

Supporting Information

© Wiley-VCH 2007

69451 Weinheim, Germany

Water-Compatible Iminium Activation: Organocatalytic Michael Reactions of Carbon Centered Nucleophiles with Enals

Claudio Palomo,* Aitor Landa, Antonia Mielgo, Mikel Oiarbide, Ángel Puente, Silvia Vera

Supporting Information

Contents

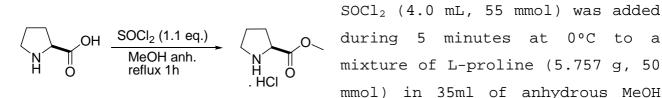
1.	General informationS3
2.	MaterialsS3
3.	Experimental procedures and characterizations
	3.1. General description of the preparation of
	catalysts 1-8
	3.2. Preparation of Catalyst 6 -Rac
	3.3. General procedure for the Michael addition of
	nitromethane
	3.3.1. Synthesis of (R)-4-nitro-3-phenylbutan-1-ol
	(ent- 10a) using catalyst 8
	3.3.2. General procedure for the synthesis of
	racemic adductsS12
	3.4. General procedure for the Michael addition of
	malonates
	3.5. Amine catalyzed Michael addition of aldehydes
	to enals
	3.6. Data of adducts
	3.7. Derivatization of 3-Methyl-4-nitrobutan-1-ol with
	Naphthoyl chloride
	3.8.(E)-3-(3-(Cyclopentyloxy)-4-
	methoxyphenyl)acrylaldehydeS18
	3.9.(S)-4-(3-(Cyclopentyloxy)-4-methoxyphenyl)pyrrolidin-2-one:
	(S)-(+)-Rolipram
4.	¹ H and ¹³ C NMR Spectra

5.	HPLC	Chromatograms	of	selected	compounds	
6.	Refer	rences				

1. General information:

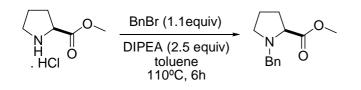
All reactions were carried out in water with efficient magnetic stirring. The ¹H NMR and ¹³C NMR spectra were recorded at 500 MHz and 75 MHz respectively. The chemical shifts are reported in ppm relative to CDCl₃ (δ = 7.26) for ¹H NMR and relative to the central resonances of CDCl₃ (δ = 77.0) for ¹³C NMR. Purification of reaction products was carried out by flash column chromatography using ROCC silica gel 60 (0.040-0.063mm, 230-400 mesh). Visualization was accomplished with a solution of Phosphomolybdic acid (1 g) in 100 ml of ethanol (limited lifetime), followed by heating. Analytical high performance liquid chromatography (HPLC) was performed on waters 600E chromatographs, equipped with diode array UV detector, using Daicel Chiralpak IB, AD-H, AS-H and AD columns. Optical rotations were recorded on a Perkin Elmer polarimeter. MS spectra were recorded on an ESI-ion trap Mass spectrometer (Agilent 1100 series LC/MSD, SL model).

2. Materials.


All solvents were of p.a. quality and were dried by standard procedures prior to use if necessary. Unless otherwise specified, materials were obtained from commercial sources and used without purification. α , β -Unsaturated aldehydes were prepared following the procedure described in the literature.^[1] Cinnamaldehyde and crotonaldehyde were purified by distillation before usage and stored in the fridge at -30°C under nitrogen.

S3

3. Experimental procedures and characterizations.


3.1. General description of the preparation of catalysts 1-8.

3.1.1. Preparation of (S)-methyl pyrrolidine-2-carboxylate hidrochloride^[2]

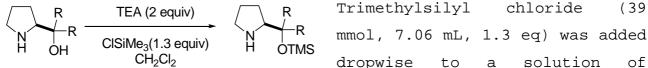
and afterwards stirred at reflux for 1h. Methanol and excess of $SOCl_2$ were evaporated under reduced pressure and the yellow oil obtained was used in the following step without further purification. Yield: 8.275 g (100%).

3.1.2. Preparation of (S)-methyl 1-benzylpyrrolidine-2carboxylate^[3]

To a cooled solution, 0-5°C, of (S)-methyl pyrrolidine-2carboxylate hydrochloride (8.275 g, 50 mmol) and DIPEA

(26.1ml; 150 mmol) in 50ml of toluene was slowly added benzylbromide (6.5 mL, 55 mmol). The reaction mixture was further stirred for 6h at 110°C. The reaction was quenched with saturated sodium bicarbonate solution (40 mL) and the product was extracted with ethyl acetate (2x40 ml). The organic phase was dried over anhydrous MgSO₄ and evaporated under reduced pressure, remaining a brown oil. The product was used in the following step without further purification. Yield: 10.298g (94%).

3.1.3. Preparation of dialkyl-(1-benzylpyrrolidin-2-yl)methanol^[4]


(S)-methyl 1-benzylpyrrolidine- $\frac{\text{RMgBr}(2 \text{ equiv})}{\text{THE refuse 40b}} \xrightarrow{R}_{N} \frac{R}{R} = 2 - \text{carboxylate (4.38 g, 20 mmol)}$ in THF (40 mL) was cooled at

0°C and the corresponding alkylmagnesium bromide (60 mmol) was added dropwise over 10 min. The reaction mixture was further stirred overnight at room temperature. The reaction was quenched with saturated ammonium chloride solution (30 mL). The supernatant liquid was collected leaving behind a white precipitate which was extracted with dichloromethane (3 x 30 mL). The combined organic extracts were washed with brine and dried over anhydrous MgSO4. The solvent was evaporated under reduced pressure and the product used in the following step without further obtained was purification.

3.1.4. Preparation of dialkyl-(S)-pyrrolidin-2-yl-methanol

R N R R B B B Cruce dialkyl-(1-benzylpyrrolidin-2-yl)methanol The crude dialkyl-(1-Pd,C (20 mol% weight) (3.15vmmol) was disolved in 4 mL ÔН overniaht . Bn of ethanol and palladium, (10 wt. % on activated carbon, 20% mol % weight) was added. The reaction mixture was stirred under hydrogen atmosphere (1 atm) at room temperature overnight. The solution was filtered over celite in a Büchner funnel and the solvent evaporated under reduced pressure. The crude obtained was purified by column chromatography.

3.1.5. Preparation of dialkyl-2-((trimethylsilyloxy)methyl) pyrrolidine

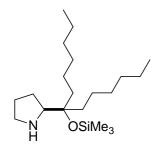
dropwise to a solution of dialkyl-(S)-pyrrolidin-2-ylmethanol (30 mmol)and triethylanamine (8.4 mL, 60 mmol) in anhydrous CH_2Cl_2 (60 ml) at 0°C. Then the

(39

reaction mixture was stirred at room temperature for 1h. The mixture was washed with water (2 x 100 mL), saturated NaHCO₃ (1 x 100 mL) and extracted with CH_2Cl_2 (2x 50 mL). The organic layer was dried over MgSO₄ and evaporated under reduced pressure. The crude product was purified by flash column chromatography ($CH_2Cl_2/MeOH$ 95:5) and subsequent washing with NaHCO₃ (sat. sol.) or by a simple distillation.

3.1.6. Preparation of dialkyl-2-((Triphenylsilyloxy)methyl) pyrrolidine

dialkyl-(S)-pyrrolidin-2-The ylmethanol (6 mmol) in **ÓSiPh**₃ anhydrous THF (12 mL) was added to a solution of DMAP (1.46 g, 12 mmol) and triphenylsilyl choride (3.11 g, 10.5 mmol) in THF (12 mL). Then the reaction was stirred at reflux overnight. The mixture was washed with water (2x 25 mL), saturated NaHCO₃ (1 x 25 mL) and extracted with CH_2Cl_2 (2x 25 mL). The organic layer was dried over $MgSO_4$ and evaporated under reduced pressure. The crude product was purified by flash column chromatography $(CH_2Cl_2/MeOH 95:5)$ and subsequent washing with NaHCO₃ (sat. sol.)or by a simple distillation.


(s)-2-(2-(Trimethylsilyloxy)propan-2-yl)pyrrolidine (1)

OSiMe₃ The catalyst compound was prepared from (S)-methyl 1-benzylpyrrolidine-2-carboxylate according to general procedure using methylmagnesium bromide (3.0M solution in diethyl ether). Overall yield over three steps: 53%. [α]_D²⁵ = +10.4 (c=1, CH₂Cl₂). ¹H-RMN (CDCl₃, 500 MHz) δ: 3.07-2.98 (m, 1H, -CH-CH₂-), 2.88-2.77(m, 2H, -HCH-NH), 1.75-1.65 (m, 3H, CH2-HCH-CH₂-CH-), 1.54-1.47 (m, 1H, -CH₂-HCH-CH₂-CH), 1.30(s, 3H, CH₃), 1.22 (s, 3H, CH₃), 0.12 (s, 9H, -OSiMe₃). ¹³C-RMN (75 MHz, CDCl₃) δ: 74.87, 69.30, 47.25, 28.24, 27.47, 26.56, 26.12, 2.45. MS: C₁₀H₂₃NOSi 202.0 [M]⁺.

(s)-2-(4-(Trimethylsilyloxy)heptan-4-yl)pyrrolidine (2)

The catalyst compound was prepared from (S)-methyl 1-benzylpyrrolidine-2-carboxylate according to general procedure using propylmagnesium bromide. Overall yield over three steps: 55%. [α]_D²⁵ = -20.8 (c =1, CH₂Cl₂). ¹H-RMN (CDCl₃, 500 MHz) δ: 3.05-3.00 (m, 1H, -C<u>H</u>-CH2-), 2.91-2.88 (m, 1H, -HC<u>H</u>-NH), 2.77-2.72(m, 1H, -<u>H</u>CH-NH), 1.74-1.61 (m, 5H, C<u>H₂- CH₂-CH₃), 1.57-1.49 (m, 2H, -C<u>H₂-CH2-</u> CH3), 1.47-1.40(m, 1H, -CH2-C<u>H2</u>-CH₃), 1.33-1.23 (m, 4H, -C<u>H2</u>-CH2-CH3), 1.47-1.40(m, 1H, -CH2-C<u>H2</u>-CH₃), 0.12 (s, 9H, -OSiMe₃). ¹³C-RMN (75 MHz, CDCl₃) δ: 79.69, 66.09, 47.10, 40.56, 40.38, 26.09, 26.03, 17.51, 17.36, 14.77, 14.68, 2.88. MS: C₁₄H₃₁NOSi 258.1 [M]⁺.</u>

(s)-2-(7-(Trimethylsilyloxy)tridecan-7-yl)pyrrolidine (3)

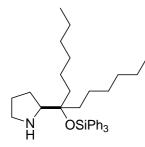
The catalyst compound was prepared from (S)-methyl 1-benzylpyrrolidine-2-carboxylate according to general procedure using hexylmagnesium bromide (2.0M solution in diethyl ether). Overall yield over three steps: 59%. b.p.= 175° (0.8 torr). $[\alpha]_{D}^{25} = -15.6$ (c 1, CH₂Cl₂). ¹H-RMN (CDCl₃, 500 MHz)

δ: 3.01-2.98 (m, 1H, $-C\underline{H}-CH2-$): 2.88-2.85 (m, 1H, $-HC\underline{H}-NH$), 2.72-2.70 (m, 1H, $-\underline{H}CH-NH$), 1.66-1.58 (m, $5H,C-C\underline{H}_2-CH_2-$, $\underline{H}CH-CH2-CH-$), 1.54-1.38 (m, $3H,-C\underline{H}_2-HC\underline{H}-CH-$), 1.30-1.24(m, 16H,), 0.87-1.86 (m, 6H), 0.09(s, 9H, $-OSiMe_3$). $^{13}C-RMN$ (75 MHz, $CDCl_3$) δ: 79.84, 66.14, 47.17, 38.12, 37.89, 31.12, 30.00, 26.14, 26.08, 24.23, 24.06, 22.66, 22.62, 14.02, 2.97. MS: $C_{20}H_{43}NOSi$ 342.3 [M]⁺.

