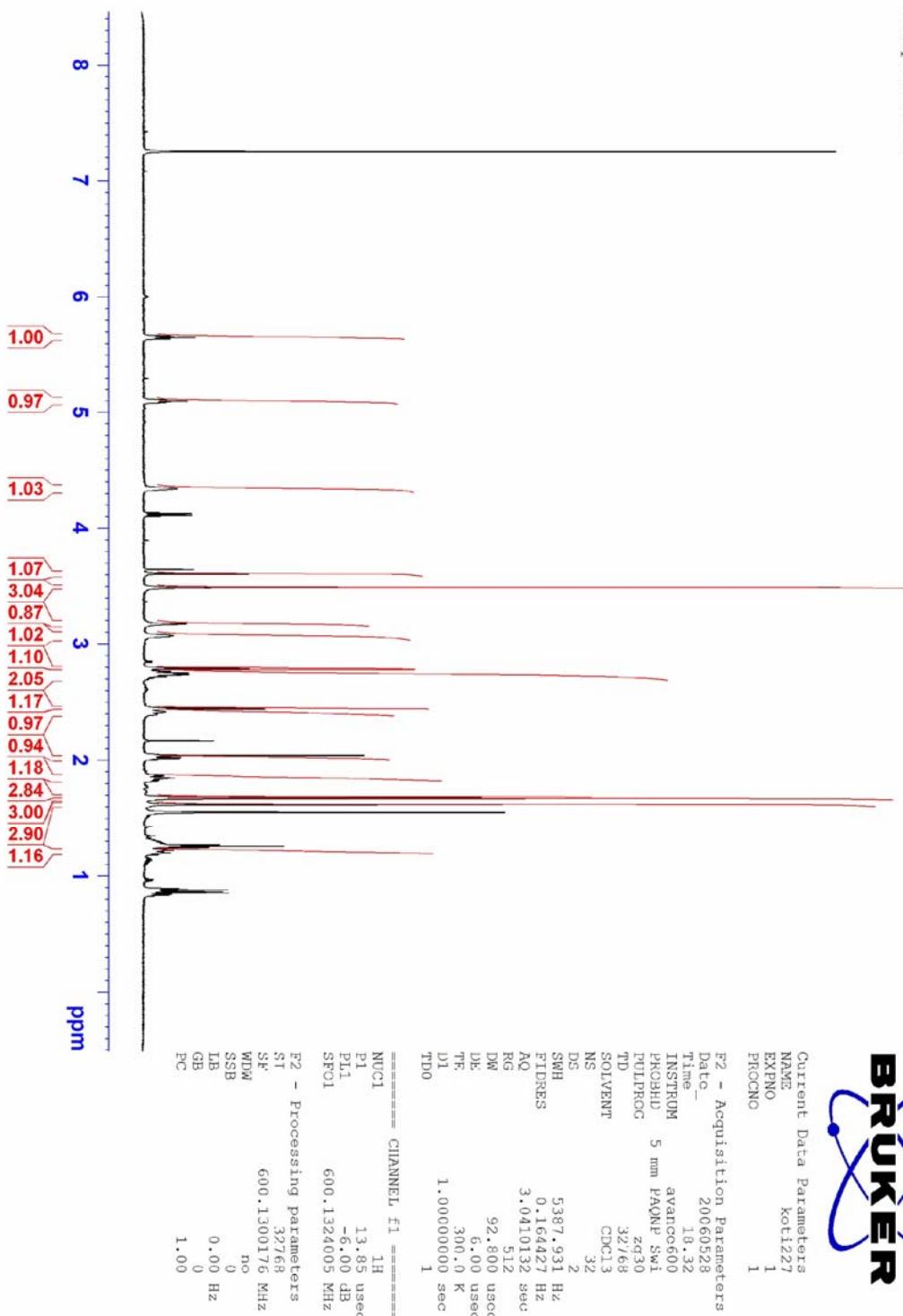
-4.73
-4.88

Current Data Parameters
NAME koti279
EXPNO 51
PROCNO 1

F2 - Acquisition Parameters
Date_ 20060922
Time 10.01
INSTRUM avance400
PROBHD 5 mm BBO Br-1H
PULPROG zgpg30
TD 65536
SOVENT CDCl3
NS 1200
DS 4
SW1 23980.814 Hz
FIDRES 0.365918 Hz
AQ 1.3664756 sec
RG 5160.6
DW 20.850 usec
DE 6.00 usec
TE 300.2 K
D1 2.0000000 sec
d11 0.0300000 sec
DELT1 1.8999998 sec
TDO 1


