

Supporting Information

© Wiley-VCH 2007

69451 Weinheim, Germany

Ni-Catalyzed Cascade Formation of C(sp³)-C(sp³) Bonds by Cyclization and Cross-coupling of Alkyl Iodides with Alkylzinc Halides

Vilas B. Phapale, Elena Buñuel, Miguel García-Iglesias, and Diego J. Cárdenas*

Departamento de Química Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049-Madrid, Spain

Iodoketals were synthesized by reaction of 2,3-dihydrofuran with the suitable allylic alcohol and NIS according to the described procedure.¹ Iodoethers were prepared in the same way from cyclopentene. 3-(2-iodoethoxy) cyclohex-1-ene², Dimethyl 2-allyl-2-(2-bromoethyl) malonate³, *N*-(2-iodoethyl)-*N*-tosylprop-2-en-1-amine⁴, **7a**⁵, 8-Iodo-2, 6-dimethyl oct-2-ene,⁶ 1-allyl-2-(iodomethyl) benzene⁷, 6-iodohex-1-ene⁸ and 3-(2-iodoethoxy)prop-1-ene⁹ were previously described. The preparations of other starting compounds are described below.

	▲I → Brz	Zn O [Ni] (10 mo ligand (10 m THF, 23%		
	1a	2a (4 equiv)	Ĥ	3a
entry	catalyst	ligand	time (h)	yield (%)
1	Ni(cod) ₂	terpyridine	48	24
2		bipyridine	48	19
3	Ni(py) ₄ Cl ₂	terpyridine	27	57
4		<i>i</i> -Pr-Pybox	12	61

Table S1. Optimization of reaction conditions by screening of ligands.

Ο

Scheme S1. Cross-coupling reactions in the presence of mono- and bidentate nitrogen ligands.

Table S2. Ni-catalyzed cross-couplings of additional alkyl iodides. Conditions: [Ni(py)₄Cl₂] (10 mol %), (*S*)-(*s*-Bu)-Pybox (10 mol %), THF, 23°C.

^{*a*} Approximate yields. Pure compounds could not be obtained by column chromatography. In the case of entry 1, GC-MS indicates the presence of at least an isomer.

For full experimental details, see below.

General procedure for the cross-coupling reactions:

A 25 mL flask was charged with Ni(py)₄Cl₂ (17.5 mg, 0.039 mmol), (*S*)-(*s*-Bu)-Pybox ² (12.9 mg, 0.039 mmol) and a stir bar in air. The flask was sealed with a septum and backfilled with Ar. A solution of the alkyl iodide¹ (0.393 mmol) in dry THF (2 mL) was added via syringe. After stirring for 3-4 min at rt, the resulting deep-blue solution was treated in turn with the corresponding alkylzinc bromide, (0.5 M THF solution, 0.787 mmol) was added, and the reaction mixture was stirred at room temperature for half of the total indicated reaction time. Then again alkylzinc bromide, (0.5 M THF solution, 0.787 mmol) was added, and the reaction mixture was then stirred for the rest of the total time. The reaction mixture was then stirred for the rest of the total time. The reaction mixture was then transferred to a reparatory funnel with diethyl ether (20 mL), the product was extracted with ether (2×30 mL) and the combined organic extracts were washed with water (20 mL) and brine (20 mL). After drying (anhydrous Na₂SO₄), the solution was filtered and concentrated and the residue was purified by silica gel column chromatography (Hexane: EtOAc) which afforded the compounds as pale yellow oils. Modifications of this general procedure concerning the molar ratio for the reagents are indicated in every particular case below.

 $(3R^*, 3aS^*, 6aR^*)$ -3-[3-(1,3-dioxolan-2-yl)propyl]-hexahydrofuro [2, 3-*b*] furan (**3a**): 7 h, (Hexane: EtOAc = 6:4), Pale yellow oily liquid (71 mg, 79 %).

Procedure: General procedure described above.

¹H NMR (300MHz, CDCl₃) δ 5.71 (d, *J* = 5.0 Hz, 1H), 4.84 (t, *J* = 4.7 Hz, 1H), 3.98-3.81 (m, 7H), 3.39 (dd, *J*= 11.4, 8.4 Hz, 1H), 2.83-2.72 (m, 1H), 2.35-2.21 (m, 1H), 1.89-1.76 (m, 2H), 1.70-1.61 (m, 2H), 1.49-1.36 (m, 4H).

¹³C NMR (300MHz, CDCl₃, DEPT-135) δ 109.91 (CH), 104.40 (CH), 72.70 (CH₂), 69.26 (CH₂), 65.05 (2·CH₂), 45.53 (CH), 42.37 (CH), 34.12 (CH₂), 27.69 (CH₂), 25.12 (CH₂), 23.10 (CH₂).

TOF MS EI+: Calcd. for C₁₂H₂₀O₄: 228.1362; Found: 228.1371

Ethyl 4-[(3*R**, 3a*S**, 6a*R**)-hexahydrofuro[2,3-b]furan-3-yl]butanoate (**3a**') 13 h, (Hexane: EtOAc= 8:2), Pale yellow oily liquid (58 mg, 65 %).

Procedure: General procedure described above.

¹H NMR (300MHz, CDCl₃) δ 5.70 (d, J = 5.0 Hz, 1H), 4.11 (q, J = 7.1 Hz, 2H), 3.95-3.81(m, 3H), 3.39 (dd, J=11.4, 8.5 Hz, 1H) 2.84-2.73 (m, 1H), 2.34-2.23(m, 3H), 1.88-1.79 (m, 2H), 1.72-1.53 (m, 2H), 1.46-1.35 (m, 2H), 1.23 (t, J = 7.2 Hz, 3H).

¹³C NMR (500MHz, CDCl₃, DEPT-135) δ 173.59 (C), 110.05 (CH₂), 72.74 (CH₂), 69.42 (CH₂), 60.66 (CH₂), 42.31 (CH), 42.31 (CH), 34.57 (CH₂), 27.35 (CH₂), 25.19 (CH₂), 24.09 (CH₂), 14.55 (CH₃).

TOF MS EI+: Calcd. for C₁₂H₁₉O₄ (M⁺-1): 227.1283; Found: 227.1283.

(3*R**, 3a*S**, 6a*R**)-3-(2-cyclohexyl)-hexahydrofuro [2, 3-*b*] furan (**3a**^{''}) 15 h, (Hexane: EtOAc = 9:1), Colourless oily liquid (53 mg, 60 %).

Procedure: General procedure described above.

¹H NMR (300MHz, CDCl₃) δ 5.71 (d, *J* = 4.9 Hz, 1H), 3.95-3.81 (m, 3H), 3.39 (dd, *J* = 11.4, 8.4 Hz, 1H), 2.83-2.72 (m, 1H), 2.31-2.17 (m, 1H), 1.91-1.77 (m, 2H), 1.75-1.58 (m, 6H), 1.43-1.10 (m, 9H).

¹³C NMR (300MHz, CDCl₃, DEPT-135) δ110.14 (CH), 73.12 (CH₂), 69.49 (CH₂), 45.77 (CH), 42.77 (CH), 38.23 (CH), 36.57 (CH₂), 33.78 (2·CH₂), 27.00 (2·CH₂), 26.70 (CH₂), 25.30 (CH₂), 25.15 (CH₂).

TOF MS EI+: Calcd. for C₁₄H₂₄O₂: 224.1776; Found: 224.1767.

 $(3R^*,3aS^*,7aR^*)$ -3-[3-(1,3-dioxolan-2-yl)propyl]-hexahydrofuro[2,3-*b*]pyran (**3b_major**)

8h, (Hexane: EtOAc= 7:3), Pale yellow oily liquid (76 %).

Procedure: Compound **3b_major** and **3b_major** are prepared by following the general procedure as described above, with the following amounts of reagents.

a) *trans*-3-Iodo-2-(2-propenyloxy) tetrahydropyran (100 mg, 0.373 mmol)

- b) Organozinc reagent 4 equiv. (2+2), (1.5mL, 0.746 mmol) + (1.5mL, 0.746 mmol),
- c) Ni (py)₄ Cl₂ (16.6 mg, 0.037 mmol),

d) s-Bu-Pybox (12.3 mg, 0.037 mmol).

¹H NMR (300MHz, CDCl₃) δ 5.24, (d, J = 3.8 Hz, 1H), 4.81 (t, J = 4.7 Hz, 1H), 4.01-3.57 (m, 8H), 2.82-2.25 (m, 1H), 1.97-1.86 (m, 1H), 1.71-1.51 (m, 5H), 1.49-1.23 (m, 5H).

¹³C NMR (500MHz, CDCl₃, DEPT-135) δ 104.59 (CH), 102.31 (CH), 70.30 (CH₂), 65.16 (2·CH₂), 61.23 (CH₂), 41.34 (CH), 36.74 (CH), 34.26 (CH₂), 27.30 (CH₂), 23.51 (CH₂), 23.00 (CH₂), 19.49 (CH₂).