(s)-2-(10-(Trimethylsilyloxy)nonadecan-10-yl)pyrrolidine (4)

The catalyst compound was prepared from (S)-methyl 1nonyl N H OSiMe₃ benzylpyrrolidine-2-carboxylate according to general procedure using nonylmagnesium bromide (1.0M solution in diethyl ether). Overall yield over three steps: 48%. $[\alpha]_{D}^{25} = -$ 20.2 (c= 1, CH₂Cl₂. ¹H-RMN (CDCl₃, 500 MHz) δ : 3.19-3.16(m, 1H), 3.13-3.02 (m, 2H), 1.86-1.75(m, 3H), 1.70-1.59 (m, 4H), 1.52-1.39 (m, 1H), 1.38-1.21 (m, 20H), 0.92-0.88(m, 6H), 0.15(s, 9H). ¹³C-RMN (75 MHz, CDCl₃) δ :79.65, 66.29, 47.19, 38.14, 37.78, 31.90, 30.37, 30.38, 29.62, 29.56, 29.53, 29.29, 26.09, 25.88, 24.18, 24.10, 22.67, 14.07, 2.97. MS: C₂₆H₅₅NOSi 426.4 [M]⁺.

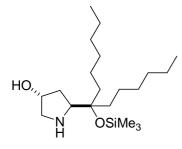
2-(13-(trimethylsilyloxy)pentacosan-13-yl)pyrrolidine (5)


dodecyl dodecyl N OSiMe₃

1-benzylpyrrolidine-2-carboxylate according to general procedure using dodecylmagnesium bromide

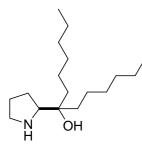
The catalyst compound was prepared from (S)-methyl

(1.0M solution in diethyl ether). Overall yield overthree steps: 63%. [\$\alpha\$]_D^{25} = -9.0 (c= 1, CH_2Cl_2). ¹H-RMN (CDCl_3, 500 MHz) &Sigma: 3.04-3.00(m, 1H), 2.90-2.88 (m, 1H), 2.78-2.72(m, 1H), 1.68-1.27 (m, 48H), 0.92-0.88 (t, 6H, J= 7.0 Hz), 0.12 (s, 9H). ¹³C-RMN (75 MHz, CDCl_3) &Sigma: 79.84, 66.1, 47.2, 38.1, 37.9, 31.9, 30.3, 29.6, 29.5, 29.3, 26.1, 26.0, 24.2, 24.0, 22.7, 14.8, 3.0. MS: C_{32}H_{67}NOSi.


(s)-2-(7-(Triphenylsilyloxy)tridecan-7-yl)pyrrolidine (6)

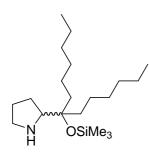
The catalyst compound was prepared from (S)-methyl 1-benzylpyrrolidine-2-carboxylate according to general procedure using hexylmagnesium bromide (2.0M solution in diethyl ether). Overall yield over three steps: 74%. b.p.= 295° (0.28 torr). $[\alpha]_{D}^{25} = -2.5$ (c 1, CH₂Cl₂). ¹H-RMN (CDCl₃, 500 MHz)

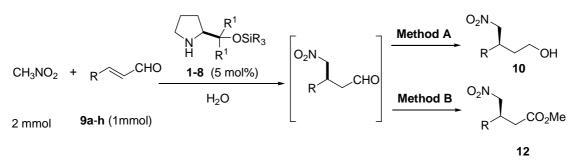
δ: 7.73,-7-67 (m, 6H, Ar): 7.45-7.31 (m, 9H, Ar), 3.17-3.01(m, 1H, -C<u>H</u>-CH2-), 2.95-2.78 (m, 1H, -HC<u>H</u>-NH-), 2.77-2.63(m, 1H, -<u>H</u>CH-NH-), 1.74-1.53 (m, 4H), 1.38-0.96 (m, 20H), 0.84 (t, 6H, J= 6.4 Hz). ¹³C-RMN (75 MHz, CDCl₃) δ: 135.57, 129.45, 127.58, 82.51, 66.03, 46.96, 38.36, 37.54, 31.70, 29.77, 26.40, 25.88, 24.10, 23.77, 22.62, 14.06. MS: C_{35H49}NOSi 528.3 [M]⁺.


(3R,5S)-5-(7-(trimethylsilyloxy)tridecan-7-yl)pyrrolidin-3-ol (7)

The catalyst compound was prepared from *trans*-4-Hydroxy-L-proline according to general procedure. Overall yield over five steps: 26%. ¹H-RMN (CDCl₃, 500 MHz) δ : 4.42 (m, 1H), 3.36 (dd, J= 10.0, 5.0 Hz, 1H), 3.21 (dd, J= 15.0, 5.0 Hz), 2.90 (d, J= 15 Hz, 1H), 1.80-1.25 (m,

22H), 0.91 (m, 6H), 0.14 (s, 9H). $^{13}C-RMN$ (75 MHz, CDCl₃) δ : 79.24, 71.7, 64.1, 55.2, 38.1, 37.4, 35.8, 31.8, 31.6, 29.9, 29.8, 24.0, 23.9, 22.6, 22.5, 14.0, 2.91. MS: $C_{20}H_{43}NO_2Si$ 358.3 [M]⁺.

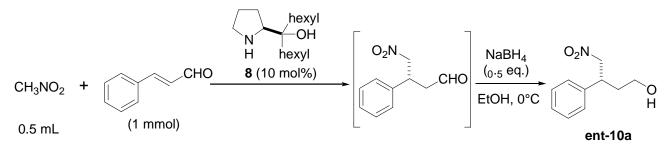

(S)-7-(pyrrolidin-2-yl)tridecan-7-ol (8)


The catalyst compound was prepared from (S)-methyl 1-benzylpyrrolidine-2-carboxylate according to general procedure using hexylmagnesium bromide (2.0M solution in diethyl ether). Overall yield over two steps: 85%. $[\alpha]_{D}^{25} = -11.4$ (c 0.5, CH₂Cl₂). ¹H-RMN (CDCl₃, 500 MHz) δ : 3.11-3.08(m, 1H, -CH-

CH2-): 3.00-2.90 (m, 2H, $-\underline{HCH}-NH-$), 1.81-1.65(m, 4H), 1.51-1.37 (m, 20H), 0.89 (t, 6H, J=6.5Hz). $^{13}C-RMN$ (75 MHz, CDCl₃) δ :73.44, 64.15, 46.55, 37.84, 35.07, 31.82, 31.75, 30.06, 30.03, 26.00, 25.25, 23.63, 23.38, 22.60, 13.99. MS: $C_{17}H_{35}NO$ 270.2 [M]⁺.

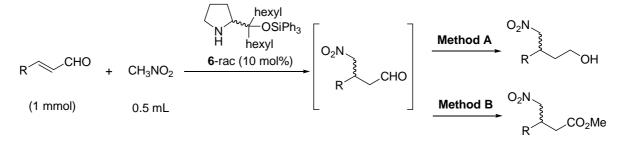
3.2. Preparation of Catalyst 6-Rac:

Catalyst **6**-Rac was synthesized following the same experimental procedure as for catalyst **6** but using as starting material D-L-Proline.

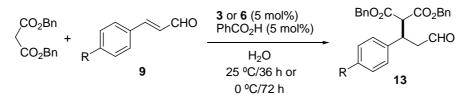

3.3. General procedure for the Michael addition of nitromethane.

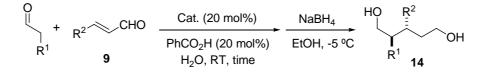
To a mixture of freshly prepared catalyst 1-8 (0.05 mmol, 5 mol%) the α , β -unsaturated aldehyde **9a-h** (1 mmol), water (1 mL), were added nitromethane (2 mmol, 110 μ L) and benzoic acid (6.1 mg,0.05 mmol, 5 mol%). The mixture was stirred at room temperature for the specified time and then was elaborated as follow: METHOD A (derivatization to alcohols): To a cooled solution (ice-brine bath, -5 °C) of NaBH₄ (18.9 mg, 0.5 mmol) in EtOH (3 mL) the solution of the above reaction mixture in EtOH (5 mL) was added, dropwise. The reaction was stirred at the same temperature for 20 min (TLC: EtOAc/Hex 1:1) and afterwards quenched with H_2O (20 mL) and extracted with CH_2Cl_2 (3 x 30 mL). The combined organic layers were washed with brine and dried $(MgSO_4)$. The solvent was by evaporated and the crude compound was purified flash chromatography (eluent: EtOAc/Hex 1:2). METHOD B (derivatization to carboxylic methyl esters): The crude reaction (≈1.0 mmol) was dissolved in a mixture of MeOH (5.0 mL), CH₃CN (5.0 mL), and water (5.0 mL). The solution was cooled down to 0 °C and KH_2PO_4 (380 mg, 2.77 mmol) and $NaClO_2$ (225 mg, 2.10 mmol) were added. After the injection of H_2O_2 (35% solution, 3.0 mL), the mixture was warmed up to RT and stirred for 2 h. The pH was adjusted to 3 with 1M HCl and saturated Na_2SO_3 solution (20 mL) was added.

The resulting mixture was extracted with CH_2Cl_2 (3 x 30 mL), the combined organic layers were washed with 30 mL water, and dried over MgSO₄. The organic layer was concentrated in vacuum and the residue was dissolved in 5.0 mL toluene and 15.0 mL methanol.


Trimethylsilyl diazomethane (0.5 mL, 1 mmol, 2.0 M in n-hexane) was added dropwise. The solution was stirred for additional 10 min and quenched with four drops of concentrated AcOH. The solvents were evaporated under vacuum. The crude product was subjected to FC on silica gel.