===== CHANNEL f1 =====
NUC1 13C
P1 10.30 usec
PL1 -1.00 dB
SP01 1.00, 6220298 MHz

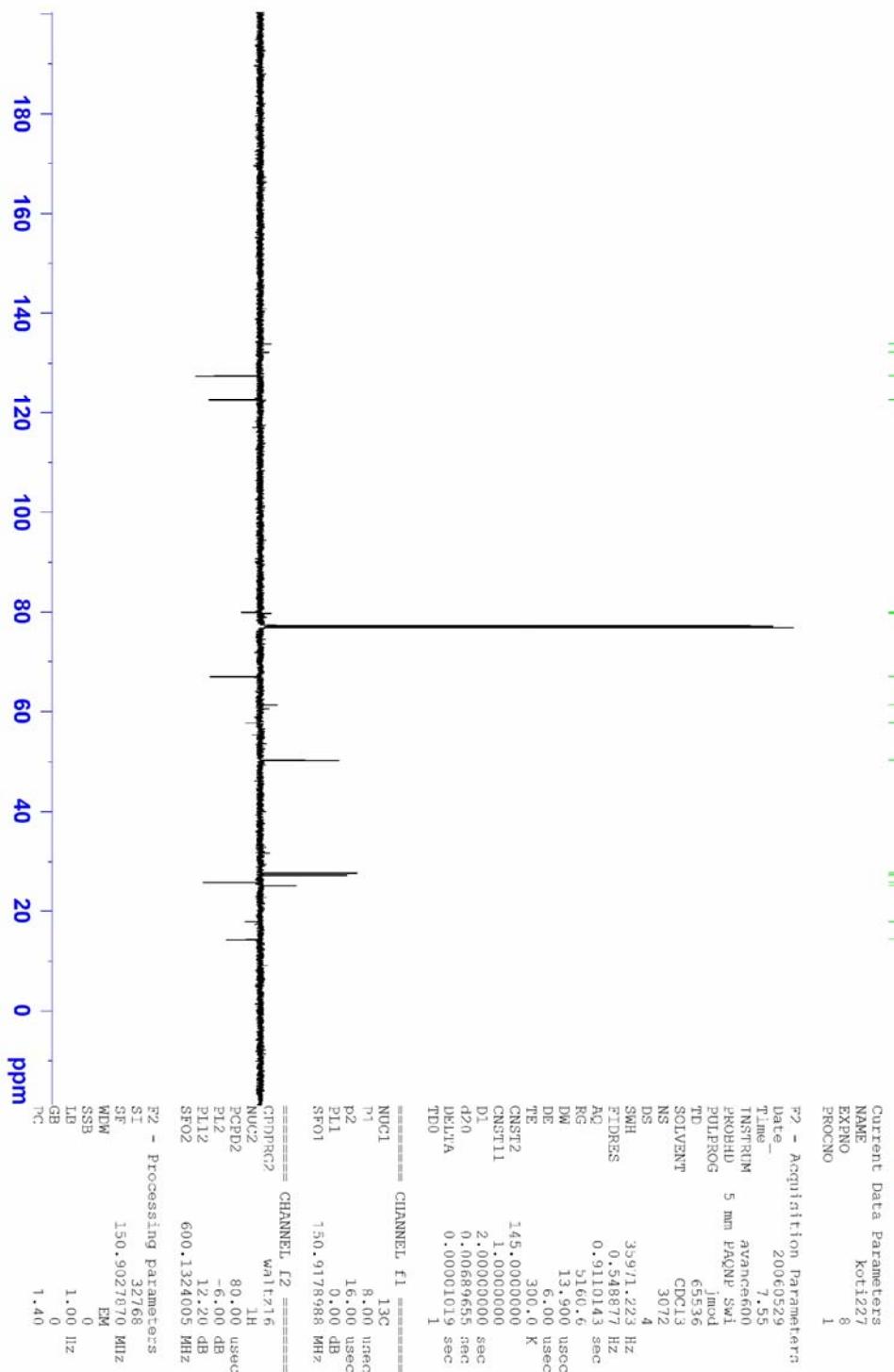
===== CHANNEL f2 =====
CPPIRG2 waltz16


NUC2 1H
PCPD2 100.00 uscc
PL2 -3.00 dB
PL1,2 16.00 dB
PL1,3 20.00 dB
SP02 4.00, 1316005 MHz

