

Supporting Information © Wiley-VCH 2007

● Wilcy-VOI1 2007

69451 Weinheim, Germany

Synthesis and Stereochemical Assignment of FR252921, A Promising Immunosuppressive

J. R. Falck,* Anyu He, Hiroki Fukui, Hideyuki Tsutsui, and Akella Radha

Departments of Biochemistry and Pharmacology University of Texas Southwestern Medical Center Dallas, Texas, 75390 U.S.A.

Experimental procedures, characterization of new compounds, scanned ¹H spectra of compounds **24-27** and natural FR252921, and ORTEP illustration from the X-ray diffraction study of compound **17** are included.

General Procedures. ¹H and ¹³C spectra were recorded in CDCl₃ using tetramethylsilane as internal reference unless otherwise stated. The Michigan State University Mass Spectroscopy Facility provided high-resolution mass spectral analyses. All reactions were maintained under an argon atmosphere. Anhydrous solvents were freshly distilled from sodium benzophenone ketyl, except for CH₂Cl₂, which was distilled from CaH₂. Extracts were dried over anhydrous Na₂SO₄ and then filtered prior to removal of all volatiles under reduced pressure.

$$C_7H_{15}$$
 CO_2Et

Ethyl 2-methyldodeca-2(*E*),4(*E*)-dienoate (2). Commercial ethyl 2-(diethoxyphosphoryl)propionate (15.7 mL, 71.9 mmol) was added to a suspension of NaH (60% suspension in oil, 3.14 g, 78.4 mmol) in dry THF (200 mL) at 0 °C. After 1 h, the generation of H₂ gas ceased and a solution of dec-2(*E*)-enal (1) (12.0 mL, 65.3 mmol) in THF (10 mL) was added dropwise to the colorless reaction solution at 0°C. After 2 h, the reaction was quenched with water and the mixture was extracted with EtOAc (3 × 30 mL). The combined organic extracts were dried with Na₂SO₄, concentrated *in vacuo*, and the residue was purified via SiO₂ column chromatography eluting with hexane/EtOAc (10:1) to give 2 and its (2*Z*,4*E*)-isomer as a colorless oil in 92% combined yield (~12:1 2*E*,4*E*/2*Z*/4*E*). They were separated chromatographically. 2: TLC (SiO₂) hexane/EtOAc (10:1), R_f ≈ 0.53; IR (neat, NaCl) 1706 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.16 (1H, d, *J* = 12 Hz), 6.33 (1H, ddt, *J* = 15, 12, 2 Hz), 6.08 (1H, dt, *J* = 15, 7 Hz), 4.20 (2H, q, *J* = 7 Hz), 2.18 (2H, dt, *J* = 7, 7 Hz), 1.93 (3H, s), 1.47–1.39 (2H, m), 1.38–1.28 (8H, m), 0.88 (3H, t, *J* = 7 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 168.9, 143.4, 138.8, 126.1, 125.2, 60.6, 33.5, 32.0, 29.4, 29.3, 29.2, 22.8, 14.5, 14.3, 12.7. HRMS (FAB, NBA) Calcd. for C₁₅H₂₇O₂ [MH⁺] m/z 239.2011, found 239.2012.

$$C_7H_{15}$$
 CO_2Et

Ethyl 2-methyldodeca-2(*Z*),4(*E*)-dienoate (2*Z*,4*E*-2). TLC (SiO₂) hexane/EtOAc (10:1), $R_f \approx 0.61$; IR (neat, NaCl) 1706 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.11 (1H, ddt, J = 15, 12, 2 Hz), 6.40 (1H, d, J = 12 Hz), 5.91 (1H, dt, J = 15, 7 Hz), 4.22 (2H, q, J = 7 Hz), 2.15 (2H, dt, J = 7, 7 Hz), 1.94 (3H, s), 1.47–1.39 (2H, m), 1.38–1.27 (8H, m), 0.88 (3H, t, J = 7 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 168.0, 142.3, 141.0, 127.8, 124.1, 60.3, 33.2, 32.0, 29.6, 29.41, 29.36, 29.2, 22.9, 20.9, 14.5, 14.3. HRMS (FAB, NBA) Calcd. for $C_{15}H_{27}O_2$ [MH⁺] m/z 239.2011, found 239.2010.

2-Methyldodeca-2(*E*),**4**(*E*)-**dien-1-ol** (**3**). DIBAL (80.5 mL, 80.5 mmol, 1 M toluene soln) was added to a solution of ethyl 2-methyldodeca-2(*E*),4(*E*)-dienoate (**2**) (8.0 g, 33.6 mmol) in CH₂Cl₂ (150 mL) at 0°C. After 25 min, the reaction was quenched with MeOH (20 mL), poured into 1N aq. HCl (50 mL) with stirring, and extracted with CH₂Cl₂ (3 × 30 mL). The combined organic extracts were dried and concentrated in vacuo to give crude 2-methyldodeca-2(*E*),4(*E*)-dien-1-ol (**3**) in nearly quantitative yield which was used without further purification in the next step. TLC: SiO₂, hexane/EtOAc (1:1), $R_f \approx 0.50$; ¹H NMR (300 MHz, CDCl₃) δ 6.24 (1H, ddt, J = 15, 11, 1 Hz), 6.01 (1H, d, J = 11 Hz), 5.69 (1H, dt, J = 15, 7 Hz), 4.04 (2H, s), 2.11 (2H, dt, J = 7, 7 Hz), 1.77 (3H, s), 1.42–1.36 (2H, m), 1.36–1.24

(8 H, m), 0.88 (3H, t, J = 7 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 135.4, 134.8, 126.0, 125.5, 68.8, 33.2, 32.0, 29.6, 29.4, 22.8, 14.3, 14.2; HRMS (FAB, NBA) Calcd. for $C_{13}H_{24}O$ [M⁺] m/z 196.1827, found 196.1826.

2-Methyldodeca-2(*E*),**4**(*E*)-**dienal** (**4**). MnO₂ (20.6 g, Aldrich, 85% active, 237.4 mmol) was added to a mixture of 2-methyldodeca-2(*E*),**4**(*E*)-dien-1-ol (**3**) and MgSO₄ (20 g) in CH₂Cl₂ (150 mL) and shaked at room temperature. After 2 d, the reaction mixture was filtrated over Celite[®] and the filter cake was flushed with fresh CH₂Cl₂. The combined filtrate was concentrated and the residue was purified via silica gel column chromatography (hexane/EtOAc, 10:1) to give 2-methyldodeca-2(*E*),4(*E*)-dienal (**4**) (6.1 g, 93% yield over two steps) as a pale yellow oil. TLC: SiO₂, hexane/EtOAc (2:1), R_f ≈ 0.69; IR (neat, NaCl) 1693.9 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 9.42 (1H, s), 6.83 (1H, br d, *J* = 11 Hz), 6.52 (1H, ddt, *J* = 15, 11, 1 Hz), 6.25 (1H, dt, *J* = 15, 7 Hz), 2.24 (2H, dt, *J* = 7, 7 Hz), 1.83 (3H, s), 1.51–1.42 (2H, m), 1.38–1.22 (8H, m), 0.89 (3H, t, *J* = 7 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 195.4, 149.6, 146.3, 136.1, 126.0, 33.7, 32.0, 29.4, 29.3, 29.0, 22.8, 14.3, 9.6; HRMS (FAB, NBA) Calcd. for C₁₃H₂₁O [(M–1)⁺] *m/z* 193.1592 found 193.1592.

2-Methyldodeca-2(*Z***),4(***E***)-dienal.** TLC: SiO₂, hexane/EtOAc (2:1), R_f ≈ 0.72 ; ¹H NMR (300 MHz, CDCl₃) δ 10.3 (1H, s), 6.98 (1H, br dt, J = 13, 12 Hz), 6.90 (1H, dd, J = 12, 1 Hz), 6.03 (1H, dt, J = 14, 7 Hz), 2.21 (2H, dt, J = 7, 7 Hz), 1.83 (3H, s), 1.48–1.40 (2H, m), 1.38–1.24 (8H, m), 0.89 (3H, t, J = 7 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 190.6, 146.5, 144.2, 133.1, 123.3, 33.2, 31.9, 29.34, 29.28, 29.0, 22.8, 16.4, 14.2.

4(*S*)-**Benzyl-3-(2-bromoacetyl)oxazolidin-2-one** (**9**). nBuLi (48.8 mL, 122.0 mmol. 2.5 M in THF) was added dropwise to a solution of 4(*S*)-benzyloxazolidin-2-one (19.65 g, 110.9 mmol) in THF (500 mL) at -78° C. After stirring for 1 h at the temperature, 2-bromoacetyl bromide (11.6 mL, 133.1 mmol) was added to the reaction mixture and the whole was warmed room temperature. After 3 h, the reaction was quenched with sat. aq. NH₄Cl and extracted with EtOAc. The combined organic extracts were washed with brine, dried with Na₂SO₄, and concentrated in vacuo. The residue was purified via SiO₂ column chromatography (hexane/EtOAc, 3:2) to give (4*S*)-3-bromoacetyloxazolidin-2-one (26.8 g, 81%) as a pale yellow solid. TLC: SiO₂, hexane/EtOAc (2:1), R_f \approx 0.35; ¹H NMR (300 MHz, CDCl₃) δ 7.36–7.20 (5H, m), 4.73–4.65 (1H, m), 4.52 (2H, dt, J = 2, 1 Hz), 4.29–4.19 (2H, m), 3.30 (1H, dd, J = 13, 2 Hz), 2.81 (1H, dd, J = 13, 10 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 165.9, 153.0, 134.8, 129.5, 129.1, 127.5, 66.7, 55.4, 37.4, 28.5.

4(S)-Benzyl-3-(3(R)-hydroxy-4-methyltetradeca-4(E),6(E)-dienoyl)-oxazolidin-2-one (5). A solution of (*S*)-4-benzyl-3-(2-bromoacetyl)oxazolidin-2-one **(9)** (1.49 g, 5.00 mmol) and 2-methyldodeca-2(*E*),4(*E*)-dienal (777 mg, 4.00 mmol) in THF (15 mL) was added to a 0.1 M solution of SmI₂ (8.8 mL, 0.88 mmol) in THF at -86° C. After 17 h, the reaction was quenched with sat. aq. Na₂S₂O₃ and then extracted with EtOAc. The combined organic extracts were washed with sat. aq. NaHCO₃, brine, dried with Na₂SO₄, and concentrated in vacuo. The residue was purified via SiO₂ column chromatography (hexane/EtOAc, 4:1) to give 4(*S*)-benzyl-3-(3(*R*)-hydroxy-4-methyltetradeca-4(*E*),6(*E*)-dienoyl)-oxazolidin-2-one **(5)** (1.33 g, 81%) and 4(*S*)-benzyl-3-(3(*S*)-hydroxy-4-methyltetradeca-4(*E*),6(*E*)-dienoyl)-oxazolidin-2-one **(6)** (157 mg, 10%) as colorless oils. **Compound 5.** TLC: SiO₂, hexane/EtOAc (2:1), R_f ≈ 0.18; IR (neat, NaCl) 3492, 1784, 1694 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.34–7.25 (3H, m), 7.21 (2H, br d, J = 7 Hz), 6.24 (1H, br dd, J = 15, 11 Hz), 6.11 (1H, br d, J = 11 Hz), 5.71 (1H, dt, J = 15, 7 Hz), 4.71–4.67 (1H, m), 4.64–4.60 (1H, m), 4.22–4.15 (2H, m), 3.29 (1H, dd, J = 13, 3 Hz), 3.22–3.18 (2H, m), 2.91 (1H, br s), 2.78 (1H, dd, J = 13, 10 Hz), 2.10 (2H, dt, J = 7, 7 Hz), 1.80 (3H, br s) 1.40–1.24 (10H, m), 0.88 (3H, t, J = 7 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 171.9, 153.4, 135.6, 135.3, 135.2, 129.3, 2, 125.7, 125.5, 72.6, 66.2, 55.0, 41.2, 37.7, 32.9, 31.7, 29.3, 29.1, 22.6, 14.0, 12.6; HRMS (FAB, NBA) Calcd. for C₂₅H₃₅NO₄ [M⁺] m/z 413.2566, found 413.2568.

Compound 6. TLC: SiO₂, hexane/EtOAc (2:1), R_f \approx 0.24; ¹H NMR (300 MHz, CDCl₃) δ 7.35–7.25 (3H, m), 7.22–7.19 (2H, m), 6.24 (1H, br dd, J = 15, 11 Hz), 6.10 (1H, br d, J = 11 Hz), 5.70 (1H, dt, J = 15, 7 Hz), 4.72–4.65 (1H, m), 4.58 (1H, dd, J = 9, 3 Hz), 4.22–4.13 (2H, m), 3.34–3.25 (2H, m), 3.12 (1H, br s), 3.09 (2H, dd, J = 17, 3 Hz), 2.78 (2H, dd, J = 14, 9 Hz), 2.09 (2H, dt, J = 7, 7 Hz), 1.79 (3H, br s) 1.38–1.18 (10H, m), 0.88 (3H, t, J = 7 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 172.4, 153.6, 136.0, 135.2, 129.5, 129.0, 127.4, 125.9, 125.8, 73.1, 66.4, 55.2, 41.4, 37.8, 33.1, 31.9, 29.5, 29.3, 22.7, 14.2, 12.7; HRMS (FAB, NPOE) Calcd. for C₂₅H₃₅NO₄ [M⁺] m/z 413.25661, found 413.2568.

