

Supporting Information © Wiley-VCH 2007

● Wilcy-VOI1 2007

69451 Weinheim, Germany

Diaminocarbene-phosphonium ylide: direct access to novel C,C-chelating ligands

Yves Canac,* Carine Duhayon, Remi Chauvin*

General remarks. THF and diethyl ether were dried and distilled over sodium/benzophenone, pentane, dichloromethane and acetonitrile over P_2O_5 . All other reagents were used as commercially available. All reactions were carried out under argon atmosphere, using schlenk and vacuum line techniques. Column chromatography was carried out on silica gel (60 Å, C.C 70-200 μ m). The following analytical instruments were used. 1 H, 13 C and 31 P NMR: Bruker AC 200, AM 250, DPX 300 or AMX 400. X-Ray diffraction: Ipds STOE. Mass spectrometry: Quadrupolar Nermag R10-10H. Elemental analyses: Perkin-Elmer 2400 CHN (flash combustion and detection by catharometry). NMR chemical shifts δ are in ppm, with positive values to high frequency relative to the tetramethylsilane reference; coupling constants J are in Hz.

2. Butyllithium (2.5 M, 12.23 mL, 30.6 mmol) was added to a solution of 1-phenylimidazole 1 (2.10 g, 14.6 mmol) in Et₂O (100 mL) at -78°C. The suspension was warmed to room temperature and stirred for 3 hours. Then diphenylchlorophosphine (2.69 mL, 14.6 mmol) was added dropwise at -78°C. The resulting suspension was slowly warmed to room temperature and stirred for 2 hours. After addition of methanol (0.65 mL, 16.0 mmol), the organic layer was washed with a saturated aqueous solution of NH₄Cl (3 x 20 mL) and dried with anhydrous MgSO₄. After evaporation of the solvent under vacuum, purification by chromatography on silica gel (pentane/ethyl acetate) gave 2 as a white solid residue, which was recrystallized at -20°C from THF/pentane (3.10 g, 65 %, m.p. 158-160°C).

³¹P{¹H} NMR (CDCl₃, 25°C): $\delta = -16.8$; ¹H NMR (CDCl₃, 25°C): $\delta = 6.92$ -6.93 (m, 1 H, H_{ar}), 7.06-7.09 (m, 2 H, H_{ar}), 7.23-7.40 (m, 13 H, H_{ar}), 7.46 (m, 1 H, H_{ar}); ¹³C{¹H} NMR (CDCl₃, 25°C): $\delta = 121.1$ (d, $J_{CP} = 2.8$, CH_{ar}), 127.1 (d, $J_{CP} = 2.3$, CH_{ar}), 128.7 (d, $J_{CP} = 7.1$, CH_{ar}), 128.9 (s, CH_{ar}), 129.0 (s, CH_{ar}), 129.2 (s, CH_{ar}), 129.8 (s, CH_{ar}), 134.0 (d, $J_{CP} = 20.6$, CH_{ar}), 134.5 (s, CH_{ar}), 135.7 (d, $J_{CP} = 20.6$, CH_{ar}), 135.7 (d, $J_{CP} = 20.6$, CH_{ar}), 136.5 (s, CH_{ar}), 135.7 (d, $J_{CP} = 20.6$, CH_{ar}), 136.5 (s, CH_{ar}), 135.7 (d, $J_{CP} = 20.6$, CH_{ar}), 136.5 (s, CH_{ar}), 135.7 (d, $J_{CP} = 20.6$, CH_{ar}), 136.5 (s, CH_{ar}), 135.7 (d, $J_{CP} = 20.6$, CH_{ar}), 136.5 (s, CH_{ar}), 136.7 (d, $J_{CP} = 20.6$, CH_{ar}), 136.5 (s, CH_{ar}), 136.7 (d, $J_{CP} = 20.6$, CH_{ar})

10.8, C_{ar}), 135.8 (d, $J_{CP} = 19.2$, C_{ar}), 138.0 (d, $J_{CP} = 2.8$, CH_{ar}), 141.3 (d, $J_{CP} = 23.0$, C_{ar}); MS (DCI/NH₃): m/z: 329 [M + H]⁺; Anal. Calcd for $C_{21}H_{17}N_2P$: C, 76.82; H, 5.22; N, 8.53. Found: C, 76.56; H, 4.68; N, 8.35.