3.3.1. Synthesis of (R)-4-nitro-3-phenylbutan-1-ol (ent-10a) using catalyst 8.


To a mixture of **8** (0.1 mmol, 0.1 equiv., 10 mol %) and α , β unsaturated aldehyde **9a** (1.0 mmol, 132 mg, 126 µL) was added 0.5 mL of nitromethane. The reaction mixture was stirred for 18 h at room temperature and then the solvent was evaporated under vacuum. To a cooled solution (-5°C) of NaBH₄ (9.45 mg, 0.25 mmol, 0.5 eq.) in EtOH (10 mL) a solution of the reaction mixture in EtOH (5 mL) was added, dropwise. The reaction was stirred at 0 °C for 20 min (TLC: AcOEt/Hex 1:1) and afterwards quenched with H₂O (20 mL) and extracted with CH₂Cl₂ (3 x 30 mL). The combined organic layers were washed with brine and dried (MgSO₄). The solvent was finally evaporated and the crude compound was purified by flash chromatography (eluent: AcOEt/Hex 1:2).


To a mixture of 6-rac (0.1 mmol, 0.1 equiv., 10 mol %) and α , β unsaturated aldehyde **9a-i** (1.0 mmol) was added 0.5 mL of nitromethane and benzoic acid (6.1 mg, 0.05 mmol, 5 mol%). The reaction mixture was stirred for 18 h at room temperature and then the solvent was evaporated under vacuum. The subsequent derivatization to the alcohol and ester products was carried out following the general procedure described above for the optically active products.

3.4. General procedure for the Michael addition of malonates

To a mixture of catalyst 3-6 (0.04 mmol, 0.04 equiv., 5 mol %), α , β -unsaturated aldehyde **9a-b** (1.0 mmol, 1.25 equiv.), and H₂O (1.0 mL) were added successively dibenzyl malonate (200 µL, 0.8 mmol, 1.0 equiv.) and benzoic acid (4.88 mg, 0.04 mmol, 4 mol%). The reaction mixture was stirred at the specified temperature until consumption of starting malonate (TLC) and the water evaporated under vacuum pump. Et_2O was added and then filtered through 1-2 cm bed of silica gel. The solvent was finally evaporated and the crude compound was purified by flash (eluent: AcOEt/Hex 1:10). Physical chromatography and spectroscopic data are in agreement with literature values.^[5]

3.5. Amine catalyzed Michael addition of aldehydes to enals (14)

To a mixture of catalyst 6 (105.4 mg, 0.4 mmol, 0.4 equiv., 20 mol %), the α,β -unsaturated aldehyde 9 (2 mmol), and water (2 mL), were added propionaldehyde or pentanal (6 mmol) and benzoic acid (48.4 mg, 0.4 mmol, 20 mol%), the resulting emulsion was stirred at room temperature for the specify time. Once compound 9 was consumed (TLC), the reaction mixture was quenched with 1 N HCl (20 mL), and the resulting mixture was extracted with dichloromethane (3 x 20 mL). The combined organic layers were then washed successively with saturated NaHCO₃ (1 x 20 mL) and brine (2 x 20 mL) and dried over anhydrous MgSO₄.

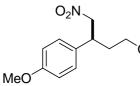
To a cooled solution $(-5^{\circ}C)$ of NaBH₄ (76.5 mg, 2.0 mmol) in EtOH (5 mL) a solution of the reaction mixture in EtOH (5 mL) was added, slowly and dropwise. The reaction was stirred at 0 °C for 20 min (TLC: AcOEt/Hex 1:1) and afterwards quenched with H₂O (20 mL) and extracted with CH₂Cl₂ (3 x 30 mL). The combined organic layers were washed with brine and dried (MgSO₄). The solvent was finally evaporated and the crude compound was purified by flash chromatography (eluent: AcOEt/Hex 1:2).

The racemic adducts were obtained using pyrrolidine as catalyst following otherwise identical procedure.

The relative configuration of adducts 14 was determined to be *anti*.^[6]

S13

3.6. Data of adducts:


4-Nitro-3 phenylbutan-1-ol (10a)

The title compound was prepared from nitromethane (2 O_2N mmol) and cinnamaldehyde (1 mmol) according to the ЮH general procedure A. Yield: 136 mg, 0.70 mmol, 70%. $[\alpha]_{D}^{25} = -13.7$ (c 0.5, CH₂Cl₂, 96% ee). ¹H-RMN (CDCl₃, 500 MHz) δ: 7.38-7.24 (m, 5H, Ar), 4.71-4.61 (m, 2H, HCH-NO₂), 3.75-3.71 (m, 1H, HCHOH), 3.67-3.62 (m, 1H, HCHOH), 3.54-3.50(m, 1H, Ar-CH), 2.02-1.96 (m, 2H, CH-HCH-CH₂). ¹³C-RMN (75 MHz, CDCl₃) 138.92, 129.06, 127.54, 80.64, 59.94, 41.15, 35.71. δ: The enantiomeric excess was determined by HPLC with Chiralpack IB column at 220nm (hexane/ⁱPrOH in the ratio of 90/10, flow rate = 0.5 mL/min tr=35.72 min, tr=41.26 major). MS: C₁₀H₁₃NO₃ 218.1 $[M+Na]^+$.

4-Nitro-3 phenylbutan-1-ol (10b)

The

title

nitromethane (2 mmol) and (E)-3-(4methoxyphenyl)acrylaldehyde (1 mmol) according to de general procedure A. Yield: 179 mg, 0.71 mmol, 71%. $[\alpha]_{D}^{25} = -22.8$ (c 0.5, CH₂Cl₂, 96% ee). ¹H-RMN (CDCl₃, 500 MHz) δ: 7.14 (d, 2H, J= 8.7 Hz, Ar), 6.87 (d, 2H, J= 8.7 Hz, Ar) 4.62 (dd, 1H, J= 12.2, 7.2 Hz, $HCH-NO_2$), 4.55 (dd, 1H, J = 12.2, 8.4 Hz, HCH-NO₂), 3.79 (s, 3H, OCH₃), 3.65-3.61 (m, 2H, HCHOH), 3.53-3.47(m, 1H, Ar-CH), 1.97-1.87 (m, 2H, CH-HCH-CH₂). ¹³C-RMN (75 MHz, CDCl₃) δ: 159.11, 130.71, 128.54, 80.89,77.00, 76.58, 59.96, 55.26, 40.43, 35.73. The enantiomeric excess was determined by HPLC with Chiralpack IB column at 220nm (hexane/ⁱPrOH in the ratio of 98/2, flow rate = 0.5 mL/min tr=109.7 min, tr=115.8 major). MS: $C_{11}H_{15}NO_4$ 248.0 [M+Na]⁺.

compound

was

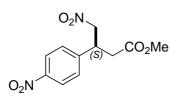
prepared

from

4-Nitro-3-p- tolylbutan-1-ol (10c)

The title compound was prepared from O_2N nitromethane(2 mmol) and (E)-3-p-ОH tolylacrylaldehyde (1 mmol) according to de general procedure A. Yield: 139 mg, 0.66 mmol, 66%. $[\alpha]_{D}^{25} = -14.7$ (c 0.5, CH₂Cl₂, 97% ee). ¹H-RMN (CDCl₃, 500 MHz) δ: 7.16 (d, 2H, J= 5.8 Hz, Ar), 7.10 (d, 2H, J= 5.8Hz, Ar), 4.63 $(dd, 1H, J_1 = 12.2, 7.2Hz, HCH-NO_2), 4.57 (dd, 1H, J = 12.2, 8.3 Hz,$ HCH-NO₂), 3.68-3.59 (m, 2H, CH₂OH), 3.51-3.47 (m, 1H, CHCH₂), 2.32 $(s, 3H, Ar-CH_3), 1.99-1.86$ (m, 2H, $CH-HCH-CH_2).$ ¹³C-RMN (75 MHz, CDCl₃) δ: 137.34, 135.77, 129.65, 127.33, 80.72, 59.85, 40.73, 35.64, 20.95. The enantiomeric excess was determined by HPLC with Chiralpack IB column at 220nm (hexane/ⁱPrOH in the ratio of 90/10, flow rate = 0.5 mL/min tr=27.4 min, tr=28.9 major). MS: $C_{11}H_{15}NO_3$ 232.0 [M+Na]⁺.

3-Methyl-4-nitrobutan-1-ol (10d)


0₂N OH The title compound was prepared from nitromethane (2 mmol) and crotonaldehyde (1 mmol) according to the general procedure A. Yield: 80 mg, 0.60 mmol, 60%. $[\alpha]_{D}^{25}$ = +2.8 (c 1, CH₂Cl₂, 87% ee). ¹H-RMN (CDCl₃, 500

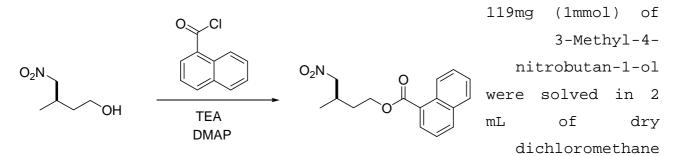
MHz) δ : 4.45(dd, 1H, J= 11.8, 6.2 Hz, <u>HCHNO₂</u>), 4.28 (dd, 1H, J= 11.8, 7.8 Hz, HC<u>HNO₂</u>), 3.89-3.66 (m, 2H, <u>HCHOH</u>), 2.60-2.44(m, 1H, CH-CH₃), 1.74-1.45 (m, 2H, CH-C<u>H</u>₂-CH₂-), 1.07 (d, 3H, J= 6.8 Hz). ¹³C-RMN (75 MHz, CDCl₃) δ : 81.52, 60.01, 36.23, 29.92, 17.24. The enantiomeric excess was determined by HPLC analysis of the 2-naphthoyl derivative (Chiralpack AD-H column at 254nm (hexane/ⁱPrOH in the ratio of 95/5, flow rate = 0.5 mL/min tr=46.46 min, tr=48.8 major). MS: C₅H₁₁NO₃ 156.0 [M+Na]⁺.

(S)-methyl 3-(3-methoxyphenyl)-4-nitrobutanoate (12e)

The title compound was prepared from nitromethane O_2N (2 mmol) and (E)-3-(3-methoxyphenyl)acrylaldehyde CO₂Me (1 mmol) according to de general procedure B. Yield: 144 mg, 0.57 mmol, 57%. $[\alpha]_{D}^{25} = -23.8$ (c OMe 0.5, CH_2Cl_2 , 95% ee). ¹H-RMN (CDCl₃, 500 MHz) δ : 7.29-7.24 (m, 1H, Ar), 6.85-6.77 (m, 2H, Ar), 4.68 (m, 2H), 3.97 (m, 1H), 3.81 (s, 3H), 3.66 (s, 3H), 2.78 (d, J= 7.5 Hz, 2H). ¹³C-RMN (75 MHz, CDCl₃) δ: 171.0, 160.0, 139.9, 130.1, 119.4, 113.5, 113.1, 79.3, 55.2, 51.9, 40.2, 37.5. The enantiomeric excess was determined by HPLC with Chiralpack IB column at 220nm (hexane/ⁱPrOH in the ratio of 80/20, flow rate = 1.0 mL/min tr=13.0 min, tr=21.8 major). MS: $C_{12}H_{15}NO_5 [M+Na]^+$.