3(R)-Hydroxy-4-methyltetradeca-4(E),6(E)-dienoic acid (7). LiOH·H₂O (105 mg, 2.49 mmol) was added to a solution of 4(S)-benzyl-3-(3(R)-hydroxy-4-methyltetradeca-4(E),6(E)-dienoyl)-oxazolidin-2-one (**5**) (859 mg, 2.08 mmol) and H₂O₂ (0.94 mL of 30% soln, 8.31 mmol) in THF/water (16 mL/4 mL) at 0°C. After 3h, the reaction was quenched with aq. NaHSO₃ (pH = 5-6) and then 20% aq. citric acid was added to adjust the pH of the mixture to 3-4.

The reaction mixture was extracted with EtOAc and then the combined extracts were washed with brine, dried with Na₂SO₄, and concentration in vacuo. The residue was purified via SiO₂ column chromatography (hexanes/EtOAc/AcOH, 1:1:0.01) to give 3(R)-hydroxy-4-methyltetradeca-4(E),6(E)-dienoic acid (7) (0.50 g, 97%) as colorless oil. TLC: SiO₂, hexane/EtOAc/AcOH (50:50:1), $R_f \approx 0.26$; IR (neat, NaCl) 3406 (br), 1715 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) d 6.22 (1H, br dd, J = 15, 11 Hz), 6.07 (1H, br d, J = 11 Hz), 5.73 (1H, dt, J = 15, 7 Hz), 4.50 (1H, dd, J = 8, 4 Hz), 2.68-2.53 (2H, m), 2.10 (2H, dt, J = 7, 7 Hz), 1.75 (3H, br s), 1.42–1.22 (10 H), 0.88 (3H, t, J = 7 Hz); ¹³C NMR (75 MHz, CDCl₃) d177.2, 136.4, 134.6, 126.3, 125.7, 73.3, 40.1, 33.2, 32.0, 29.5, 29.4, 22.8, 14.2, 12.5; HRMS (FAB, NBA) Calcd. for $C_{15}H_{26}O_3$ [M⁺] m/z 254.1882 found, 254.1881.

3(*S*)-Hydroxy-4-methyltetradeca-4(*E*),6(*E*)-dienoic acid (8). HRMS (FAB, NBA) Calcd. for $C_{15}H_{26}O_3$ [M⁺] m/z 254.18820, found 254.1881.

tert-Butyldimethyl(prop-2-ynyloxy)silane. To a solution of 2-propynol (44.1 mL, 0.758 mol) in CH₂Cl₂ (300 mL) was added *tert*-butyldimethylsilyl chloride (120 g, 0.796 mol) and imidazole (103.2g, 1.516 mol) at 0°C. After 1h, the reaction mixture was washed with water, dried over Na₂SO₄, and was concentrated in vacuo. Distillation of the residue gave *tert*-butyldimethyl(prop-2-ynyloxy)silane as colorless oil (95°C/155 mmHg, quantitative yield). TLC: SiO₂, hexane/EtOAc (10:1), $R_f \approx 0.55$; ¹H NMR (300 MHz, CDCl₃) δ 4.31 (2H, d, J = 2 Hz), 2.39 (1H, t, J = 2 Hz), 0.91 (9H, s), 0.131 (6H, s); ¹³C NMR (75 MHz, CDCl₃) δ 82.5, 73.1, 51.6, 25.9, 18.4, –5.0.

TBSO_ \

1(*E*)-iodo-3-*tert*-butyldimethylsilyloxy)propene. A solution of *tert*-butyldimethyl(prop-2-ynyloxy)silane (11.1 g, 65.2 mmol) in THF (30 mL) was added to a suspension of bis(cyclopentadienyl)zirconium(IV) chloride hydride (18.5 g, 71.7 mmol) in THF (250 mL) at room temperature. After 1 h, the now yellow reaction mixture was cooled to 0°C and I₂ (24.8 g, 97.8 mmol) was added. Following another 1 h, the reaction was quenched with aq. Na₂S₂O₃, diluted with toluene, filtered through Celite, and the filtrate was extracted with toluene. The combined organic extracts were washed with brine, dried with Na₂SO₄, and concentration in vacuo. The residue was purified via SiO₂ column chromatography (hexanes/EtOAc, 10:1) to afford 1(*E*)-iodo-3-*tert*-butyldimethylsilyloxy)propene as a pale yellow oil (13.1 g, 67%). TLC: SiO₂, hexane/EtOAc (20:1), R_f ≈ 0.63; ¹H NMR (300 MHz, CDCl₃) δ 6.61 (1H, dt, J = 14, 5 Hz), 6.29 (1H, dt, J = 14, 2 Hz), 4.11 (2H, dd, J = 5, 2 Hz), 0.91 (9H, s), 0.07 (6H, s); ¹³C NMR (75 MHz, CDCl₃) δ 145.1, 76.1, 65.5, 26.1, 18.5, -5.2.

But-3-ynyl 4-methylbenzenesulfonate (**10**). *p*-Toluenesulfonyl chloride (136 g, 0.713 mol) was added to a solution of 3-butynol (50 g, 0.713 mol), triethylamine (109 mL, 0.784 mol), and 4-dimethylaminopyridine (87 mg, 0.713 mmol) in CH₂Cl₂ (500 mL) at 0°C. After 3 h, the reaction was quenched with H₂O, extracted with CH₂Cl₂, and the combined organic extracts were dried with Na₂SO₄ and concentrated in vacuo. Purification of the residue via SiO₂ column chromatography (hexanes/EtOAc, 1:1) gave but-3-ynyl 4-methylbenzenesulfonate (**10**) as a pale yellow oil (nearly quantitatively). TLC: SiO₂, hexane/EtOAc (2:1), R_f ≈ 0.38; IR (neat, NaCl) 3292.5 cm⁻¹; ¹H NMR (300 MHz,CDCl₃) δ 7.81 (2H, dt, J = 8, 2 Hz), 7.34 (2H, br d, J = 8 Hz), 4.11 (2H, t, J = 7 Hz), 2.56 (2H, dt J = 7, 3 Hz), 2.46 (3H, s), 1.98 (1H, t, J = 3 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 145.2, 132.9, 130.1, 128.2, 78.6, 71.0, 67.6, 21.8, 19.6.

7-(*tert*-Butyldimethylsilyloxy)hepta-3(*E*),5(*E*)-dienyl 4-methylbenzenesulfonate (11). A solution of but-3-ynyl 4-methylbenzenesulfonate (10) (10.5 g, 46.6 mmol) in THF (10 mL) was added to a suspension of bis(cyclopentadienyl)zirconium(IV) chloride hydride (12.9 g, 50.0 mmol) in THF (110 mL) at room temperature. After 1.5 h, Pd(OAc)₂ (190 mg, 0.848 mmol), 2-dicyclohexylphosphino-2'-(*N*,*N*-dimethylamino)biphenyl (467 mg, 1.188 mmol), and 1(*E*)-iodo-3-*tert*-butyldimethylsilyloxy)propene (12.9 g, 42.4 mmol) in THF (10 mL) were added to the yellow mixture at room temperature. After 10 h, the reaction was quenched with H₂O and extracted with EtOAc. The combined organic extracts were dried with Na₂SO₄, concentrated in vacuo, and the residue was purified via SiO₂ column chromatography (hexane/EtOAc, 5:1) to give 7-(*tert*-butyldimethylsilyloxy)hepta-3(*E*),5(*E*)-dienyl 4-methylbenzenesulfonate (11) as a pale yellow oil (16.5 g, 98%). TLC: SiO₂, hexane/EtOAc (4:1), R_f ≈ 0.46; IR (neat, NaCl) 1599 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.78 (2H, d, *J* = 8 Hz), 7.34 (2H, d, *J* = 8 Hz), 6.01–6.13 (2H), 5.67 (1H, dt, *J* = 15, 5 Hz), 5.46 (1H, dt, *J* = 15, 5 Hz), 4.19 (2H, br d, *J* = 5 Hz), 4.04 (2H, t, *J* = 7 Hz), 2.45 (3H, s), 2.42 (2H, dt, *J* = 7, 7 Hz), 0.91 (9H, s), 0.07 (6H, s); ¹³C NMR (75 MHz, CDCl₃) δ 144.8, 133.1, 132.2, 129.9, 129.2, 128.0, 126.8, 118.3, 69.7, 63.4, 32.1, 26.0, 21.7, 18.5, -5.1; HRMS (FAB, NBA) Calcd. for C₂₀H₃₃O₄SiS [MH⁺] *m/z* 397.1869, found 397.1868.

1-(*tert*-Butyldimethylsilyloxy)-7-azidohepta-3(*E*),5(*E*)-diene. NaN₃ (1.74 g, 26.7 mmol) was added to a solution of 7-(*tert*-butyldimethylsilyloxy)hepta-3(*E*),5(*E*)-dienyl 4-methylbenzenesulfonate (**11**) (5.3 g, 13.4 mmol) in DMF (40 mL) at room temperature. After 14 h, the reaction was quenched with H₂O and extracted with toluene. The combined organic extracts were dried over Na₂SO₄ and concentrated in vacuo. The residue was purified via SiO₂ column chromatography (hexane/EtOAc, 4:1) to give 1-(*tert*-butyldimethylsilyloxy)-7-azidohepta-3(*E*),5(*E*)-diene as a pale yellow oil (3.22 g, 90%). TLC: SiO₂, hexane/EtOAc (4:1), R_f ≈ 0.59; IR (neat, NaCl) 2099 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 6.26–6.11 (2H, m), 5.76–5.57 (2H, m), 4.21 (2H, d, *J* = 5 Hz), 3.32 (2H, t, *J* = 7 Hz), 2.38 (2H, dt, *J* = 7, 7 Hz), 0.92 (9H, s), 0.08 (6H, s); ¹³C NMR (75 MHz, CDCl₃) δ 132.7, 132.2, 129.5, 129.0, 63.6, 51.1, 32.4, 26.2, 18.6, –5.0; HRMS (FAB, NBA) Calcd. for C₁₃H₂₄N₃OSi [(M−1)⁺] *m/z* 266.1689, found 266.1687.

7-Azidohepta-2(*E*),4(*E*)-dien-1-ol. 1*M* solution of *tetra-n*-butylammonium fluoride in THF (43.4 mL, 43.4 mmol) was added to a solution of 1-(*tert*-butyldimethylsilyloxy)-7-azidohepta-3(*E*),5(*E*)-diene (8.3 g, 31.0 mmol) in THF (150 mL) at 0 °C. After 1 h, the reaction was quenched with water and extracted with EtOAc. The combined organic extracts were dried over Na₂SO₄ and concentrated in vacuo to give 7-azidohepta-2(*E*),4(*E*)-dien-1-ol which was used without further purification in the next step. TLC: SiO₂, hexane/EtOAc (4:1), R_f ≈ 0.11; IR (neat, NaCl) 3342, 2099 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 6.12–6.28 (2H, m), 5.79 (1H, dt, *J* = 14, 6 Hz), 5.66 (1H, dt, *J* = 14, 7 Hz), 4.18 (2H, br d, *J* = 6 Hz), 3.32 (2H, t, *J* = 7 Hz), 2.39 (2H, dt, *J* = 7, 7 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 132.5, 131.4, 131.2, 130.1, 63.5, 51.0, 32.4.

