

Supporting Information

© Wiley-VCH 2007

69451 Weinheim, Germany

On the Origin of the Haouamine Alkaloids

Noah Z. Burns and Phil S. Baran*

Contribution from the Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037

General Procedures. All reactions were carried out under a nitrogen atmosphere with dry solvents under anhydrous conditions, unless otherwise noted. Dry tetrahydrofuran (THF), triethylamine (TEA), dichloromethane (DCM), methanol (MeOH), dimethylformamide (DMF), and benzene were obtained by passing commercially available pre-dried, oxygen-free formulations through activated alumina Yields refer to chromatographically and spectroscopically (¹H NMR) columns. homogeneous materials, unless otherwise stated. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. Reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm E. Merck silica gel plates (60F-254) using UV light as visualizing agent and panisaldehyde in ethanol/aqueous H_2SO_4/CH_3CO_2H and heat as developing agents. NMR spectra were recorded on either a Bruker DRX 600, DRX 500 or an AMX 400 and calibrated using residual undeuterated solvent as an internal reference. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, m = multiplet, b = broad. IR spectra were recorded on a Perkin-Elmer Spetrum BX spectrometer. High resolution mass spectra (HRMS)

were recorded on an Agilent Mass spectrometer (at Scripps) using ESI-TOF (electrospray ionization-time of flight) or a ThermoFinnigan Mass spectrometer (at UCSD) using FAB (fast atom bombardment), or EI (electron impact). Low resolution mass spectra (LRMS) were recorded on an Agilent (at Scripps) or ThermoFinnigan Mass spectrometer (at UCSD) GC-MS. Melting points (m.p.) are uncorrected and were recorded on a Fisher-Johns 12-144 melting point apparatus. Circular dichroism measurements were obtained on an AVIV model 62DS spectrophotometer.

General procedure for the abnormal Chichibabin pyridine synthesis:

A solution of an arylacetaldehyde (2.0 mmol) and an alkylamine (0.5 mmol, as either the hydrochloride salt or free base) in a solvent of water, water/1,4-dioxane, or DCM (0.1 – 0.5 M) is treated with ytterbium triflate (0.25 mmol), and the reaction mixture is stirred vigorously for 24 h. The reaction mixture is diluted with water (20 mL), extracted with EtOAc (2 × 20 mL), dried over MgSO₄, filtered, and concentrated. Purification by flash column chromatography (silica gel, 99:1 \rightarrow 95:5 DCM/MeOH) affords the product 3,5-diarylpyridinium.

Phenyl pyridinium 7:

The general procedure with phenylacetaldehyde and benzylammonium chloride on 0.21 mmol scale in water (0.5 M) afforded the title pyridinium as a white solid (66 mg, 66%); **m.p.** = 159 - 160 °C;

 $\mathbf{R}_{f} = 0.30$ (silica gel, 9:1 DCM/MeOH);

IR (film) **v**_{max} 3063, 1252 (s), 1156, 1027 (s), 901, 758, 695, 636 (s) cm⁻¹;

¹**H NMR (500 MHz, CDCl₃)** δ 9.15 (s, 2 H), 8.52 (s, 1 H), 7.74 (d, J = 7.0 Hz, 4 H), 7.60

– 7.59 (m, 2 H), 7.53 – 7.48 (m, 6 H), 7.34 – 7.32 (m, 3 H), 6.08 (s, 2 H);

¹³C-APT NMR (125 MHz, CDCl₃) δ 141.9, 140.4, 139.9, 132.8, 132.7, 130.6, 130.0, 129.8, 129.6, 129.5, 127.6, 65.1;

HRMS (ESI) calcd. for $C_{24}H_{20}N$ [M⁺] 322.1596, found 322.1596.

meta-Methoxyphenyl pyridinium 9:

The general procedure with *m*-methoxyphenylacetaldehyde and benzylammonium chloride on a 0.12 mmol scale in 1:1 water/1,4-dioxane (0.5 M) afforded the product as clear needles (43 mg, 68%);

m.p. = 139 – 140 °C;