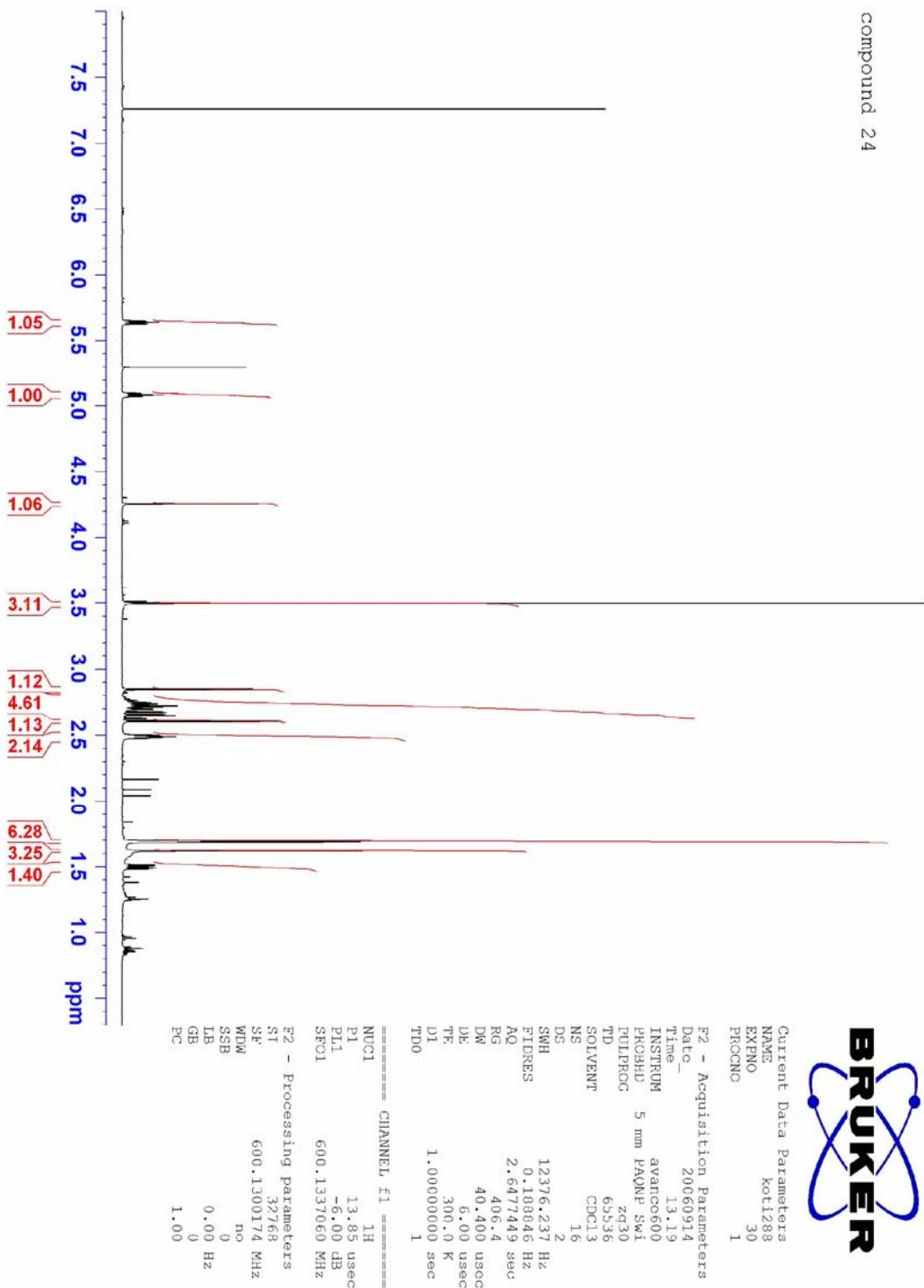
F2 - Processing parameters