EI+: Calcd. for C₁₃H₂₂O₄: 242.151809; Found: 242.151100.

(3*R**, 3a*R**, 7a*S**)-3-[3-(1, 3-dioxolan-2-yl) propyl]-hexahydrofuro [2, 3-*b*] pyran (**3b_minor**)

8h, (Hexane: EtOAc = 7:3), Pale yellow oily liquid (7%, mixture of two diastereomers).

¹H NMR (300MHz, CDCl₃) δ 4.96 (d, *J* = 3.6 Hz, 1H), 4.26 (t, *J* = 8.2 Hz, 1H), 3.95-3.35 (m, 8H), 1.84-1.77 (m, 1H), 1.73-1.69 (m, 1H), 1.66-1.09 (m, 10H).

 ^{13}C NMR (500MHz, CDCl₃) δ Most signals overlap with those of the other major isomer.

Ethyl 4-[$(3R^*, 3aS^*, 7aR^*)$ -hexahydro [2, 3-b] pyran-3-yl] butanoate (**3b**')

16 h, (Hexane: EtOAc = 9:1), Pale yellow oily liquid (85 mg, 94%), (combined yield for both diastereoisomers).

Procedure: Compound **3b**' was prepared according to the same procedure as described for **3b_major**, as a pale yellow oily liquid.

¹H NMR (300MHz, CDCl₃) δ 5.25 (d, J = 3.6 Hz, 1H), 4.11 (q, J = 7.1 Hz, 2H), 3.94 (t, J = 8.2 Hz 1H), 3.77- 3.58 (m, 3H), 2.33-2.25 (m, 3H), 1.99-1.88 (m, 1H), 1.65-1.32 (m, 8H), 1.24 (t, J = 7.1 Hz, 3H).

¹³C NMR (500MHz, CDCl₃) δ 173.3 (C), 102.05 (CH), 69.89 (CH₂), 61.1 (CH₂), 60.3 (CH₂), 40.9 (CH), 36.26 (CH), 39.5 (CH₂), 26.6 (CH₂), 23.6 (CH₂), 23.18 (CH₂), 19.3 (CH₂), 14.16 (CH₃).

⁽³*R**, 3a*S**, 7a*R**)-3-(2-cyclohexylethyl)-hexahydrofuro [2, 3-*b*] pyran (**3b**^{''}) 8h, (Hexane: EtOAc =20: 1), yellowish oily liquid (75 %)

Procedure: Compound **3b**^{''} was prepared according to the same procedure as described for **3b_major**, as a pale yellow oily liquid.

¹H NMR (300MHz, CDCl₃) δ 5.26 (d, J = 3.6 Hz, 1H), 3.93 (t, J = 7.8 Hz, 1H), 3.78-3.64 (m, 1H), 3.66-3.58 (m, 2H), 2.33-2.16 (m, 1H), 1.97-1.87 (m, 1H), 1.73-1.52 (m, 8H), 1.45-1.30 (m, 2H), 1.28-1.06 (m, 7H), 0.93-0.78 (m, 3H).

¹³C NMR (300MHz, CDCl₃, DEPT-135) δ 102.46 (CH), 70.58 (CH₂), 61.34 (CH₂), 41.67 (CH), 38.26 (CH), 36.87 (CH), 36.38 (CH₂), 33.80 (2·CH₂), 27.03 (CH₂), 26.73 (2·CH₂), 24.64 (CH₂), 23.66 (CH₂), 19.2 (CH₂). EI+: Calcd. for C₁₅H₂₅O₂ (M⁺-1): 237.185455; Found: 237.185500.

 $(3R^*, 3aS^*, 6aR^*)$ -3-[3-(1, 3-dioxolan-2-yl) propyl]-hexahydro3-methylfuro [2, 3-*b*] furan (**3c**)

8 h, (Hexane: EtOAc = 8:2), Pale yellow oily liquid (59 mg, 64 %).

Procedure: Compound **3c** was prepared according to the general procedure as a pale yellow oily liquid, with the following amounts of reagents.

a) 2-(2-methylallyloxy)-tetrahydro -3-iodo furan (100 mg, 0.375 mmol) b) Organozinc reagent 4 equiv. (2+2), (1.55mL, 0.752 mmol) + (1.55mL, 0.752 mmol), c) Ni (py)₄ Cl₂ (16.7 mg, 0.037 mmol), d) *s*-Bu-Pybox (12.4 mg, 0.037 mmol).

¹H NMR (300MHz, CDCl₃) δ 5.74 (d, *J* = 4.8 Hz, 1H), 4.84 (t, *J* = 4.7 Hz, 1H), 4.02-3.76 (m, 6H), 3.54 (dd, *J* = 12.1, 8.4 Hz, 2H), 2.42-2.33 (m, 1H), 1.90-1.32 (m, 8H), 1.08 (s, 3H). ¹³C NMR (300MHz, CDCl₃, DEPT-135) δ 109.97 (CH), 104.63 (CH), 78.85 (CH₂), 69.15 (CH₂), 65.23 (2·CH₂), 52.90 (CH), 45.31 (C), 34.84 (2·CH₂), 26.49 (CH₂), 25.63 (CH₃), 19.93 (CH₂). TOF MS EI+: Calcd. for C₁₃H₂₁O₄ (M⁺-1): 241.1450; Found: 241.1440.

Ethyl 4-[$(3R^*, 3aS^*, 6aR^*)$ -hexahydro3-methylfuro [2, 3-*b*] furan-3-yl] butanoate (**3c**') 15 h, (Hexane: EtOAc = 7:3), Pale yellow oily liquid (62 mg, 68 %).

Procedure: Compound 3c' was prepared according to the general procedure as a pale yellow oily liquid, with varying molar ratios of the reactant 3c.

¹H NMR (300MHz, CDCl₃) δ 5.76 (d, J = 4.9 Hz, 1H), 4.13 (q, J = 7.1 Hz, 2H), 3.96-3.77 (m, 2H), 3.55 (dd, J = 11.2, 8.3 Hz, 1H) 2.46-2.26 (m, 3H), 1.94-1.58 (m, 4H), 1.46-1.20 (m, 2H), 1.25 (t, J = 7.1 Hz, 3H) 1.1 (s, 3H).

¹³C NMR (500MHz, CDCl₃, DEPT-135) δ 173.67 (C), 109.98 (CH₂), 78.79 (CH₂), 69.16 (CH₂), 60.72 (CH₂), 52.79 (CH), 45.20 (C), 35.03 (CH₂), 34.31 (CH₂), 26.46 (CH₂), 25.58 (CH₃), 20.86 (CH₂), 14.61 (CH₃).

EI+: Calcd. for C₁₃H₂₁O₄ (M⁺-1): 241.143984; Found: 241.143800.

Ethyl $4-[(3R^*,3aS^*,6aS^*)-3-(3-(1,3-dioxalan-2yl)propyl]$ -hexahydro-2*H*-cyclopenta [*b*] furan (**3d_major**):

9 h, (Hexane: EtOAc = 9:1), Pale yellow oily liquid (44 mg, 49 %).

Procedure: Compounds **3d_major** and **3d_minor** are prepared by following the general procedure as a pale yellow oily liquid, with the following amounts of reagents.

- a) 1-(allyloxy)-2-iodocyclopentane (100 mg, 0.396 mmol),
- b) Organozinc reagent 4 equiv. (2+2), (1.58mL, 0.793 mmol) + (1.58mL, 0.793 mmol),
- c) Ni (py) ₄ Cl₂ (17.6 mg, 0.039 mmol),
- d) s-Bu-Pybox (13.0 mg, 0.039 mmol).

¹H NMR (300MHz, CDCl₃) δ 4.83 (t, J = 4.7 Hz, 1H), 4.53-4.46 (m, 1H), 3.93-3.79 (m, 5H), 3.29 (dtd, J = 8.4, 2.1, 1.7 Hz, 1H), 2.56-2.44 (m, 1H), 2.34-2.20 (m, 1H), 1.83-1.29 (m, 12H).

¹³C NMR (300MHz, CDCl₃, DEPT-135) δ 102.73 (CH), 86.25 (CH), 72.56 (CH₂), 65.12 (2.CH₂), 46.71 (CH), 43.50 (CH), 35.04 (CH₂), 34.38 (CH₂), 28.09 (CH₂), 26.26 (CH₂), 25.37 (CH₂), 23.61 (CH₂).

TOF MS EI+: Calcd. for C₁₃H₂₀O₃ (M⁺-2): 226.1569; Found: 226.1576.

Ethyl 4-[$(3S^*, 3aS^*, 6aS^*)$ -3-(3-(1, 3-dioxalan-2yl)propyl]-hexahydro-2*H*-cyclopenta [*b*] furan (**3d_minor**).

