

Supporting Information

© Wiley-VCH 2007

69451 Weinheim, Germany

Highly Enantioselective Synthesis of *cis*-α-Aminocycloalkanols by Ru-Catalyzed Asymmetric Hydrogenation via DKR

Sheng Liu, Jian-Hua Xie, Li-Xin Wang, and Qi-Lin Zhou*

State Key Laboratory and Institute of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China

CONTENTS:

(A) Preparation and Physical Data of New α-Aminocycloalkanones	S2
(B) General Procedure for Asymmetric Hydrogenation of α-Aminocycloalkanones	S6
(C) Synthesis of U-(-)-50488	S13
(D) NMR Spectra for New α -Aminocycloalkanones and α -Aminocycloalkanols	.S16
(E) GC, HPLC and SFC Charts for Hydrogenation Products and Derivatives	S25

General: Anhydrous 2-propanol was freshly distilled from calcium hydride before use. Anhydrous ethanol was treated with magnesium and distilled before use. Chiral spiro diphosphine ligands (*S*)-SDP, (*S*)-Tol-SDP and (*S*)-Xyl-SDP are available from Strem Chemicals Co. Other spiro diphosphine ligands and the catalysts RuCl₂(SDPs)(DPEN) were prepared according to previous methods.^[1] KO'Bu and 1-benzylpiperidin-4-one were purchased from Acros Chemicals Co. Hydrogen gas (99.999%) was purchased from Boc Gas Inc., Tianjin. ¹H and ¹³C NMR spectra were recorded on Varian Bruker-300 and Varian Bruker-400 spectrometers. Chemical shifts were

reported in ppm downfield from internal Si(CH₃)₄ and external 85% H₃PO₄, respectively. Optical rotations were determined using a PerkinElmer 341 polarimeter. HRMS were recorded on an IonSpec FT-ICR mass spectrometer with ESI resource. Melting points were measured on a RY-I apparatus and uncorrected. GC analyses were performed on Hewlett Packard Model HP 6890 Series. HPLC analyses were performed on a Hewlett Packard Model HP 1100 Series or Waters 2996 instruments. SFC analyses were performed on a Berger Analytix SFC instrument.

(A) Preparation and Physical Data of New α-Aminocycloalkanones

The *racemic* α -(dialkylamino)cycloalkanones were prepared by ring-opening of cycloalkene oxides with secondary amines, followed by oxidation of the corresponding α -(dialkylamino)cycloalkanols using Swern-oxidation method.^[2]

$$(1)_{n} \xrightarrow{R^{1}R^{2}NH} (1)_{n} \xrightarrow{OH} (1)_{n} \times R^{2} \xrightarrow{Swern-oxidation} (1)_{n} \times R^{1}R^{2}$$

General procedure for ring-opening of cycloalkene oxides: The appropriate dialkylamine (100 mmol) was added to a solution of cycloalkene oxide (100 mmol) in anhydrous ethanol (100 mL), and the resulting mixture was heated under reflux overnight. After cooling to room temperature, the solvent and excessive amine were evaporated under reduced pressure to give crude α -(dialkylamino)cycloalkanol. Further purification by distillation under vacuum afforded pure product.

General procedure for Swern-oxidation of α -(dialkylamino)cycloalkanols: A solution of oxalyl chloride (140 mmol) in 50 mL of freshly distilled CH₂Cl₂ was cooled to -78 °C, and DMSO (280 mmol) was carefully added under nitrogen atmosphere. After stirring for 15 min, a solution of α -(dialkylamino)cycloalkanol (100 mmol) in 10 mL CH₂Cl₂ and 85 mL Et₃N was added successively. The cooling bath was removed, and the reaction mixture was allowed to warm to room temperature and stirred for 2.5 h. The solvent was removed under reduced pressure, and the residue was extracted with ethyl acetate. The extract was washed with saturated aqueous Na₂CO₃

solution, brine, and dried over anhydrous Na₂SO₄. After removal of the solvent under reduced pressure, the crude product was distilled under vacuum to yield the *racemic* α -(dialkylamino)cycloalkanone.

2-(4-Methylpiperazin-1-yl)cyclohexanone (2d)

Colorless oil, bp: 102 °C / 0.5 mmHg, 80% yield. ¹H NMR (400 MHz, CDCl₃) δ 1.53–1.60 (m, 1H), 1.73–1.99 (m, 5H), 2.18–2.29 (m, 1H), 2.26 (s, 3H), 2.33–2.70 (m, 9H), 2.93 (dd, *J* = 9.4, 3.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 22.2, 28.0, 29.8, 40.4, 45.8, 49.3, 55.0, 72.1, 210.8. HRMS (ESI) *m*/*z* calcd C₁₁H₂₁N₂O ([M+H]⁺): 197.1648. Found: 197.1643.