 $\mathbf{R}_{f} = 0.28$ (silica gel, 9:1 DCM/MeOH);

IR (film) v_{max} 1587, 1480, 1255 (s), 1159, 1027 (s), 909, 783, 754, 728, 691, 636 (s) cm⁻
¹;

¹**H NMR (600 MHz, CDCl₃)** δ 9.17 (s, 2 H), 8.49 (s, 1 H), 7.59 (dd, *J* = 3.1, 5.9 Hz, 2 H), 7.41 (t, *J* = 7.9 Hz, 2 H), 7.32 (m, 3 H), 7.28 – 7.26 (m, 4 H), 7.01 (dd, *J* = 2.3, 8.3 Hz, 2H), 6.11 (s, 2 H), 3.88 (s, 6 H);

¹³**C-APT NMR** (150 MHz, CDCl₃) δ 160.6, 141.8, 140.5, 140.1, 134.1, 132.9, 130.9, 129.9, 129.6, 129.4, 119.8, 116.7, 112.6, 65.0, 55.7;

HRMS (ESI) calcd. for C₂₆H₂₄NO₂ [M⁺] 382.1807, found 382.1803.

para-Bromophenyl pyridinium 10:

The general procedure with *p*-bromophenylacetaldehyde and benzylammonium chloride on 0.098 mmol scale in 2:1 1,4-dioxane/water (0.3 M) yielded the title pyridinium as colorless cubes (40.3 mg, 65%); **m.p.** = 241 – 242 °C;

 $\mathbf{R}_{f} = 0.38$ (silica gel, 9:1 DCM/MeOH);

IR (film) v_{max} 1594, 1476, 1252 (s), 1222, 1159, 1027, 1005, 817, 710, 636 cm⁻¹;

¹**H NMR (600 MHz, CD₃CN**) δ 8.99 (d, *J* = 1.6 Hz, 2 H), 8.87 (t, *J* = 1.6 Hz, 1 H), 7.79 (d, *J* = 8.6 Hz, 4 H), 7.73 (d, *J* = 8.6 Hz, 4 H), 7.56 (m, 2 H), 7.49 – 7.47 (m, 3 H), 5.84 (s, 2 H);

¹³C-APT NMR (150 MHz, CD₃CN) δ 142.4, 141.8, 141.5, 133.8, 133.6, 133.3, 130.8, 130.6, 130.3, 130.0, 125.6, 65.9;

HRMS (ESI) calcd. for $C_{24}H_{18}Br_2N [M^+]$ 477.9806, found 477.9805.

meta-Trifluoromethylpyridinium 11:

The general procedure with *m*-trifluoromethylphenylacetaldehyde and benzylammonium chloride on a 0.17 mmol scale in 1:1 water/1,4-dioxane (0.4 M) yielded the title pyridinium as clear needles (55.6 mg, 54%);

m.p. = $58 - 60^{\circ}$ C;

 $\mathbf{R}_{\mathbf{f}} = 0.40$ (silica gel, 9:1 DCM/MeOH);

IR film \mathbf{v}_{max} 2354, 1329, 1252 (s), 1159, 1123 (s), 1071, 1027 (s), 802, 699, 636 cm⁻¹; ¹H NMR (600 MHz, CD₂Cl₂) 9.22 (s, 2 H), 8.68 (s, 1 H), 8.05 (d, *J* = 7.8 Hz, 2 H), 7.98 (s, 2 H), 7.82 (d, *J* = 7.9 Hz, 2 H), 7.74 (t, *J* = 7.9 Hz, 2 H), 7.60 – 7.59 (m, 2 H), 7.42 – 7.40 (m, 3 H), 6.11 (s, 2 H);