9h, (Hexane: EtOAc = 9:1), Pale yellow oily liquid (25 mg, 27 %).

¹H NMR (300MHz, CDCl₃) δ 4.83 (t, *J* = 4.8 Hz, 1H), 4.42-4.35 (m, 1H), 4.01-3.78 (m, 5H), 3.17 (dt, *J* = 8.7 Hz, 1H) 2.24-2.12 (m, 1H), 1.84-1.31 (m, 13H).

¹³C NMR (300MHz, CDCl₃, DEPT-135) δ 104.83 (CH), 85.47 (CH), 73.98 (CH₂), 65.24 (2·CH₂), 50.10 (CH), 48.27 (CH), 34.51 (CH₂), 34.42 (CH₂), 33.26 (CH₂), 32.95 (CH₂), 24.24 (CH₂), 23.38 (CH₂).

TOF MS EI+: Calcd. for C13H22O3: 226.1569; Found: 226.1566

Ethyl $4-[(3R^*,3aS^*,6aS^*)-hexahydro-2H-cyclopenta[b]furan-3-yl]butanoate (3d_major)$

13 h, (Hexane: EtOAc = 9: 1), Pale yellow oily liquid (41 mg, 46%).

Procedure: Compounds **3d'_major** and **3d'_minor** are prepared by following the same procedure as described for **3d_major** as a pale yellow oily liquid.

¹H NMR (300MHz, CDCl₃) δ 4.49 (ddd, J = 5.8, 2.4 Hz, 1H), 4.11 (q, J = 7.2 Hz, 2H), 3.84(t, J= 7.7 Hz, 1H), 3.28 (dd, J = 10.6, 8.3 Hz, 1H) 2.56-2.44 (m, 1H), 2.33-2.19 (m, 3H), 1.83-1.29 (m, 10H), 1.23 (t, J = 7.2 Hz, 3H).

¹³C NMR (300MHz, CDCl₃, DEPT-135) δ 173.83 (C), 86.33 (CH), 72.53 (CH₂), 60.61 (CH₂), 46.69 (CH), 43.33 (CH), 35.05 (CH₂), 34.82 (CH₂), 27.72 (CH₂), 26.31 (CH₂), 25.39 (CH₂), 24.55 (CH₂), 14.60 (CH₃).

TOF MS EI+: Calcd. for C₁₃H₂₀O₃ (M⁺-2): 224.1412; Found: 224.1420.

Ethyl 4-[(3*S**,3a*S**,6a*S**)-hexahydro-2*H*-cyclopenta[*b*]furan-3-yl]butanoate (**3d'minor**) 13h, (Hexane: EtOAc = 9:1), Pale yellow oily liquid (32 mg, 35 %).

¹H NMR (300MHz, CDCl₃) δ 4.39 (t, J = 6.2 Hz, 1H), 4.12 (q, J = 7.2 Hz, 2H), 3.93 (dd, J = 8.5, 6.6 Hz, 1H), 3.17 (t, J = 8.6 Hz, 1H) 2.29 (t, J = 7.4 Hz, 2H), 2.23-2.13 (m, 1H), 1.90-1.32 (m, 11H), 1.25 (t, J = 7.2 Hz, 3H).

¹³C NMR (300MHz, CDCl₃, DEPT-135) δ 173.87 (C), 85.48 (CH), 73.87 (CH₂), 60.64 (CH₂), 50.06 (CH), 48.04 (CH), 34.86 (CH₂), 34.39 (CH₂), 32.97 (CH₂), 32.81 (CH₂), 24.27 (CH₂), 24.24 (CH₂), 14.62 (CH₃).

TOF MS EI+: Calcd. for $C_{13}H_{20}O_3$ (M⁺-2): 224.1412; Found: 224.1415.

 $(3aS^*, 4R^*, 7aR^*)$ -4-[2-(1, 3-dioxalan-2yl) ethyl]-octahydrobenzofuran (**3e**). 11 h, (Hexane: EtOAc = 9: 1), colourless oily liquid (44 mg, 46 %)

Procedure: Compound **3e** and **3e**' are prepared according to the general procedure as a colourless oily liquid, with varying molar ratios of the reactant.

a) 3-(2-iodoethoxy) cyclohex-1-ene, (100 mg, 0.423 mmol)
b) Organozinc reagent 4 equiv. (2+2), (1.69 mL, 0.847 mmol) + (1.69 mL, 0.847 mmol),
c) Ni (py) 4 Cl₂ (18.8 mg, 0.042 mmol),
d) s-Bu-Pybox (13.9 mg, 0.042 mmol).

¹H NMR (300MHz, CDCl₃) δ 4.82 (t, *J* = 4.6 Hz, 1H), 3.99-3.73 (m, 7H), 2.09-1.39 (m, 11H), 1.19-0.75 (m, 3H).

¹³C NMR (300MHz, CDCl₃, DEPT-135) δ 105.19 (CH), 77.91 (CH), 66.27 (CH₂), 65.21 (2·CH₂), 43.97 (CH₂), 37.06 (CH), 31.64 (CH₂), 31.23 (CH₂), 30.33 (CH₂), 29.37 (CH₂), 28.62 (CH₂), 20.53(CH₂).

TOF MS EI+: Calcd. for C₁₃H₂₂O₃: 226.1569; Found: 226.1564.

2-[(4-cyclohex-2-enyloxy) butyl]-1, 3-dioxolane (**3e**[']). 11 h, (Hexane: EtOAc = 9: 1), colourless oily liquid (35 mg, 36 %).

¹H NMR (300MHz, CDCl₃) δ 5.86-5.70 (m, 2H), 4.84 (t, *J* = 4.8 Hz, 1H), 3.98-3.77 (m, 5H), 3.54-3.38 (m, 2H), 2.11-1.41 (m, 12H).

¹³C NMR (300MHz, CDCl₃, DEPT-135) δ 130.92 (CH), 128.40 (CH), 104.92 (CH), 73.15 (CH), 68.35 (CH₂), 65.17 (2·CH₂), 34.06 (CH₂), 30.43 (CH₂), 28.69 (CH₂), 25.69 (CH₂), 21.22 (CH₂), 19.65 (CH₂).

TOF MS EI⁺: Calc. for C₁₃H₂₂O₃: 226.1569; Found 225.1526.

Dimethyl 3-[3-(1, 3-dioxolan-2-yl)propyl]cyclopentane-1,1-dicarboxylate (**3f**) 6h, (Hexane: EtOAc = 9: 1), colourless oily liquid (58 mg, 64 %)

Procedure: Compound **3f** was prepared according to the general procedure with the following amounts of reagents.

a) Dimethyl 2-allyl-2-(2-iodoethyl) malonate (100 mg, 0.307 mmol), prepared by iodination (NaI/acetone) of Dimethyl 2-allyl-2-(2-bromoethyl) malonate³
b) Organozing reagent 4 aguiy (2+2) (1.23 mL 0.613 mmol) + (1.23 mL 0.613

b) Organozinc reagent 4 equiv. (2+2), (1.23 mL, 0.613 mmol) + (1.23 mL, 0.613 mmol),

c) Ni (py)₄ Cl₂ (13.6 mg, 0.037 mmol), d) *s*-Bu-Pybox (10.1 mg, 0.037 mmol).

¹H NMR (300MHz, CDCl₃) δ 4.83 (t, *J* = 4.8 Hz, 1H), 3.99-3.80 (m, 4H), 3.71 (s, 3H), 3.70 (s, 3H), 2.51-2.41 (m, 1H), 2.35-2.05 (m, 2H), 2.00-1.80 (m, 2H), 1.74-1.59 (m, 3H), 1.47-1.21 (m, 5H).

¹³C NMR (300MHz, CDCl₃, DEPT-135) δ 173.52 (C), 173.51 (C), 104.83 (CH), 65.17 (2·CH₂), 60.23 (C), 50.95 (CH₃), 52.93 (CH₃), 41.14 (CH₂), 40.10 (CH₂), 35.49 (CH₂), 34.33 (CH₂), 34.23 (CH₂), 32.44 (CH₂), 23.32 (CH₂).

FAB⁺ MS: Calcd. for $C_{15}H_{25}O_6$ (M⁺+1): 301.165114. Found: 301.164100

3-[3-(1,3-dioxolan-2-yl)propyl)]-1-tosylpyrrolidine (**3g**) 16 h, (Hexane: EtOAc = 7: 3), faint yellow oily liquid (66 mg, 83 %).

Procedure: Compound **3g** was prepared according to the general procedure with the following amounts of reagents.

a) N-(2-iodoethyl)-N-tosylprop-2-en-1-amine (100 mg, 0.274 mmol),

b) Organozinc reagent 4 equiv. (2+2), (1.1 mL, 0.549 mmol) + (1.1 mL, 0.549 mmol),

c) Ni (py)₄ Cl₂ (12.2 mg, 0.027 mmol),

d) s-Bu-Pybox (9.0 mg, 0.027 mmol).