2-[Di(*n*-butyl)amino]cyclohexanone (2g)

Colorless oil, bp: 84 °C / 0.1 mmHg, 87% yield. ¹H NMR (300 MHz, CDCl₃) δ 0.83 (t, *J* = 7.2 Hz, 6H), 1.19–1.35 (m, 8H), 1.53–1.64 (m, 2H), 1.66–1.78 (m, 1H), 1.85–1.98 (m, 3H), 2.10–2.20 (m, 1H), 2.37–2.47 (m, 3H), 2.52–2.59 (m, 2H), 3.25 (dd, *J* = 10.5, 4.8 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 13.5, 19.9, 24.0, 27.1, 30.9, 31.9, 41.1, 51.0, 69.0, 210.2. HRMS (ESI) *m/z* calcd C₁₄H₂₈NO ([M+H]⁺): 226.2165. Found: 226.2168.

2-(Benzylmethylamino)cyclohexanone (2h)

Colorless oil, bp: 128 °C / 0.1 mmHg, 83% yield. ¹H NMR (400 MHz, CDCl₃) δ 1.60–1.65 (m, 1H), 1.69–1.75 (m, 1H), 1.87–2.00 (m, 3H), 2.07–2.12 (m, 1H), 2.19–2.27 (m, 1H), 2.30 (s, 3H), 2.53–2.57 (m, 1H), 3.17 (dd, *J* = 10.0, 4.4 Hz, 1H), 3.61 (d, *J* = 13.2 Hz, 1H), 3.75 (d, *J* = 13.2 Hz, 1H), 7.22–7.36 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ 23.9, 27.8, 31.0, 38.3, 41.6, 58.4, 71.2,

127.0, 128.3, 128.7, 139.9, 211.5. MS (ESI) *m*/*z* 218 ([M+H]⁺). Anal. calcd for C₁₄H₁₉NO: C, 77.38; H, 8.81; N, 6.45. Found: C, 77.15; H, 8.82; N, 6.41.

2-(Morpholin-4-yl)cycloheptanone (2m)

Colorless oil, bp: 110 °C / 0.5 mmHg, 76% yield. ¹H NMR (400 MHz, CDCl₃) δ 1.33–1.48 (m, 2H), 1.53–1.64 (m, 2H), 1.69–1.73 (m, 1H), 1.78–1.94 (m, 3H), 2.32–2.45 (m, 3H), 2.52–2.63 (m, 3H), 3.02 (dd, J = 9.2, 4.0 Hz, 1H), 3.69 (t, J = 4.8 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 24.4, 26.1, 27.8, 29.4, 41.6, 50.7, 67.0, 74.4, 213.4. HRMS (ESI) m/z calcd C₁₁H₂₀NO₂ ([M+H]⁺): 198.1489. Found: 198.1495.

The *racemic* α -(arylmethylamino)cyclohexanones were prepared by substituted 2-chlorocyclohexanone with appropriate arylmethylamines.^[3]

General procedure for preparation of α -(arylmethylamino)cyclohexanone: The appropriate arylmethylamine (0.2 mol), 2-chlorocyclohexanone (0.2 mol), quinoline (0.02 mol), sodium carbonate (0.3 mol) and 150 mL 2-methoxyethanol were added to a dry flask and the resulting reaction mixture was heated to reflux for 2 h. The reaction mixture was cooled to room temperature. The solid was removed by filtration and washed with chloroform. The filtrate was concentrated under reduced pressure to give crude product. Pure *racemic* α -(arylmethylamino)cycloalkanone was obtained by distillation under vacuum.

2-[(4-Chlorophenyl)methylamino]cyclohexanone (2k)

White solid, mp: 110-112 °C, 56% yield. ¹H NMR (400 MHz, CDCl₃) δ 1.64–1.74 (m, 1H), 1.76–1.84 (m, 1H), 1.92–1.99 (m, 1H), 2.02–2.70 (m, 1H), 2.10–2.14 (m, 1H), 2.19–2.23 (m, 1H), 2.34–2.43 (m, 1H), 2.52–2.57 (m, 1H), 2.88 (s, 3H), 4.27 (dd, *J* = 12.4, 6.0 Hz, 1H), 6.61 (d, *J* = 8.8 Hz, 2H), 7.14 (d, *J* = 8.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 25.4, 27.2, 31.9, 34.6, 42.2, 67.6, 114.7, 122.3, 129.1, 148.8, 208.6. HRMS (ESI) calcd for C₁₃H₁₇NOCl ([M+H]⁺): 238.0993. Found: 238.0990.