(S)-Methyl-4-nitro-3-(4-nitrophenyl)butanoate (12f)

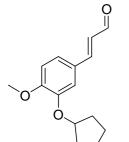
The title compound was prepared from nitromethane (2 mmol) and (E)-3-(4-nitrophenyl)acrylaldehyde (1 mmol) according to de general procedure B. Yield: 158 mg, 0.60


mmol, 60%. $[\alpha]_{D}^{25} = -7.6$ (c 1, CH₂Cl₂, 98% ee). ¹H-

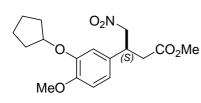
RMN (CDCl₃, 500 MHz) δ : 8.21 (d, 2H, J= 8.7 Hz, Ar), 7.43 (d, 2H, J= 8.7 Hz, Ar), 4.79 (dd, 1H, J= 13.0, 6.5 Hz, <u>HCH-NO₂</u>), 4.68 (dd, 1H, J= 13.0, 8.3 Hz, HC<u>H-NO₂</u>), 4.17-4.01 (m, 1H, C<u>H</u>-Ar), 3.65 (s, 3H,COO-CH₃), 2.81 (m, 2H, C<u>H₂-CH₂-CH₃</u>).¹³C-RMN (75 MHz, CDCl₃) δ :170.35, 147.73, 145.61, 128.47, 124.29, 78.53, 52.18, 39.83, 37.07. The enantiomeric excess was determined by HPLC with Chiralpack AD-H column at 254nm (hexane/ⁱPrOH in the ratio of 90/10, flow rate = 0.5 mL/min tr=43.2 min, tr=49.8 major). MS: $C_{11H_{12}N_{2}O_{6}}$ 245.8 [M-NO₂+Na]⁺.

(S)-Methyl 3-(4-chlorophenyl)-4-nitrobutanoate (12g)

The title compound was prepared from O_2N nitromethane (2 mmol) and (E)-3-(4-CO₂Me chlorophenyl)acrylaldehyde (1 mmol) according to de general procedure B. Yield: 179 mg, 0.69 mmol, 69%. $[\alpha]_{D}^{25} = -9.1$ (c 0.5, CH₂Cl₂, 95% ee). ¹H-RMN (CDCl₃, 500 MHz) δ: 7.33 (d, 2H, J= 8.5 Hz, Ar), 7.17 (d, 2H, J= 8.5 Hz, Ar), 4.73 (dd, J= 12.6, 6.9 Hz), 4.62 (dd, J= 12.6, 6.9 Hz), 3.98 (m, 1H), 3.64 (s, 3H), 2.80-2.71 (m, 2H). ¹³C-RMN (75 MHz, CDCl₃) δ: 170.8, 136.8, 134.0, 129.3, 128.7, 79.1, 52.0, 39.6, 37.4. The enantiomeric excess was determined by HPLC with Chiralpack IB column at 220nm (hexane/ⁱPrOH in the ratio of 90/10, flow rate = 0.5 mL/min τ_1 = 30.7 min. (minor enantiomer); τ_2 = 35.4 min. (major enantiomer). MS: $C_{11}H_{12}ClNO_4$ 280.0 [M+Na]⁺.


3.7. Derivatization of 3-Methyl-4-nitrobutan-1-ol with naphthoyl cloride

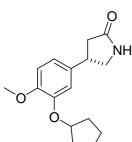
and 0.42 mL of triethylamine (3 mmol, 6eq) was added at room temperature. At the same temperature 0.30 mL (2 mmol, 4 eq) of 1-napthoyl chloride was dropped followed of 6mg (0.05 mmol) of dimethylaminopyridine. The mixture was stirred at room temperature for 3h and then quenched with 2 mL of distilled water. The product was extracted with 3 x 10 mL of dichloromethane and the organic phase was washed with a solution of saturated NH₄Cl and NaHCO₃. The


organic phase was then dried with magnesium sulphate and evaporated under reduced pressure. The crude material was purified by column chromatography on silica gel (eluting with hexane/ethyl acetate 90:10) obtaining the compound as a pale yellow solid (yield: 249.9mg, 87 %).

3.8. (E)-3-(3-(Cyclopentyloxy)-4-methoxyphenyl)acrylaldehyde (9h)

The title compound was prepared using Heck reaction 4-bromo-2-(cyclopentyloxy)-1-methoxybenzene from (1.13 g, 4.16 mmol) according to the general literature procedure.^[1] Yield: 0.90 g, 3.64 mmol, 87%. ¹H-RMN (CDCl₃, 500 MHz) δ : 9.66 (d, 1H, J= 7.6 Hz, CHO), 7.40 (d, 1H, J= 15.8 Hz), 7.17-6.88 (m, 3H), 6.60 (dd, 1H, J= 15.8, 7.6 Hz), 4.81 (m, 1H), 3.90 (s, 3H), 2.18-1.57 (m, 8H). ¹³C-RMN (75 MHz, CDCl₃) δ: 193.2, 152.9, 152.8, 147.8, 126.7, 126.3, 122.9, 113.5, 111.5, 80.5, 55.8, 32.6, 23.8.

(S)-Methyl 3-(3-(cyclopentyloxy)-4-methoxyphenyl)-4-nitrobutanoate (12h)


The title compound was prepared from nitromethane (2 mmol) and (E) - 3 - (3 -(cyclopentyloxy)-4-

methoxyphenyl)acrylaldehyde (1 mmol) according to de general procedure B. Overall

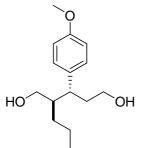
Yield: 209 mg, 0.62 mmol, 62 %. $[\alpha]_{D}^{25} = -18.3$ (c 1, CHCl₃, 98 % ee). ${}^{1}H$ -RMN (CDCl₃, 500 MHz) δ : 6.82-6.73 (m, 3H, Ar-H), 4.76 (m, 1H, CH), 4.70 (dd, 1H, J= 12.4, 7.2 Hz), 4.61 (dd, 1H, J= 12.4, 7.0 Hz), 3.90 (m, 1H), 3.82 (s, 3H), 3.64 (s, 3H), 2.75 (d, 2H, J= 7.2 Hz), 1.95-1.57 (m, 8H). ¹³C-RMN (75 MHz, CDCl₃) δ: 171.26, 149.82, 147.91, 1430.58, 119.24, 114.54, 112.42, 80.62, 79.64, 56.03, 51.88, 39.81, 37.71, 32.75, 23.99. HPLC: Daicel Chiralpak IB, hexane/2-propanol (90/10), flow rate = 0.5 mL/min (τ_1 = 33.6

min. (minor enantiomer); $\tau_2 = 36.1$ min. (major enantiomer)). MS: $C_{17}H_{23}NO_6 \ 360.1 \ [M+Na]^+$.

3.9. (S)-4-(3-(Cyclopentyloxy)-4-methoxyphenyl)pyrrolidin-2-one: (S)-(+)- Rolipram

(S)-methyl 3-(3-(cyclopentyloxy)-4-methoxyphenyl)-4-nitrobutanoate (100 mg, 0.29mmol) was disolved in 5 ml of ethanol and palladium, 10 wt. % on activated carbon (20mg, 20% mol % weight) was added. The reaction mixture was stirred under

hydrogen atmosphere (1 atm) at room temperature overnight. The solution was filtered over Celite in a Büchner funnel and the solvent evaporated under reduced pressure. The crude obtained was purified by column chromatography (SiO₂ eluent: AcOEt). Yield: 57.5 mg, 0.208 mmol, 72%. mp 133-136 °C. $[\alpha]_D^{25}$ = +26.2 (c 0.6, MeOH, 98% *ee*). ¹H-RMN (CDCl₃, 500 MHz) δ : 6.83-6.75 (m, 3H, Ar-H), 5.72 (m, 1H, NH), 4.75 (m, 1H, CH), 3.81 (s, 3H), 3.75 (m, 1H), 3.63 (m, 1H), 3.37 (t, J= 7.9 Hz, 1H), 2.69 (dd, J= 16.8, 8.7 Hz, 1H), 2.44 (dd, J= 16.8, 8.7 Hz, 1H), 1.95-1.58 (m, 8H). ¹³C-RMN (75 MHz, CDCl₃) δ : 177.3, 149.3, 148.0, 134.6, 118.8, 114.0, 112.4, 80.7, 56.2, 49.6, 40.0, 37.9, 32.8, 24.0.


(2R,3R)-2-methyl-3-phenylpentane-1,5-diol 14a

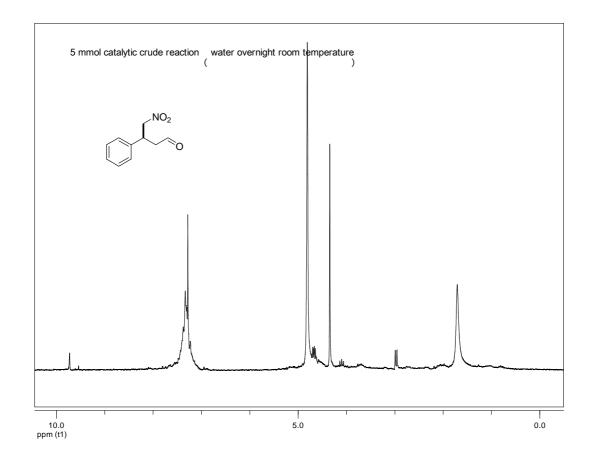
Yield: 240 mg, 1.24 mmol, 62%. $[\alpha]_{D}^{25} = \pm 10.7$ (c 1, CH₂Cl₂, dr^{\geq}99 anti, 98% ee). ¹H-RMN (CDCl₃, 500 MHz) δ : 7.32-7.18 (m, 5H, Ar), 3.50 (m, 1H), 3.45 (dd, J= 10.0, 5.0 Hz, 1H), 3.39 (m, 1H), 3.27 (dd, J= 10.0, 5.0 Hz, 1H), 2.69 (m, 1H), 2.10 (m, 1H), 1.86 (m, 2H), 1.58 (b, 2H), 1.06 (d, J= 5.0 Hz, 3H). ¹³C-RMN (75 MHz, CDCl₃) δ : 143.5, 128.5, 128.2, 126.4, 66.3, 61.3, 44.6, 41.3, 34.8, 14.8. HPLC: Daicel Chiralpak AS-H, hexane/2-propanol/Etanol (97/1/2), flow rate = 0.5 mL/min (anti, τ_1 = 31.8 min. (major enantiomer); τ_2 = 36.4 min. (minor enantiomer)).