¹H NMR (300MHz, CDCl₃) δ 7.73-7.67 (m, 2H), 7.35-7.28 (m, 2H), 4.79 (t, J = 4.7 Hz, 1H), 3.98-3.79 (m, 4H), 3.43 (dd, J = 9.7, 7.5 Hz, 1H), 3.38-3.13 (m, 2H), 2.77 (dd, J = 9.8, 8.0 Hz, 1H), 2.43 (s, 3H), 2.05-1.85 (m, 2H), 1.63-1.52 (m, 2H), 1.45-1.21 (m, 5H).

¹³C NMR (300MHz, CDCl₃, DEPT-135) δ 143.62 (C), 134.23 (C), 129.94 (2·CH), 127.85 (2·CH), 104.55 (CH), 65.20 (2·CH₂), 53.55 (CH₂), 47.90 (CH₂), 39.13 (CH), 34.08 (CH₂), 33.29 (CH₂), 31.74 (CH₂), 22.83 (CH₂), 21.85(CH₃).

FAB⁺: Calcd. for C₁₇H₂₆NO₄S (M⁺+1): 340.158255. Found: 340.158400.

Ethyl 4-(1-tosylpyrrolidin-3-yl) butanoate (**3g**') 19 h, (Hexane: EtOAc = 6: 4), faint yellow oily liquid (62 mg, 66 %).

Procedure:- Compound 3g' was prepared according to the same procedure as used for the preparation of 3g.

¹H NMR (300MHz, CDCl₃) δ 7.73-7.67 (m, 2H), 7.35-7.28 (m, 2H), 4.10 (q, *J* = 7.1 Hz, 2H), 3.43 (dd, *J* = 9.3, 7.3 Hz, 1H), 3.38-3.12 (m, 2H), 2.77(dd, *J* = 9.8, 8.0 Hz, 1H), 2.43 (s, 3H), 2.23 (t, *J* = 7.4 Hz, 2H), 2.06-1.86 (m, 3H), 1.58-1.47 (m, 2H), 1.40-1.25 (m, 2H), 1.24 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (300MHz, CDCl₃, DEPT-135) δ 173.57 (C), 143.65 (C), 134.06 (C), 129.93 (2·CH), 127.80 (2·CH), 60.62 (CH₂), 53.43 (CH₂), 47.83 (CH₂), 38.87 (CH), 34.40 (CH₂), 32.78 (CH₂), 31.62 (CH₂), 23.69 (CH₂), 21.82 (CH₃), 14.53 (CH₃).

FAB⁺-MS. Calcd. for C₁₇H₂₆NO₄S (M⁺+1): 340.158255. Found: 340.159600.

1-(2-ethylbutyl)-octahydropentalene (3h):

22h, (Hexane only), colourless oily liquid (43 mg, 73 %).

Procedure: Compound **3h** was prepared according to the general procedure as a pale yellow oily liquid with the following amounts of reagents.

a) 1-(but-3-enyl)-2-iodocyclopentane^{10.} (75mg, 0.3 mmol) b) Organozinc reagent 4 equiv. (2+2), (1.2 mL, 0.6 mmol) + (1.2 mL, 0.6 mmol),

- c) Ni (py) ₄ Cl₂ (13.4 mg, 0.03 mmol),
- d) s-Bu-Pybox (10 mg, 0.03 mmol).

¹H NMR (300MHz, CDCl₃) δ 2.47-2.21 (m, 1H),1.96-1.42 (m, 6H), 1.39-0.93 (m, 13H), 0.93-0.77 (m, 6H).

¹³C NMR (300MHz, CDCl₃, DEPT-135) δ 46.94 (CH), 42.90 (CH), 41.42 (CH), 39.62 (CH), 35.95 (CH₂), 34.65 (CH₂), 33.13 (2·CH₂), 31.98 (CH₂), 28.13 (CH₂), 28.03 (2·CH₂), 11.29 (2·CH₃).

(3*R**, 3a*S**, 6a*R*)-hexahydro-3-(iodomethyl)furo[2,3-*b*]furan (4): 4.5h, (Hexane: EtOAc = 8: 2), pale yellow oily liquid (220 mg, 91 %).

Procedure:

1 mmol of 2-(allyloxy)-3-iodo-tetrahydrofuran was taken in 10 ml of distilled water stirred of 5 min; flushed with argon, added 0.1 ml solution of Et_3B (1.0 M in hexanes), allowed to stir at rt for 4.5 hrs. Then extracted with ethyl acetate (2×20 ml), combined organic extracts dried over Na₂SO₄, concentrated and purified by silica gel chromatography.

¹H NMR (300 MHz, CDCl₃) δ 5.77 (d, J = 4.86 Hz, 1H), 4.03 (dd, J = 7.13 Hz, 1H), 3.90 (dd, J = 6.21 Hz, 2H), 3.46 (dd, J = 8.66, 8.57 Hz, 1H), 3.17 (dd, J = 9.81, 7.60 Hz, 1H), 3.08 (dd, J = 9.81, 8.36 Hz, 1H), 2.97-2.72 (m, 2H), 2.01-1.76 (m, 2H).

¹³C NMR (300 MHz, CDCl₃) δ 109.99 (CH), 72.38 (CH₂), 69.34 (CH₂), 46.89 (CH), 45.68 (CH), 24.78 (CH₂), 0.76 (CH₂).

TOF MS EI⁺: Calcd. for C₇H₁₁IO₂: 253.9804; Found: 253.9800.

Hexahydro-3-methylfuro [2, 3-*b*] furan (5): 4.5h, (Hexane: EtOAc = 8: 2), pale yellow oily liquid (220 mg, 91 %).

¹H NMR (300 MHz, CDCl₃) δ 5.73 (d, J = 5.0 Hz, 1H), 3.96-3.79 (m, 3H), 3.37 (dd, J = 11.3, 8.5 Hz, 1H), 2.83-2.69 (m, 1H), 2.47-2.33 (m, 1H), 1.96-1.75 (m, 2H), 1.02 (d, J = 6.9, 3H).

¹³C NMR (300 MHz, CDCl₃) δ 110.32 (CH), 74.21 (CH₂), 69.62 (CH₂), 46.90 (CH), 36.43 (CH), 25.47 (CH₂), 12.01 (CH₂).

2-(2-cyclohexylethyl)-1, 3-dioxolane (7b):

11h, (Hexane: EtOAc = 9: 1), colourless oily liquid (65 mg, 74 %).

Procedure: Compound **7b** was prepared according to the general procedure as a colourless oily liquid with the following amounts of reagents.

a) Cyclohexyl iodide (100 mg, 0.476 mmol) (commercial grade- Aldrich)

- b) Organozinc reagent 4 equiv. (2+2), (1.9 mL, 0.952 mmol), + (1.9 mL, 0.952 mmol),
- c) Ni (py)₄ Cl₂ (21.2 mg, 0.047 mmol),

d) s-Bu-Pybox (15.6 mg, 0.047 mmol).

¹H NMR (300MHz, CDCl₃) δ 4.82 (t, *J* = 4.8 Hz, 1H), 4.02-3.86 (m, 4H), 1.76-1.57 (m, 7H), 1.34-1.07 (m, 6H), 0.95-0.77 (m, 2H).

¹³C NMR (300MHz, CDCl₃, DEPT-135) δ 105.30 (CH), 65.16 (2·CH₂), 37.88 (CH), 33.58 (2·CH₂), 31.90 (CH₂), 31.63 (CH₂), 26.98 (CH₂), 26.67 (2·CH₂).

TOF MS EI+: Calcd. for $C_{11}H_{19}O_2(M^+-1)$: 183.1385; Found: 183.1395.

 $2-(2-[(2R^*, 3R^*)-2-(cyclopropylmethoxy)-tetrahydrofuran-3-yl]$ ethyl)-1, 3-dioxolane (**7c_major**):

6h, (Hexane: EtOAc = 9: 1), colourless oily liquid (66 mg, 73 %)

Procedure: Compound **7c_major** and **7c_minor** was prepared according to the general procedure as a yellow oily liquid with the following amounts of reagents.

a) 2-(cyclopropyl methoxy) tetrahydro-3-iodofuran (100 mg, 0.373 mmol),
b) Organozinc reagent 4 equiv. (2+2), (1.49 mL, 0.746 mmol) + (1.49 mL, 0.746 mmol),
c) Ni (py) 4 Cl₂ (16.6 mg, 0.037 mmol),
d) s-Bu-Pybox (11.2 mg, 0.037 mmol).

¹H NMR (300MHz, CDCl₃) δ 4.85 (t, J = 4.6 Hz, 1H), 4.81 (d, J = 1.5 Hz, 1H), 3.98-3.81 (m, 6H), 3.42 (dd, J = 10.4, 7.1 Hz, 1H), 3.25 (dd, J = 10.4, 6.9 Hz, 1H), 2.19-2.07 (m, 2H), 1.74-1.35 (m, 5H), 1.08-0.96 (m, 1H), 0.56-0.45 (m, 2H), 0.24-0.13 (m, 2H).