Preparation of ethyl 3-(morpholin-4-yl)-4-oxopiperidine-1-carboxylate (2n)

Powdered CuBr₂ (4.60 g, 20.6 mmol) was added in portions to a refluxing solution of ethyl 4-oxopiperidine-1-carboxylate (2.02 g, 10.3 mmol) in CHCl₃ (20 mL) and EtOAc (20 mL) under nitrogen in 20 min. When the addition was complete, the solution was further refluxed for 1 h. The reaction mixture was cooled to room temperature and filtered. The filtrate was concentrated under reduced pressure. The residue was dissolved in EtOAc and washed with water, 5% NaHCO₃, and brine successively. The organic layer was dried over Na₂SO₄ and concentrated to afford a bromide as an oil, which was directly used for the next reaction.^[4]

The bromide obtained above was added to a solution of morpholine (1.05 g, 12.0 mmol), triethylamine (1.5 g, 15 mmol) in CH₂Cl₂ (50 mL) at 0 °C. The reaction mixture was stirred at 0 °C for 1 h and at room temperature overnight. Saturated aqueous Na₂CO₃ solution was then added, and the resulting mixture was extracted with CH₂Cl₂. The extract was dried over NaSO₄, and concentrated under reduced pressure. The residue was distillated under vacuum to yield **6n** as colorless liquid, 45% yield. bp: 160 °C / 0.5 mmHg. ¹H NMR (400 MHz, CDCl₃) δ 1.28 (t, *J* = 7.2 Hz, 3H), 2.30–2.43 (m, 3H), 2.70–2.76 (m, 3H), 2.88 (m, 1H), 3.56–2.73 (m, 6H), 3.86–3.97 (m, 2H), 4.18 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 14.7, 40.0, 44.3, 45.3, 50.6, 61.8, 66.9, 72.1, 155.4, 207.8. MS (ESI): *m*/*z* 257 ([M+H]⁺). Anal. calcd for C₁₂H₂₀N₂O₄: C, 56.23; H, 7.87; N, 10.93. Found: C, 55.98; H, 8.00; N, 10.85.

(B) General Procedure for Asymmetric Hydrogenation of α-Aminocycloalkanones

General procedure (S/C = 1000): The catalyst RuCl₂[(*S*)-SDP][(*R*,*R*)-DPEN] (**1a**) (2.2 mg, 0.002 mmol) and *i*-PrOH (2.0 mL) were added to a 25 mL hydrogenation vessel. The vessel was placed in an autoclave and purged with hydrogen by pressurizing to 10 atm and releasing the pressure. The procedure was repeated three times and the solution was stirred under 10 atm of H₂ for 5 min. After releasing the pressure, ketone (2 mmol) and a solution of *t*-BuOK in *i*-PrOH (0.2 mmol/mL, 1.0 mL, 0.2 mmol) were added. The autoclave was purged with hydrogen and pressurized to 10 atm. After stirring at room temperature for certain hours, the reaction was stopped. The reaction mixture was filtered through a short silica gel column, and the filtrate was diluted with acetone and analyzed by GC to determine the conversion and the selectivity. The enantioselectivity was determined by chiral GC, HPLC or SFC.

(1*S*,2*R*)-2-(Pyrrolidin-1-yl)cyclohexanol (3a)^[5]

White solid, mp: 105–107 °C, 90% yield. $[\alpha]_D{}^{20}$ –33.4 (*c* 1.00, CHCl₃), 99.8% ee [GC conditions: Supelco α -DEXTM 120 column (25 m × 0.25 mm × 0.25 µm); carrier gas, N₂ (2.0 mL/min); injection temp., 230 °C; initial column temp., 100 °C; rate, 0.5 °C/min; final column temp., 200 °C; $t_R(1R,2S) = 31.27 \text{ min}; t_R(1S,2R) = 32.46 \text{ min}]$. ¹H NMR (400 MHz, CDCl₃) δ 1.17–1.57 (m, 6H), 1.58–1.74 (m, 5H), 1.95–2.03 (m, 2H), 2.47–2.48 (m, 2H), 2.63–2.64 (m, 2H), 3.12 (br, 1H), 3.95 (m, 1H).

(1*S*,2*R*)-2-(Piperidin-1-yl)cyclohexanol (3b)^[5]

White solid, mp: 109–111 °C, 90% yield. $[\alpha]_D^{20}$ –19.0 (*c* 1.00, CHCl₃). 99% ee [determined by HPLC analysis of the corresponding 3,5-dinitrobenzoyl derivative using a Chiralcel AD–H column

(25 cm); *i*-PrOH /*n*-Hex = 1:99, 1.0 mL/min; $t_R(1S,2R) = 11.17$ min; $t_R(1R,2S) = 12.49$ min]. ¹H NMR (400 MHz, CDCl₃) δ 1.09–1.76 (m, 13H), 1.98–2.08 (m, 2H), 2.46–2.48 (m, 2H), 2.54–2.56 (m, 2H), 3.35 (br, 1H), 4.01 (m, 1H).