3. Methyl trifluoromethanesulfonate (0.60 mL, 5.5 mmol), was added at -78°C to a CH₂Cl₂ solution (30 mL) of **2** (0.90 g, 2.7 mmol). Then the suspension was warmed to room temperature and stirred for 12 hours. After filtration, the solid residue was washed with additionnal CH₂Cl₂ (30 ml) affording a white microcrystalline solid (1.71 g, 95 %). Recrystallization at -20°C from CH₂Cl₂ afforded **3** as colorless crystals (m.p. 185-187°C).

³¹P{¹H} NMR (CD₃CN, 25°C): δ = +20.5; ¹H NMR (CD₃CN, 25°C): δ = 2.76 (d, J_{HP} = 14.0, 3 H, CH₃P), 3.69 (s, 3 H, CH₃N), 7.21-7.25 (m, 2 H, H_{ar}), 7.67-7.76 (m, 9 H, H_{ar}), 7.92-7.94 (m, 3 H, H_{ar}), 7.97-8.02 (m, 1 H, H_{ar}), 8.10-8.14 (m, 1 H, H_{ar}), 8.45 (brs, 1 H, NCHN); ¹³C{¹H} NMR (CD₃CN, 25°C): δ = 10.1 (d, J_{CP} = 58.1, CH₃P), 36.3 (s, CH₃N), 117.7 (d, J_{CP} = 85.4, C_{ar}), 118.4 (d, J_{CP} = 88.7, C_{ar}), 121.0 (q, J_{CF} = 321.9, CF₃SO₃), 124.5 (s, CH_{ar}), 130.5 (d, J_{CP} = 13.2, CH_{ar}), 131.8 (d, J_{CP} = 6.7, CH_{ar}), 132.8 (d, J_{CP} = 12.0, CH_{ar}), 133.2 (d, J_{CP} = 11.2, CH_{ar}), 135.6 (d, J_{CP} = 2.6, CH_{ar}), 136.7 (d, J_{CP} = 8.9, CH_{ar}), 137.1 (s, CH_{ar}), 137.5 (d, J_{CP} = 3.1, C_{ar}), 137.7 (s, C_{ar}); MS(FAB⁺): m/z: 507 [M - CF₃SO₃]⁺; Anal. Calcd for C₂₅H₂₃N₂PF₆S₂O₆: C, 45.73; H, 3.53; N, 4.26. Found: C, 45.35; H, 3.30; N, 4.18.

4a,b. A mixture of [Pd(allyl)Cl]₂ (0.27 g, 0.7 mmol), complex **3** (0.97 g, 1.5 mmol), and NEt₃ (0.23 mL, 1.6 mmol), was dissolved in CH₃CN (20 mL) and stirred at room temperature for 1 hour. After evaporation of the solvent, the crude residue was washed with water (20 mL). Then the organic layer was extracted with CH₂Cl₂ (20 mL) and dried with anhydrous MgSO₄. The remaining solid residue was purified by chromatography on silica gel (CH₂Cl₂/acetone) affording a grey solid as a mixture (50/50) of two diastereoisomers **4a,b** (0.86 g, 85 %). Recrystallization at room temperature from ethanol gave colorless crystals (m. p. 160°C decomp).

³¹P{¹H} NMR (CDCl₃, 25°C): δ = +21.70; +21.73; ¹H NMR (CDCl₃, 25°C): δ = 2.28 (d, J_{HH} = 12.0, 1 H, CH_{2allyl}), 2.54 (d, J_{HP} = 13.9, 3 H, CH₃P), 2.55 (m, 1 H, CH_{2allyl}), 2.56 (d, J_{HP} = 14.0, 3 H, CH₃P), 2.97 (d, J_{HH} = 13.6, 1 H, CH_{2allyl}), 3.19 (d, J_{HH} = 13.6, 1 H, CH_{2allyl}), 3.58 (m, 2 H, CH_{2allyl}), 3.78 (s, 3 H, CH₃N), 3.93 (s, 3 H, CH₃N), 4.04 (d, J_{HH} = 5.5, 1 H, CH_{2allyl}), 4.09 (d, J_{HH} = 7.4, 1 H, CH_{2allyl}), 5.14