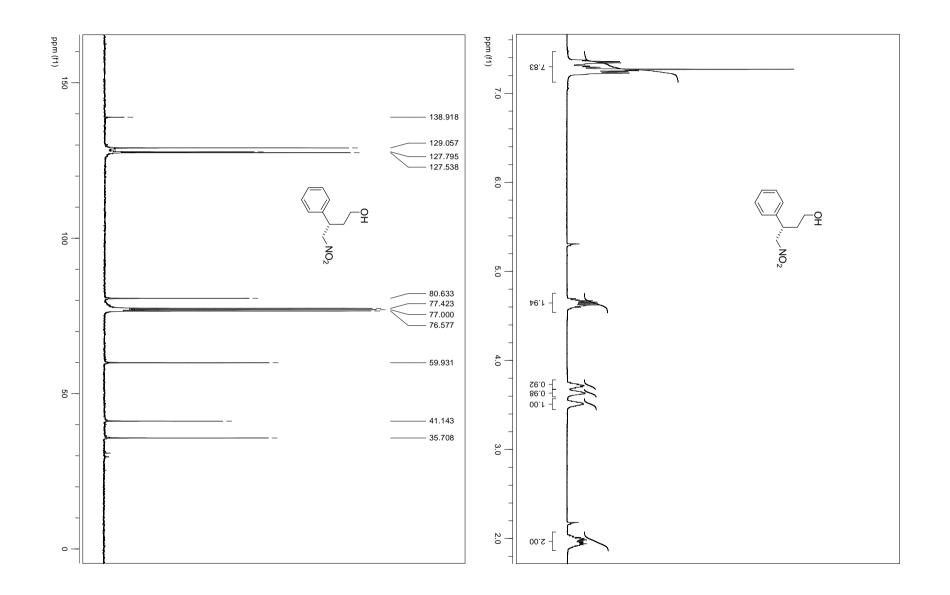
(2R,3R)-3-phenyl-2-propylpentane-1,5-diol 14b

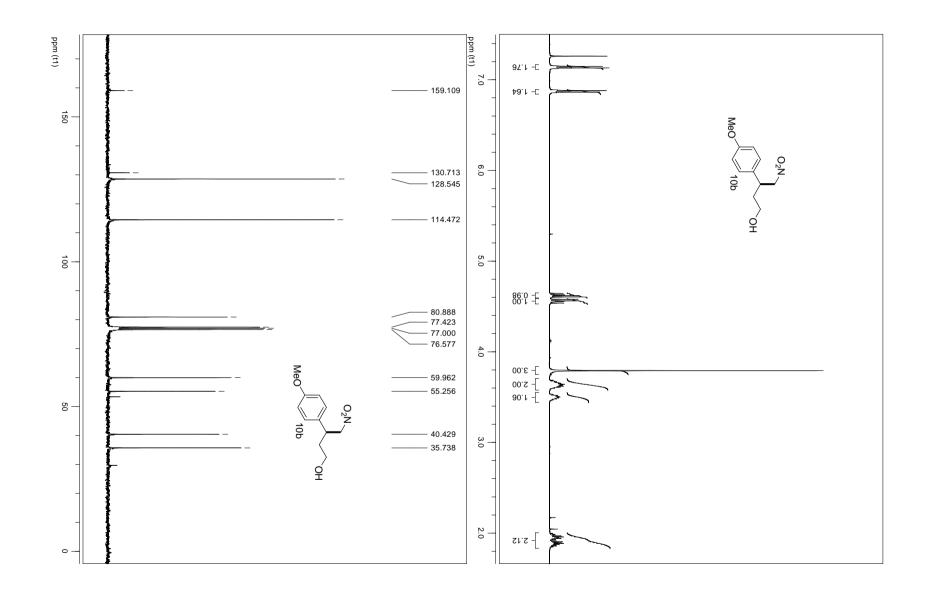
Yield: 244 mg, 1.10 mmol, 55 %. $[\alpha]_{D}^{25} = +9.6$ (c 1, CH₂Cl₂, dr≥99 anti, 97% ee). ¹H-RMN (CDCl₃, 500 MHz) δ : 7.39-7.19 (m, 5H, Ar), 3.52 (m, 1H), 3.50 (dd, J = 15.0, 5.0 Hz, 1H), 3.41 (m, 1H), 3.36 (dd, J = 15.0, 5.0 Hz, 1H), 2.82 (m, 1H), 2.10 (m, 1H), 1.88 (m, 1H), 1.72 (m, 1H), 1.58 (b, 2H), 1.35 (m, 4H), 0.93 (d, J = 5.0 Hz, 3H). ¹³C-RMN (75 MHz, CDCl₃) δ : 143.5, 128.5, 128.3, 126.4, 63.3, 61.5, 45.9, 43.4, 35.5, 30.9, 20.3, 14.43. HPLC: Daicel Chiralpak AS-H, hexane/2-propanol/Etanol (97/1/2), flow rate = 0.5 mL/min (anti, τ_1 = 39.1 min. (major enantiomer); τ_2 = 43.3 min. (minor enantiomer)).

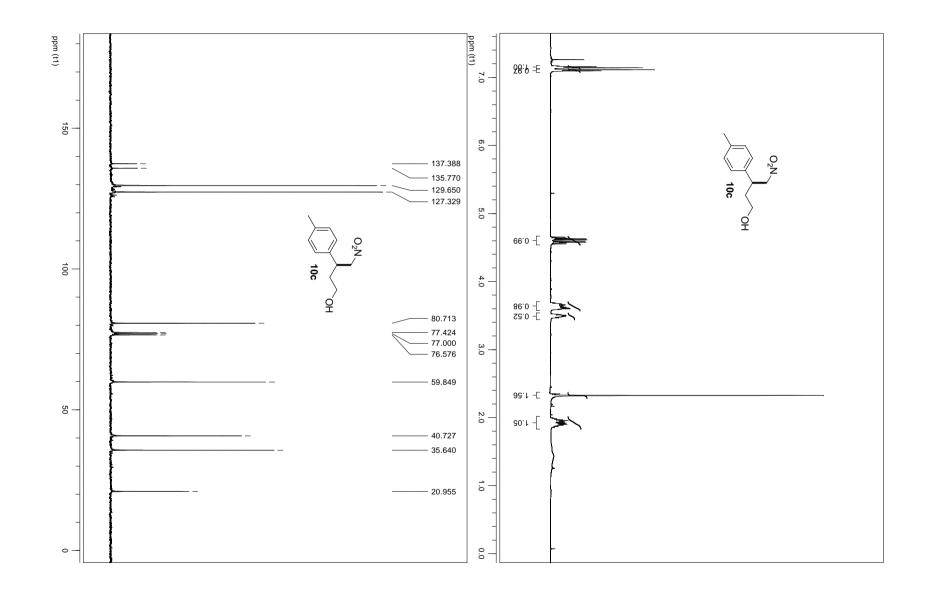
(2R, 3R)-3-(4-methoxyphenyl)-2-propylpentane-1,5-diol 14c

HO (H), 3.50 (d, J= 10.0 Hz, 2H), 3.80 (s, 3H), 3.52 (m, 1H), 3.50 (dd, J= 10.0, 5.0 Hz, 1H), 3.41 (m, 1H), 3.37 (dd, J= 10.0, 5.0 Hz, 1H), 2.76 (m, 1H), 2.08 (m, 1H), 1.84(m, 2H), 1.67(b, 2H), 1.34(m, 4H), 0.91 (t, J= 5.0 Hz, 3H). ¹³C-RMN (75 MHz, CDCl₃) δ : 158.2, 135.1, 129.1, 114.0, 63.3, 61.5, 55.2, 46.0, 42.6, 35.7, 31.0, 20.4, 14.4. HPLC: Daicel Chiralpak AS-H, hexane/2-propanol/Etanol (90/6/4), flow rate = 1.0 mL/min (anti, τ_1 = 10.0 min. (major enantiomer); τ_2 = 12.3 min. (minor enantiomer)).

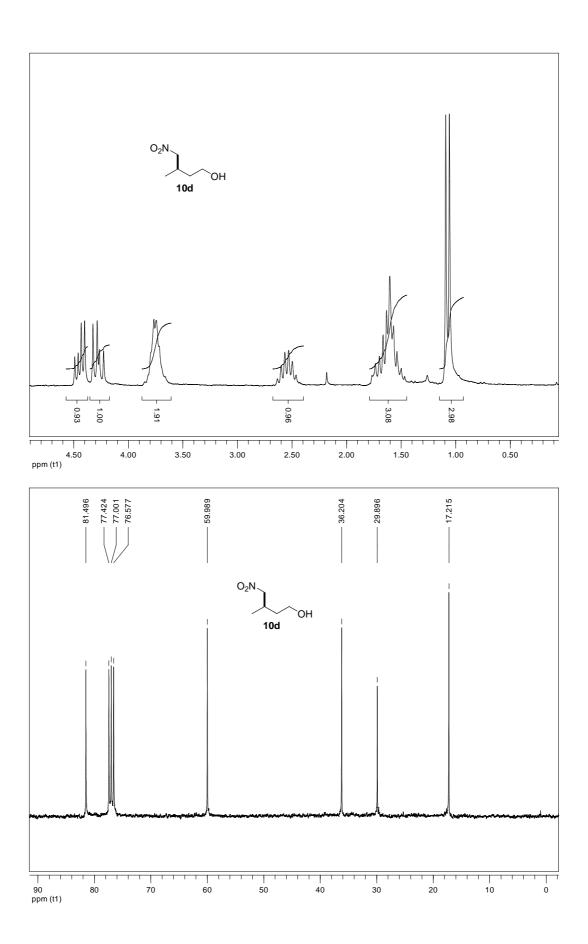

Yield: 92 mg, 0.42 mmol (in a 1 mmol scale), 42%.