7-Azidohepta-2(*E*),**4**(*E*)-**dienal** (**12**). MnO₂ (15.3 g, 88% active, 155 mmol) was added to a mixture of 7-azidohepta-2(*E*),4(*E*)-dien-1-ol and MgSO₄ (25 g) in CH₂Cl₂ (400 mL) at room temperature. After 14 h on a mechanical shaker, the reaction mixture was filtered over Celite, and concentrated in vacuo. The residue was purified via SiO₂ column chromatography (hexanes/EtOAc, 5:1) to give 7-azidohepta-2(*E*),4(*E*)-dienal (**12**) as a pale yellow oil (4.3 g, 92% over two steps). TLC: SiO₂, hexane/EtOAc (4:1), $R_f \approx 0.22$; IR (neat, NaCl) 2099.1, 1681.8, 1643.1 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 9.31 (1H, d, J = 8 Hz), 6.90 (1H, dd, J = 15, 11 Hz), 6.25–6.15 (1H, m), 6.02 (1H, dt, J = 15, 7 Hz), 5.86 (1H, ddd, J = 15, 8, 1 Hz), 3.19 (2H, t, J = 7 Hz), 2.39 (2H, ddt, J = 7, 7, 1 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 193.1, 151.2, 141.1, 130.43, 130.38, 49.4, 32.0; HRMS (FAB, NBA) Calcd. for $C_7H_{10}N_3O$ [MH⁺] m/z 152.0824, found 152.0825.

$$N_3$$
 CO_2 t Bu

tert-Butyl 9-azido-nona-2(*E*),4(*E*),6(*E*)-trienoate. tert-Butyl *P*,*P*-dimethylphosphonoacetate (3.5 mL, 17.7 mmol) was added to a suspension of NaH (739 mg of 60% oil suspension, 18.5 mmol) in THF (250 mL) at 0 °C with gas evolution. After 1 h, a solution of 7-azidohepta-2(*E*),4(*E*)-dienal (12) (2.43 g, 16.1 mmol) in THF (20 mL) was added at 0 °C. The reaction was stirred for 1h and then quenched with water. The mixture was extracted with EtOAc and the combined organic extracts were dried over Na₂SO₄, concentrated, and the residue was purified via SiO₂ column chromatography (hexane/EtOAc, 4:1) to give *tert*-butyl 9-azido-nona-2(*E*),4(*E*),6(*E*)-trienoate as a pale yellow oil (3.79g, 95%). TLC: SiO₂, hexane/EtOAc (4:1), R_f ≈ 0.43; IR (neat, NaCl) 2099, 1704 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.19 (1H, dd, *J* = 15, 11 Hz), 6.50 (1H, dd, *J* = 15, 11 Hz), 6.29–6.19 (2H, m), 5.85 (1H, dt, *J* = 16, 7 Hz), 5.81 (1H, d, *J* = 16 Hz), 3.36 (2H, t, *J* = 7Hz), 2.44 (2H, dt, *J* = 7, 7Hz), 1.49 (9H, s); ¹³C NMR (75 MHz, CDCl₃) δ 166.6, 143.5, 139.6, 134.1, 132.7, 129.6, 123.2, 80.4, 50.8, 32.6, 28.4; HRMS (FAB, NBA) Calcd. for C₁₃H₁₉N₃O₂ [M⁺] m/z 249.1477, found 249.1478.

tert-butyl-9-amino-nona-2(E),**4**(E),**6**(E)-**trienoate** (13). Triphenylphosphine (4.23 g, 16.12 mmol) was added to a solution of *tert*-butyl 9-azidonona-2(E),**4**(E),**6**(E)-trienoate (3.35 g, 13.44 mmol) in THF/H₂O (4:1; 100 mL) at rt.

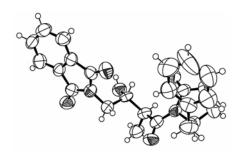
After 20 h, the reaction was quenched with 1N HCl (pH~1-2), washed with toluene, basified with 10% NaOH (pH~11) and extracted with CH₂Cl₂. The combined organic extracts were dried over Na₂SO₄ and then concentrated to give *tert*-butyl 9-amino-nona-2(*E*),4(*E*),6(*E*)-trienoate (**13**) (2.78 g, 93%). TLC: SiO₂, CH₂Cl₂/MeOH (20:1), R_f \approx 0.03; ¹H NMR (400 MHz, CDCl₃) δ 7.19 (1H, dd, J = 15, 12 Hz), 6.50 (1H, dd, J = 15, 11 Hz), 6.21 (1H, dd, J = 15, 11 Hz) 6.18 (1H, dd, J = 15, 10 Hz), 5.86 (1H, dt, J = 15, 7 Hz), 5.78 (1H, d, J = 15 Hz), 2.77 (2H, t, J = 7 Hz), 2.27 (2H, dt, J = 7, 7 Hz), 1.48 (9H, s), 1.15 (2H, br s); ¹³C NMR (100 MHz, CDCl₃) δ 166.0, 143.2, 139.7, 136.5, 131.4, 128.1, 122.1, 79.6, 41.1, 36.9, 27.8; HRMS (FAB, NBA) Calcd. for C₁₃H₂₂NO₂ [MH⁺] m/z 224.16505, found 224.1650.

4(*R***)-Benzyl-3-propionyloxazolidin-2-one (21).** *n*-BuLi (62.1 mL of 2.5 M THF soln, 155.2 mmol) was added to a solution of 4(*R*)-benzyl-3-propionyloxazolidin-2-one (25 g, 141.1 mmol) in THF (400 mL) at -78 °C. After 1 h, propanoyl chloride (14.8 mL, 169.3 mmol) was added to the reaction mixture at the same temperature. Then, the reaction was warmed to 0 °C and stirred for an additional 1 h. The reaction was quenched with saturated aq. NH₄Cl and extracted with EtOAc. The combined organic extracts were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The residue was purified via SiO₂ column chromatography (hexanes/EtOAc, 4:1) to give 4(*R*)-benzyl-3-propionyloxazolidin-2-one (21) (32 g, 97%) as a white needle. TLC: SiO₂, hexane/EtOAc (4:1), R_f ≈ 0.29; ¹H NMR (300 MHz, CDCl₃) δ 7.37–7.20 (5H, m), 4.71–4.64 (1H, m), 4.24–4.14 (2H, m), 3.31 (1H, dd, *J* = 14, 3 Hz), 3.07–2.85 (2H, m), 2.77 (1H, dd, *J* = 13, 10 Hz), 1.21 (3H, t, *J* = 7 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 173.9, 153.5, 135.4, 129.4, 128.9, 127.2, 66.2, 55.0, 37.8, 29.1, 8.3.

2-(1,3-Dioxoisoindolin-2-yl)acetaldehyde (15). A suspension of 2-(1,3-dioxoisoindolin-2-yl)-ethanol (16.9 g, 88.6 mmol) and IBX (62 g, 221 mmol) in EtOAc (200 mL) was refluxed. After 12 h, the mixture was filtrated with Celite and then concentrated. The residue was dissolved in CH₂Cl₂ and filtered to remove IBX. The filtrate was concentrated to give 2-(1,3-dioxoisoindolin-2-yl)acetaldehyde (15) (16 g, 96%) as a white solid. TLC: SiO₂, hexane/EtOAc (1:1), $R_f \approx 0.35$; ¹H NMR (300 MHz, CDCl₃) δ 9.67 (1H, s), 7.90 (2H, dd, J = 5, 3 Hz), 7.77 (2H, dd, J = 5, 3 Hz), 4.57 (2H, s); ¹³C NMR (75 MHz, CDCl₃) δ 193.8, 167.7, 134.5, 132.1, 123.8, 47.5.

2-((2*R***,3***R***)-4-((***R***)-4-Benzyl-2-oxooxazolidin-3-yl)-2-hydroxy-3-methyl-4-oxobutyl)isoindoline-1,3-dione (16). 1 M solution of dibutylboran trifluoromethansulfonate (5.5 mL, 5.5 mmol) in CH₂Cl₂ was added to a solution of (***S***)-4-benzyl-3-propionyloxazolidin-2-one (1.16 g, 5.0 mmol) in CH₂Cl₂ (15 mL) at 0°C followed by** *i***-Pr₂NEt (1.05 mL, 6.0 mmol). After stirred for 45min, the reaction mixture was cooled to -78^{\circ}C for 10 min. Then, a solution of 2-(1,3-dioxoisoindolin-2-yl)-ethanal (1.04 g, 5.5 mmol) in CH₂Cl₂ (5 mL) was added to the reaction mixture at -78^{\circ}C. The reaction was stirred for 1 h at -78^{\circ}C, then warmed up to 0°C and stirred for another 1 h. After quenched with pH = 7 buffer solution, the reaction mixture was extracted with CH₂Cl₂ and the combined organic layer was dried with Na₂SO₄ and concentrated. The residue was purified with silica-gel column chromatography (hexenes/EtOAc 2:1) to give 2-((2***R***,3***R***)-4-((***R***)-4-benzyl-2-oxooxazolidin-3-yl)-2-hydroxy-3-methyl-4-oxobutyl)isoindoline-1,3-dione (16) (1.9 g, 90%) as a pale yellow foam. TLC: SiO₂, hexane/EtOAc (1:1), R_f ≈ 0.35; [α]₂₀ = +79.6 (c = 1, CHCl₃); H NMR (400 MHz, CDCl₃) δ 7.84 (2H, dd, J = 5, 3 Hz), 7.72 (2H, dd, J = 5, 3 Hz), 7.35–7.28 (3H, m), 7.21 (2H, br d, J = 7 Hz), 4.79–4.73 (1H, m), 4.33–4.27 (2H, m), 4.18 (1H, dd, J = 9, 3 Hz), 4.01 (1H, dd, J = 14, 6 Hz), 3.84–3.74 (2H), 3.24 (2H, dd, J = 14, 3 Hz), 3.05 (2H, d, J = 4 Hz), 2.80 (2H, dd, J = 14, 9 Hz), 1.40 (3H, d, J = 7 Hz); ^{13}C NMR (75 MHz, CDCl₃) δ 176.1, 169.2, 153.2, 135.3, 134.4, 132.0, 129.6, 129.1, 127.6, 123.7, 70.8, 66.5, 55.3, 41.7, 40.8, 38.1, 12.9.**

2-((2R,3S)-4-((R)-4-Benzyl-2-oxooxazolidin-3-yl)-2-hydroxy-3-methyl-4-oxobutyl)isoindoline-1,3-dione (17). 1 M solution of dibutylborane trifluoromethansulfonate (42.9 mL, Aldrich, 1M in CH₂Cl₂, 42.9 mmol) was added to a solution of (R)-4-benzyl-3-propionyloxazolidin-2-one (5 g, 21.4 mmol) in CH₂Cl₂ (100 mL) at 0°C followed by *i*-Pr₂NEt (3.73 mL, 21.4 mmol). After stirred for 40 min, the reaction mixture was cooled to -78°C for 10 min. Then, a solution of 2-(1,3-dioxoisoindolin-2-yl)acetaldehyde (3.86 g, 20.4 mmol) in CH₂Cl₂ (10 mL) was added to the reaction mixture at -78°C. The reaction was stirred for 0.5 h at -78°C, then warmed up to 0°C and stirred for another 1 h. After quenched with pH = 7 buffer solution, the reaction mixture was extracted with CH₂Cl₂ and the combined organic layer was dried with Na₂SO₄ and concentrated. The residue was purified with silica-gel column chromatography (Hex/EtOAc 2:1) to give 2-((2R,3S)-4-((R)-4-benzyl-2-oxooxazolidin-3-yl)-2-hydroxy-3-methyl-4-oxobutyl)isoindoline-1,3-dione (17) (3.8 g, 44%) as white solid and 2-((2S,3S)-4-((R)-4-benzyl-2-oxooxazolidin-3-yl)-2-hydroxy-3-methyl-4-oxobutyl)isoindoline-1,3-dione (18) (4.0 g, 46%) [non-Evans syn] as pale yellow foam.


Column purified mixture of the two isomers can also be separated by carefully recrystallization.

Most of the mixture was first dissolved in small amount of warm ethanol (40-50°C), CH₂Cl₂ was added at same temperature to dissolve all the solid. Most CH₂Cl₂ was then evaporated slowly at 50°C. The solution was cooled to rt,

then left in freezer (-30°C) . 2-((2R,3S)-4-((R)-4-benzyl-2-oxooxazolidin-3-yl)-2-hydroxy-3-methyl-4-oxobutyl) isoindoline-1,3-dione (17) was recrystallized out and left the other isomer (18) in the mother liquor.

2-((2*R***,3***S***)-4-((***R***)-4-Benzyl-2-oxooxazolidin-3-yl)-2-hydroxy-3-methyl-4-oxobutyl)isoindoline-1,3-dione (17). White solid, mp 179.5-181.6°C; TLC: SiO₂, hexane/EtOAc (1:1), R_f \approx 0.40; [\alpha]_{20} = -11.2 (c = 1, CHCl₃); IR (neat, NaCl) 3432.0, 1773.7, 1708.3, 1638.1 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) \delta 7.87 (2H, dd, J = 5, 3 Hz), 7.36–7.26 (5H, m), 4.70–4.65 (1H, m), 4.18–4.17 (2H, m), 4.07–3.87 (4H, m), 3.51 (1H, d, J= 8 Hz), 3.50 (1H, dd, J = 14, 3 Hz), 2.83 (1H, dd, J = 14, 10 Hz), 1.35 (3H, d, J = 7 Hz); ¹³C NMR (75 MHz, CDCl₃) \delta 176.3, 168.8, 153.4, 135.7, 134.3, 132.1, 129.6, 129.1, 127.4, 123.6, 73.1, 66.2, 55.9, 42.0, 40.3, 37.7, 14.6. HRMS (FAB, NBA) Calcd. for C_{23}H_{23}N_2O_6 [MH⁺] m/z 423.1556, found 423.1553.**

Absolute structure of compound 17 was confirmed by X-Ray:

2-((2S,3S)-4-((R)-4-benzyl-2-oxooxazolidin-3-yl)-2-hydroxy-3-methyl-4-oxobutyl)isoindoline-1,3-dione (18). TLC: SiO₂, hexane/EtOAc (1:1), $R_f \approx 0.38$; $[\alpha]_{20} = +1.2$ (c = 1, CHCl₃); H NMR (500 MHz, CDCl₃) δ 7.86 (2H, dd, J = 6, 3 Hz), 7.72 (2H, dd, J = 6, 3 Hz), 7.36–7.24 (5H, m), 4.69–4.64 (1H, m), 4.37–4.33 (1H, m), 4.18–4.17 (2H, m), 3.97 (1H, dd, J= 14, 7 Hz), 3.91 (1H, dd, J= 7, 5 Hz), 3.85 (1H, dd, J= 14, 5 Hz), 3.43 (1H, dd, J= 13, 4 Hz), 3.10 (1H, d, J= 5 Hz), 2.79 (1H, dd, J= 14, 10 Hz), 1.35 (3H, d, J= 7 Hz); 13 C NMR (75 MHz, CDCl₃) δ 175.9, 169.0, 153.2, 135.6, 134.3, 132.1, 129.6, 129.1, 127.5, 123.6, 70.3, 66.4, 55.7, 41.5, 40.7, 38.0, 11.6.