(1S,2R)-2-(Morpholin-4-yl)cyclohexanol (3c)^[6]

White solid, mp: 96–98 °C, 91% yield. $[\alpha]_D^{20}$ –21.7 (*c* 1.00, CHCl₃). 99.9% ee [determined by HPLC analysis of the corresponding 3,5-dinitrobenzoyl derivative using a Chiralcel OD–H column (25 cm); *i*-PrOH /*n*-Hex = 30:70, 1.0 mL/min; $t_R(1S,2R) = 13.85$ min; $t_R(1R,2S) = 22.68$ min]. ¹H NMR (400 MHz, CDCl₃) δ 1.10–1.23 (m, 1H), 1.27–1.41 (m, 3H), 1.47–1.55 (m, 1H), 1.66–1.78 (m, 2H), 1.99–2.10 (m, 2H), 2.48–2.50 (m, 2H), 2.62–2.64 (m, 2H), 3.11 (br, 1H), 3.69–3.72 (m, 4H), 4.01 (m, 1H).

(1*S*,2*R*)-2-(4-Methylpiperazin-1-yl)cyclohexanol (3d)^[7]

White solid, mp: 78–80 °C, 90% yield. $[\alpha]_D^{20}$ –14.3 (*c* 0.98, CHCl₃), 99.6% ee [determined by HPLC analysis of the corresponding benzoyl derivative using a Chiralcel OD–H column (25 cm), *i*-PrOH /*n*-Hex = 10:90, 1.0 mL/min; $t_R(1S,2R) = 4.26$ min; $t_R(1R,2S) = 6.93$ min]. ¹H NMR (400 MHz, CDCl₃) δ 1.14–1.21 (m, 1H), 1.28–1.42 (m, 2H), 1.47–1.57 (m, 1H), 1.67–1.76 (m, 2H), 1.98–2.02 (m, 1H), 2.06–2.10 (m, 1H), 2.27 (s, 3H), 2.20–2.79 (m, 7H), 2.93–3.31 (m, 2H), 3.51 (br, 1H), 4.01 (m, 1H).

(1*S*,2*R*)-2-(Dimethylamino)cyclohexanol (3e)^[8]

White solid, mp: 45–47 °C, 80% yield. $[\alpha]_D^{20}$ –26.2 (*c* 1.05, CHCl₃), 99.9% ee [GC conditions: Suplco α -DEXTM 120 column (25 m × 0.25 mm × 0.25 µm); carrier gas, N₂ (2.0 mL/min); injection temp., 230 °C; initial column temp., 50 °C (30 min); rate, 0.5 °C/min; final column temp., 200 °C; t_R (1*R*,2*S*) = 68.43 min; t_R (1*S*,2*R*) = 70.36 min]. ¹H NMR (400 MHz, CDCl₃) δ 1.11–1.23 (m, 1H), 1.28–1.37 (m, 2H), 1.42–1.55 (m, 2H), 1.69–1.76 (m, 2H), 1.94–2.01 (m, 2H), 2.32 (s, 6H), 3.77 (br, 1H), 4.08 (m, 1H).

(1*S*,2*R*)-2-(Diethylamino)cyclohexanol (3f)^[6]

Colorless oil, 89% yield. $[\alpha]_D^{20}$ –13.6 (*c* 1.01, CHCl₃), 99% ee [determined by HPLC analysis of the corresponding 3,5-dinitrobenzoyl derivative using a Chiralcel OD–H column (25 cm); *i*-PrOH /*n*-Hex = 10:90, 1.0 mL/min; $t_R(1S,2R) = 12.08$ min; $t_R(1R,2S) = 16.77$ min]. ¹H NMR (400 MHz, CDCl₃) δ 1.19 (t, J = 7.2 Hz, 6H), 1.22–1.27 (m, 1H), 1.34–1.42 (m, 2H), 1.54–1.65 (m, 1H), 1.73–1.84 (m, 3H), 1.97–2.01 (m, 1H), 2.68–2.71 (m, 1H), 2.89–3.06 (m, 4H), 4.28 (m, 1H).

(1*S*,2*R*)-2-(Dibutylamino)cyclohexanol (3g)^[9]

Colorless oil, 91% yield. $[\alpha]_D^{20}$ –8.1 (*c* 1.05, CHCl₃), 99.6% ee [determined by HPLC analysis of the corresponding 3,5-dinitrobenzoyl derivative using a Chiralcel OD–H column (25 cm); *i*-PrOH /*n*-Hex = 10:90, 1.0 mL/min; $t_R(1S,2R) = 13.82$ min; $t_R(1R,2S) = 19.15$ min]. ¹H NMR (400 MHz, CDCl₃) δ 0.91 (t, J = 7.2 Hz, 6H), 1.15–1.56 (m, 13H), 1.63–1.67 (m, 1H), 1.74–1.77 (m, 1H), 1.98–2.03 (m, 1H), 2.36–2.39 (m, 1H), 2.55–2.61 (m, 4H), 3.31 (br, 1H), 3.95 (m, 1H).