(m, 1 H, CH_{allyl}), 5.34 (m, 1 H, CH_{allyl}), 6.37 (d, $J_{HH} = 1.7$, 1 H, H_{ar}), 6.45 (d, $J_{HH} = 1.7$, 1 H, H_{ar}), 7.20-7.33 (m, 4 H, H_{ar}), 7.53-7.72 (m, 22 H, H_{ar}), 7.79-7.82 (m, 2 H, H_{ar}), 7.84-7.91 (m, 2 H, H_{ar}); 13 C{ 1 H} NMR (CDCl₃, 25°C): $\delta = 8.2$ (d, $J_{CP} = 55.4$, CH₃P), 8.3 (d, $J_{CP} = 55.6$, CH₃P), 38.5 (s, CH₃N), 38.6 (s, CH₃N), 50.3 (s, CH_{2allyl}), 51.1 (s, CH_{2allyl}), 73.2 (s, CH_{2allyl}), 73.7 (s, CH_{2allyl}), 115.3 (s, CH_{allyl}), 117.9 (d, $J_{CP} = 88.2$, C_{ar}), 118.3 (d, $J_{CP} = 87.9$, C_{ar}), 118.5 (d, $J_{CP} = 86.8$, C_{ar}), 118.6 (d, $J_{CP} = 89.4$, C_{ar}), 120.7 (q, $J_{CF} = 320.8$, $CF_{3}SO_{3}$), 120.8 (d, $J_{CP} = 90.6$, C_{ar}), 120.9 (d, $J_{CP} = 92.6$, C_{ar}), 122.9 (s, CH_{ar}), 123.1 (s, CH_{ar}), 124.8 (s, CH_{ar}), 130.3 (d, $J_{CP} = 13.2$, CH_{ar}), 130.5 (d, $J_{CP} = 12.3$, CH_{ar}), 130.7 (d, $J_{CP} = 10.3$, CH_{ar}), 130.9 (d, $J_{CP} = 12.9$, CH_{ar}), 131.0 (d, $J_{CP} = 13.0$, CH_{ar}), 131.6 (d, $J_{CP} = 7.4$, CH_{ar}), 131.8 (d, $J_{CP} = 7.4$, CH_{ar}), 132.8 (d, $J_{CP} = 10.5$, CH_{ar}), 132.9 (d, $J_{CP} = 10.5$, CH_{ar}), 133.2 (d, $J_{CP} = 10.8$, CH_{ar}), 133.3 (d, $J_{CP} = 10.8$, CH_{ar}), 135.1 (s, CH_{ar}), 135.6 (s, CH_{ar}), 135.9 (d, $J_{CP} = 9.3$, CH_{ar}), 136.0 (d, $J_{CP} = 9.5$, CH_{ar}), 136.1 (s, CH_{ar}), 143.1 (d, $J_{CP} = 3.6$, C_{ar}), 143.2 (d, $J_{CP} = 3.8$, C_{ar}), 181.8 (s, NCN), 182.0 (s, NCN); MS(FAB⁺): m/z: 539 [M⁺]; HRMS (ES⁺) calcd for C₂₆H₂₇N₂PCIPd 539.0635; found, 539.0653.