The stereochemistry of the syn isomers were confirmed by comparison of J_{2-3} values of ¹H NMR of corresponding methyl ester, obtained by treatment with NaOMe, with reported values ¹:

-

¹ P. O.Gallagher, C. S. P.McErlean, M. F.Jacobs, D. J.Watters, W. Kitching, *Tetrahedron. Lett.* **2002**, *43*, 531-535.

2-((2R,3S)-4-((R)-4-Benzyl-2-oxooxazolidin-3-yl)-2-(tert-butyldimethylsilyloxy)-3-methyl-4-

oxobutyl)isoindoline-1,3-dione. TBSOTf (2.409 mL, 9.114 mmol) was added to a solution of 2-((2*R*,3*S*)-4-((*R*)-4-benzyl-2-oxooxazolidin-3-yl)-2-hydroxy-3-methyl-4-oxobutyl)isoindoline-1,3-dione (3.5 g, 8.285 mmol) in CH₂Cl₂ (80 mL) at 4°C. After stirred for 9 h at 4°C, the reaction was quenched with pH 7 buffer and extracted with CH₂Cl₂. The combined organic extracts were washed with 20% aq. citric acid and brine. Then, dried over Na₂SO₄ and concentrated in vacuo. The residue was purified via SiO₂ column chromatography (hexanes/EtOAc 2:1) to give 2-((2*R*,3*S*)-4-((*R*)-4-benzyl-2-oxooxazolidin-3-yl)-2-(tert-butyldimethylsilyloxy)-3-methyl-4-oxobutyl)isoindoline-1,3-dione (4.42 g, 99%) as white foam. TLC: SiO₂, hexane/EtOAc (1:1), R_f ≈ 0.63; [α]₂₀ = +13.2 (c = 1, CHCl₃); IR (neat, NaCl) 1779, 1716 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.84 (2H, dd, *J* = 5, 3 Hz), 7.70 (2H, dd, *J* = 5, 3 Hz), 7.36–7.26 (5H, m), 4.75–4.70 (1H, m), 4.62 (1H, ddd, *J* = 9, 4, 3 Hz), 4.24–4.20 (2H, m), 4.10 (1H, dd, *J* = 7, 4 Hz), 3.99 (1H, dd, *J* = 14, 10 Hz), 3.54 (1H, dd, *J* = 14, 3 Hz), 3.44 (1H, dd, *J* = 14, 3 Hz), 2.86 (1H, dd, *J* = 14, 11 Hz), 1.34 (3H, d, *J* = 7 Hz), 0.79 (9H, s), 0.11 (3H, s), -0.22 (3H, s); ¹³C NMR (75Hz, CDCl₃) δ 173.6, 168.2, 153.0, 135.6, 134.0, 132.0, 129.4, 128.9, 127.2, 123.1, 68.2, 66.3, 55.5, 43.4, 40.5, 38.0, 25.6, 17.7, 9.2, -4.8, -5.4; HRMS (FAB, NBA) Calcd. for C₂₉H₃₇N₂O₆Si [MH⁺] m/z 537.2421, found 537.2425.

2-((2S,3S)-4-((R)-4-Bbenzyl-2-oxooxazolidin-3-yl)-2-(tert-butyldimethylsilyloxy)-3-methyl-4-

oxobutyl)isoindoline-1,3-dione. TLC: SiO₂, hexane/EtOAc (1:1), R_f ≈ 0.60; [α]₂₀ = +18.0 (c = 1, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.84 (2H, dd, J = 5, 3 Hz), 7.70 (2H, dd, J = 5, 3 Hz), 7.36–7.26 (5H, m), 4.75–4.70 (1H, m), 4.62 (1H, ddd, J = 9, 4, 3 Hz), 4.24–4.20 (2H, m), 4.10 (1H, dd, J = 7, 4 Hz), 3.99 (1H, dd, J = 14, 10 Hz), 3.54 (1H, dd, J = 14, 3 Hz), 3.44 (1H, dd, J = 14, 3 Hz), 2.86 (1H, dd, J = 14, 11 Hz), 1.34 (3H, d, J = 7 Hz), 0.79 (9H, s), 0.11 (3H, s), -0.22 (3H, s); ¹³C NMR (75 MHz, CDCl₃) δ 173.6, 168.2, 153.0, 135.6, 134.0, 132.0, 129.4, 128.9, 127.2, 123.1, 68.2, 66.3, 55.5, 43.4, 40.5, 38.0, 25.6, 17.7, 9.2, -4.8, -5.4.

(2*S*,3*R*)-3-(tert-Butyldimethylsilyloxy)-4-(1,3-dioxoisoindolin-2-yl)-2-methylbutanoic acid (19). LiOH·H₂O (340 mg. 8.105 mmol) was added to a solution of 2-((2*R*,3*S*)-4-((*R*)-4-benzyl-2-oxooxazolidin-3-yl)-2-(tert-butyldimethylsilyloxy)-3-methyl-4-oxobutyl)isoindoline-1,3-dione (4.35 g, 8.105 mmol) and H₂O₂ (2.76 mL, 30% w/v, 24.32 mmol) in THF at 4°C. After 17h, the reaction was quenched with aq. NaHSO₃ solution (to pH~3) then extracted with EtOAc. The combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated in vacuo. The residue was purified with SiO₂ column chromatography (hexanes/EtOAc 1:1) to give (2S,3R)-3-(tert-butyldimethylsilyloxy)-4-(1,3-dioxoisoindolin-2-yl)-2-methylbutanoic acid (19) (1.9 g, 89%) as white solid. mp 161-165°C; TLC: SiO₂, hexane/EtOAc (1:1), R_f ≈ 0.29; [α]₂₀ = -9.4 (c = 1, CHCl₃); IR (neat, NaCl) 3500-2400 (br), 1776, 1716 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.83 (2H, dd, *J* = 5, 3 Hz), 7.70 (2H, dd, *J* = 5, 3 Hz), 4.40 (1H, ddd, *J* = 10, 5, 4 Hz), 3.79 (2H, dd, *J* = 7, 6 Hz), 2.69 (1H, dd, *J* = 7, 5 Hz), 1.26 (3H, d, *J* = 7 Hz), 0.81 (9H, s), 0.05 (3H, s), -0.11 (3H, s); ¹³C NMR (75 MHz, CDCl₃) δ 178.9, 168.4, 134.2, 132.2, 123.5, 70.3, 44.6, 41.1, 25.8, 17.9, 11.3, -4.6, -4.9; HRMS (FAB, NBA) Calcd. for C₁₉H₂₈NO₅Si [MH⁺] m/z 378.1737, found 378.1734.

(2*S*,3*S*)-3-(tert-Butyldimethylsilyloxy)-4-(1,3-dioxoisoindolin-2-yl)-2-methylbutanoic acid (20). White solid, mp 184-185°C; TLC: SiO₂, hexane/EtOAc (1:1), $R_f \approx 0.31$; $[\alpha]_{20} = +39.3$ (c = 0.56, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.85 (2H, dd, J = 5, 3 Hz), 7.73 (2H, dd, J = 5, 3 Hz), 4.40 (1H, ddd, J = 7, 7, 3 Hz), 3.76 (2H, dd, J = 7, 7 Hz), 2.55-2.49 (1H, m), 1.28 (3H, d, J = 7 Hz), 0.84 (9H, s), 0.04 (3H, s), -0.02 (3H, s); ¹³C NMR (75 MHz, CDCl₃) δ 180.3, 168.4, 134.3, 132.1, 123.6, 70.2, 43.2, 41.5, 25.8, 18.0, 9.7,

(2E,4E6E)-tert-Butyl 9-((2S,3R)-3-(tert-butyldimethylsilyloxy)-4-(1,3-dioxoisoindolin-2-yl)-2methylbutanamido)nona-2,4,6-trienoate. 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide (657 mg, Alfa Aesar, 4.23 mmol) and 1-hydroxybenzotriazote (484 mg, Aldrich, 3.58 mmol) were added to a solution of (2S,3R)-3-(tertbutyldimethylsilyloxy)-4-(1,3-dioxoisoindolin-2-yl)-2-methylbutanoic acid (1.229 g, 3.26 mmol) and (2E,4E,6E)-tertbutyl 9-aminonona-2,4,6-trienoate (0.80 g, 3.58 mol) in CH₂Cl₂ (25 mL) at rt. After 2h, the reaction was quenched with aq. 20% citric acid solution and extracted with CH₂Cl₂. The combined organic extracts were washed with sat. Na₂CO₃ and brine, dried over Na₂SO₄ and concentrated in vacuo. The residue was purified with SiO₂ column chromatography (hexanes/EtOAc 1:1) to give (2E, 4E, 6E)-tert-butyl 9-((2S,3R)-3-(tert-butyldimethylsilyloxy)-4-(1,3-dioxoisoindolin-2-yl)-2-methylbutanamido)nona-2,4,6-trienoate as a pale yellow foam (1.85 g, 97%). TLC: SiO₂, $hexane/EtOAc~(1:1),~R_f\approx 0.34;~[\alpha]_{20}=-23.0~(c=1,~CHCl_3);~IR~(neat,~NaCl)~3356,~1775,~1715.9~cm^{-1};~^{1}H~NMR~(400,0),~(1:1),~(1$ MHz, CDCl₃) δ 7.85 (2H, dd, J = 6, 3 Hz), 7.73 (2H, dd, J = 6, 3 Hz), 7.17 (1H, dd, J = 15, 11 Hz), 6.83 (1H, br t, J = 15, 11 Hz 6Hz), 6.51 (1H, dd, J = 15, 11 Hz), 6.24 (1H, dd, J = 15, 11 Hz), 6.20 (1H, dd, J = 15, 11 Hz), 5.92 (1H, dt, J = 15, 7 Hz), 5.77 (1H, d, J = 15 Hz), 4.16 (1H, td, J = 7, 3 Hz), 3.79 (1H, dd, J = 6, 6 Hz), 3.50-3.42 (1H, m), 3.36-3.30 (1H, m), 2.45-2.36 (3H, m), 1.48 (9H, s), 1.24 (3H, d, J = 7 Hz), 0.88 (9H, s), 0.09 (3H, s), -0.04 (3H, s); 13 C NMR (100 MHz, CDCl₃) δ 173.5, 168.5, 166.7, 143.7, 140.1, 136.0, 134.4, 132.3, 132.1, 129.0, 123.6, 122.8, 80.3, 71.6, 44.8, 42.0, 38.6, 33.3, 28.4, 26.0, 18.1, 16.0, -4.3, -4.6; HRMS (FAB, NBA) Calcd. for $C_{32}H_{47}N_2O_6Si$ [MH⁺] m/z583.32035, found 583.3201.

9-((2*S***,3***S***)-3-(tert-butyldimethylsilyloxy)-4-(1,3-dioxoisoindolin-2-yl)-2-methylbutanamido)nona-2,4,6-trienoate**. TLC: SiO₂, hexane/EtOAc (1:1), R_f ≈ 0.35; ¹H NMR (300 MHz, CDCl₃) δ 7.83 (2H, dd, J = 5, 3 Hz), 7.72 (2H, dd, J = 5, 3 Hz), 7.16 (1H, dd, J = 15, 11 Hz), 6.61 (1H, br t, J = 6 Hz), 6.51 (1H, dd, J = 15, 11 Hz), 6.21 (1H, dd, J = 15, 11 Hz), 6.19 (1H, dd, J = 15, 11 Hz), 5.91 (1H, dt, J = 15, 7 Hz), 5.75 (1H, d, J = 15 Hz), 4.20 (1H, td, J = 7, 5 Hz), 3.74 (2H, dd, J = 8, 6 Hz), 3.51-3.40 (1H, m), 3.31-3.20 (1H, m), 2.48 (1H, dd, J = 7, 5 Hz), 2.40 (2H, dd, J = 7, 7 Hz), 1.48 (9H, s)1.22 (3H, d, J = 8 Hz), 0.80 (9H, s), -0.02 (3H, s), -0.12 (3H, s); ¹³C NMR (75 MHz, CDCl₃) δ 173.1, 168.1, 166.3, 143.4, 139.9, 135.7, 134.0, 131.91, 131.89, 128.6, 123.0, 122.4, 79.9, 71.3, 44.8, 40.4, 38.5, 33.0, 28.1, 25.6, 17.6, 12.9, -4.9, -5.0.