(1*S*,2*R*)-2-(Benzylmethylamino)cyclohexanol (3h)^[7]

Colorless oil, 93% yield. $[\alpha]_D^{20}$ –6.6 (*c* 1.08, CHCl₃), 99% ee [HPLC conditions: Chiralcel AD–H column (25 cm); *i*-PrOH /*n*-Hex = 5:95, 1.0 mL/min; $t_R(1S,2R) = 8.21$ min; $t_R(1R,2S) = 9.16$ min]. ¹H NMR (400 MHz, CDCl₃) δ 1.20–1.23 (m, 1H), 1.35–1.42 (m, 2H), 1.49–1.60 (m, 2H), 1.78–1.81 (m, 2H), 2.05–2.08 (m, 1H), 2.17 (s, 3H), 2.24–2.28 (m, 1H), 3.25 (br, 1H), 3.51 (d, *J* = 13.4 Hz, 1H), 4.14 (m, 1H), 7.25–7.35 (m, 5H).

(1*S*,2*R*)-2-(Methylphenylamino)cyclohexanol (3i)^[10]

Colorless oil, 94% yield. $[\alpha]_D^{20}$ +117 (*c* 0.99, CHCl₃), 99.3% ee [HPLC conditions: Chiralcel OJ column (25 cm); *i*-PrOH /*n*-Hex = 10:90, 1.0 mL/min; $t_R(1S,2R) = 26.90$ min; $t_R(1R,2S) = 41.38$ min]. ¹H NMR (400 MHz, CDCl₃) δ 1.26–1.38 (m, 1H), 1.46–1.64 (m, 4H), 1.80–2.02 (m, 4H), 2.93 (s, 3H), 3.42–3.47 (m, 1H), 4.19 (m, 1H), 6.77–6.83 (m, 3H), 7.23–7.27 (m, 2H).

(1*S*,2*R*)-2-((4-Methylphenyl)methylamino)cyclohexanol (3j)^[11]

Colorless oil, 92% yield. $[\alpha]_D^{20}$ +66.3 (*c* 1.00, CHCl₃), 99.6% ee [SFC conditions: Chiralcel OJ–H column (25 cm); 10% *i*-PrOH, 100 bar CO₂, 2.0 mL/min; $t_R(1S,2R) = 9.40$ min; $t_R(1R,2S) = 11.69$ min]. ¹H NMR (400 MHz, CDCl₃) δ 1.26–1.30 (m, 1H), 1.42–1.61 (m, 4H), 1.75–1.82 (m, 2H), 1.90–1.93 (m, 1H), 2.15 (br, 1H), 2.28 (s, 3H), 2.85 (s, 3H), 3.21–3.26 (m, 1H), 4.13 (m, 1H), 6.81 (d, *J* = 8.4 Hz, 2H), 7.07 (d, *J* = 8.4 Hz, 2H).

(1*S*,2*R*)-2-((4-Chlorophenyl)methylamino)cyclohexanol (3k)

Colorless oil, 93% yield. $[\alpha]_D^{20}$ +131 (*c* 0.98, CHCl₃), 99.6% ee [SFC conditions: Chiralcel OJ–H column (25 cm); 10% *i*-PrOH, 100 bar CO₂, 2.0 mL/min; $t_R(1S,2R) = 17.83$ min; $t_R(1R,2S) = 19.41$ min]. ¹H NMR (400 MHz, CDCl₃) δ 0.79–0.87 (m, 1H), 1.25–1.38 (m, 1H), 1.46–1.62 (m, 3H), 1.71 (br, 1H), 1.84–1.90 (m, 2H), 1.96–2.04 (m, 1H), 2.90 (s, 3H), 3.38–3.43 (m, 1H), 4.16 (m, 1H), 6.70 (d, J = 8.8 Hz, 2H), 7.17 (d, J = 8.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 19.7, 25.3, 26.4, 32.8, 34.5, 61.2, 68.5, 115.3, 122.0, 129.1, 148.8. HRMS (ESI) *m/z* calcd C₁₄H₁₇NO ([M-H]⁻): 238.1004. Found: 238.1009.