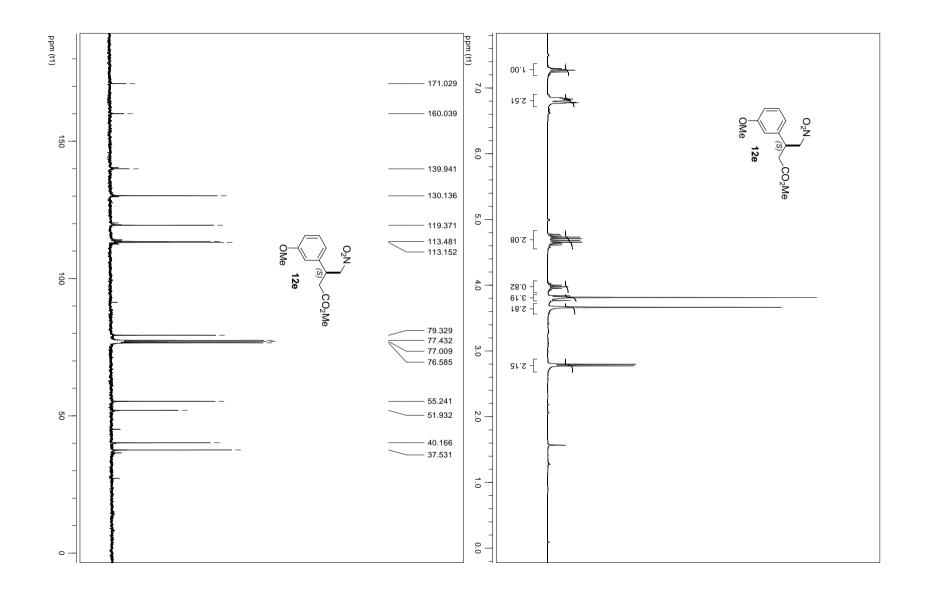

 $[\alpha]_{D}^{25} = +15.2$ (c 1, CH₂Cl₂, dr \geq 99 anti, 98% ee). ¹H-

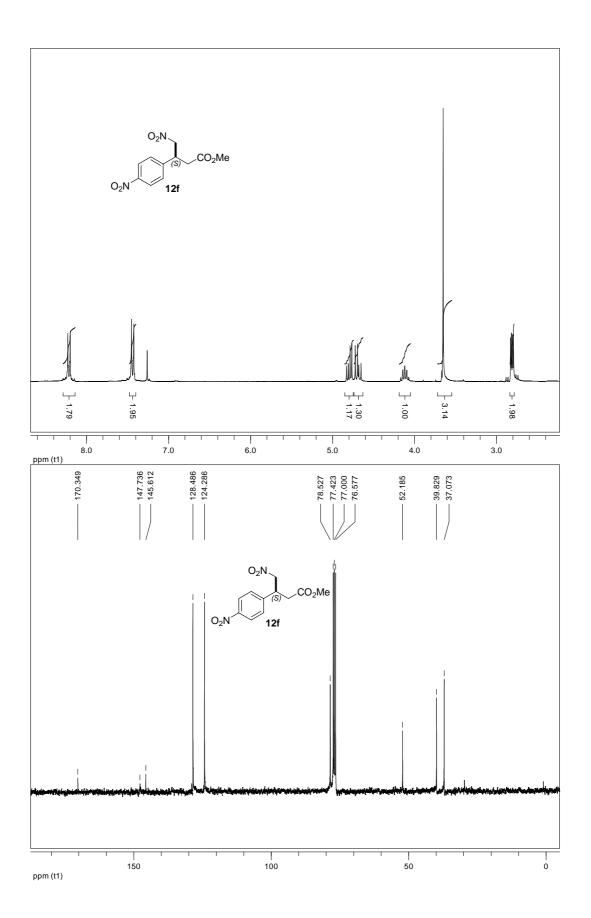

RMN (CDCl₃, 500 MHz) δ: 7.11(d, J= 10.0 Hz, 2H),

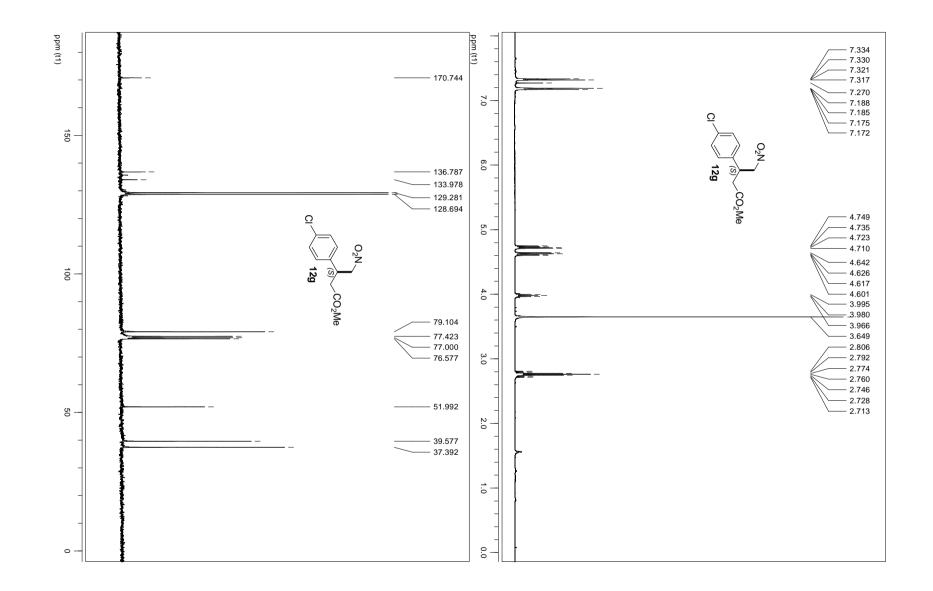

4. Selected $^1\mathrm{H}$ and $^{13}\mathrm{C}\ \mathrm{NMR}$ Spectra

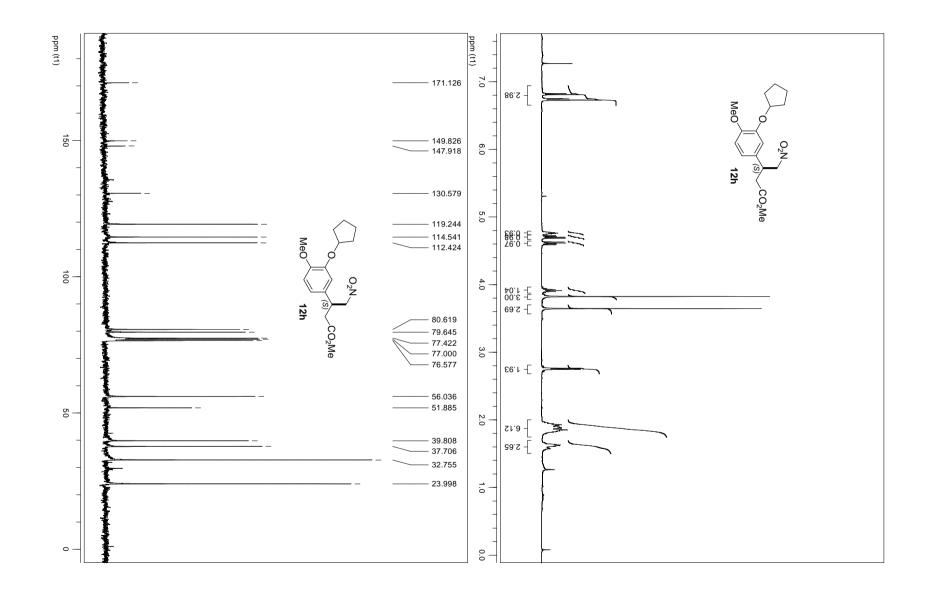
Below the ¹H-NMR spectra of the crude compound from the reaction between nitromethane and cinnamaldehyde before the reduction step is shown (reaction carried out at 5mmol scale)