(2*E*, 4*E*, 6*E*)-tert-Butyl 9-((2*S*,3*R*)-4-(1,3-dioxoisoindolin-2-yl)-3-hydroxy-2-methylbutanamido)nona-2,4,6-trienoate. 1.0M TBAF in THF (2.2 mL, 2.24 mmol) was added to a solution of (2*E*, 4*E*, 6*E*)-tert-butyl 9-((2*S*,3*R*)-3-(tert-butyldimethylsilyloxy)-4-(1,3-dioxoisoindolin-2-yl)-2-methylbutanamido)nona-2,4,6-trienoate (0.87 g, 1.49 mmol) and AcOH (172 μL, 2.99 mmol) in THF (30 mL) at rt. After stirred for 15h (followed by TLC), the reaction was quenched with water and extracted with EtOAc. The combined organic extracts were dried over Na₂SO₄ and concentrated in vacuo. The residue was purified with SiO₂ column chromatography (EtOAc) to give (2*E*, 4*E*, 6*E*)-tert-butyl 9-((2*S*,3*R*)-4-(1,3-dioxoisoindolin-2-yl)-3-hydroxy-2-methylbutanamido)nona-2,4,6-trienoate as white foam (0.64 g, 91%). TLC: SiO₂, hexane/EtOAc (1:1), R_f ≈ 0.07; [α]₂₀ = +6.2 (c = 1, CHCl₃); IR (neat, NaCl) 3348, 1773, 1714 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.71 (2H, br d, *J* = 3 Hz), 7.62 (1H, br d, *J* = 3 Hz), 7.04 (1H, dd, *J* = 15, 11 Hz), 6.72 (1H, b s), 6.40 (1H, dd, *J* = 15, 11 Hz), 6.16–6.04 (2H, m), 5.79 (1H, dt, *J* = 15, 7 Hz), 5.63 (1H, d, *J* = 15 Hz), 4.36(1H, br s), 3.84–3.710 (2H, m), 3.61 (2H, dd, *J* = 13, 4 Hz), 3.32–3.24 (2H, m), 2.34-2.26 (3H, m), 1.38 (9H, s) 1.20 (3H, d, *J* = 7 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 175.3, 168.9, 166.6, 143.5, 139.9, 135.4, 134.4, 132.5, 132.0, 129.1, 123.6, 122.9, 80.4, 72.5, 43.1, 42.8, 38.7, 33.2, 28.3, 16.1; HRMS (FAB, NBA) Calcd. for C₂₆H₃₃N₂O₆ [MH⁺] m/z 469.2339, found 469.2337.

9-((2S,3S)-4-(1,3-dioxoisoindolin-2-yl)-3-hydroxy-2-methylbutanamido)nona-2,4,6-trienoate. TLC: SiO₂, hexane/EtOAc (1:1), R_f ≈ 0.08; [α]₂₀ = -4.4 (c = 0.36, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ .7.80-7.76 (2H, m), 7.72-7.68 (2H, m), 7.11 (1H, dd, J = 15, 11 Hz), 6.73 (1H, t, J = 5 Hz), 6.47 (1H, dd, J = 15, 11 Hz), 6.22–6.12 (2H, m), 5.85 (1H, dt, J = 15, 7 Hz), 5.71 (1H, d, J = 15 Hz), 4.19-4.14 (2H, m), 3.81-3.70 (2H, m), 3.41–3.25 (2H, m), 3.45 (1H, dd, J = 7, 4 Hz), 2.41-2.34 (2H, m), 1.47(9H, s) 1.26 (3H, d, J = 7 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 175.2, 168.7, 166.5, 143.5, 139.8, 135.5, 134.2, 132.2, 131.9, 128.9, 123.3, 122.6, 80.2, 70.4, 43.5, 41.3, 38.5, 33.0, 28.2, 12.2.

(2E,4E,6E)-tert-Butyl 9-((2S,3R)-4-amino-3-hydroxy-2-methylbutanamido)nona-2,4,6-trienoate (22). reaction mixture of (2E,4E6*E*)-tert-butyl 9-((2S,3R)-4-(1,3-dioxoisoindolin-2-yl)-3-hydroxy-2methylbutanamido)nona-2,4,6-trienoate (365 mg, 0.779 mol) and NH₂NH₂·H₂O (1.89 mL, 38.9 mmol) in EtOH (20 mL) was stirred for 5 min (followed by TLC) at 45°C. After diluted with CH₂Cl₂, the reaction was quenched with sat. Na₂CO₃ aq. The mixture was extracted with CH₂Cl₂ and the combined organic extracts were dried over K₂CO₃ and then concentrated in vacuo to give (2E,4E,6E)-tert-butyl 9-((2S,3R)-4-amino-3-hydroxy-2-methylbutanamido)nona-2,4,6-trienoate (22) as pale yellow oil (quantitative yield). TLC: SiO₂, CH₂Cl₂/MeOH (10:1), $R_f \approx 0.01$; $[\alpha]_{20} = +22.3$ (c = 0.36, MeOH); ¹H NMR (300 MHz, CDCl₃) δ 7.10 (1H, dd, J = 15, 11 Hz), 6.81 (1H, b s), 6.41 (1H, dd, J = 15, 11 Hz) 11 Hz), 6.18-6.06 (2H, m), 5.76 (1H, dt, J = 15, 7 Hz), 5.71 (1H, d, J = 15 Hz), 3.52-3.44 (1H, m), 3.30-3.15 (2H, m), 3.03 (3H, br s), 2.71 (1H, br d, J = 11 Hz), 2.58 - 2.50 (1H, m), 2.30 - 2.22 (3H, m), 1.41 (9H, s), 1.09 (3H, d, J = 7 Hz);¹³C NMR (75 MHz, CDCl₃) δ 175.8, 166.6, 143.5, 139.8, 135.6, 132.1, 128.9, 122.8, 80.3, 73.9, 45.5, 44.3, 38.5, 33.1, 28.2, 15.3; HRMS (FAB, NBA) Calcd. for $C_{18}H_{31}N_2O_4$ [MH⁺] m/z 339.2284, found 339.2289.

(2*E*,4*E*,6*E*)-tert-Butyl 9-((2*S*, 3*S*)-4-amino-3-hydroxy-2-methylbutanamido)nona-2,4,6-trienoate. TLC: SiO₂, CH₂Cl₂/MeOH (10:1), R_f ≈ 0.01; [α]₂₀ = +15 (c=0.2, MeOH); ¹H NMR (300 MHz, CDCl₃) δ 7.10 (1H, dd, J = 15, 11 Hz), 6.81 (1H, b s), 6.41 (1H, dd, J = 15, 11 Hz), 6.18–6.06 (2H, m), 5.76 (1H, dt, J = 15, 7 Hz), 5.71 (1H, d, J = 15 Hz), 3.52–3.44 (1H, m), 3.30–3.15 (2H, m), 3.03 (3H, br s), 2.71 (1H, br d, J = 11 Hz), 2.58–2.50 (1H, m), 2.30-2.22 (3H, m), 1419Hs 1.09 (3H, d, J = 7 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 175.5, 166.6, 143.5, 139.8, 135.6, 132.2, 129.0, 122.9, 80.4, 72.9, 44.3, 43.9, 38.5, 33.2, 28.3, 12.7.

(2E,4E,6E)-tert-Butyl 9-((2S,3R)-3-hydroxy-4-((R,4E,6E)-3-hydroxy-4-methyltetradeca-4,6-dienamido)-2-methylbutanamido)nona-2,4,6-trienoate (23). EDC (164 mL, 0.925 mmol) was added to a solution of (2E,4E,6E)-

tert-butyl 9-((2S,3R)-4-amino-3-hydroxy-2-methylbutanamido)nona-2,4,6-trienoate (265 mg, 0.783 mmol), (R,4E,6E)-3-hydroxy-4-methyltetradeca-4,6-dienoic acid (181 mg, 0.712 mmol) and 1-hydroxybenzotriazote (106 mg, 0.783 mmol) in CH₂Cl₂ (20 mL) at room temperature. After 2.5 h, the reaction was quenched with aq. 20% citric acid solution and extracted with CH₂Cl₂. The combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated in vacuo. The residue was purified via SiO₂ column chromatography (CH₂Cl₂ to CH₂Cl₂/MeOH 20;1) to (2*E*,4*E*,6*E*)-*tert*-butyl 9-((2S,3R)-3-hydroxy-4-((R,4E,6E)-3-hydroxy-4-methyltetradeca-4,6-dienamido)-2methylbutanamido)nona-2,4,6-trienoate (23) as a pale yellow oil (376 mg, 92%). TLC: SiO₂, CH₂Cl₂/MeOH (10:1), R_f ≈ 0.40 ; $[\alpha]_{20} = -10.4$ (c=1, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.23 (1H, br s), 7.17 (1H, dd, J = 15, 11 Hz), 6.90 (1H, br s), 6.48 (1H, dd, J = 15, 11 Hz), 6.23-6.14 (3H, m), 6.05 (1H, d, J = 11 Hz), 5.83 (1H, dt, J = 15, 7 Hz), 5.79 (1H, d, J = 16 Hz), 5.69 (1H, dt, J = 16, 7 Hz), 4.87 (1H, br d, J = 5 Hz), 4.44 (1H, d, J = 9 Hz), 4.40 (1H, br s), 3.74(1H, br s), 3.63 (1H, br s), 3.38-3.30 (1H, m), 3.28-3.22 (1H, m), 2.98-2.92 (1H, m), 2.49-2.30 (5H, m), 2.09 (1H, dt, J = 7, 7 Hz), 1.72 (3H, s), 1.48 (9H, s), 1.40-1.20 (10H, m), 1.19 (3H, d, J = 7 Hz), 0.88 (3H, t, J = 7 Hz); ¹³C NMR (75) MHz, CDCl₃) δ 175.9, 173.0, 166.7, 143.6, 139.9, 136.0, 135.7, 135.4, 132.2, 129.1, 125.8, 125.5, 122.9, 80.4, 73.8, 72.8, 44.1, 44.0, 41.9, 38.7, 33.2, 33.1, 32.0, 29.6, 29.4, 29.3, 28.3, 22.8, 15.5, 14.2, 12.8; HRMS (FAB, NBA) Calcd. for $C_{33}H_{54}N_2O_6$ [M⁺] m/z 574.3982, found 574.3979.

9-((2S,3R)-3-hydroxy-4-((S,4E,6E)-3-hydroxy-4-methyltetradeca-4,6-dienamido)-2-methylbutanamido)nona-2,4,6-trienoate. TLC: SiO₂, CH₂Cl₂/MeOH (10:1), R_f ≈ 0.37; [α]₂₀ = 0.6 (c=1.5, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.17 (1H, dd, J = 15, 11 Hz), 6.91 (1H, br s), 6.73 (1H, br t, J = 5 Hz), 6.62 (1H, dd, J = 15, 11 Hz), 6.24-6.15 (3H, m), 6.05 (1H, d, J = 11 Hz), 5.82 (1H, dt, J = 15, 7 Hz), 5.79 (1H, d, J = 16 Hz), 5.68 (1H, dt, J = 15, 7 Hz), 4.69 (1H, br s), 4.42 (1H, br d, J = 8 Hz), 3.99 (1H, br s), 3.69-3.64 (1H, m), 3.46-3.42 (1H, m), 3.35-3.28 (2H, m), 3.25-3.20 (1H, m), 2.45-2.30 (5H, m), 2.08 (1H, dd, J = 14, 7 Hz), 1.72 (3H, s), 1.48 (9H, s), 1.40-1.24 (10H, m), 1.20 (3H, d, J = 7 Hz), 0.87 (3H, t, J = 7 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 175.9, 173.2, 166.7, 143.6, 139.9, 136.1, 135.6, 135.4, 132.3, 129.2, 125.8, 125.7, 123.0, 80.5, 73.8, 73.2, 44.0, 43.6, 42.0, 38.7, 33.20, 33.16, 32.0, 29.6, 29.41, 29.35, 28.3, 22.8, 15.7, 14.3, 12.8; HRMS (FAB, NBA) Calcd. for C₃₃H₅₄N₂O₆ [M⁺] m/z 574.3982, found 574.3977.