(1*S*,2*R*)-2-(Morpholin-4-yl)cyclopentanol (3l)^[12]

White solid, mp: 80–82 °C, 87% yield. $[\alpha]_D^{20}$ –18.8 (*c* 1.00, CHCl₃), 98% ee [determined by HPLC analysis of the corresponding 3,5-dinitrobenzoyl derivative using Chiralcel AD–H column (25 cm), *i*-PrOH /*n*-Hex = 20:80, 1.0 mL/min; $t_R(1R,2S) = 10.35$ min; $t_R(1S,2R) = 12.06$ min]. ¹H NMR (400 MHz, CDCl₃) δ 1.55–1.92 (m, 6H), 2.52–2.55 (m, 2H), 2.66–2.69 (m, 2H), 3.65–3.70 (m, 1H), 3.74 (t, *J* = 4.6 Hz, 4H), 4.11–4.13 (m, 1H), 4.19 (br, 1H).

(1*S*,2*R*)-2-(Morpholin-4-yl)cycloheptanol (3m)^[12]

White solid, mp: 84–86 °C, 91% yield. $[\alpha]_D^{20}$ –33.4 (*c* 1.00, CHCl₃), 97% ee [determined by HPLC analysis of the corresponding 3,5-dinitrobenzoyl derivative using Chiralcel AD–H column (25 cm); *i*-PrOH /*n*-Hex = 20:80, 1.0 mL/min; $t_R(1S,2R) = 10.19$ min; $t_R(1R,2S) = 12.68$ min]. ¹H NMR (400 MHz, CDCl₃) δ 1.16–1.35 (m, 4H), 1.48–1.90 (m, 6H), 2.56–2.67 (m, 5H), 3.68–3.75 (m, 4H), 3.86–3.90 (m, 1H), 4.40 (br, 1H).

(3R,4S)-Ethyl 4-hydroxy-3-(morpholin-4-yl)piperidine-1-carboxylate (3n)

White solid, mp: 83–85 °C, 91% yield. $[\alpha]_D^{20}$ +13.5 (*c* 1.00, CHCl₃), 99.9% ee [determined by HPLC analysis of the corresponding 3,5-dinitrobenzoyl derivative using Chiralcel OD–H column (25 cm); *i*-PrOH /*n*-Hex = 30:70, 1.0 mL/min; $t_R(1S,2R) = 43.48$ min; $t_R(1R,2S) = 65.02$ min]. ¹H NMR (400 MHz, CDCl₃) δ 1.25 (t, J = 9.2 Hz, 3H), 1.53–1.60 (m, 1H), 1.91–1.95 (m, 1H), 2.23–2.25 (m, 1H), 2.46–2.50 (m, 2H), 2.68–2.71 (m, 2H), 2.80–2.86 (m, 1H), 3.03–3.08 (m, 2H), 3.70–3.73 (m, 4H), 3.85–3.88 (m, 1H), 4.09–4.15 (m, 3H), 4.26 (br, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 14.8, 30.2, 38.1, 41.1, 50.1, 61.5, 62.2, 62.6, 67.2, 155.6. HRMS (ESI) calcd for C₁₂H₂₃N₂O₄ ([M+H]⁺): 259.1652. Found: 259.1654.

(C) Synthesis of U-(-)-50488

(1*R*,2*S*)-2-(Pyrrolidin-1-yl)cyclohexyl methanesulfonate (5)

A solution of methanesulfonyl chloride (1.3 g, 11 mmol) in 60 mL anhydrous CH₂Cl₂ was added to a mixture of (1*R*,2*S*)-2-(pyrrolidin-1-yl)cyclohexanol (**3a**) (1.7 g, 10 mmol) and triethylamine (1.8 mL, 15 mmol) in 90 mL anhydrous CH₂Cl₂ under nitrogen atmosphere at 0 °C. The reaction mixture was stirred at 0 °C for 1 h and at room temperature for overnight. After quenched with saturated Na₂CO₃ solution, the solvent was removed under reduced pressure and the obtained residue was re-dissolved with EtOAc. The solution was washed with brine, dried over Na₂SO₄ and concentrated to give crude product. Further purification by flash chromatography with ethyl acetate/methanol (10:1) yielded (1*R*,2*S*)-**5** as an oil (2.34 g, 95% yield). ¹H NMR (400 MHz, CDCl₃) δ 1.23–1.33 (m, 1H), 1.47–1.61 (m, 5H), 1.69–1.80 (m, 5 H), 2.10–2.16 (m, 2H), 2.45–2.51 (m, 2H), 2.62–2.66 (m, 2H), 3.10 (s, 3H), 5.07–5.10 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 19.8, 23.3, 24.4, 26.1, 30.9, 39.2, 51.6, 65.9, 80.7. HRMS (ESI) calcd for $C_{11}H_{22}NO_3S$ ([M+H]⁺): 248.1315. Found: 248.1319.