¹³C-APT NMR (150 MHz, CD₂Cl₂) 142.1, 141.7, 141.5, 134.3, 132.8, 132.5 (d, J = 32.8 Hz), 132.1, 131.2, 130.8, 130.3, 130.1, 127.9, 125.0, 124.2 (q, J = 272.7 Hz), 66.2;
HRMS (ESI) calcd. for C₂₆H₁₈F₆N [M⁺] 458.1343, found 458.1339.

o-Methylphenyl pyridinium 12:

The general procedure with *o*-methylphenylacetaldehyde and benzylammonium chloride on a 0.2 mmol scale in 1:1 water/1,4-dioxane (0.5 M) yielded the title pyridinium as clear needles (62 mg, 62%);

 $m.p. = 164 - 167^{\circ};$

 $\mathbf{R}_{f} = 0.4$ (silica gel, 9:1 DCM/MeOH);

IR (film) \mathbf{v}_{max} 1476, 1454, 1255 (s), 1222, 1152, 1027 (s), 761, 635 (s) cm⁻¹;

¹**H NMR (500 MHz, CDCl₃)** δ 8.78 (d, *J* = 1.6 Hz, 2 H), 8.20 (t, *J* = 1.4 Hz, 1 H), 7.57 – 7.55 (m, 2 H), 7.43 – 7.41 (m, 3 H), 7.39 – 7.35 (m, 4 H), 7.32 – 7.30 (m, 4 H), 6.06 (s, 2H), 2.29 (s, 6 H);

¹³C-APT NMR (500 MHz, CDCl₃) δ 145.4, 142.0, 141.9, 135.5, 133.1, 132.3, 131.2,

130.22, 130.17 (2 C), 129.9, 129.8, 127.0, 65.3, 20.1;

HRMS (**ESI**) calcd. for C₂₆H₂₄N [M⁺] 350.1909, found 350.1908.

Trideuteropyridinium 13:

The general procedure with phenylacetaldehyde-d and benzylammonium chloride in water (0.5 M) yielded the title pyridinium as a white solid.

m.p. = 159 – 160 °C;

 $\mathbf{R}_{f} = 0.33$ (silica gel, 9:1 DCM/MeOH)

IR (film) v_{max} 2354, 2332, 1554, 1418, 1252, 1152, 1027, 750, 695, 636, 514 cm⁻¹;

¹**H NMR (500 MHz, CDCl₃)**: δ 7.75 – 7.73 (m, 4 H), 7.61 – 7.59 (m, 2 H), 7.52 – 7.44 (m, 6 H), 7.32 (t, *J* = 3.2 Hz, 3 H), 6.05 (s, 2 H);

¹³C-APT NMR (125 MHz, CDCl₃): δ 141.7, 132.8, 132.6, 130.6, 130.0, 129.8, 129.6, 129.5, 127.6, 64.9.

HRMS (ESI) calcd. for $C_{24}H_{17}D_3N$ [M⁺] 325.1781, found 325.1775.

Dideuteropyridine 14:

The general procedure with phenylacetaldehyde and benzylammonium chloride- d_2 yielded the title pyridinium as a white solid.

m.p. = 154 - 155 °C;

 $\mathbf{R}_{\mathbf{f}} = 0.24$ (silica gel, 9:1 DCM/MeOH);

IR (film) v_{max} 3067, 1595, 1498, 1475, 1442, 1257 (s), 1225, 1157, 1029 (s), 759, 696 cm⁻¹;

¹**H NMR (500 MHz, CDCl₃)** δ 9.16 (d, J = 1.7 Hz, 2 H), 8.52 (t, J = 1.7 Hz, 1 H), 7.75 –

7.73 (m, 4 H), 7.61 – 7.59 (m, 2 H), 7.54 – 7.47 (m, 6 H), 7.34 (t, *J* = 3.1 Hz, 3 H);

¹³C-APT NMR (150 MHz, CDCl₃): δ 141.9, 140.3, 139.9, 132.68, 132.65, 130.6, 130.0,

129.8, 129.6, 129.4, 127.5;

HRMS (ESI) calcd. for $C_{24}H_{18}D_2N$ [M⁺] 324.1719, found 324.1717.