9-((2*S*,3*S*)-3-hydroxy-4-((*R*,4*E*,6*E*)-3-hydroxy-4-methyltetradeca-4,6-dienamido)-2-methylbutanamido)nona-2,4,6-trienoate. TLC: SiO₂, CH₂Cl₂/MeOH (10:1), R_f ≈ 0.40; [α]₂₀ = +15.5 (c=0.85, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.17 (1H, dd, J = 15, 11 Hz), 6.92 (1H, br s), 6.65 (1H, br s), 6.48 (1H, dd, J = 15, 11 Hz), 6.25-6.15 (3H, m), 6.05 (1H, d, J = 11 Hz), 5.83 (1H, dt, J = 15, 7 Hz), 5.79 (1H, d, J = 15 Hz), 5.69 (1H, dt, J = 15, 7 Hz), 4.67 (1H, br s), 4.42 (1H, br d, J = 6 Hz), 3.96 (1H, br s), 3.86-3.80 (1H, m), 3.38-3.26 (4H, m), 2.98-2.92 (1H, m), 2.47-2.28 (5H, m), 2.09 (1H, dd, J = 14, 7 Hz), 1.72 (3H, s), 1.48 (9H, s), 1.40-1.24 (10H, m), 1.16 (3H, d, J = 7 Hz), 0.88 (3H, t, J = 6 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 175.6, 173.5, 166.7, 143.6, 139.9, 136.0, 135.7, 135.5, 132.2, 129.1, 125.8, 125.6, 122.8, 80.4, 73.8, 72.1, 44.1, 43.4, 42.2, 38.8, 33.2, 33.1, 32.0, 29.6, 29.4, 29.3, 28.3, 22.8, 14.2, 13.1, 12.8.

9-((2*S***,3***S***)-3-hydroxy-4-((***S***,4***E***,6***E***)-3-hydroxy-4-methyltetradeca-4,6-dienamido)-2-methylbutanamido)nona-2,4,6-trienoate. TLC: SiO₂, CH₂Cl₂/MeOH (10:1), R_f ≈ 0.40; [α]₂₀ = -53.3 (c=0.08, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.18 (1H, dd, J = 15, 11 Hz), 6.88 (1H, br t, J = 6 Hz), 6.59 (1H, br t, J = 6 Hz), 6.48 (1H, dd, J = 15, 11 Hz), 6.25-6.15 (3H, m), 6.06 (1H, d, J = 11 Hz), 5.83 (1H, dt, J = 15, 7 Hz), 5.79 (1H, d, J = 15 Hz), 5.70 (1H, dt, J = 15, 7 Hz), 4.65 (1H, br s), 4.42 (1H, br d, J = 6 Hz), 3.88-3.84 (2H, m), 3.48-3.43 (1H, m), 3.32 (2H, dd, J = 12, 6 Hz), 3.19-3.13 (1H, m), 2.46-2.33 (5H, m), 2.09 (1H, dd, J = 14, 7 Hz), 1.73 (3H, s), 1.48 (9H, s), 1.40-1.24 (10H, m), 1.16 (3H, d, J = 7 Hz), 0.88 (3H, t, J = 76 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 175.6, 173.5, 166.7, 143.6, 139.9, 136.1, 135.6, 135.5, 132.2, 129.1, 125.8, 125.6, 122.9, 80.4, 73.8, 72.0, 44.1, 43.6, 42.1, 38.7, 33.2, 33.1, 32.0, 29.6, 29.4, 29.3, 28.3, 22.8, 14.3, 12.9, 12.8.**

(2E, 4E, 6E) - 9 - ((2S, 3R) - 3 - Hydroxy - 4 - ((R, 4E, 6E) - 3 - hydroxy - 4 - methyltetradeca - 4, 6 - dienamido) - 2 - hydroxy - 4 - ((R, 4E, 6E) - 3 - hydroxy - 4 - methyltetradeca - 4, 6 - dienamido) - 2 - hydroxy - 4 - ((R, 4E, 6E) - 3 - hydroxy - 4 - methyltetradeca - 4, 6 - dienamido) - 2 - hydroxy - 4 - ((R, 4E, 6E) - 3 - hydroxy - 4 - methyltetradeca - 4, 6 - dienamido) - 2 - hydroxy - 4 - ((R, 4E, 6E) - 3 - hydroxy - 4 - methyltetradeca - 4, 6 - dienamido) - 2 - hydroxy - 4 - ((R, 4E, 6E) - 3 - hydroxy - 4 - methyltetradeca - 4, 6 - dienamido) - 2 - hydroxy - 4 - ((R, 4E, 6E) - 3 - hydroxy - 4 - methyltetradeca - 4, 6 - dienamido) - 2 - hydroxy - 4 - ((R, 4E, 6E) - 3 - hydroxy - 4 - methyltetradeca - 4, 6 - dienamido) - 2 - hydroxy - 4 - ((R, 4E, 6E) - 3 - hydroxy - 4 - methyltetradeca - 4, 6 - dienamido) - 2 - hydroxy - 4 - ((R, 4E, 6E) - 3 - hydroxy - 4 - methyltetradeca - 4, 6 - dienamido) - 2 - hydroxy - 4 - ((R, 4E, 6E) - 3 - hydroxy - 4 - methyltetradeca - 4, 6 - dienamido) - 2 - hydroxy - 4 - ((R, 4E, 6E) - 3 - hydroxy - 4 - methyltetradeca - 4, 6 - dienamido) - 2 - hydroxy - 4 - ((R, 4E, 6E) - 3 - hydroxy - 4 - methyltetradeca - 4, 6 - dienamido) - 2 - hydroxy - 4 - ((R, 4E, 6E) - 3 - hydroxy - 4 - methyltetradeca - 4, 6 - dienamido) - 2 - hydroxy - 4 - methyltetradeca - 4, 6 - dienamido) - 2 - hydroxy - 4 - hydroxy

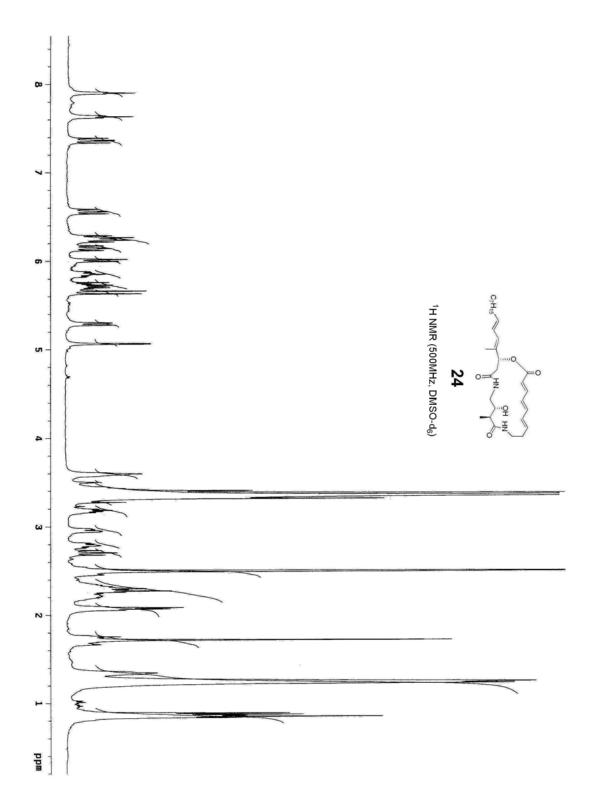
hydroxy-4-((R,4E,6E)-3-hydroxy-4-methyltetradeca-4,6-dienamido)-2-methylbutanamido)nona-2,4,6-trienoic acid as a pale yellow foam (78 mg, 91%). TLC: SiO₂, CH₂Cl₂/MeOH (10:1), R_f \approx 0.18; [α]₂₀ = +7.7 (c=1.2, MeOH); ¹H NMR (400 MHz, CD₃OD) δ (1H, dd, J = 15, 11 Hz), 6.37 (1H, dd, J = 14, 11 Hz), 6.19-6.08 (3H, m), 5.92 (1H, d, J = 11 Hz), 5.77 (1H, d, J = 15 Hz), 5.74 (1H, dt, J = 15, 7 Hz), 5.56 (1H, dt, J = 15, 7 Hz), 4.31 (1H, dd, J = 8, 5 Hz), 3.61-3.56 (1H, m), 3.30 (1H, dd, J = 14, 4 Hz), 3.15 (2H, dd, J = 7, 7 Hz), 3.03 (1H, dd, J = 14, 7 Hz), 2.36-2.20 (5H, m), 1.99 (2H, dd, J = 14, 7 Hz), 1.63 (3H, s), 1.30-1.14 (10H, m), 1.00 (3H, d, J = 7 Hz), 0.78 (3H, t, J = 7 Hz); ¹³C NMR (75 MHz, CD₃OD) δ 177.6, 174.9 (br), 174.4, 142.5, 139.5, 137.4, 136.3, 135.6, 133.5, 131.0, 128.0, 127.4, 126.9, 75.2, 73.4, 45.5, 44.6, 43.3, 39.9, 34.1, 34.0, 33.1, 30.7, 30.43, 30.41, 23.8, 15.3, 14.6, 12.5; HRMS (FAB, Gly) Calcd. for C₂₉H₄₇N₂O₆ [MH⁺] m/z 519.3434, found 519.3437.

(2E, 4E, 6E)-9-((2S, 3R)-3-Hydroxy-4-((S, 4E, 6E)-3-hydroxy-4-methyltetradeca-4,6-dienamido)-2-methyltetradeca-4,6-dienamido)-2-methyltetradeca-4,6-dienamido)

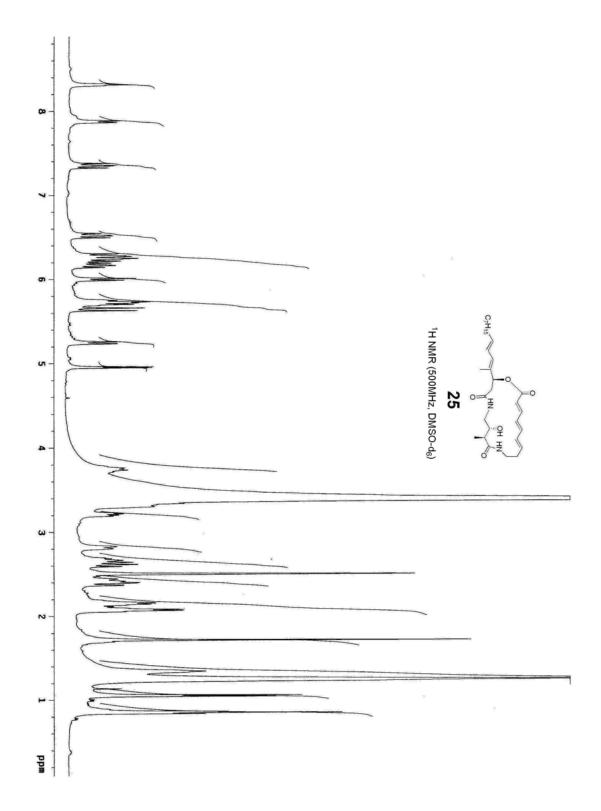
methylbutanamido)nona-2,4,6-trienoic acid. TLC: SiO₂, CH₂Cl₂/MeOH (10:1), R_f ≈ 0.18; [α]₂₀ = +12.8 (c=1.65, MeOH); ¹H NMR (400 MHz, CD₃OD) δ 7.03 (1H, dd, J = 15, 11 Hz), 6.44 (1H, dd, J = 15, 10 Hz), 6.28-6.18 (3H, m), 6.05 (1H, d, J = 11 Hz), 5.91 (1H, d, J = 15 Hz), 5.83 (1H, dt, J = 15, 7 Hz), 5.67 (1H, dt, J = 15, 7 Hz), 4.42 (1H, dd, J = 8, 5 Hz), 3.71-3.67 (1H, m), 3.38 (1H, dd, J = 14, 4 Hz), 3.32-3.19 (3H, m), 2.49-2.32 (5H, m), 2.11 (2H, dd, J = 14, 7 Hz), 1.75 (3H, s), 1.42-1.25 (10H, m), 1.12 (3H, d, J = 7 Hz), 0.90 (3H, t, J = 7 Hz); ¹³C NMR (75 MHz, CD₃OD) δ 177.5, 175.8, 174.4, 141.5, 138.8, 137.4, 136.3, 135.1, 133.6, 131.2, 129.4, 127.4, 126.9, 75.2, 73.5, 45.4, 44.5, 43.3, 39.9, 34.1, 34.0, 33.1, 30.7, 30.42, 30.40, 23.8, 15.3, 14.6, 12.5; HRMS (FAB, NBA) Calcd. for C₂₉H₄₆N₂O₆Na [MNa⁺] m/z 541.3254, found 541.3258.