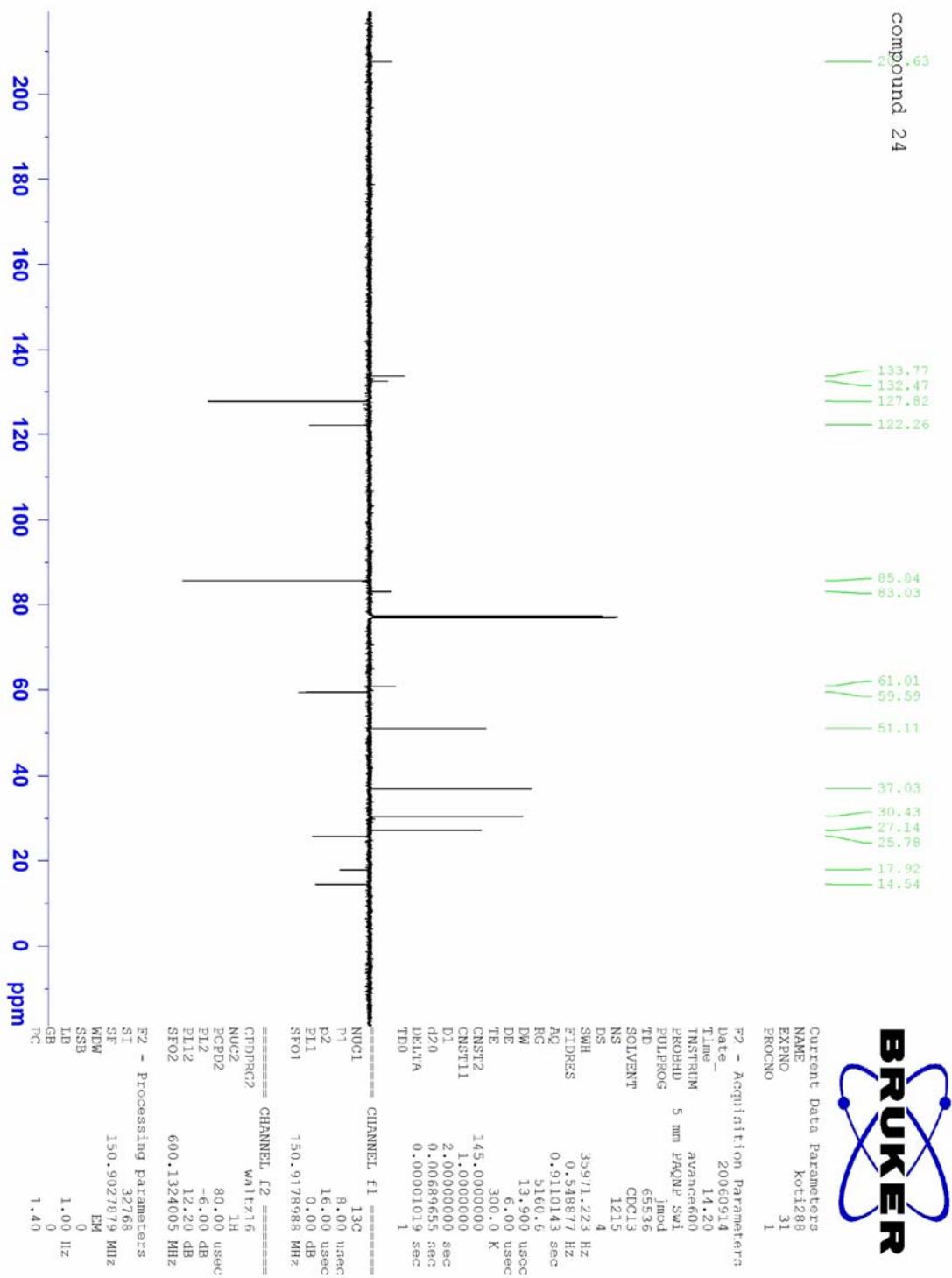
S1 32768
SF 100.6127543 MHz
WDW EM
SSB 0
LB 1.00 Hz
GB 1.40
PC