5a,b. A 1/1 mixture of KHMDS and complex **4a,b** (1.16 g, 1.7 mmol) was cooled to -78°C and THF (20 mL) was added. The suspension was warmed to room temperature and stirred for 1 hour. After evaporation of the solvent, the solid residue was purified by chromatography on silica gel (CH₂Cl₂/acetone) affording a grey solid as a mixture of two diastereoisomers **5a,b** (70/30) (0.87 g, 79 %). Recrystallization at -20°C from CH₃CN/Et₂O gave colorless crystals (m. p. 170°C decomp). NMR assignment: amajor isomer (70 %), minor isomer (30 %): $^{31}P\{^{1}H\}$ NMR (CDCl₃, 25°C): $\delta =$ $+34.2^{\text{a}}$; $+34.1^{\text{b}}$; ¹H NMR (CDCl₃, 25°C): $\delta = 1.55^{\text{a}}$ (dd, $J_{\text{HP}} = 8.9$, $J_{\text{HH}} = 13.2$, 1 H, CH₂P), 1.77^b (dd, $J_{\rm HP} = 9.3, J_{\rm HH} = 13.1, 0.7 \text{ H}, \text{CH}_2\text{P}), 2.06^{\text{b}} \text{ (dd, } J_{\rm HP} = 8.7, J_{\rm HH} = 13.1, 0.7 \text{ H}, \text{CH}_2\text{P}), 2.19^{\text{a}} \text{ (d, } J_{\rm HH} = 13.1, 0.7 \text{ H}, \text{CH}_2\text{P}), 2.19^{\text{a}} \text{ (d, } J_{\rm HH} = 13.1, 0.7 \text{ H}, \text{CH}_2\text{P}), 2.19^{\text{a}} \text{ (d, } J_{\rm HH} = 13.1, 0.7 \text{ H}, \text{CH}_2\text{P}), 2.19^{\text{a}} \text{ (d, } J_{\rm HH} = 13.1, 0.7 \text{ H}, \text{CH}_2\text{P}), 2.19^{\text{a}} \text{ (d, } J_{\rm HH} = 13.1, 0.7 \text{ H}, \text{CH}_2\text{P}), 2.19^{\text{a}} \text{ (d, } J_{\rm HH} = 13.1, 0.7 \text{ H}, \text{CH}_2\text{P}), 2.19^{\text{a}} \text{ (d, } J_{\rm HH} = 13.1, 0.7 \text{ H}, \text{CH}_2\text{P}), 2.19^{\text{a}} \text{ (d, } J_{\rm HH} = 13.1, 0.7 \text{ H}, \text{CH}_2\text{P}), 2.19^{\text{a}} \text{ (d, } J_{\rm HH} = 13.1, 0.7 \text{ H}, \text{CH}_2\text{P}), 2.19^{\text{a}} \text{ (d, } J_{\rm HH} = 13.1, 0.7 \text{ H}, \text{CH}_2\text{P}), 2.19^{\text{a}} \text{ (d, } J_{\rm HH} = 13.1, 0.7 \text{ H}, \text{CH}_2\text{P}), 2.19^{\text{a}} \text{ (d, } J_{\rm HH} = 13.1, 0.7 \text{ H}, \text{CH}_2\text{P}), 2.19^{\text{a}} \text{ (d, } J_{\rm HH} = 13.1, 0.7 \text{ H}, \text{CH}_2\text{P}), 2.19^{\text{a}} \text{ (d, } J_{\rm HH} = 13.1, 0.7 \text{ H}, \text{CH}_2\text{P}), 2.19^{\text{a}} \text{ (d, } J_{\rm HH} = 13.1, 0.7 \text{ H}, \text{CH}_2\text{P}), 2.19^{\text{a}} \text{ (d, } J_{\rm HH} = 13.1, 0.7 \text{ H}, \text{CH}_2\text{P}), 2.19^{\text{a}} \text{ (d, } J_{\rm HH} = 13.1, 0.7 \text{ H}, \text{CH}_2\text{P}), 2.19^{\text{a}} \text{ (d, } J_{\rm HH} = 13.1, 0.7 \text{ H}, \text{CH}_2\text{P}), 2.19^{\text{a}} \text{ (d, } J_{\rm HH} = 13.1, 0.7 \text{ H}, \text{CH}_2\text{P}), 2.19^{\text{a}} \text{ (d, } J_{\rm HH} = 13.1, 0.7 \text{ H}, \text{CH}_2\text{P}), 2.19^{\text{a}} \text{ (d, } J_{\rm HH} = 13.1, 0.7 \text{ H}, \text{CH}_2\text{P}), 2.19^{\text{a}} \text{ (d, } J_{\rm HH} = 13.1, 0.7 \text{ H}, \text{CH}_2\text{P}), 2.19^{\text{a}} \text{ (d, } J_{\rm HH} = 13.1, 0.7 \text{ H}, \text{CH}_2\text{P}), 2.19^{\text{a}} \text{ (d, } J_{\rm HH} = 13.1, 0.7 \text{ H}, \text{CH}_2\text{P}), 2.19^{\text{a}} \text{ (d, } J_{\rm HH} = 13.1, 0.7 \text{ H}, \text{CH}_2\text{P}), 2.19^{\text{a}} \text{ (d, } J_{\rm HH} = 13.1, 0.7 \text{ H}, \text{CH}_2\text{P}), 2.19^{\text{a}} \text{ (d, } J_{\rm HH} = 13.1, 0.7 \text{ H}, \text{CH}_2\text{P}), 2.19^{\text{a}} \text{ (d, } J_{\rm HH} = 13.1, 0.7 \text{ H}, \text{CH}_2\text{P}), 2.19^{\text{a}} \text{ (d, } J_{\rm HH} = 13.1, 0.7 \text{ H}, \text{CH}_2\text{P}), 2.19^{\text{a}} \text{ (d, } J_{\rm HH} = 13.1, 0.7 \text{ H}, \text{CH}_2\text{P}), 2.19^{\text{a}} \text{ ($ 13.4, 1 H, CH_{2allvl}), 2.24° (dd, $J_{HP} = 8.8$, $J_{HH} = 13.2$, 1 H, CH_2P), 2.41° (d, $J_{HH} = 13.1$, 1 H, CH_{2allvl}), $2.64^{\rm b}~({\rm d},J_{\rm HH}=12.8,\,0.7~{\rm H},\,{\rm CH_{2allyl}}),\,2.77^{\rm b}~({\rm d},J_{\rm HH}=13.2,\,0.7~{\rm H},\,{\rm CH_{2allyl}}),\,3.28^{\rm a}~({\rm s},\,3~{\rm H},\,{\rm CH_3}),\,3.42^{\rm b}~({\rm s},\,3.42^{\rm b})$ 2.1 H, CH₃), 3.54^{b} (d, $J_{HH} = 6.8$, 0.7 H, CH_{2allyl}), $3.68^{a,b}$ (m, 1.7 H, CH_{2allyl}), 3.80^{a} (d, $J_{HH} = 7.2$, 1 H, $CH_{2a||v|}$, 4.87^b (m, 0.7 H, $CH_{a||v|}$), 5.28^a (m, 1 H, $CH_{a||v|}$), 6.66^b (d, $J_{HH} = 1.60, 0.7$ H, H_{ar}), 6.67^a (d, J_{HH} = 1.50, 1 H, H_{ar}), 7.12-7.85^{a,b} (m, 25.5 H, H_{ar}); ${}^{13}C\{{}^{1}H\}$ NMR (CDCl₃, 25°C): δ = -11.2^a (d, J_{CP} = 39.0, CH₂P), -10.9^{b} (d, $J_{CP} = 38.4$, CH₂P), 38.1^{a} (s, CH₃N), 38.3^{b} (s, CH₃N), 57.9^{a} (s, CH_{2allyl}), 59.5^{a} (s, CH_{2allyl}), 59.9^b (s, CH_{2allyl}), 61.4^b (s, CH_{2allyl}), 117.4^a (s, CH_{allyl}), 117.7^b (s, CH_{allyl}), 121.0 (q, J_{CF} = 320.8, CF_3SO_3 , 122.1 (d, $J_{CP} = 91.5$, C_{ar}), 122.8 (d, $J_{CP} = 85.0$, C_{ar}), 122.9 (d, $J_{CP} = 102.0$, C_{ar}),