¹³C NMR (300MHz, CDCl₃, DEPT-135) δ 108.55 (CH), 104.56 (CH), 72.43 (CH₂), 66.88 (CH₂), 65.22 (2·CH₂), 45.59 (CH), 32.65 (CH₂), 30.90 (CH₂), 27.24 (CH₂), 10.89 (CH), 3.58 (CH₂), 3.16 (CH₂).

TOF MS EI+: Calcd. for C₁₃H₂₂O₄: 241.1440; Found: 241.1443.

2-(2-[(2*R**, 3*S**)-2-(cyclopropylmethoxy)-tetrahydrofuran-3-yl]ethyl)-1,3-dioxolane (7c _minor):

6h, (Hexane: EtOAc = 9: 1), colourless oily liquid, (Yield: 6 mg, 6 %)

¹H NMR (300MHz, CDCl₃) δ 4.85 (d, *J* = 4.9 Hz, 1H), 4.81 (t, *J* = 4.5 Hz, 1H), 3.98-3.78 (m, 6H), 3.47 (dd, *J* = 10.5, 6.6 Hz, 1H), 3.24 (dd, *J* = 10.6, 6.8 Hz, 1H), 1.79-1.59 (m, 2H), 1.79-1.58 (m, 4H), 1.08-0.78 (m, 2H), 0.55-0.40 (m, 2H), 0.26-0.11 (m, 2H).

¹³C NMR (300MHz, CDCl₃, DEPT-135) δ 105.01 (CH), 103.39 (CH), 71.72 (CH₂), 67.00 (CH₂), 65.25 (2·CH₂), 44.37 (CH), 33.15 (CH₂), 29.71 (CH₂), 23.55 (CH₂), 10.89 (CH), 3.55 CH₂), 2.94 (CH₂).

2-(2-[(2*R**, 3R*)-2-(benzyloxy)-tetrahydrofuran-3-yl] ethyl)-1, 3-dioxolane (**7d**): 16h, (Hexane: EtOAc = 8: 2), colourless oily liquid (66 mg, 72 %).

Procedure: Compound **7d** was prepared according to the general procedure as a yellow oily liquid with the following amounts of reagents.

a) 2-(benzyl oxy)-tetrahydro-3-iodofuran (100 mg, 0.329 mmol)
b) Organozinc reagent 4 equiv. (2+2), (1.31 mL, 0.657 mmol), + (1.31 mL, 0.657 mmol),

c) Ni (py)₄ Cl₂ (14.6 mg, 0.032 mmol),

d) *s*-Bu-Pybox (10.8 mg, 0.032 mmol).

¹H NMR (300MHz, CDCl₃) δ 7.36-7.24 (m, 5H), 4.88 (d, J = 1.4 Hz, 1H), 4.84 (t, J = 4.6 Hz, 1H), 4.71 (d, J = 11.8 Hz, 1H), 4.46 (d, J = 11.8 Hz, 1H), 4.01-3.80 (m, 6H), 2.27-2.10 (m, 2H), 1.80-1.33 (m, 5H).

¹³C NMR (300MHz, CDCl₃, DEPT-135) δ 138.62 (C), 128.75 (2·CH), 128.62 (2·CH), 127.89 (CH), 108.21 (CH), 104.56 (CH), 69.43 (CH₂), 67.18 (CH₂), 65.27 (2·CH₂), 45.71 (CH), 32.65 (CH₂), 30.88 (CH₂), 27.18 (CH₂).

EI+: Calcd. for C₁₆H₂₁O₄ (M⁺-1) 277.143984; Found: 277.143400.

2-(5, 9-dimethyldec-8-enyl)-1, 3-dioxolane (**7e**) 8h, (Hexane: EtOAc = 9: 1), colourless oily liquid (68 mg, 76 %)

Procedure: Compound **7e** was prepared according to the general procedure as a yellow oily liquid with the following amounts of reagents.

a) 8-iodo-2, 6-dimethyl oct-2-ene (100 mg, 0.375 mmol)

- b) Organozinc reagent 4 equiv. (2+2), (1.5 mL, 0.751 mmol) + (1.5 mL, 0.751 mmol),
- c) Ni (py)₄Cl₂ (16.7 mg, 0.037 mmol),
- d) s-Bu-Pybox (12.3 mg, 0.037 mmol).

¹H NMR (300MHz, CDCl₃) & 5.13-5.05 (m, 1H), 4.84 (t, *J* = 4.9 Hz, 1H), 3.99-3.81 (m, 4H), 2.06-1.84 (m, 2H), 1.67 (s, 3H), 1.59 (s, 3H), 1.71 (m, 3H), 1.47-1.03 (m, 8H), 0.85 (d, 3H).

¹³C NMR (300MHz, CDCl₃, DEPT-135) δ 131.29 (C), 125.40 (CH), 105.06 (CH), 65.18 (2·CH₂), 37.48 (CH₂), 37.20 (CH₂), 34.32 (CH₂), 32.66 (CH), 27.31 (CH₂), 26.06 (CH₂), 25.92 (CH₃), 24.77 (CH₂), 19.92 (CH₃), 17.97 (CH₃).

EI+: Calcd. for C₁₅H₂₈O₂: 240.208930; Found: 240.208800.

(4-ethylhexyl)benzene (7f):

18h, (Hexane only), pale yellow oily liquid (47 mg, not pure. GC-MS indicates de presence of isomers which could not be separated by column chromatography).

Procedure: Compound **7f** was prepared according to the general procedure as a pale yellow oily liquid with the following amounts of reagents.

a) (3-iodopropyl) benzene (100 mg, 0.406 mmol)
b) Organozinc reagent 4 equiv. (2+2), (1.62 mL, 0.815 mmol) + (1.62 mL, 0.815 mmol),
c) Ni (py) 4 Cl₂ (18.1 mg, 0.041 mmol),
d) s-Bu-Pybox (13.4 mg, 0.041 mmol).

¹H NMR (300MHz, CDCl₃) δ 7.31-7.13 (m, 5H), 2.58 (t, *J* =7.8 Hz, 2H), 1.66-1.50 (m, 2H), 1.34-1.17 (m, 7H), 0.82 (t, *J*=7.2 Hz, 6H).

¹³C NMR (300MHz, CDCl₃, DEPT-135) δ 143.37 (C), 128.75 (2·CH), 128.60 (2·CH), 125.94 (CH), 40.66 (CH), 36.82 (CH₂), 32.86 (CH₂), 29.13 (CH₂), 25.79 (2·CH₂), 11.29 (2·CH₃).

TOF MS EI+: Calcd. for C₁₄H₂₂: 190.1722; Found: 190.1717.

7-ethylnonan-2-one (**7g**):

11h, (Hexane: EtOAc = 50: 1), colourless oily liquid (50 mg, not pure).

Procedure: Compound 7g was prepared according to the general procedure as a colourless oily liquid with the following amounts of reagents.

a) 6-iodohexan-2-one (100 mg, 0.442 mmol)

b) Organozinc reagent 4 equiv. (2+2), (1.77 mL, 0.885 mmol) + (1.77 mL, 0.885 mmol),

c) Ni (py)₄ Cl₂ (19.7 mg, 0.044 mmol),

d) s-Bu-Pybox (14.5 mg, 0.044 mmol).

¹H NMR (300MHz, CDCl₃) δ 2.42 (t, *J* =7.5 Hz, 2H), 2.13 (s, 3H), 1.63-1.48 (m, 2H), 1.34-1.19 (m, 8H), 0.95-0.82 (m, 1H), 0.82 (t, *J*=7.2 Hz, 6H).

¹³C NMR (300MHz, CDCl₃, DEPT-135) δ 209.73 (C), 44.25 (CH₂), 40.59 (CH), 32.90 (CH₂), 30.22 (CH₃), 26.75 (CH₂), 25.76 (2·CH₂), 24.71 (CH₂), 11.25 (2·CH₃).

TOF MS EI+: Calcd. for C₁₁H₂₂O: 170.1671; Found: 170.1671.

6-ethyloctanenitrile (**7h**):

11h, (Hexane: EtOAc = 50: 1), colourless oily liquid (52 mg, not pure).

Procedure: Compound **7h** was prepared according to the general procedure as a colourless oily liquid with the following amounts of reagents.

a) 6-iodopentanenitrile (100 mg, 0.476 mmol)

b) Organozinc reagent 4 equiv. (2+2), (1.91 mL, 0.957 mmol) + (1.91 mL, 0.957 mmol),

c) Ni (py)₄ Cl₂ (21.3 mg, 0.048 mmol),

d) *s*-Bu-Pybox (15.7 mg, 0.048 mmol).