4-(4-tert-butylphenyl)-phenyl pyridinium 18:

The general procedure with 4-(*tert*-butylphenyl)-phenylacetaldehyde and benzylamine on a 0.054 mmol scale in DCM (0.1 M) yielded the known 4-(*tert*-butylphenyl)benzaldehyde¹ (6 mg, 0.7 equiv based on isolated product) and the title pyridinium as a white solid (26 mg, 65%);

m.p. > 300 °C;

 $\mathbf{R}_{f} = 0.39$ (silica gel, 9:1 DCM/MeOH);

IR (film) \mathbf{v}_{max} 3067, 2923, 1595, 1498, 1475, 1452, 1442, 1412, 1341, 1254 (s), 1224, 1155, 1029, 758, 695 cm⁻¹;

¹**H NMR (500 MHz, CDCl₃)** δ 9.18 (s, 2 H), 8.45 (s, 1 H), 7.79 (d, *J* = 8.4 Hz, 4 H), 7.73 (d, *J* = 8.4 Hz, 4 H), 7.62 – 7.6- (m, 2 H), 7.52 (d, *J* = 8.4 Hz, 4 H), 7.47 (d, *J* = 8.4 Hz, 4 H), 7.40 – 7.36 (m, 3 H), 6.16 (s, 2 H), 1.36 (s, 18 H);

¹³C-APT NMR (150 MHz, CDCl₃) δ 151.4, 143.1, 141.2, 139.9, 138.9, 136.2, 132.9, 131.0, 130.0, 129.7, 129.4, 128.0, 127.9, 126.6, 126.0, 65.3, 34.6, 31.3;

HRMS (ESI) calcd. for [M⁺] 586.3474 found 586.3469.

¹ Yang, J.; Gabriele, B.; Belvedere, S.; Huang, Y.; Breslow, R. J. Org. Chem. **2002**, 67, 5057 – 5067.

Scheme S1.

Pyridinium 23:

The general procedure with *m*-methoxyphenylacetaldehyde **24** and 2-(*meta*-methoxyphenyl)-ethylamine hydrochloride **25** on a 0.54 mmol scale in water (0.5 M) yielded the title pyridinium as a white solid (131 mg, 57%);²

² Poupon and coworkers (Gravel, E.; Poupon, E.; Hocquemiller, R. *Chem. Commun.* **2007**, 719 – 721) conducted this reaction in DCM with the free amine. Identical results are obtained regardless of the procedure (*vide infra*).

m.p. = 158 - 160 °C;

 $\mathbf{R}_{f} = 0.22$ (silica gel, 9:1 DCM/MeOH);

IR (film) v_{max} 2937, 1735, 1594, 1583, 1488, 1454, 1255 (s), 1152, 1027, 783, 691, 636 cm⁻¹;

¹**H NMR** (**500 MHz**, **CDCl**₃) δ 8.76 (d, J = 1.6 Hz, 2 H), 8.50 (t, J = 1.6 Hz, 1 H), 7.41 (t, J = 8.0 Hz, 2 H), 7.17 – 7.14 (m, 3 H), 7.10 (t, J = 2.0 Hz, 2 H), 7.03 (dd, J = 2.4, 8.3 Hz, 2 H), 6.74 (dd, J = 2.4, 8.2 Hz, 1 H), 6.68 (t, J = 2.1 Hz, 1 H), 6.63 (d, J = 7.7 Hz, 1 H), 5.15 (t, J = 6.5 Hz, 2 H), 3.89 (s, 6 H), 3.72 (s, 3 H), 3.30 (t, J = 6.5 Hz, 2 H); ¹³**C-APT NMR (150 MHz, CDCl**₃) δ 160.7, 141.4, 140.5, 139.9, 136.9, 134.0, 130.8, 130.2, 121.1, 119.6, 116.7, 114.2, 113.5, 112.4, 63.6, 55.7, 55.3, 37.9; **HRMS (ESI)** calcd. for C₂₈H₂₈NO₃ [M⁺] 426.2069, found 426.2062.