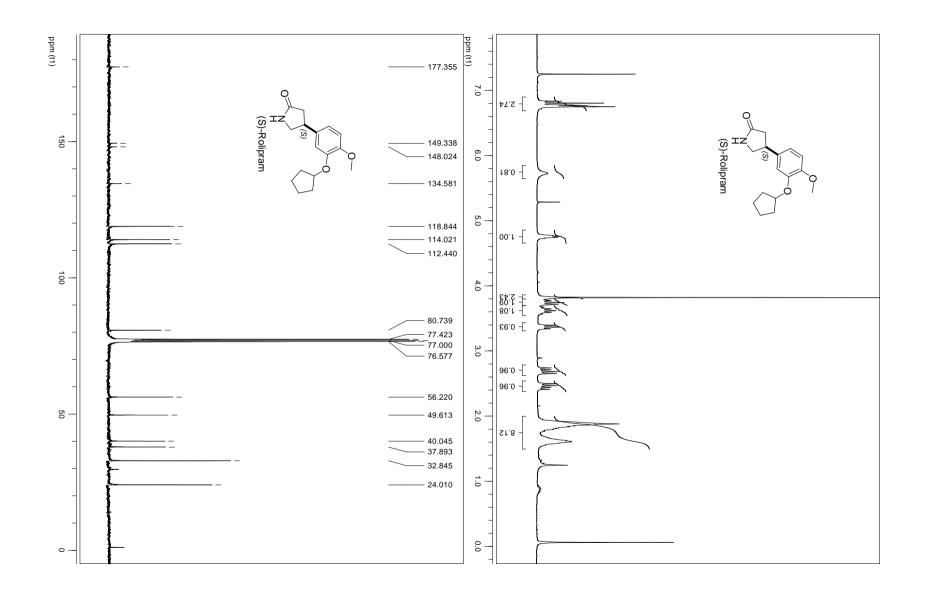


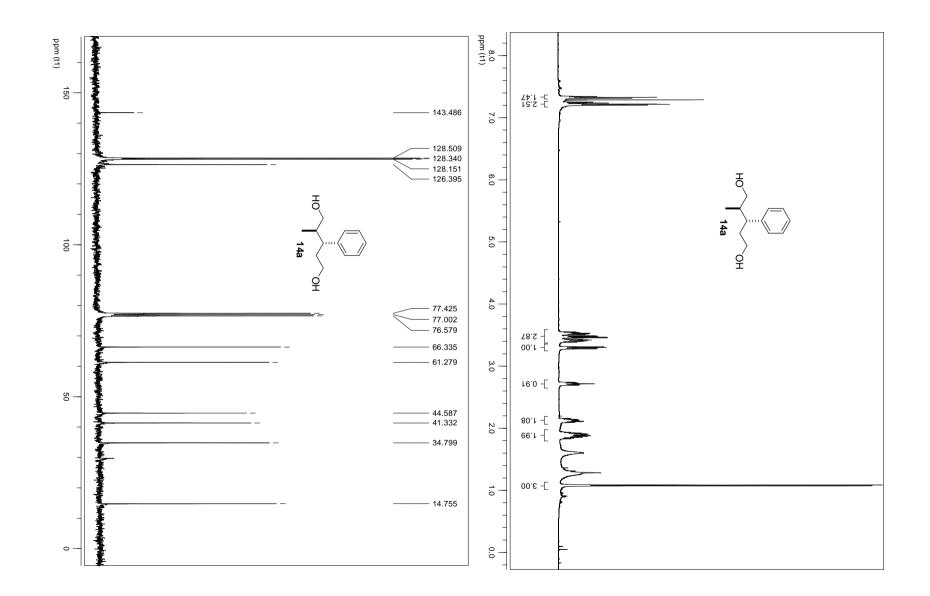


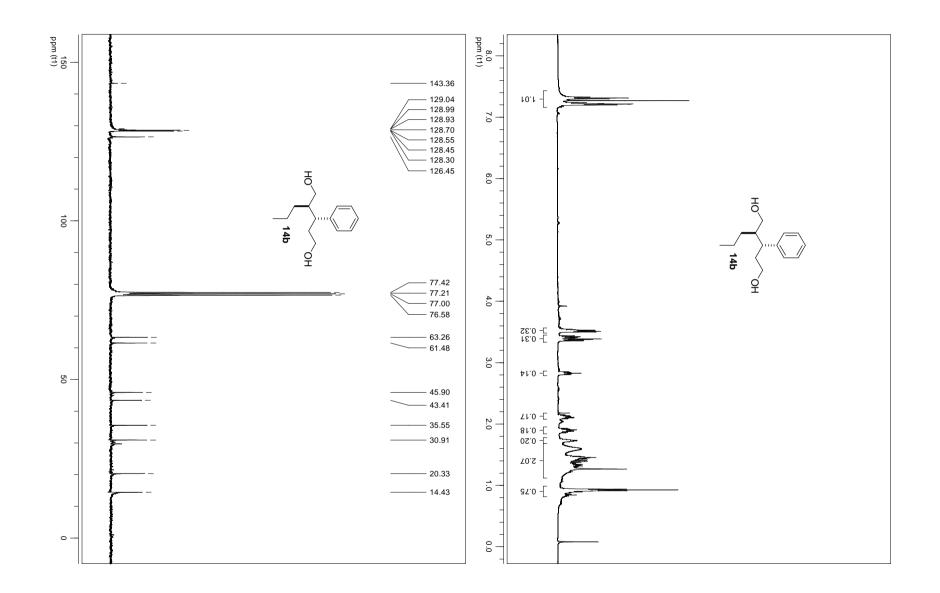


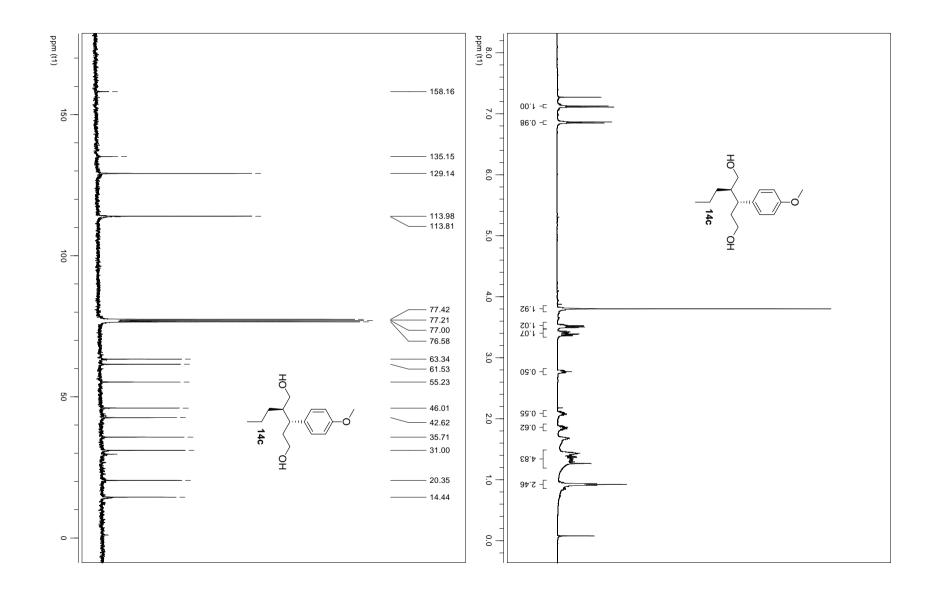


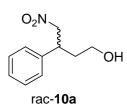

S24

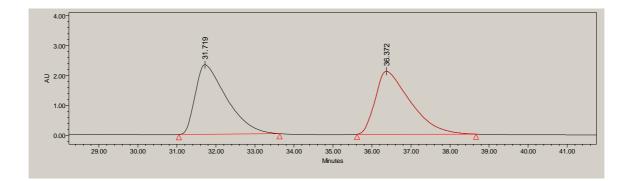


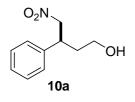




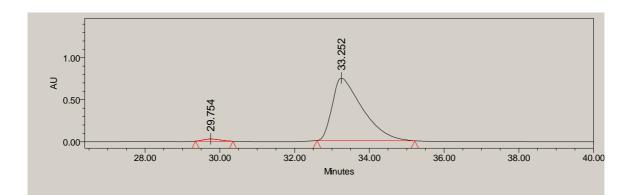


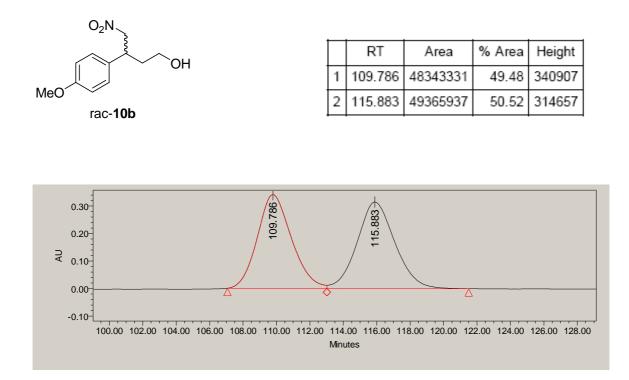


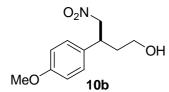

5. HPLC Chromatograms of selected compounds.


Chiralpak IB, 90:10 hexane:ⁱPrOH, 0.5mL/min, λ=220nm

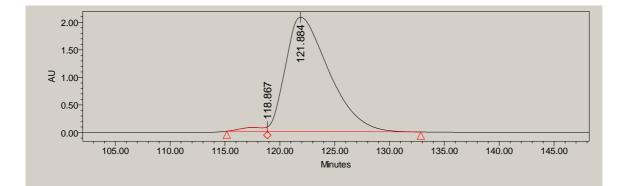
	Processed Channel Descr.	RT	Area	% Area	Height
1	PDA 217.1 nm	31.719	129613430	49.73	2325665
2	PDA 217.1 nm	36.372	131044031	50.27	2103710

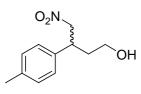

Processed Channel Descr.: PDA 217.1 nm



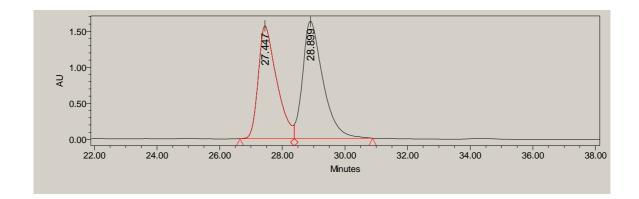


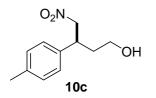
Processed Channel Descr.: PDA 228.1 nm


	Processed Channel Descr.	RT	Area	% Area	Height
1	PDA 228.1 nm	29.754	824560	1.94	26541
2	PDA 228.1 nm	33.252	41639791	98.06	743751



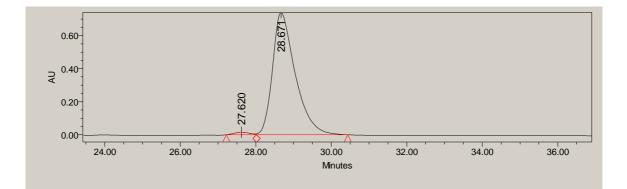
T		RT	Area	% Area	Height
	1	118.867	10868331	1.87	81127
	2	121.884	570481320	98.13	2074235

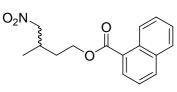




rac-10c

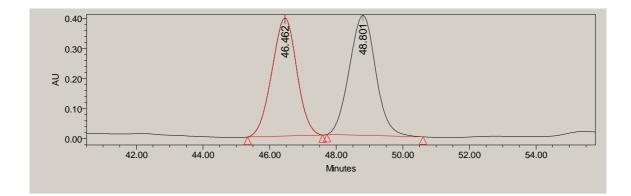
Processed Channel Descr.: PDA 220.2 nm

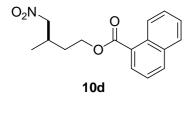

	Processed Channel Descr.	RT	Area	% Area	Height
1	PDA 220.2 nm	27.447	63602455	46.63	1564103
2	PDA 220.2 nm	28.899	72790630	53.37	1626695



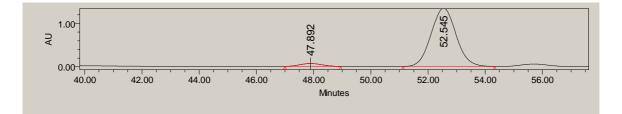
Processed Channel Descr.: PDA 224.4 nm

	Processed Channel Descr.	RT	Area	% Area	Height
1	PDA 224.4 nm	27.620	431040	1.38	15055
2	PDA 224.4 nm	28.671	30803139	98.62	739075

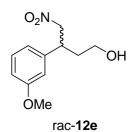

Chiralpak AD-H, 95:5 hexane:^{*i*}PrOH, 0.5mL/min, λ =254nm



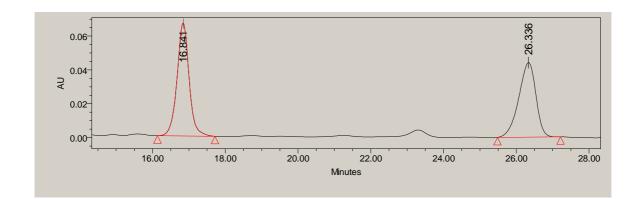
From rac-10d


Processed Channel Descr.: PDA 257.1 nm

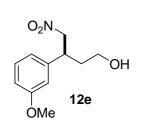
	Processed Channel Descr.	RT	Area	% Area	Height
1	PDA 257.1 nm	46.462	20371175	48.12	391834
2	PDA 257.1 nm	48.801	21960139	51.88	398599



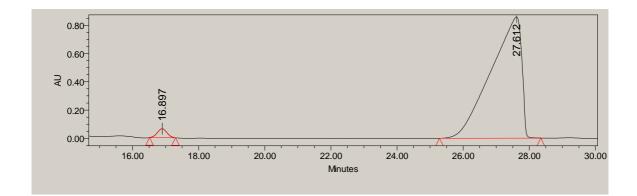
Processed Channel Descr.: PDA 253.5 nm Processed RT Area % Area Height Channel Descr. PDA 253.5 nm 47.892 3675169 4.31 68343 1 2 PDA 253.5 nm 81685610 95.69 1348329 52.545

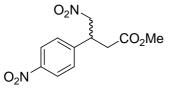


Chiralpak IB, 90:10 hexane:ⁱPrOH, 0.5mL/min, λ=220nm



Processed Channel Descr.: PDA 227.1 nm


	Processed Channel Descr.	RT	Area	% Area	Height
1	PDA 227.1 nm	16.841	1538712	51.62	66951
2	PDA 227.1 nm	26.336	1441954	48.38	44083


Processed Channel Descr.: PDA 218.4 nm

	Processed Channel Descr.	RT	Area	% Area	Height
1	PDA 218.4 nm	16.897	1297227	2.28	63913
2	PDA 218.4 nm	27.612	55516524	97.72	860029

Chiralpak AD-H, 90:10 hexane:ⁱPrOH, 1mL/min, λ=254nm

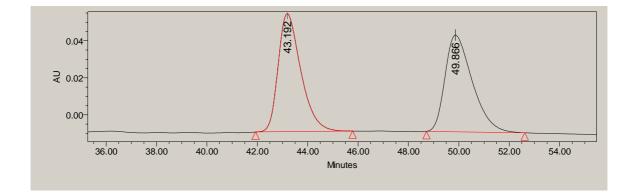
rac-**12f**

	Processed Ch	annel I	Descr.: P	DA 261.	8 nm
	Processed Channel Descr.	RT	Area	% Area	Height