¹H NMR (300MHz, CDCl₃) δ 2.34 (t, *J* =7.1 Hz, 2H), 1.71-1.57 (m, 2H), 1.49-1.17 (m, 7H), 0.93-0.83 (m, 2H), 0.83 (t, *J*=7.2 Hz, 6H).

¹³C NMR (300MHz, CDCl₃, DEPT-135) δ 120.16 (C), 40.51 (CH), 32.26 (CH₂), 26.29 (CH₂), 26.17 (CH₂), 25.67 (2·CH₂), 17.49 (CH₂), 11.18 (2·CH₃).

TOF MS EI+: Calcd. for $C_{10}H_{19}N$ (M⁺-1): 152.1439; Found: 152.1432.

1-[2-(1,3-dioxolan-2-yl)ethoxy]-2,2,6,6-tetramethylpiperidine (8).20h, (Hexane: EtOAc = 20: 1), yellow oily liquid (68 mg, 60 %).

¹H NMR (300MHz, CDCl₃) δ 5.12 (t, *J* = 4.9 Hz, 1H), 4.10-3.90 (m, 6H), 1.97 (q, *J*=6.4 Hz, 2H), 1.61-1.31 (m, 6H), 1.24 (s, 6H), 1.16 (s, 6H).

(see ¹³C NMR spectrum below).

ESI MS: Calcd. for C₁₄H₂₈NO₃ (M⁺+1): 258.2063; Found: 258.2060.

2-[3-(2-allylphenyl) propyl]-1, 3-dioxolane (**11a**): 3h, (Hexane: EtOAc = 20: 1), colourless oily liquid (71 mg, 82 %).

Procedure: Compound **11a** was prepared according to the general procedure as a yellow oily liquid with the following amounts of reagents.

a) 1-allyl-2-(iodomethyl) benzene⁷ (100 mg, 0.364 mmol)

b) Organozinc reagent 4 equiv. (2+2), (1.46 mL, 0.729 mmol) + (1.46 mL, 0.729 mmol),

c) Ni (py)₄ Cl₂ (16.2 mg, 0.036 mmol),

d) s-Bu-Pybox (12.0 mg, 0.036 mmol).

¹H NMR (300MHz, CDCl₃) δ 7.24-7.12 (m, 4H), 5.96 (ddt, *J* =16.5, 10.2, 6.3 Hz, 1H), 5.06 (dm, *J* = 10.0, 1.8 Hz, 1H), 5.00 (dm, *J* = 16.9, 1.8 Hz, 1H), 4.02-3.81 (m, 4H), 3.40 (dt, *J* = 6.4, 1.6 Hz, 2H), 2.71-2.62 (m, 2H), 1.78-1.68 (m, 4H).

¹³C NMR (300MHz, CDCl₃, DEPT-135) δ 140.59 (C), 137.88 (C), 137.70 (CH), 129.91 (CH), 129.56 (CH), 126.67 (CH), 126.41 (CH), 115.95 (CH₂), 104.77 (CH), 65.20 (2·CH₂), 37.36 (CH₂), 34.05 (CH₂), 32.81 (CH₂), 25.49 (CH₂).

TOF MS EI+: Calcd. for C₁₅H₂₀O₂: 232.1463; Found: 232.1470.

2-(oct-7-enyl)-1, 3-dioxolane (**11b**)

5 h, (Hexane: EtOAc = 20: 1), colourless oily liquid (36 mg, 41 %).

Procedure: Compound **11b** was prepared according to the general procedure as a yellow oily liquid with the following amounts of reagents.

a) 6-iodohex-1-ene (100 mg, 0.476 mmol), prepared by iodination (NaI/acetone) of 6-bromohex-1-ene

b) Organozinc reagent 4 equiv. (2+2), (1.9 mL, 0.95 mmol), + (1.9 mL, 0.95 mmol),

c) Ni (py) ₄ Cl₂ (21.2 mg, 0.047 mmol),

d) s-Bu-Pybox (14.1 mg, 0.047 mmol).

¹H NMR (300MHz, CDCl₃) δ 7.79 (ddt, J = 17.0, 10.1, 6.6 Hz, 1H), 5.02-4.87 (m, 2H), 4.83 (t, J = 4.8 Hz, 1H), 3.99-3.80 (m, 4H), 2.07-1.97 (m, 2H), 1.66-1.60 (m, 2H), 1.41-1.28 (m, 8H).

¹³C NMR (300MHz, CDCl₃, DEPT-135) δ 139.49 (CH), 114.54 (CH₂), 105.03 (CH), 65.19 (2·CH₂), 34.25 CH₂), 34.12 (CH₂), 29.74 (CH₂), 29.37 (CH₂), 29.14 (CH₂), 24.39 (CH₂).

2-[4-(allyloxy) butyl]-1, 3-dioxolane (**11c**)

11 h, (Hexane: EtOAc = 10: 1), faint yellow oily liquid (22 mg, 25 %).

Procedure: Compound **11c** was prepared according to the General procedure, with varying molar ratios of all reactants.

a) 3-(2-iodoethoxy)prop-1-ene⁸ (100 mg, 0.472 mmol)
b) Organozinc reagent 4 equiv. (2+2), (1.9 mL, 0.943 mmol), + (1.9 mL, 0.943 mmol),
c) Ni (py) 4 Cl₂ (21.0 mg, 0.047 mmol),
d) s-Bu-Pybox (15.5 mg, 0.047 mmol).

¹H NMR (300MHz, CDCl₃) δ 5.90 (ddt, *J* =16.0, 10.4, 5.6 Hz, 1H), 5.25 (dm, *J* = 17.3, 1.6 Hz, 1H), 5.15 (dm, *J* = 10.4, 1.4 Hz, 1H), 4.84 (t, *J* = 4.7 Hz, 1H), 3.97-3.80 (m, 6H), 3.42 (t, *J* = 6.5 Hz, 2H), 1.66-1.44 (m, 4H), 0.95-0.80 (m, 2H).

¹³C NMR (300MHz, CDCl₃, DEPT-135) δ 135.41 (CH), 117.09 (CH₂), 104.92 (CH), 72.18 CH₂), 70.54 (CH₂), 65.21 (2·CH₂), 34.03 (CH₂), 29.97 (CH₂), 21.13 (CH₂).

2-(hex-5-enyl)-1,3-dioxolane (11d):

5h, (Hexane: EtOAc = 20: 1), colourless oily liquid (54 mg, 63 %).

Procedure:- same as General procedure, with varying molar ratios of all reactants.

a) (iodomethyl) cyclopropane (100 mg, 0.549 mmol), prepared by following the procedure described in reference number 6.

b) Organozinc reagent 4 equiv. (2+2), (2.2 mL, 1.09 mmol), + (2.2 mL, 1.09 mmol),

c) Ni (py) 4 Cl₂ (24.4 mg, 0.054 mmol),

d) s-Bu-Pybox (18.1 mg, 0.054 mmol).

¹H NMR (300MHz, CDCl₃) δ 7.79 (ddt, *J* =17.0, 10.3, 6.7 Hz, 1H), 5.02 (dm, *J*=17.1, 1.7 Hz, 1H), 4.94 (dm, *J*=10.7, 1.2 Hz, 1H), 4.83 (t, *J* = 4.8 Hz, 1H), 3.98-3.80 (m, 4H), 2.11-2.01 (m, 2H), 1.07-1.61 (m, 2H), 1.48-1.40 (m, 4H).

¹³C NMR (300MHz, CDCl₃, DEPT-135) δ 139.15 (CH), 114.4 (CH₂), 104.99 (CH), 65.2 (2·CH₂), 34.12 CH₂), 34.05 (CH₂), 29.20 (CH₂), 23.95 (CH₂).

TOF MS EI+: Calcd. for C₉H₁₆O₂: 156.1150; Found: 155.1136

Ethyl hept-6-enoate (**11d**') 4h, (Hexane: EtOAc = 20: 1), colourless oily liquid(59 %).

Procedure: same as general procedure with same molar ratios as used for preparation of **11d**.

¹H NMR (300MHz, CDCl₃) δ 5.78 (ddt, J = 17.0, 10.2, 6.6 Hz, 1H), 5.03-4.91 (m, 2H), 4.11 (q, J = 7.1 Hz, 2H), 2.29 (t, J = 7.5 Hz, 2H), 2.10-2.01 (m, 2H), 1.69-1.57 (m, 2H), 1.47-1.35 (m, 2H), 1.24 (t, J = 7.1 Hz, 3H).

¹³C NMR (300MHz, CDCl₃) δ 174.07 (C), 138.81 (CH), 115.02 (CH₂), 60.55 (CH₂), 34.57 CH₂), 33.73 (CH₂), 28.73 (CH₂), 24.85 (CH₂), 14.61 (CH₃).

TOF MS EI+: Calcd. for C₉H₁₆O₂: 156.1150; Found: 155.1154.