123.8-124.0 (m, CH_{ar}), 124.2 (s, CH_{ar}), 127.5 (d, $J_{CP} = 69.5$, C_{ar}), 127.6 (d, $J_{CP} = 68.3$, C_{ar}), 127.7 (d, $J_{CP} = 6.3$, CH_{ar}), 127.8 (d, $J_{CP} = 6.3$, CH_{ar}), 128.8 (d, $J_{CP} = 12.1$, CH_{ar}), 128.9 (d, $J_{CP} = 12.1$, CH_{ar}), 129.1 (d, $J_{CP} = 12.5$, CH_{ar}), 129.2 (d, $J_{CP} = 12.5$, CH_{ar}), 129.6 (d, $J_{CP} = 11.0$, CH_{ar}), 130.1 (d, $J_{CP} = 8.8$, CH_{ar}), 130.2 (d, $J_{CP} = 8.8$, CH_{ar}), 132.5 (d, $J_{CP} = 9.3$, CH_{ar}), 132.7 (d, $J_{CP} = 2.7$, CH_{ar}), 132.8 (d, $J_{CP} = 2.2$, CH_{ar}), 133.1 (s, CH_{ar}) 135.0 (d, $J_{CP} = 10.1$, CH_{ar}), 135.2 (d, $J_{CP} = 12.5$, CH_{ar}), 135.3 (s, CH_{ar}), 135.4 (d, $J_{CP} = 1.9$, CH_{ar}), 142.6^b (d, $J_{CP} = 1.2$, C_{ar}), 142.8^a (d, $J_{CP} = 1.2$, C_{ar}), 180.7^b (d, $J_{CP} = 7.8$, NCN), 181.2^a (d, $J_{CP} = 8.6$, NCN); MS(FAB⁺): m/z: 503 [M⁺]; HRMS (ES⁺) calcd for $C_{26}H_{26}N_2PPd$ 503.0868; found, 503.0898.