Benzyl (1*S*,2*S*)-*N*-[2-(pyrrolidin-1-yl)cyclohexyl]carbamate (6)

A mixture of NaN₃ (0.39 g, 6 mmol), 18-crown-6 (1.06 g, 4 mmol) and DMF (3 mL) was stirred at room temperature under nitrogen atmosphere for 3 h. (1*R*,2*S*)-2-(Pyrrolidin-1-yl)cyclohexyl methanesulfonate (**5**) (1.0 g, 4 mmol) was added. After stirred at room temperature for 4 days, the reaction mixture was poured into water, extracted with ether. The extract was dried over anhydrous Na₂SO₄, and concentrated under reduced pressure to give azide product.

The azide obtained above was dissolved with 10 mL MeOH in a 20 mL hydrogenation vessel. After added 0.1 g Pd/C (10%), the vessel was placed in an autoclave and purged with hydrogen. The hydrogenation was performed under 3 atm of H₂ at room temperature overnight. The reaction mixture was filtered to remove the Pd/C. The filtrate was diluted with EtOAc (15 mL) and cooled to 0 °C and benzyl chloroformate (0.8 mL, 4.8 mmol) in 10 mL EtOAc was added. The reaction mixture was stirred overnight and neutralized with saturated Na₂CO₃ to pH below 10. The organic layer was separated, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give crude product. Purification of the crude product by flash chromatography with ethyl acetate/methanol (10:1) yielded (1*S*,2*S*)-**6** as an oil (0.63 g, 53% yield). [α]_D²⁰ +50.2 (*c* 1.05, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 1.11–1.33 (m, 4H), 1.61–1.79 (m, 7H), 2.43–2.51 (m, 4H), 2.59–2.62 (m, 2H), 3.27–3.34 (m, 1H), 5.05–5.12 (m, 2H), 5.63 (br, 1H), 7.30–7.36 (m, 5H).

U-(-)-50488 (4)

U-(-)-50488 (**4**) was prepared according to the literature methods. ^[13] The product was obtained as an oil, 90% yield. Hydrochloride salt of U-(-)-50488 (**4**): $[\alpha]_D^{20}$ –36.8 (*c* 0.75, MeOH) [lit. $[\alpha]_D^{20}$ –34.0 (*c* 0.7, MeOH) for 99% ee; ^[13] $[\alpha]_D^{20}$ –36.05 (*c* 0.73, MeOH) for 99% ee ^[14]]

Reference:

- [1] J.-H. Xie, L.-X. Wang, Y. Fu, S.-F. Zhu, B.-M. Fan, H.-F. Duan, Q.-L. Zhou, J. Am. Chem. Soc.
 2003, 125, 4404.
- [2] L. Radesca, W. D. Bowen, L. D. Paolo, B. R. Costa, J. Med. Chem. 1991, 34, 3058.
- [3] A. A. EI-Hamamy, J. Hill, J. Townend, J. Chem. Soc. Perkin Trans I 1983, 573.
- [4] D. Bai, R. Xu, G. Chu, X. Zhu, J. Org. Chem. 1996, 61, 4600.
- [5] I. Schiffers, T. Rantanen, F. Schmidt, W. Bergmans, L. Zani, C. Bolm, J. Org. Chem. 2006, 71, 2320.
- [6] M. Max, J. Jean, J. Yves, Bull. Soc. Chim. Fr.; 1952; 767.
- [7] S. L. Shapiro, H. Soloway, H. J. Shapiro, L. Freedman, J. Am. Chem. Soc.; 1959, 81, 3993.
- [8] S. Miyano, L. D.-L. Lu, S. M. Viti, K. B. Sharpless, J. Org. Chem. 1985, 50, 4350.
- [9] C. E. Harris, G. B. Fisher, D. Beardsley, L. Lee, C. T. Goralski, L. W. Nicholson, B. Singaram, *J. Org. Chem.* **1994**, *59*, 7746.
- [10] U. Das, B. Crousse, V. Kesavan, D. Bonnet-Delpon, J.-P. Bégué, J. Org. Chem. 2000, 65, 6749.
- [11] G. Sekar, H. Nishiyama, Chem. Commun., 2001, 1314.
- [12] C. T. Goralski, B. Singaram, H. C. Brown, J. Org. Chem. 1987, 52, 4014.
- [13] J. González-Sabín, V. Gotor, F. Rebolledo, Chem. Eur. J. 2004, 10, 5788.
- [14] B. De Costa, C. George, R. B. Rothman, A. E. Jacobson, K. C. Rice, *FEBS Lett.* 1987, 223, 335.