3987824

3924191

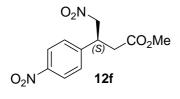
50.40


49.60

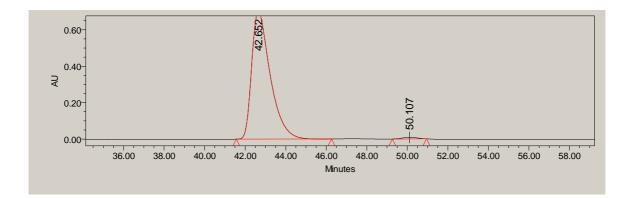
63741

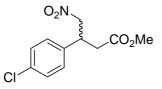
52250

43.192


49.866

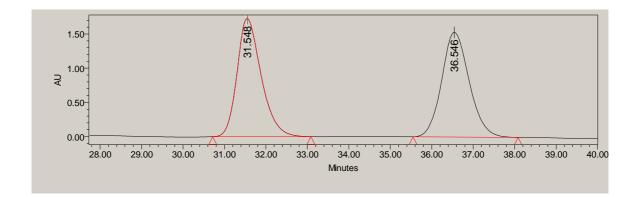
1 PDA 261.8 nm

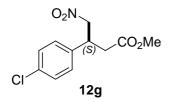

PDA 261.8 nm


2

Processed Channel Descr.: PDA 257.6 nm

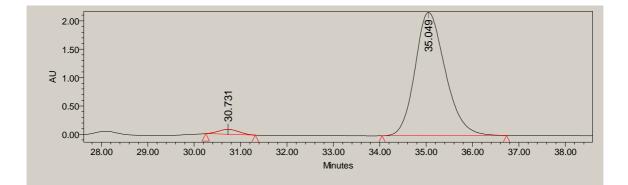
	Processed Channel Descr.	RT	Area	% Area	Height
1	PDA 257.6 nm	42.652	44395654	99.01	699513
2	PDA 257.6 nm	50.107	444242	0.99	8164

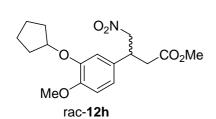



rac-**12g**

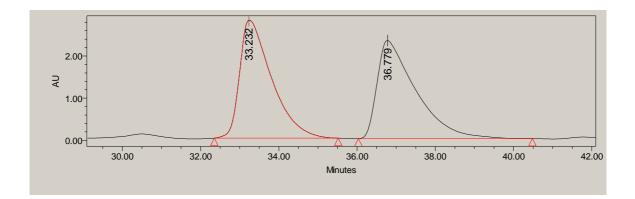
Processe	d C	hannel	Descr.: F	DA 220	3 nm

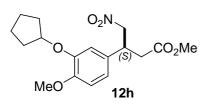
н


	Processed Channel Descr.	RT	Area	% Area	Height
1	PDA 220.3 nm	31.548	69661173	49.63	1727480
2	PDA 220.3 nm	36.546	70697708	50.37	1531820

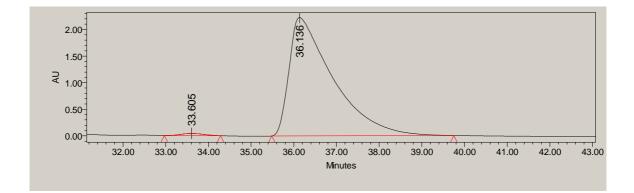


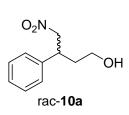
Processed Channel Descr.: PDA 217.3 nm


	Processed Channel Descr.	RT	Area	% Area	Height
1	PDA 217.3 nm	30.731	2678207	2.65	87036
2	PDA 217.3 nm	35.049	98368539	97.35	2171406

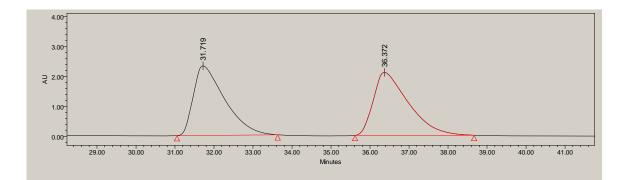


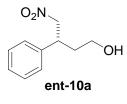
Processed Channel Descr.: PDA 222.0 nm


	Processed Channel Descr.	RT	Area	% Area	Height
1	PDA 222.0 nm	33.232	159087532	50.03	2796055
2	PDA 222.0 nm	36.779	158927122	49.97	2325276


Processed Channel Descr.: PDA 229.4 nm

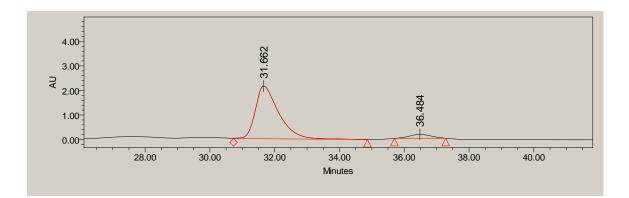
	Processed Channel Descr.	RT	Area	% Area	Height
1	PDA 229.4 nm	33.605	1507119	0.94	41830
2	PDA 229.4 nm	36.136	158498136	99.06	2224742

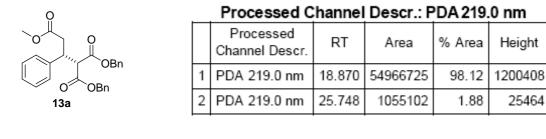


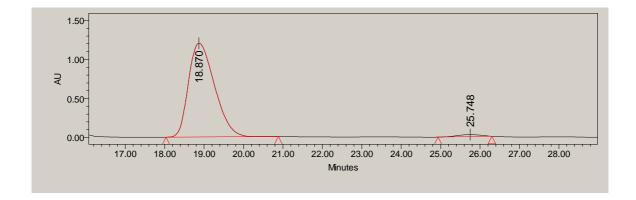


	Processed Channel Descr.: PDA217.1 nm									
	Processed Channel Descr.	RT	Area	% Area	Height					
1	PDA 217.1 nm	31.719	129613430	49.73	2325665					
2	PDA 217.1 nm	36.372	131044031	50.27	2103710					

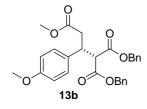
· DD A


n4

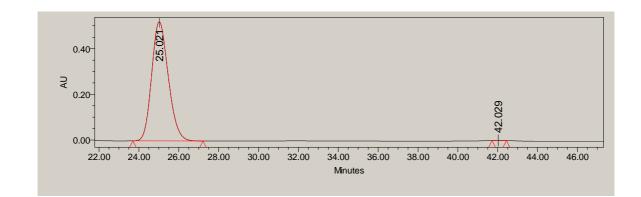



Processed Channel Descr.: PDA 210.1 nm

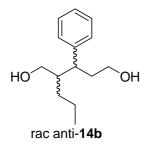
	Processed Channel Descr.	RT	Area	% Area	Height
1	PDA 210.1 nm	31.662	107526011	93.42	2149842
2	PDA 210.1 nm	36.484	7575761	6.58	165897



Chiralpak AD, 80:20 hexane:*i*PrOH, 1mL/min, λ=220nm^[5]

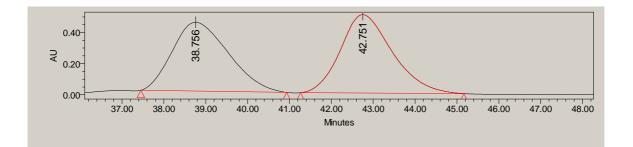


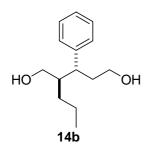
Chiralpak AD, 80:20 hexane:*i*PrOH, 1mL/min, λ=220nm



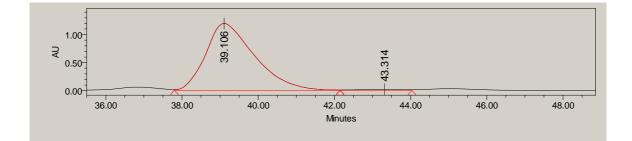
Processed Channel Descr.: PDA 231.7 nm

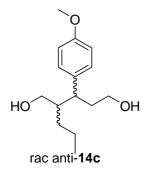
	Processed Channel Descr.	RT	Area	% Area	Height
1	PDA 231.7 nm	25.021	30158899	99.95	521741
2	PDA 231.7 nm	42.029	14711	0.05	508




Chiralpak AS-H, 97:1:2 hexane:*i*PrOH:EtOH, 1mL/min, λ=209.8nm

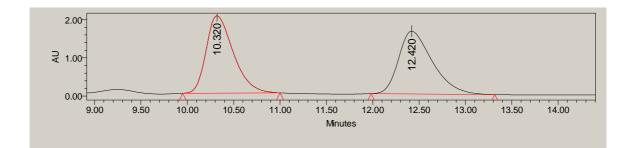
Processed Channel Descr.: PDA 209.8 nm

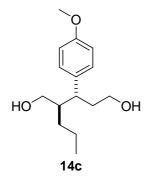

	Processed Channel Descr.	RT	Area	% Area	Height
1	PDA 209.8 nm	38.756	41090612	48.59	442221
2	PDA 209.8 nm	42.751	43473829	51.41	503991

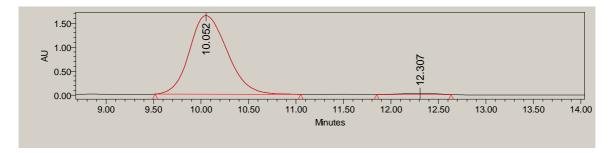


Processed Channel Descr.: PDA 209.8 nm

	Processed Channel Descr.	RT	Area	% Area	Height
1	PDA 209.8 nm	39.106	106681934	98.35	1195454
2	PDA 209.8 nm	43.314	1792383	1.65	22088




Chiralpak AS-H, 90:6:4 hexane:*i*PrOH:EtOH, 1mL/min, λ=228nm


Processed Channel Descr.: PDA 228.6 nm

	Processed Channel Descr.	RT	Area	% Area	Height
1	PDA 228.6 nm	10.320	41232285	49.74	2030035
2	PDA 228.6 nm	12.420	41659925	50.26	1646428

Processed Channel Descr.: PDA 221.6 nm Processed % Area RT Height Area Channel Descr. PDA 221.6 nm 10.052 45281806 98.84 1638843 1 2 PDA 221.6 nm 12.307 533079 1.16 20081

References

^[1] G. Battistuzzi, S. Cacchi, G. Fabrizi Org. Lett. 2003, 5, 777-780.
[2] P. N. Confalone, E. H. Huie, S. S. Ko, G. H. Cole J. Org. Chem. 1998, 53, 482-487.
[3] Adapted from: K. Funabashi, M. Jachman, H.Kanai, M. Shibasaki Angew. Chem. Int. Ed. 2003, 42, 5489-5492.
[4] Adapted from: K. Soai, H. Hachida, N. Yokota J. Chem. Soc. Perkin. Trans I 1987, 1909-1914.
[5] S. Brandau, A. Landa, J. Franzen, M. Marigo, K. A. Jørgensen Angew. Chem. Int. Ed. 2006, 42, 4305-4309.
[6] A. Bernardi, P. Dotti, G. Poli, C. Scolastico Tetrahedron 1992, 48, 5597-5606.