Computational methods

Calculations were performed with Gaussian 03 at DFT level.^{10a} The geometries of all complexes here reported were optimized using the B3LYP hybrid functional.^{10b} For radical species UB3LYP was used. Optimizations were carried out using the standard 6-31G(d) basis set for C, H, and N. The LANL2DZ basis set, which includes the relativistic effective core potential (ECP) of Hay and Wadt and employs a split-valence (double- ζ) basis set, was used for Ni and I.^{10c} Harmonic frequencies were calculated at the same level to characterize the stationary points and to determine the zero-point energies (ZPE). The starting approximate geometries for the transition states (TS) were graphically located. Intrinsic reaction coordinate (IRC) studies were performed to confirm the relation of the transition states with the corresponding minima.

0.306800
0.326107
0.327051
0.258803
-1028.030883
-1028.011577
-1028.010633
= -1028.078880

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Ζ
1	28	0	-0.015129	-0.726435	0.032025
2	7	0	-0.020972	1.097959	0.304284
3	б	0	0.060355	3.770172	-0.181725
4	б	0	-1.180700	1.713575	-0.063476
5	б	0	1.218712	1.699953	0.256128
6	б	0	1.248270	3.110764	0.060004
7	б	0	-1.182011	3.089792	-0.283626
8	1	0	2.205776	3.638073	0.085269
9	1	0	-2.097209	3.626544	-0.544161
10	1	0	0.064420	4.855274	-0.328558
11	7	0	1.845787	-0.634647	0.200438
12	б	0	3.116571	-1.459497	0.207109
13	б	0	4.203921	-0.374445	0.356051
14	8	0	3.549743	0.903146	0.350272
15	6	0	2.197459	0.683348	0.264446
16	1	0	3.105177	-2.147974	1.087350
17	1	0	4.763939	-0.435841	1.304122
18	1	0	4.930735	-0.353005	-0.473844
19	7	0	-1.873528	-0.615911	-0.118647
20	6	0	-3.149436	-1.435724	-0.134380
21	6	0	-4.222502	-0.342246	-0.325222
22	8	0	-3.538060	0.926213	-0.332656
23	б	0	-2.203066	0.682127	-0.189222
24	1	0	-3.130634	-2.149394	-0.995180
25	1	0	-4.764566	-0.409517	-1.282988
26	1	0	-4.961422	-0.294572	0.492946
27	6	0	3.279846	-2.265754	-1.067369
28	1	0	4.313684	-2.622334	-1.170065
29	1	0	3.039120	-1.680242	-1.965481
30	1	0	2.629429	-3.151427	-1.072137
31	б	0	-3.312208	-2.200339	1.165835
32	1	0	-4.314914	-2.644448	1.223693
33	1	0	-3.182700	-1.554371	2.045639
34	1	0	-2.584766	-3.019946	1.256194
35	6	0	0.020447	-2.649320	-0.394760
36	1	0	0.344702	-2.787264	-1.432568
37	1	0	-0.983177	-3.070637	-0.266515
38	1	0	0.719609	-3.159847	0.277364

Π

Zero-point correction= (Hartree/Particle)

0.356799

Thermal correction to	Energy=	0.380404
Thermal correction to	Enthalpy=	0.381349
Thermal correction to	Gibbs Free Energy=	0.298076
Sum of electronic and	zero-point Energies=	-1081.264918
Sum of electronic and	thermal Energies=	-1081.241312
Sum of electronic and	thermal Enthalpies=	-1081.240368
Sum of electronic and	thermal Free Energies=	-1081.323641

Center Number	Atomic	Atomic	Coord	dinates (Ang	stroms)
		туре	A	I	ے
1	28	0	-0.517071	0.025979	1.32884
2	6	0	0.670324	-0.102918	2.93924
3	1	0	0.080399	-0.008401	3.86476
4	1	0	1.433739	0.688585	2.96593
5	1	0	1.203676	-1.062577	2.99991
б	7	0	-0.696316	2.161646	1.03052
7	6	0	-1.058646	4.853625	0.39953
8	6	0	-1.508865	2.514909	-0.01415
9	6	0	-0.086653	3.123661	1.74239
10	6	0	-0.231039	4.476182	1.4737
11	6	0	-1.695348	3.872815	-0.34098
12	7	0	-1.811316	0.165156	-0.20758
13	6	0	-3.565874	0.358956	-2.35572
14	б	0	-2.359125	-0.972698	-0.74412
15	6	0	-2.138350	1.399414	-0.71043
16	б	0	-3.012828	1.514340	-1.7884
17	6	0	-3.237354	-0.894467	-1.82202
18	7	0	-1.078151	-2.036814	0.9642
19	6	0	-1.929156	-4.597529	0.2603
20	6	0	-0.652553	-3.114690	1.6431
21	6	0	-1.944477	-2.204970	-0.0829
22	6	0	-2.377669	-3.495225	-0.4468
23	6	0	-1.043028	-4.409510	1.3372
24	1	0	-1.199831	5.902169	0.1528
25	1	0	0.538630	2.770810	2.5574
26	1	0	0.283136	5.213870	2.0808
27	1	0	-2.338426	4.148184	-1.1702
28	1	0	-4.248259	0.434383	-3.1962
29	1	0	-3.270572	2.489132	-2.1891
30	1	0	-3.670024	-1.793249	-2.2489
31	1	0	-2.260737	-5.594837	-0.0146
32	1	0	0.028880	-2.907387	2.4631
33	1	0	-3.062663	-3.623289	-1.2782
34	1	0	-0.669993	-5.246419	1.9181
35	6	0	5 044256	-0 110439	-1 2615
36	6	0	3.957285	0.009870	-0.2053
37	6	0	4.051510	-1.019849	0.9082
38	1	0	5 036478	-1 098704	-1 7325
39	1	0	6 021265	0 025482	-0 7761
40	1	0	4,944058	0.647854	-2.0427
41	± 1	0	3 910734	1 022300	0 1985
42	± 1	0	3 250906	-0 900405	1 6420
43	± 1	0	5 014006	-0 889930	1 42414
44	± 1	0	4 015654	-2 040017	
	1	0	01004	2.0HUUI/	0.01200

Zero-poi	Int correction	.=			0.355423
(Hartree/	(Particle)	-		0 200002	
Thermal	correction to	Energy=		0.379783	
Thermal	correction to	Enthalpy=		0.380727	
Thermal	correction to	Gibbs Free	e Energy=	0.296193	
Sum of e	electronic and	zero-point	Energies=	-1081.2	256210
Sum of e	electronic and	thermal En	ergies=	-1081.2	231850
Sum of e	electronic and	thermal En	thalpies=	-1081.2	230906
Sum of e	electronic and	thermal Fr	ee Energies=	-1081.3	315440
Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Ŷ	Z
1	28	0	0.035031	-0.641498	-0.986705
2	б	0	-0.088624	0.055268	-2.854307
3	1	0	-0.024716	-0.767271	-3.585245
4	-	0	0 719847	0 764966	-3 076834
5	1	0	-1 033279	0 587169	-3 031906
5	1 7	0	2 10000		-0 683696
0	r E	0	4 976666	-0.00/1/2 1 1424E4	-0.003090
7	0	0	4.8/0000	-1.143454	-0.013054
8	6	0	2.541413	-1.529355	0.449868
9	6	0	3.146184	-0.354423	-1.468830
10	6	0	4.501573	-0.466138	-1.179932
11	6	0	3.890780	-1.677433	0.806554
12	7	0	0.190179	-1.778207	0.727933
13	6	0	0.395584	-3.218559	3.085400
14	6	0	-0.935137	-2.237812	1.334249
15	б	0	1.416578	-2.050137	1.244030
16	6	0	1.546513	-2.766522	2.434300
17	б	0	-0.858512	-2.958993	2.526386
18	7	0	-2.031016	-1.185644	-0.511017
19	6	0	-4.581785	-1.878777	0.361338
20	6	0	-3 114536	-0 823902	-1 210805
21	6	0	-2 185633	-1 899840	0 635282
21	6	0	-2 163587	-2 256536	1 002102
22	G	0	4 400000	1 146096	
23	0	0	-4.409000	-1.140000	-0.019/25
24	1	0	5.924467	-1.251567	0.252139
25	1	0	2.792190	0.161998	-2.355535
26	L	0	5.240151	-0.034289	-1.847168
27	1	0	4.164878	-2.202094	1.715292
28	1	0	0.475722	-3.775852	4.013391
29	1	0	2.524396	-2.978453	2.852036
30	1	0	-1.755592	-3.320268	3.016740
31	1	0	-5.576071	-2.149167	0.705069
32	1	0	-2.916042	-0.253423	-2.112726
33	1	0	-3.580525	-2.821117	2.011714
34	1	0	-5.255845	-0.830910	-1.420333
35	6	0	0 340316	4 925928	1 836900
36	6	0	-0 091035	4 470579	0 475045
27	6	0	-1.466120	1 92/121	0.002625
20	1	0	0 204001	4.656250	2 605020
20	1	0	-U.JJ4UUL 0 127607	-1.000000	1 055029
39	1	U	0.43/09/		10100098
40	1	U	1.308620	4.504086	2.121652
41	1	0	0.683183	4.478524	-0.288746
42	1	0	-1.712418	4.346832	-0.945142
43	1	0	-1.537383	5.925978	-0.153285
44	1	0	-2.230479	4.563249	0.740073
45	53	0	-0.100827	1.778473	0.647574