Tetrahydropyridine S1:

To a solution of pyridinium **23** (316 mg, 0.74 mmol) in methanol (3.7 mL) and DCM (3.7 mL) at 0 °C was added cerium trichloride (276 mg, 0.74 mmol, 1.0 equiv). Sodium borohydride was added CAUTIOUSLY (560 mg, 14.8 mmol, 20.0 equiv). A distinct bright color is observed upon addition. The reaction mixture was stirred for 20 min, and acetic acid (3.7 mL) was then added CAUTIOUSLY dropwise. A disappearance in color

signified the completion of the reaction (more sodium borohydride was added if complete decoloration did not occur within 30 min). The reaction mixture was then diluted with 1.0 M NaOH (40 mL), and the aqueous layer was extracted with EtOAc (2 × 50 mL). The combined organics were dried over MgSO₄, filtered and concentrated. Flash column chromatography (silica gel, 5:1 hexanes/EtOAc) afforded the product as a clear oil (229 mg, 72%).

 $\mathbf{R}_{\mathbf{f}} = 0.29$ (silica gel, 3:1 hexanes/EtOAc)

IR (film) **v**_{max} 2930, 2827, 1598, 1580, 1484, 1462, 1451, 1429, 1285, 1259, 1148, 1045, 780, 691 cm⁻¹;

¹**H NMR** (**600 MHz, CDCl**₃) δ 7.28 (d, *J* = 7.9 Hz, 1 H), 7.25 (d, *J* = 8.0 Hz, 1 H), 7.21 (t, *J* = 7.8 Hz, 1 H), 7.02 (d, *J* = 7.7 Hz, 1 H), 6.96 (s, 1 H), 6.90 (d, *J* = 7.5 Hz, 1 H), 6.86 – 6.75 (m, 6 H), 6.19 (s, 1 H), 3.83 (s, 3 H), 3.81 (s, 3 H), 3.80 (s, 3 H), 3.79 (m, 1 H), 3.68 (d, *J* = 15.8 Hz, 1 H), 3.37 (dt, *J* = 2.5, 15.6 Hz, 1 H), 3.16 (dd, *J* = 5.5, 11.2 Hz, 1 H), 2.88 (dd, *J* = 11.3, 9.4 Hz, 2 H), 2.81 (dd, *J* = 9.7, 10.9 Hz, 2 H), 2.43 (dd, *J* = 9.0, 11.1 Hz, 1 H);

¹³C-APT NMR (150 MHz, CDCl₃) δ 159.7, 159.6 (2C), 145.2, 141.9, 141.3, 136.1, 129.42, 129.35, 129.34, 126.2, 121.1, 120.5, 117.7, 114.5, 114.0, 112.5, 111.8, 111.3, 111.2, 59.8, 58.3, 55.23, 55.19, 55.1, 54.6, 43.2, 33.9;

HRMS (ESI) calcd. for $C_{28}H_{31}NO_3$ [M + H⁺] 430.2377, found 430.2370.

2-Benzyltetrahydropyridine 27:

To a solution of tetrahydropyridine **S1** (51.8 mg, 0.12 mmol) in acetone (600 μ L) was added 3-methoxylbenzylbromide (167 μ L, 1.2 mmol, 10.0 equiv), and the reaction mixture was heated in a 60 °C oil bath overnight. Concentration and flash column chromatography (silica gel, 95:5 DCM/MeOH) afforded the quaternary ammonium salt as a white solid (75 mg, 99%). This salt was dissolved in THF (4.0 mL) and placed in a 45 °C oil bath. LHMDS (720 μ L, 0.5 M, 0.36 mmol, 3.0 equiv) was added at once, and after 5 min the reaction was cooled and quenched with water (10 mL). The organic layer was extracted twice with EtOAc (20 mL), dried over MgSO₄, filtered, and concentrated. Flash column chromatography (silica gel, 99:1 to 95:5 benzene/EtOAc) afforded the product (as a 7:3 mixture of diastereomers) that appeared as a slightly yellow oil (32 mg, 48%).