Catalytic allylic substitution of 3-acetoxy-1,3-diphenylpropene by dimethyl malonate.

To a stirred solution of complex **5a,b** (0.023 g, 0.035 mmol) and 3-acetoxy-1,3-diphenylpropene (0.18 g, 0.71 mmol) in THF (2 mL) at room temperature was added a THF solution (3 mL) of the nucleophile generated from dimethylmalonate (0.16 mL, 1.42 mmol) and NaH (0.034 g, 1.42 mmol). The resulting mixture was stirred for 12 h at 60°C. The reaction was then quenched with aqueous solution of NH₄Cl and extracted with CH₂Cl₂ (10 mL). After drying over MgSO₄, the organic layer was evaporated under vacuum. ¹H NMR spectroscopy indicates complete conversion of 3-acetoxy-1,3-diphenylpropene to (*E*)-Dimethyl 1,3-diphenylpro-2-enylpropanediolate, which was identified by comparison with an authentic sample.

Crystal structure determination of compounds 3, 4a-b, and 5a-b.

Intensity data for 3 and 4a-b were collected at low temperature on an Xcalibur Oxford Diffraction diffractometer using a graphite-monochromated Mo Ka radiation source and equipped with an Oxford Cryosystems Cryostream Cooler Device. Data for 5a-b were collected at a low temperature on an IPDS STOE diffractometer equipped with an Oxford Cryosystem Cryostream Cooler Device. Structures were solved by direct methods using SIR92, and refined by full-matrix least-squares procedures on F using the programs of the PC version of CRYSTALS. Atomic scattering factors were taken from the International tables for X-ray Crystallography.

Crystal data for **3**. $C_{23}H_{23}N_2P$, $2(CF_3SO_3)$, M = 656.56 g mol⁻¹, Monoclinic, a = 14.8559(8) Å, b = 13.0168(7) Å, c = 15.3373(9) Å, $\beta = 107.695(5)^\circ$, V = 2825.5(3) Å³, T = 180 K, space group $P 2_1/c$,

Z = 4, $\mu(Mo-Ka) = 0.328$ mm⁻¹, 25883 reflections measured, 7540 unique (Rint = 0.04), 3856 reflections used in the calculations [I > 2.5 σ (I)], R1 = 0.0583, wR2 = 0.0616.

Crystal data for **4a-b**. $C_{26}H_{27}CIN_2PPd$, $2(C_2H_6O)$, CF_3SO_3 , M = 781.55 g mol⁻¹, Triclinic, a = 9.6679(4) Å, b = 14.2740(8) Å, c = 14.8838(7) Å, $\alpha = 61.390(5)^\circ$, $\beta = 82.991(4)^\circ$, $\gamma = 72.475(4)^\circ$, V = 1718.87(17) Å³, V = 160 K, space group P -1, V = 2, μ (Mo-Ka) = 0.782 mm⁻¹, 16470 reflections measured, 9131 unique (Rint = 0.02), 7437 reflections used in the calculations [I > 3σ (I)], R1 = 0.0329, wR2 = 0.0336.

Crystal data for **5a-b**. $C_{26}H_{26}N_2PPd$, CF_3SO_3 , M = 652.95 g mol⁻¹, Triclinic, a = 13.131(1) Å, b = 13.216(2) Å, c = 16.126(2) Å, $\alpha = 100.10(1)^\circ$, $\beta = 98.43(1)^\circ$, $\gamma = 91.50(1)^\circ$, V = 2721.6(5) Å³, T = 180 K, space group P -1, Z = 4, $\mu(Mo-Ka) = 0.87$ mm⁻¹, 27069 reflections measured, 9946 unique (Rint = 0.08), 3475 reflections used in the calculations [I > $3\sigma(I)$], R1 = 0.0687, wR2 = 0.0781. The asymmetric unit contains two non-equivalent molecules.