(D) NMR Spectra for New α-Aminocycloalkanones and α-Aminocycloalkanols

2-(Dibutylamino)cyclohexanone (2g)

2-(Benzylmethylamino)cyclohexanone (2h)

2-((4-Chlorophenyl)methylamino)cyclohexanone (2k)

2-(Morpholin-4-yl)-cycloheptanone (2m)

2-((4-Chlorophenyl)methylamino)cyclohexanol (3k)

Ethyl 4-hydroxy-3-morpholinopiperidine-1-carboxylate (3n)

(1*R*,2*S*)-2-(pyrrolidin-1-yl)cyclohexyl methanesulfonate (5)

Peak #	RetTime [min]	Туре	Width [min]	Area [pA*s]	Height [pA]	Area %
1	31.659	VV	0.2141	3.04712	1.67190e-1	0.10475
2	32.423	VB	0.2473	2905.84497	139.04449	99.89525
Total	ls :			2908.89209	139.21168	

Peak	RetTime	Туре	Width	Aı	Area		ght	Area	
#	[min]		[min]	mAU	*s	[mAU]	8	
1	11.341	VV	0.2814	1.294	400e4	694.	53522	99.3032	
2	12.768	VB	0.3157	90.	.79616	4.3	30919	0.6968	
Total	s:			1.303	308e4	698.	84441		

Peak	RetTime	Туре	Width	Area		Area		Area		Area		dth Area		Heiq	ght	Area
#	[min]		[min]	mAU *s		mAU *s		mAU *s		mAU *s		in] mAU *s		[mAU]	%
1	13.769	BB	0.5261	2.475	87e4	728.4	19951	99.9621								
2	23.358	BB	0.6132	9.	38574		21e-1	0.0379								
Total	ls :			2.476	81e4	728.0	58333									

Benzoyl (Bz) derivative of (1*S*,2*R*)-2-(4-methylpiperazin-1-yl)cyclohexanol (3d)

	RT	Area	% Area	Height
1	4.259	717563	99.79	57909
2	6.952	1507	0.21	176

(1*S*,2*R*)-2-(Dimethylamino)cyclohexanol (3e)

 Peak RetTime Type
 Width
 Area
 Height
 Area

 # [min]
 [min]
 [pA*s]
 [pA]
 %

 ----|-----|

 -----|

 1
 69.383
 PV
 0.4933
 4963.10693
 118.10617
 1.000e2

 Totals :
 4963.10693
 118.10617

Peak #	RetTime [min]	Туре	Width [min]	Area mAU *s	Height [mAU]	Area %
 1 2	12.080 16.186	BB BB	0.4723 1.8833	1.94611e4 119.3153	632.84442 7.43148e-1	99.3906 0.6094
Total	ls :			1.95804e4	633.58757	

3,5-Dinitrobenzoyl (DNB) derivative of (1*S*,2*R*)-2-(dibutylamino)cyclohexanol (3g)

Peak	RetTime	Туре	Width	Area	Heig	ght	Area
#	[min]		[min]	mAU *s	[mAU]	%
1	13.626	VB	0.5360	8.20745e	4 2381.0	59312	99.8056
2	21.868	PB	1.0075	159.834	88 1.9	95247	0.1944
Total	s :			8.22343e	4 2383.0	54559	

(1*S*,2*R*)-2-(Benzylmethylamino)cyclohexanol (3h)

(15,2R)-2-(Methylphenylamino)cyclohexanol (3i)

Peak #	RetTime [min]	Туре	Width Area [min] mAU *s		Area mAU *s		Area mAU *s		Area mAU *s		Area mAU *s		Area mAU *s		Area mAU *s		Area mAU *s		Area mAU *s		Area mAU *s		ght]	Area %
 1 2	26.566 41.450	 BB BP	2.0917 2.4637	9.51883	 le4 7740	727.3	37225 54393	99.6627 0.3373																
Total	ls :			9.5510	3e4	728.9	91618																	

(1*S*,2*R*)-2-((4-Methylphenyl)methylamino)cyclohexanol (3j)

Peak #	RetTime [min]	Туре	Width [min]	Area mAU *s	Area %
1	9.216	BB	0.3011	6.49445e4	99.8204
2	11.867	BB	0.2514	116.84764	0.1796

Peak RetTime # [min]	Type 1	Width [min] 1	Area mAU *	s	Heig [mAU	ht]	Area %	
1 10.211 2 11.759	BB (BB (0.2763 0.3218	441.37 4.19674	811 e4 1	24.9 1943.9	4555 4592	1.0408 98.9592	1
Totals :			4.24087	e4 1	1968.8	9147		

S 34

Peak #	RetTime [min]	Туре	Width [min]	A1 mAU	rea *s	Hei [mAU	.ght]	Area %
 1 2	10.132 12.911	BB BB	0.3096 0.3929	1.694 246	187e4 .51622	834. 9.	96985 50433	98.5664 1.4336
Total	s:			1.719	952e4	844.	47417	

3,5-Dinitrobenzoyl (DNB) derivative of (3*R*,4*S*)-ethyl 4-hydroxy-3-(morpholin-4-yl)piperidine-1-carboxylate (3n)

Totals : 1.97951e4 107.47655