 $\mathbf{R}_{f} = 0.38$ (silica gel, 4:1 hexanes/EtOAc)

IR (film) v_{max} 2998, 2938, 1833, 1598, 1583, 1486, 1464, 1453, 1433, 1286, 1260 (s), 1151. 1047, 777, 696 cm⁻¹;

¹**H NMR (600 MHz, CDCl₃)** δ 7.31 (dt, *J* = 2.9, 8.0 Hz, 1.3 H), 7.25 – 7.20 (m, 0.7 H), 7.19 – 7.15 (m, 1.7 H), 7.10 (t, *J* = 7.8 Hz, 0.3 H), 7.01 (d, *J* = 7.7 Hz, 0.7 H), 6.95 – 6.92 (m, 1 H), 6.87 – 6.61 (m, 10.3 H), 6.12 (s, 0.7 H), 6.05 (s, 0.3 H), 4.05 (s, 0.3 H), 3.90 (d, *J* = 8.8 Hz, 0.7 H), 3.85 – 3.74 (m, 12.7 H), 3.67 (t, *J* = 8.1 Hz, 0.7 H), 3.46 (s, 0.3 H), 3.33 (dd, *J* = 11.4, 5.0 Hz, 0.3 H), 3.10 – 3.02 (m, 1 H), 2.98 – 2.90 (m, 2 H), 2.85 – 2.73 (m, 2 H), 2.69 – 2.58 (m, 2 H);

¹³C-APT NMR (150 MHz, CDCl₃) δ 159.72, 159.67, 159.51, 159.45, 159.44, 159.4, 159.1, 158.8, 145.9, 145.2, 142.5, 142.4, 142.3, 142.2, 142.0, 141.39, 141.37, 140.4, 129.6, 129.5, 129.3, 129.2, 128.84, 128.79, 128.4, 127.4, 122.2, 121.6, 121.1, 121.0, 120.4, 120.3, 119.1, 118.7, 115.3, 115.0, 114.3, 114.2, 113.9, 113.8, 112.5, 112.4, 112.2, 111.5, 111.3, 111.24, 111.19, 111.1, 111.0, 61.7, 61.0, 59.0, 56.9, 55.8, 55.24, 55.18, 55.14, 55.09, 55.01, 54.97, 54.5, 52.2, 41.9, 38.8, 37.3, 35.3, 33.8;

HRMS (ESI) calcd. for $C_{36}H_{40}NO_4$ [M + H⁺] 550.2957, found 550.2945.

Note- The following compound was synthesized in an analogous manner (substituting 2bromo-3-methoxybenzyl bromide for 3-methoxybenzyl bromide) and its structure proven by x-ray crystallographic analysis:

2-Benzylpyridinium 22:

To a solution of **27** (100 mg, 0.18 mmol) in DCM (1.8 mL) was added Nbromoacetamide (55 mg, 0.40 mmol, 2.2 equiv) at room temperature. The reaction mixture was stirred for 1.5 h and quenched with sat. aq. $Na_2S_2O_4$ (10 mL). The organic layer was extracted with EtOAc (2 × 20 mL), dried over MgSO₄, filtered and concentrated. Flash column chromatography (99:1 to 95:5 DCM/MeOH) afforded the pyridinium bromide as a yellowish solid (90 mg, 79%). This compound was dissolved in DCM (1.0 mL), and treated with silver triflate (40.6 mg, 0.16 mmol, 1.1 equiv). The reaction mixture was stirred for 1 h and quenched with water (10 mL). The aqueous layer was extracted twice with EtOAc (20 mL), dried over MgSO₄, filtered, and concentrated. Flash column chromatography (silica gel, 99:5 DCM/MeOH) afforded the