Zero-point correction=	0.354433
(Hartree/Particle)	
Thermal correction to Energy=	0.379945
Thermal correction to Enthalpy=	0.380889
Thermal correction to Gibbs Free Energy=	0.289353
Sum of electronic and zero-point Energies=	-1081.270241
Sum of electronic and thermal Energies=	-1081.244728
Sum of electronic and thermal Enthalpies=	-1081.243784
Sum of electronic and thermal Free Energies=	-1081.335320

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	X	Y	Z
1	28	0	-0.036851	-0.825359	-0.791912
2	6	0	-0.253860	0.029326	-2.582842
3	1	0	-0.273242	-0.735516	-3.377568
4	1	0	0.563337	0.727612	-2.805632
5	1	0	-1.187287	0.603956	-2.640378
б	7	0	2.149886	-1.061038	-0.582495
7	6	0	4.860177	-1.373935	-0.065765
8	б	0	2.558060	-1.920526	0.374833
9	6	0	3.055315	-0.360558	-1.269266
10	6	0	4.426695	-0.482488	-1.045111
11	6	0	3.916401	-2.103640	0.654578
12	7	0	0.228554	-2.342313	0.675559
13	6	0	0.559703	-4.110353	2.756749
14	6	0	-0.853937	-2.898547	1.240374
15	6	0	1.468931	-2.628915	1.099858
16	6	0	1.672152	-3.524950	2.156087
17	6	0	-0.720347	-3.801848	2.301387
18	7	0	-2.068975	-1.557138	-0.333137
19	6	0	-4.554985	-2.479620	0.492007
20	6	0	-3.185022	-1.099731	-0.905421
21	6	0	-2.154020	-2.470992	0.656726
22	6	0	-3.391287	-2.957810	1.091309
23	6	0	-4.455558	-1.531626	-0.524475
24	1	0	5.919086	-1.499814	0.140349
25	1	0	2.654058	0.320382	-2.012884
26	1	0	5.128282	0.110413	-1.622468
27	1	0	4.238550	-2.798223	1.422211
28	1	0	0.690047	-4.803801	3.582183
29	1	0	2.668738	-3.758586	2.511756
30	1	0	-1.587860	-4.251103	2.770259
31	1	0	-5.524924	-2.842862	0.818951
32	1	0	-3.041219	-0.359977	-1.686218
33	1	0	-3.452849	-3.693885	1.885023
34	1	0	-5.337136	-1.129128	-1.012246
35	6	0	-0.142361	6.562483	1.922370
36	6	0	-0.245641	5.799534	0.642732
37	б	0	-0.800068	6.437886	-0.588098
38	1	0	-1.129613	6.720206	2.396894
39	1	0	0.281800	7.565873	1.765659
40	1	0	0.480491	6.040415	2.657699
41	1	0	-0.151909	4.716490	0.671337
42	1	0	-0.602969	5.835567	-1.482305
43	1	0	-0.379014	7.441510	-0.751522
44	1	0	-1.897012	6.573424	-0.531747

45	53	0	-0.168065	1.228428	1.053645

Transition state for the reaction of (tpy)NiMe with 2-iodopropane releasing atomic iodine:

Zero-point co (Hartree/Parti Thermal corre Thermal corre Sum of electr Sum of electr Sum of electr	orrection= cle) ction to 1 ction to 1 ction to 0 onic and 2 onic and 1 onic and 1	Energy= Enthalpy= Gibbs Free H zero-point H thermal Ener thermal Enth	Energy= Energies= rgies= nalpies= - Fnergies=	0.380824 0.381769 0.292318 -1081.2 -1081.2 -1081.2 -1081.2	0.355177 36351 10703 09759 99209
			(a a m)		
Number Nu	mber	Atomic Type	X	inates (Angs Y	z
	 28		0.636498	 -0.401846	0.176607
2	7	0	0.595625	0.117324	-1.937596
3	6	0	0.159745	0.588910	-4.645438
4	6	0	-0.656427	0.385355	-2.388172
5	6	0	1.614293	0.094417	-2.807883
б	6	0	1.444415	0.327664	-4.171518
7	б	0	-0.902723	0.619725	-3.745156
8	7	0	-1.272738	0.145024	-0.097122
9	б	0	-3.918204	0.815729	-0.478341
10	6	0	-2.098504	0.212729	0.975873
11	6	0	-1.706990	0.430747	-1.345562
12	6	0	-3.041674	0.767346	-1.568835
13	б	0	-3.446632	0.546435	0.804542
14	7	0	-0.123661	-0.376253	2.194523
15	6	0	-1.409191	-0.285276	4.668232
16	б	0	0.542573	-0.645237	3.326792
17	б	0	-1.447830	-0.064330	2.266077
18	6	0	-2.110687	-0.009614	3.501649

19	б	0	-0.050240	-0.612882	4.583654
20	б	0	1.042717	-2.356692	-0.017771
21	1	0	-0.015215	0.774246	-5.701094
22	1	0	2.601803	-0.088192	-2.396334
23	1	0	2.305588	0.315199	-4.830263
24	1	0	-1.907461	0.826114	-4.096573
25	1	0	-4.961304	1.074007	-0.631512
26	1	0	-3.400404	0.999129	-2.564766
27	1	0	-4.119647	0.598870	1.652759
28	1	0	-1.911334	-0.246399	5.630212
29	1	0	1.591683	-0.897625	3.207714
30	1	0	-3.163311	0.246787	3.548722
31	1	0	0.534652	-0.840744	5.468303
32	1	0	1.853053	-2.487360	-0.745102
33	1	0	0.146357	-2.872750	-0.379575
34	1	0	1.341130	-2.779249	0.948610
35	6	0	2.622133	2.104634	1.613176
36	6	0	2.912795	0.973562	0.676517
37	б	0	3.841188	-0.125070	1.096418
38	1	0	3.553260	2.593766	1.929674
39	1	0	2.123968	1.753242	2.532333
40	1	0	1.989059	2.864919	1.147242
41	1	0	2.454198	0.964764	-0.302019
42	1	0	3.469861	-0.656481	1.988724
43	1	0	4.823682	0.284243	1.366951
44	1	0	3.992046	-0.861676	0.303587
45	53	0	4.638857	2.294787	-1.401258

References:-

(1) a) A. Vaupel, P. Knochel, J. Org. Chem. **1996**, 61, 5743-5753. b) D. S. Middelton, N. S. Simpkins, Synth. Commun. **1987**, 19, 21.

(2) P. A. Baguley, J. C. Walton, J. Chem. Soc., Perkin Trans I 1998, 2073-2082.

(3) M. E. Kuehne, L. He, P. A. Jokiel, C. J. Pace, M. W. Fleck, I. M. Maisonneuve, S. D. Glick, J. M. Bidlack, *J. Med. Chem.* **2003**, *46*, 2716-2730.

(4) K. Wakabayashi, H. Yorimitsu, K. Oshima, J. Am. Chem. Soc. 2001, 123, 5374-5375.

(5) N. Hadei, E. B. Kantchev, C. J. O'Brien, M. G. Organ, Org. Lett. 2005, 7, 3805-3807.

(6) G. L. Lange, C. Gottardo, Synth. Commun., 1990, 20, 1473-1479.

(7) G. Wu, F. Lamaty, E. Negishi, J. Org. Chem. 1989, 54, 2507-2508.

(8) M. T. Ashby, J. H. Enemark, D. L. Lichtenberger, *Inorganic Chemistry* 1988, 27, 191-197.

(9) L. S. Hegedus, D. H. Thompson, J. Am. Chem. Soc. 1985, 107, 5663-5669.

(10) D. L. J. Clive, M. P. Pham, R. Subedi, J. Am. Chem. Soc. 2007, 129, 2713-2717.

3.9.13	- 0
10.82	
52°50	
	- 4
28.77 04.77	8 -
(₱.0TT	100
	120
3 3 3	

80.

-CO₂Et

τ··

`0 -{∵∙⊤

3g

Ł

11a

	udd
ac. cz	20
32.82	 30
20 72	- 6
	50
TZ:50	- 09
86.94 ~	2
28.77 0.4.77	8
	6
<i>LL</i> . ÞOT ———	1 0
6216TT	110
250.311 <u> </u>	120
29·921	130
02.721 — 140.60	140
	150
	160
	170
	180
1	190

