

Supporting Information

© Wiley-VCH 2007

69451 Weinheim, Germany

K₇B₇Si₃₉, a Borosilicide with the Clathrate-I Structure?

Walter Jung,² Josef Lörincz, Reiner Ramlau, Horst Borrmann, Yurii Prots, Frank Haarmann, Walter Schnelle, Ulrich Burkhardt, Michael Baitinger, Yuri Grin

S1: Scanning Electron Microscopy

Fig. S1. SEM images of K₇B₇Si₃₉ cystals.

Fig. S2. EDX-spectrum of the $K_7B_7Si_{39}$ crystal, which was investigated by single crystal diffraction. The molar ration K:Si was determined to be \approx 7:41. The quantitative determination of Boron was not possible by this method.

S3: Lattice parameters of silicides with clathrate-I structure

Composition	<i>a</i> / Å	XRPD Method	Literature
$K_7B_7Si_{39}$	9.952(1)	Guinier, single profile fit	this work
$K_{7-x}B_{7-x}Si_{39+x}$ (x~0.75)*	9.971(1)	Guinier, single profile fit	this work
Na _{6.2(1)} Si ₄₆	10.199(1)	Guinier, single profile fit	[7]
K _{7.0(1)} Si ₄₆	10.278(1)	Guinier, single profile fit	[7]
Na ₂ Ba ₆ Si ₄₆	10.275(1)	single crystal	[9]
K ₈ Ga ₈ Si ₃₈	10.427(1)	single crystal	[4a]

*Composition was estimated from a linear extrapolation between K_7Si_{46} and $K_7B_7Si_{39}$.

S4: SAED

Fig. S4. Electron diffraction pattern, zone axis [100].

Simulated kinematical ED patterns are in rather good qualitative accordance with experimental SAED patterns for the prominent zone axes [100], [110], and [111]. Differences between the simulated and experimental intensities may be explained as effects of dynamical diffraction.

S5: Resistivity

Fig. S5. Plot of the resistivity dependence on temperature.

S6: Data collection and handling

Composition	$K_{7.04(2)}B_{6.8(3)}Si_{39.2(3)}$		
Space group	$Pm\overline{3}n$, $Z=1$		
<i>a</i> / Å	9.952(1)		
Volume / Å ³	985.7(3)		
Diffractometer and software	RIGAKU Spider diffractometer with rotating anode and Varimax optics, $AgKa_1$ radiation, ? = 0.56087 Å, structure refinement on <i>F</i> with WINCSD.		
$2\boldsymbol{q}_{\max}, \sin(\boldsymbol{q}/\boldsymbol{l})_{max}$	98°, 1.35		
$N(hkl)_{measured}$, $N'(hkl)_{independent}$	21526, 1845		
$N(hkl)$ with $F > 4\mathbf{s}(F)$	1238		
Refined parameters	29		
$R(F), R(F^2)$	0.116, 0.06		

Atom	Site	Occ.	x	у	z	$B_{ m iso/eq}({ m \AA}^2)$
K1	2 <i>a</i>	0.52(1)	0	0	0	0.49(2)
К2	6 <i>d</i>	1	1/4	1/2	0	1.50(2)
Si1	6 <i>c</i>	1	1/4	0	1/2	0.46(2)
(Si/B)21	16 <i>i</i>	B21: 0.213(9) Si21: 0.287(9)	0.1828(2)	X	x	0.49(2)
(Si/B)22	16 <i>i</i>	B21: 0.212(9) Si21: 0.288(9)	0.1974(2)	x	x	0.40(2)
Si31	24 <i>k</i>	0.32(1)	0	0.1159(4)	0.3069(4)	0.49(5)
Si32	48 <i>l</i>	0.347(3)	0.0145(2)	0.1252(2)	0.2924(2)	0.51(3)

S7: Atomic coordinates and displacement parameters of K7B7Si39

 $B_e = 1/3 \ [B_{11} \ a^{*2} \ a^2 + ... + 2 \ B_{23} \ b^* \ c^* \ b \ c \ cos \ \alpha]$

Atom	<i>B</i> ₁₁	B ₂₂	B ₃₃	<i>B</i> ₁₂	<i>B</i> ₁₃	B ₂₃
K1	0.49(3)	B_{11}	B_{11}	0	0	0
K2	1.02(5)	1.73(4)	B_{22}	0	0	0
Si1	0.55(4)	0.42(2)	B_{22}	0	0	0
(Si/B)21	0.49(3)	B_{11}	B_{11}	-0.10(3)	B_{12}	B_{12}
(Si/B)22	0.40(3)	B_{11}	B_{11}	0.02(4)	B_{12}	B_{12}
Si31	0.56(8)	0.46(9)	0.45(7)	0	0	-0.20(7)
Si32	0.43(7)	0.51(4)	0.59(4)	-0.06(3)	0.01(4)	-0.09(4)

 $T = \exp[-1/4 (B_{11} a^{*2} h^2 + ... 2 B_{23} b^* c^* k l)]$