 $\mathbf{R}_{f} = 0.32$ (silica gel, 9:1 DCM/MeOH);

IR (film) \mathbf{v}_{max} 2926, 1600, 1584, 1490, 1468, 1258 (s), 1224, 1153, 1030, 787, 698 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 8.96 (d, J = 2.0 Hz, 1 H), 8.36 (d, J = 2.0 Hz, 1 H), 7.41 (t, J = 8.0 Hz, 1 H), 7.37 (t, J = 7.9 Hz, 1 H), 7.26 (t, J = 7.9 Hz, 1 H), 7.20 (t, J = 7.9 Hz, 1 H), 7.16 – 7.14 (m, 2 H), 7.04 (ddd, J = 8.3, 2.4, 0.7 Hz, 1 H), 7.01 (ddd, J = 8.4, 2.5, 0.7 Hz, 1 H), 6.93 (ddd, J = 7.5, 1.4, 0.8 Hz, 1 H), 6.89 (m, 1 H), 6.83 – 6.79 (m, 2 H), 5.00 (t, *J* = 7.0 Hz, 2 H), 4.29 (s, 2 H), 3.91 (s, 3 H), 3.761 (s, 3 H), 3.760 (s, 3 H), 3.75 (s, 3 H), 3.02 (t, *J* = 7.0 Hz, 2 H0;

¹³C-APT NMR (150 MHz, CDCl₃): δ 160.7, 160.5, 160.2, 159.9, 152.1, 144.0, 143.2, 139.0, 136.8, 136.7, 136.4, 133.5, 130.8, 130.7, 130.4, 130.3, 121.1, 120.7, 119.8, 119.6, 116.9, 115.7, 114.6, 114.1, 114.0, 113.4, 112.9, 112.3, 60.1, 55.8, 55.4, 55.33, 55.32, 37.1, 35.6.

¹³C-APT NMR (150 MHz, CD₂Cl₂): δ 161.3, 161.1, 160.9, 160.6, 152.6, 144.8, 144.4, 144.3, 139.6, 137.4, 137.1, 136.8, 134.2, 131.4, 131.3, 131.0, 130.9, 121.7, 121.3, 120.3, 120.1, 117.0, 116.0, 115.2, 114.8, 114.6, 113.8, 113.5, 113.1, 60.8, 56.3, 55.95, 55.88, 55.8, 37.7, 36.1.

HRMS (ESI) calcd. for C₃₆H₃₆NO₄ [M⁺] 546.2644, found 546.2635.

Scheme S2.

Diol 29:

To a solution of unstable (gradually decomposes upon exposure to air/moisture, as such it is stored in a frozen benzene solution) indene 28 (2.78 g, 11.0 mmol, synthesized as previously described³) in *t*-BuOH (55 mL) was added sequentially: methanesulfonamide (5.2 g, 55.0 mmol, 5.0 equiv), (DHQD)₂PHAL (428.0 mg, 0.55 mmol, 0.05 equiv), K_2CO_3 (4.56 g, 33.0 mmol, 3.0 equiv), and H_2O (55.0 mL). This solution was cooled to 0 °C and treated with potassium ferricyanide (10.9 g, 33.0 mmol, 3.0 equiv) followed by osmium tetroxide (2.5% in t-BuOH; 1.38 mL, 0.11 mmol, 0.01 equiv). The reaction flask was placed in a 5 °C cold room and stirred for 44 h. The reaction was quenched with saturated aqueous Na₂S₂O₃ (100 mL), removed from the cold room, and allowed to warm to room temperature and stir for 1 h. The aqueous layer was then extracted with EtOAc $(3 \times 150 \text{ mL})$, dried over MgSO₄, filtered and concentrated. Flash column chromatography (silica gel, $4:1 \rightarrow 3:1$ hexanes/EtOAc) afforded the diol as a brown semisolid (3.10 g, 98%). To the resulting diol mixture was added hexanes (40 mL) and EtOAc (10 mL), followed by heating to a brief reflux with a heat gun in order to assure complete dissolution. The hot solution was then seeded with a sample of crystalline racemic diol and allowed to cool to room temperature. Clear needles of racemic diol crystallized, and the supernatant was then removed and concentrated to afford the enantiomerically pure title diol as a thick oil (1.89 g, 60%).