(2E, 4E, 6E) - 9 - ((2S, 3S) - 3 - Hydroxy - 4 - ((R, 4E, 6E) - 3 - hydroxy - 4 - methyltetradeca - 4, 6 - dienamido) - 2 - hydroxy - 4 - ((R, 4E, 6E) - 3 - hydroxy - 4 - methyltetradeca - 4, 6 - dienamido) - 2 - hydroxy - 4 - ((R, 4E, 6E) - 3 - hydroxy - 4 - methyltetradeca - 4, 6 - dienamido) - 2 - hydroxy - 4 - ((R, 4E, 6E) - 3 - hydroxy - 4 - methyltetradeca - 4, 6 - dienamido) - 2 - hydroxy - 4 - ((R, 4E, 6E) - 3 - hydroxy - 4 - methyltetradeca - 4, 6 - dienamido) - 2 - hydroxy - 4 - ((R, 4E, 6E) - 3 - hydroxy - 4 - methyltetradeca - 4, 6 - dienamido) - 2 - hydroxy - 4 - ((R, 4E, 6E) - 3 - hydroxy - 4 - methyltetradeca - 4, 6 - dienamido) - 2 - hydroxy - 4 - ((R, 4E, 6E) - 3 - hydroxy - 4 - methyltetradeca - 4, 6 - dienamido) - 2 - hydroxy - 4 - ((R, 4E, 6E) - 3 - hydroxy - 4 - methyltetradeca - 4, 6 - dienamido) - 2 - hydroxy - 4 - ((R, 4E, 6E) - 3 - hydroxy - 4 - methyltetradeca - 4, 6 - dienamido) - 2 - hydroxy - 4 - ((R, 4E, 6E) - 3 - hydroxy - 4 - methyltetradeca - 4, 6 - dienamido) - 2 - hydroxy - 4 - ((R, 4E, 6E) - 3 - hydroxy - 4 - methyltetradeca - 4, 6 - dienamido) - 2 - hydroxy - 4 - ((R, 4E, 6E) - 3 - hydroxy - 4 - methyltetradeca - 4, 6 - dienamido) - 2 - hydroxy - 4 - ((R, 4E, 6E) - 3 - hydroxy - 4 - methyltetradeca - 4, 6 - dienamido) - 2 - hydroxy - 4 - ((R, 4E, 6E) - 3 - hydroxy - 4 - methyltetradeca - 4, 6 - dienamido) - 2 - hydroxy - 4 - ((R, 4E, 6E) - hydroxy - 4 - h

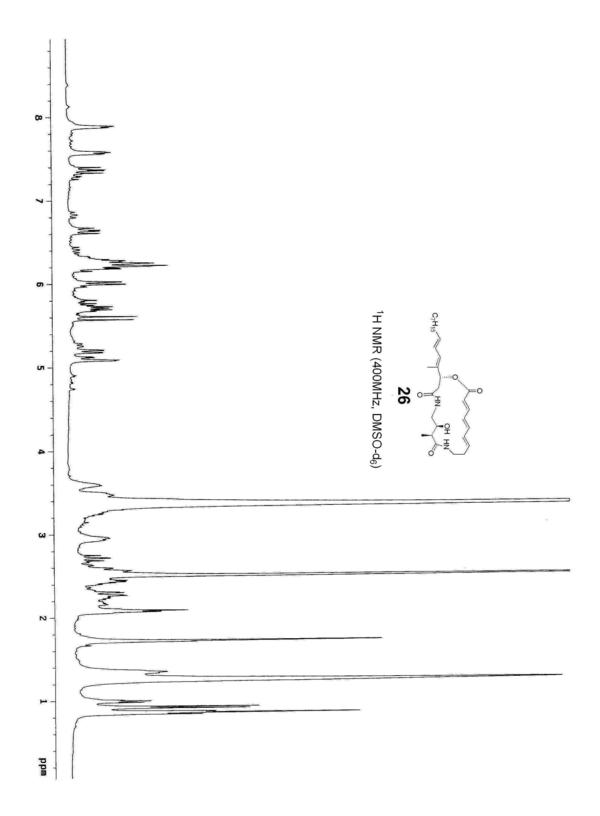
methylbutanamido)nona-2,4,6-trienoic acid. TLC: SiO₂, CH₂Cl₂/MeOH (10:1), R_f ≈ 0.18; [α]₂₀ = +14.5 (c=0.55, MeOH); 1 H NMR (400 MHz, CD₃OD) δ 7.96 (1H, t, J = 6 Hz), 7.86 (1H, t, J = 6 Hz), 7.29 (1H, dd, J = 15, 11 Hz), 6.61 (1H, dd, J = 15, 11 Hz), 6.32 (1H, dd, J = 15, 11 Hz), 6.27 (1H, dd, J = 15, 11 Hz), 6.26 (1H, dd, J = 15, 11 Hz), 6.05 (1H, d, J = 11 Hz), 5.96 (1H, dt, J = 15, 7 Hz), 5.85 (1H, d, J = 15 Hz), 5.68 (1H, dt, J = 15, 7 Hz), 4.42 (1H, dd, J = 9, 4 Hz), 3.72-3.68 (1H, m), 3.27-3.20 (4H, m), 2.48-2.32 (5H, m), 2.11 (2H, dd, J = 14, 7 Hz), 1.75 (3H, s), 1.41-1.26 (10H, m), 1.17 (3H, d, J = 7 Hz), 0.90 (3H, t, J = 7 Hz); 13 C NMR (100 MHz, CD₃OD) δ 177.4, 174.3, 170.7,


146.7, 142.3, 137.7, 137.4, 136.4, 133.3, 130.0, 127.4, 126.9, 121.8, 75.2, 72.8, 46.0, 44.7, 43.4, 39.8, 34.14, 34.08, 33.2, 30.8, 30.5, 30.4, 23.9, 14.6, 14.3, 12.5.

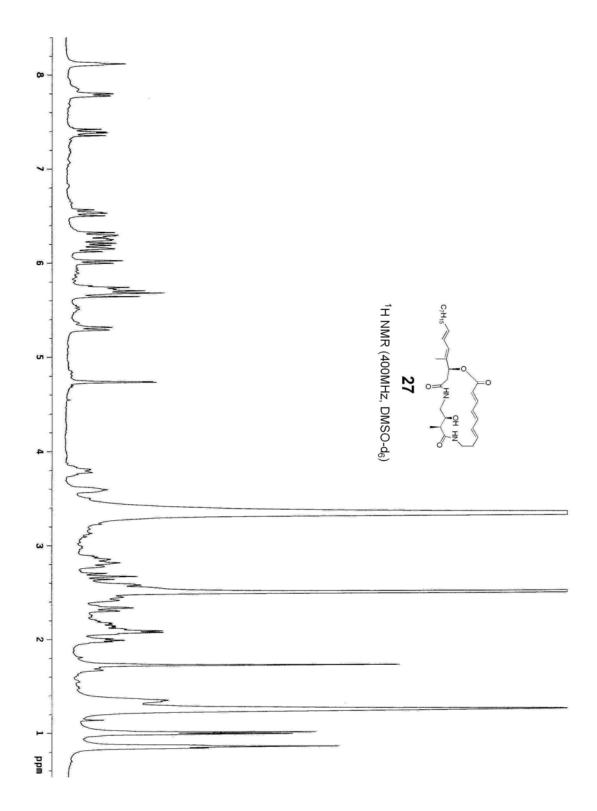
(2E,4E,6E)-9-((2S,3S)-3-Hydroxy-4-((S,4E,6E)-3-hydroxy-4-methyltetradeca-4,6-dienamido)-2-

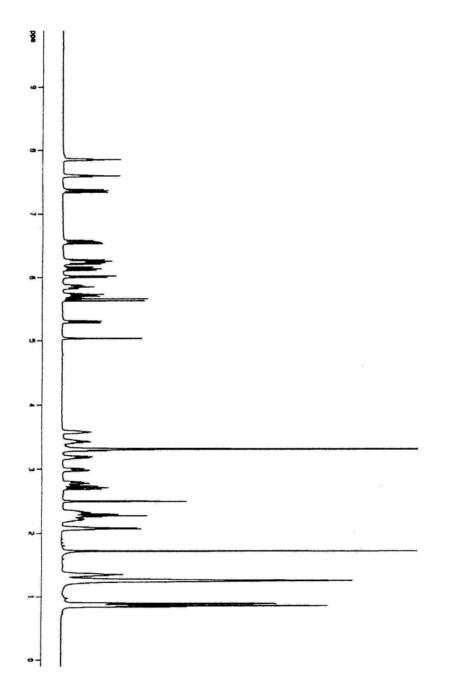

methylbutanamido)nona-2,4,6-trienoic acid. TLC: SiO₂, CH₂Cl₂/MeOH (10:1), R_f ≈ 0.18; [α]₂₀ = +38 (c=0.1, MeOH); H NMR (400 MHz, CD₃OD) δ 7.02 (1H, dd, J = 15, 11 Hz), 6.44 (1H, dd, J = 15, 11 Hz), 6.28-6.18 (3H, m), 6.05 (1H, d, J = 11 Hz), 5.91 (1H, d, J = 15 Hz), 5.81 (1H, dt, J = 15, 7 Hz), 5.67 (1H, dt, J = 15, 7 Hz), 4.42 (1H, dd, J = 8, 4 Hz), 3.74-3.70 (1H, m), 3.38-3.24 (3H, m), 3.10 (1H, dd, J = 14, 8 Hz), 2.47-2.31 (5H, m), 2.11 (2H, dd, J = 14, 7 Hz), 1.75 (3H, s), 1.44-1.26 (10H, m), 1.16 (3H, d, J = 7 Hz), 0.90 (3H, t, J = 7 Hz); 13 C NMR (75 MHz, CD₃OD) δ 177.4, 176.1, 174.4, 141.2, 138.6, 137.5, 136.3, 134.9, 133.7, 131.3, 129.8, 127.4, 126.9, 75.2, 72.8, 46.0, 44.8, 43.3, 39.9, 34.1, 34.0, 33.2, 30.7, 30.43, 30.41, 23.9, 14.6, 14.3, 12.5.

(2R,7R,8S,13E,15E,17E)-2-((2E,4E)-Dodeca-2,4-dien-2-yl)-7-hydroxy-8-methyl-1-oxa-5,10-diazacyclononadeca-**13,15,17-triene-4,9,19-trione** (24). A solution of (2E,4E,6E)-9-((2S,3R)-3-hydroxy-4-((R,4E,6E)-3-hydroxy-4methyltetradeca-4,6-dienamido)-2-methylbutanamido)nona-2,4,6-trienoic acid (50 mg, 96 μmol) in THF (10 mL) was added to a solution of and 2-methyl-6-nitrobenzoic anhydride (100 mg, 289 µmol) and DMAP (42 mg, 347 µmol) in THF (150 mL) at rt over 20 h through syringe drive. After 5 days (followed by reverse phase HPLC, Waters μBondapak C18 250mm × 4.6mm, CH₃CN/MeOH/H₂O 3:2:2, 1 mL/min), the reaction was quenched with water and extracted with EtOAc, and then the organic layer was washed with brine. It was dried with Na₂SO₄ and then concentrated. The residue was purified with PTLC (CH₂Cl₂/MeOH 20:1) first then continue purified with reverse phase TLC (RP-18 F₂₅₄) to give to (2R,7R,8S,13E,15E,17E)-2-((2E,4E)-dodeca-2,4-dien-2-yl)-7-hydroxy-8-methyl-1oxa-5,10-diazacyclononadeca-13,15,17-triene-4,9,19-trione (24) as white solid. (~30% yield by HPLC, isolated yield ~10-15%). mp 138-142°C; HPLC retention time: 14.6 min (Waters µBondapak C18 250mm×4.6mm, CH₃CN/MeOH/H₂O 3:2:2 1 mL/min); TLC: SiO₂, CH₂Cl₂/MeOH (10:1), $R_f \approx 0.50$; $[\alpha]_{20} = -240$ (c=0.2, DMSO); ¹H NMR (500 MHz, DMSO-d₆) δ 7.90 (1H, t, J = 5 Hz), 7.63 (1H, t, J = 6 Hz), 7.35 (1H, dd, J = 16, 12 Hz), 6.56 (1H, dd, J = 15, 11 Hz), 6.26 (1H, dd, J = 15, 11 Hz), 6.24 (1H, dd, J = 15, 11 Hz), 6.15 (1H, dd, J = 15, 11 Hz), 6.01 (1H, d, J = 15, 11 Hz), 6.15 (1H, dd, J = 15, 11 Hz), 6.16 (1H, dd, J = 15, 11 Hz), 6.17 (1H, dd, J = 15, 11 Hz), 6.18 (1H, dd, J = 15, 11 Hz), 6.19 (1H, dd, J = 15, 11 Hz), 6.19 (1H, dd, J = 15, 11 Hz), 6.19 (1H, dd, J = 15, 11 Hz), 6.10 (1H, dd = 11 Hz), 5.85 (1H, ddd, J = 15, 11, 5 Hz), 5.71 (1H, dt, J = 15, 7 Hz), 5.65 (1H, d, J = 16 Hz), 5.29 (1H, d, J = 10 Hz), 5.06 (1H, d, J = 4 Hz), 3.61-3.56 (1H, m), 3.45-3.42 (1H, m), 3.21-3.15 (1H, m), 2.98-2.94 (1H, m), 2.82-2.76


(1H, m), 2.70 (1H, dd, J = 14, 12 Hz), 2.36-2.17 (4H, m), 2.10-2.05 (2H, m), 1.72 (3H, s), 1.36-1.18 (10H, m), 0.88 (3H, d, J = 8 Hz), 0.85 (3H, t, J = 8 Hz); ¹³C NMR (100 MHz, DMSO-d₆) δ 173.7, 169.4, 165.4, 147.4, 143.8, 139.1, 135.6, 133.0, 131.4, 126.5, 125.8, 125.4, 118.2, 76.2, 70.7, 44.4, 42.4, 40.7, 37.1, 32.3, 32.1, 31.3, 28.9, 28.59, 28.55, 22.1, 14.0, 12.9, 10.5; HRMS (FAB, NBA) Calcd. for $C_{29}H_{45}N_{2}O_{5}$ [MH⁺] m/z 501.3329, found 501.3331.