compound 23

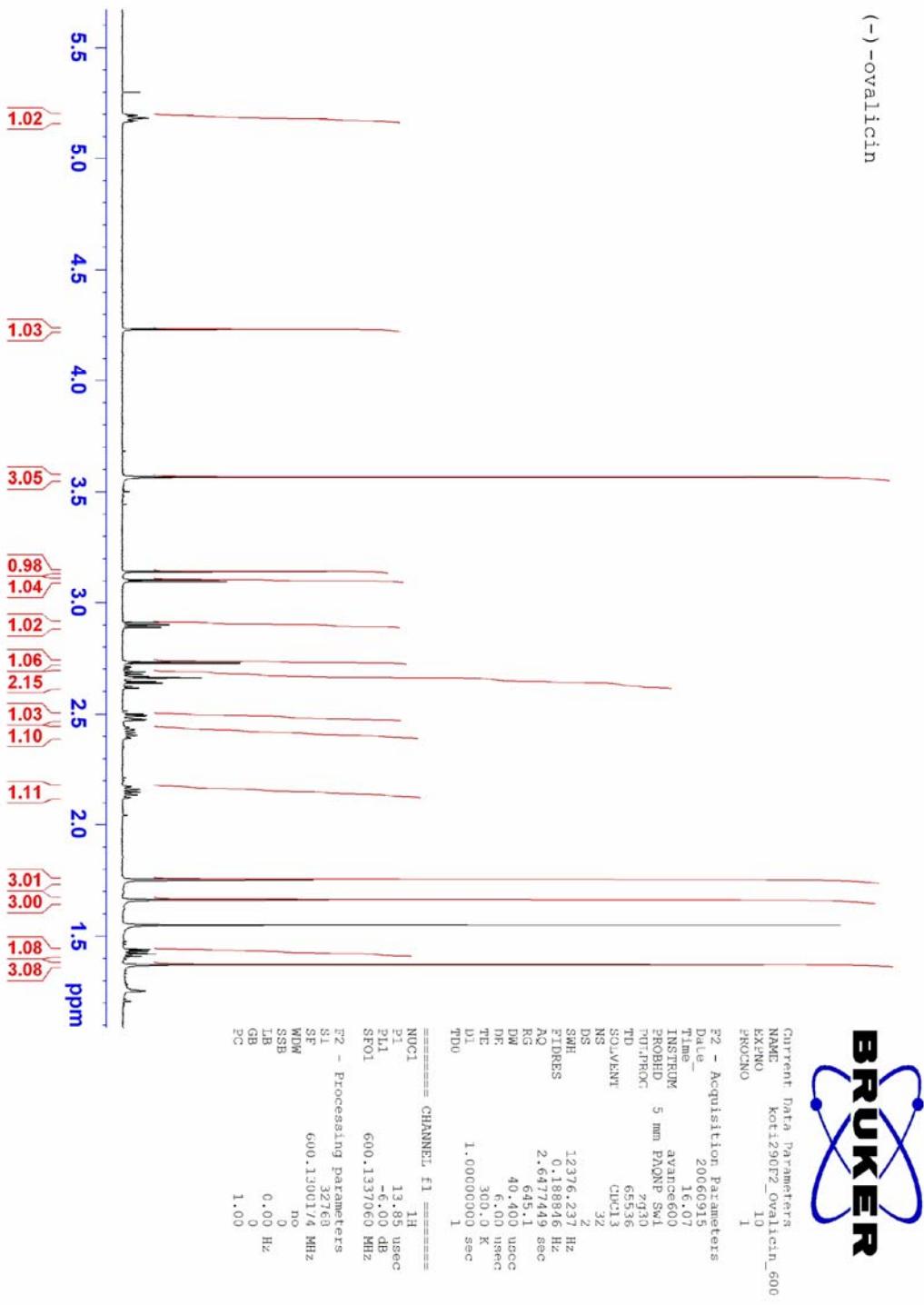


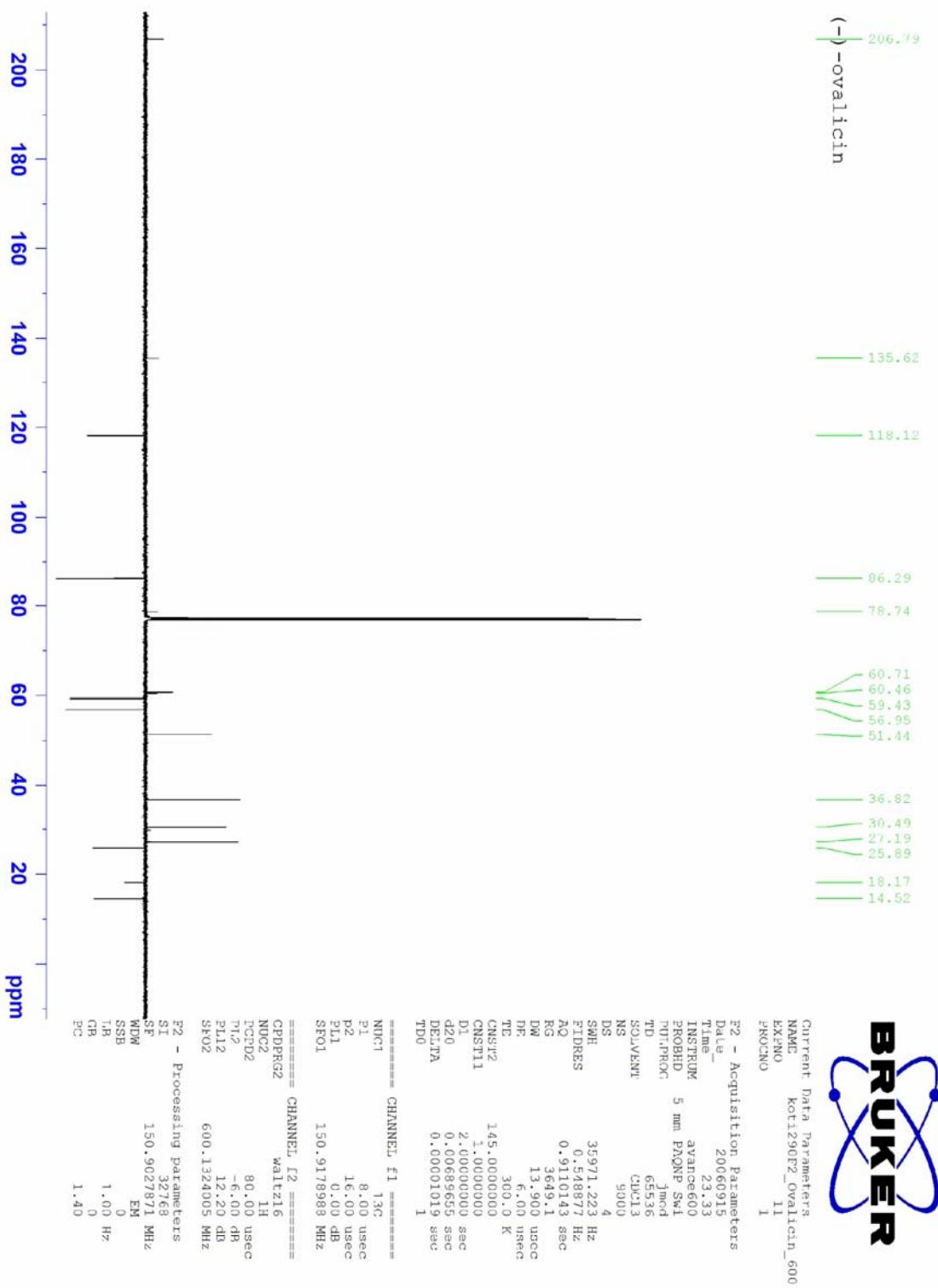
compound 23


133.06
132.21
127.49
122.51


79.99
79.82
67.01
61.36
57.73
50.32

27.67
27.20
25.80
25.12
17.92
14.35




compound 24

(-)-ovalicin