(2*S*,7*R*,8*S*,13*E*,15*E*,17*E*)-2-((2*E*,4*E*)-Dodeca-2,4-dien-2-yl)-7-hydroxy-8-methyl-1-oxa-5,10-diazacyclononadeca-13,15,17-triene-4,9,19-trione(25). HPLC retention time: 14.7 min (Waters μBondapak C18 250mm×4.6mm, CH₃CN/MeOH/H₂O 3:2:2 lmL/min); TLC: SiO₂, CH₂Cl₂/MeOH (10:1), $R_f \approx 0.50$; ¹H NMR (500 MHz, DMSO-d₆) δ 8.31 (1H, t, *J* = 5 Hz), 7.88 (1H, d, *J* = 8 Hz), 7.35 (1H, dd, *J* = 15, 11 Hz), 6.52 (1H, dd, *J* = 15, 11 Hz), 6.28 (1H, dd, *J* = 16, 12 Hz), 6.24 (1H, dd, *J* = 16, 12 Hz), 6.17 (1H, dd, *J* = 15, 12 Hz), 6.00 (1H, d, *J* = 11 Hz), 5.74-5.69 (2H, m), 5.64 (1H, d, *J* = 16), 5.25 (1H, d, *J* = 10 Hz), 4.95 (1H, d, *J* = 6 Hz), 3.78-3.71 (1H, m), 3.60-3.30 (1H, m), 3.21 (1H, dd, *J* = 14, 6 Hz), 2.82 (1H, br d, *J* = 13 Hz), 2.69-2.59 (3H, m), 2.44-2.37 (2H, m), 2.19-2.06 (4H, m), 1.71 (3H, s), 1.35-1.24 (10H, m), 1.05 (3H, d, *J* = 7 Hz), 0.85 (3H, t, *J* = 7 Hz); ¹³C NMR (75 MHz, DMSO-d₆) δ 175.6, 170.6, 165.6, 147.4, 143.7, 138.8, 135.6, 132.9, 131.9, 126.8, 125.7, 125.3, 118.3, 76.4, 72.3, 44.9, 42.2, 40.6, 36.0, 33.3, 32.4, 31.3, 28.9, 28.62, 28.58, 22.1, 14.6, 14.0, 13.0; HRMS (FAB, NBA) Calcd. for C₂₉H₄₅N₂O₅ [MH⁺] *m/z* 501.3329, found 501.3331.




(2*R*,7*S*,8*S*,13*E*,17*E*)-2-((2*E*,4*E*)-Dodeca-2,4-dien-2-yl)-7-hydroxy-8-methyl-1-oxa-5,10-diazacyclononadeca-13,15,17-triene-4,9,19-trione (26). HPLC retention time: 12.6 min (Waters μBondapak C18 250mm×4.6mm, CH₃CN/MeOH/H₂O 3:2:2 lmL/min); TLC: SiO₂, CH₂Cl₂/MeOH (10:1), $R_f \approx 0.48$; ¹H NMR (400 MHz, DMSO-d₆) δ 7.88 (1H, br d, J = 6 Hz), 7.57 (1H, d, J = 9, 3 Hz), 7.37 (1H, dd, J = 15, 11 Hz), 6.64 (1H, dd, J = 15, 11 Hz), 6.29-6.21 (2H, m), 6.18 (1H, dd, J = 15, 11 Hz), 6.01 (1H, d, J = 11 Hz), 5.72 (1H, dd, J = 14, 7 Hz), 5.70 (1H, dt, J = 14, 7 Hz), 5.59 (1H, d, J = 16 Hz), 5.19 (1H, br d, J = 10 Hz), 5.08 (1H, d, J = 3 Hz), 3.62-3.54 (1H, m), 3.52-3.45 (1H, m), 3.00-3.20 (1H, m), 3.00-2.90 (1H, m), 2.71 (1H, dd, J = 14, 12 Hz), 2.62-2.55 (1H, m), 2.46-2.40 (1H, m), 2.32-2.08 (5H, m), 1.72 (3H, s), 1.38-1.20 (10H, m), 0.92 (3H, d, J = 7 Hz), 0.85 (3H, t, J = 7 Hz); ¹³C NMR (75 MHz, DMSO-d₆) δ 173.5, 169.8, 166.3, 149.5, 146.9, 142.4, 136.1, 133.8, 130.4, 126.5, 126.0, 125.6, 117.6, 77.2, 73.4, 45.5, 42.3, 41.4, 38.8, 33.0, 31.9, 31.2, 29.5, 29.3, 29.2, 22.8, 14.8, 14.6, 13.5; HRMS (FAB, NBA) Calcd. for C₂₉H₄₅N₂O₅ [MH⁺] m/z 501.3329, found 501.3331.

(2S,7S,8S,13E,15E,17E)-2-((2E,4E)-Ddodeca-2,4-dien-2-yl)-7-hydroxy-8-methyl-1-oxa-5,10-dien-2-yl-1-oxa-6-y

diazacyclononadeca-13,15,17-triene-4,9,19-trione (27). HPLC retention time: 14.7 min (Waters μBondapak C18 250mm×4.6mm, CH₃CN/MeOH/H₂O 3:2:2 1mL/min); TLC: SiO₂, CH₂Cl₂/MeOH (10:1), R_f ≈ 0.50; ¹H NMR (400 MHz, DMSO-d₆) δ 8.12(1H, t, J = 5 Hz), 7.79 (1H, d, J = 9 Hz), 7.39 (1H, dd, J = 15, 11 Hz), 6.53 (1H, dd, J = 15, 11 Hz), 6.29 (1H, dd, J = 15, 11 Hz), 6.25 (1H, dd, J = 15, 11 Hz), 6.16 (1H, dd, J = 14, 12 Hz), 6.01 (1H, d, J = 11 Hz), 5.76-5.67 (2H, m), 5.66 (1H, d, J = 15), 5.30 (1H, d, J = 11 Hz), 4.74 (1H, d, J = 3 Hz), 3.85-3.75 (1H, m), 3.62-3.56 (1H, m), 2.89-2.78 (2H, m), 2.67 (1H, dd, J = 13, 12 Hz), 2.60-2.40 (2H, m), 2.34-2.28 (1H, m), 2.15 (1H, dd, J = 12, 5 Hz), 2.11-2.07 (2H, m), 1.99 (1H, t, J = 6 Hz), 1.72 (3H, s), 1.37-1.22 (10H, m), 1.00 (3H, d, J = 7 Hz), 0.86 (3H, t, J = 7 Hz); ¹³C NMR (75 MHz, DMSO-d₆) δ 176.8, 170.8, 166.1, 147.5, 143.4, 138.8, 136.3, 133.6, 133.0, 128.1, 126.4, 126.1, 119.5, 77.0, 71.7, 45.2, 43.6, 42.6, 36.6, 34.3, 33.0, 31.9, 29.5, 29.3, 29.2, 22.9, 14.6, 14.2, 13.6; HRMS (FAB, NBA) Calcd. for C₂₉H₄₅N₂O₅ [MH⁺] m/z 501.3329, found 501.3331.

Natural FR252921

¹H NMR (500 MHz, DMSO-d₆)

Comparison of δ_{H} value of natural FR252921 and compounds 24-27

Position	Natural FR252921*	24	25	26	27
2	5.65 (d, 1H)	5.65 (d, 1H)	5.64 (d, 1H)	5.59 (d, 1H)	5.66 (d, 1H)
3	7.37 (dd, 1H)	7.35 (dd, 1H)	7.35 (dd, 1H)	7.37 (dd, 1H)	7.39 (dd, 1H)
4	6.26 (dd, 1H)	6.26 (dd, 1H)	6.28 (dd, 1H)	6.29-6.21 (m, 1H)	6.29 (dd, 1H)
5	6.56 (dd, 1H)	6.56 (dd, 1H)	6.52 (dd, 1H)	6.64 (dd, 1H)	6.53 (dd, 1H)
6	6.14 (dd, 1H)	6.15 (dd, 1H)	6.17 (dd, 1H)	6.18 (dd, 1H)	6.16 (dd, 1H)
7	5.86 (ddd, 1H)	5.85 (ddd, 1H)	5.74-5.69 (m, 1H)	5.72 (dd, 1H)	5.76-5.67 (m, 1H)
8	2.33 (m, 1H) 2.22 (m, 1H)	2.36-2.17 (m, 2H)	2.44-2.37 (m, 2H)	2.46-2.40 (m, 1H) 2.32-2.08 (m, 1H)	2.60-2.40 (m, 1H) 2.34-2.28 (m, 2H)
9	3.42 (m, 1H)	3.45-3.42 (m, 1H)	3.60-3.30 (m, 1H)	3.52-3.45 (m, 1H)	3.62-3.56 (m, 1H)
	3.18 (m, 1H)	3.21-3.15 (m, 1H)	3.21 (dd, 1H)	3.30-3.20 (m, 1H)	2.89-2.78 (m, 1H)
10	7.60 (t, 1H)	7.63 (t, 1H)	7.88 (d, 1H)	7.57 (dd, 1H)	7.79 (d, 1H)
12	2.27 (m, 1H)	2.36-2.17 (m, 1H)	2.19-2.06 (m, 1H)	2.32-2.08 (m, 1H)	2.34-2.28 (m, 1H)
13	3.57 (m, 1H)	3.61-3.56 (m, 1H)	3.78-3.71 (m, 1H)	3.62-3.54 (m, 1H)	3.85-3.75 (m, 1H)
14	2.97 (m, 1H) 2.78 (m, 1H)	2.98-2.94 (m, 1H) 2.82-2.76 (m, 1H)	2.82 (d, 1H) 2.69-2.59 (m, 1H)	3.00-2.90 (m, 1H) 2.71 (dd, 1H)	2.89-2.78 (m, 1H) 2.60-2.40 (m, 1H)
15	7.85 (t, 1H)	7.90 (t, 1H)	8.31 (t, 1H)	7.88 (d, 1H)	8.12 (t, 1H)
17	2.71 (dd, 1H) 2.29 (dd, 1H)	2.70 (dd, 1H) 2.36-2.17 (m, 1H)	2.69-2.59 (m, 1H) 2.19-2.06 (m, 1H)	2.62-2.55 (m, 1H) 2.32-2.08 (m, 1H)	2.15 (dd, 1H) 1.99 (t, 1H)
18	5.30 (d, 1H)	5.29 (d, 1H)	5.25 (d, 1H)	5.19 (d, 1H)	5.30 (d, 1H)
12-CH ₃	0.88 (d, 3H)	0.88 (d, 3H)	1.05 (d, 3H)	0.92 (d, 3H)	1.00 (d, 3H)
13-OH	5.04 (d, 1H)	5.06 (d, 1H)	4.95 (d, 1H)	5.08 (d, 1H)	4.74 (d, 1H)
2'	6.02 (d, 1H)	6.01 (d, 1H)	6.00 (d, 1H)	6.01 (d, 1H)	6.01 (d, 1H)
3'	6.24 (dd, 1H)	6.24 (dd, 1H)	6.24 (dd, 1H)	6.29-6.21 (m, 1H)	6.25 (dd, 1H)
4′	5.71 (dt, 1H)	5.71 (dt1H)	5.74-5.69 (m, 1H)	5.70 (dt, 1H)	5.76-5.67 (m, 1H)
5′	2.08 (m, 2H)	2.10-2.05 (m, 2H)	2.19-2.06 (m, 2H)	2.32-2.08 (m, 2H)	2.11-2.075 (m, 2H)
6′	1.35 (m, 2H)	1.36-1.18 (m, 2H)	1.35-1.24 (m, 2H)	1.38-1.20 (m, 2H)	1.37-1.22 (m, 8H)
7′-10′	1.30-1.20 (m, 8H)	1.36-1.18 (m, 8H)	1.35-1.24 (m, 8H)	1.38-1.20 (m, 8H)	1.37-1.22 (m, 8H)
11'	0.86 (t, 3H)	0.85 (t, 3H)	0.85 (t, 3H)	0.85 (t, 3H)	0.86 (t, 3H)
1'-CH ₃	1.72 (s, 3H)	1.72 (s, 3H)	1.71 (s, 3H)	1.72 (s, 3H)	1.72 (s, 3H)
R _t (HPLC)**	14.68 min	14.60 min	14.68 min	12.59 min	14.70 min

^{*} δ_H data kindly provided by Astellas Pharma, Inc.
** Column: μBondapak C18 250mm×4.6mm, 305nm, Acetonitrile/MeOH/H₂O 3:2:2, 1mL/min.