³ P. S. Baran, N. Z. Burns, J. Am. Chem. Soc. 2006, 128, 3908 – 3909.

 $\mathbf{R}_{\mathbf{f}} = 0.24$ (silica gel, 2:1 hexanes/EtOAc);

 $[\mathbf{\alpha}]_{\mathbf{D}} = +43.4^{\circ} (\text{CHCl}_3, c \ 0.53);$

IR (film) **v**_{max} 3447 (br), 2937, 2835, 1589, 1480 (s), 1262 (s), 1078 (s), 1044 (s) cm⁻¹;

¹**H** NMR (500 MHz, CDCl₃) δ 7.32 (t, J = 8.1 Hz, 1 H), 7.19 (t, J = 8.0 Hz, 1 H), 6.95 (d, J = 7.5 Hz, 1 H), 6.83 – 6.78 (m, 3 H), 6.70 – 6.68 (m, 1 H), 4.29 (d, J = 4.6 Hz, 1 H), 4.15 (s, 1 H, D₂O exchangeable), 3.77 (s, 3 H), 3.75 (s, 3 H), 3.48 (s, 1 H, D₂O exchangeable), 3.02 (dd, J = 16.5, 4.5 Hz, 1 H), 2.90 (d, J = 16.4 Hz, 1 H); ¹³C-APT NMR (150 MHz, CDCl₃) δ 159.6, 156.7, 145.8, 143.6, 130.5, 130.0, 129.1,

 $118.3,\,118.2,\,112.5,\,111.8,\,109.1,\,85.8,\,80.5,\,55.3,\,55.1,\,38.1;$

HRMS (ESI) calcd. for $C_{17}H_{18}O_4$ [M + Na⁺] 309.1097, found 309.1092.

a-Hydroxy ketone 30:

To a solution of diol **29** (599 mg, 2.09 mmol) in DCM (10.5 mL) at 0 °C was added sequentially: saturated aqueous NaHCO₃ (4.2 mL), potassium bromide (12.0 mg, 0.10 mmol, 0.05 equiv), TEMPO (16.0 mg, 0.10 mmol, 0.05 equiv), and aqueous sodium hypochlorite (6.2 mL, 4.18 mmol, 2.0 equiv). The reaction mixture was stirred at 0 °C for 30 min then quenched with saturated aqueous NaHSO₄ (10 mL). The ice bath was removed and the reaction mixture was allowed to warm to room temperature. The aqueous layer was extracted with EtOAc (3 × 30 mL), and the combined organic layers

were washed once with brine (20 mL). The organic layer was dried over $MgSO_4$, filtered and concentrated. Flash column chromatography (silica gel, 3:1 hexanes/EtOAc) afforded the title ketone as an off-white solid (570 mg, 96%).

 $m.p. = 117 - 119 \,^{\circ}C;$

 $\mathbf{R}_{f} = 0.24$ (silica gel, 2:1 hexanes/EtOAc);

 $[\mathbf{\alpha}]_{\mathbf{D}} = +37.9^{\circ} (CH_2Cl_2, c \ 0.43);$

IR (film) \mathbf{v}_{max} 3467 (br) 3011, 1744 (s), 1587 (s), 1484 (s), 1291 (s), 1053 (s) cm⁻¹;

¹**H NMR (500 MHz, CDCl**₃) δ 7.39 (t, *J* = 7.9 Hz, 1 H), 7.19 (t, *J* = 7.9 Hz, 1 H), 7.01 (d, *J* = 7.6 Hz, 1 H), 6.97 (m, 1 H), 6.89 (d, *J* = 8.3 Hz, 1 H), 6.82 (m, 1 H), 6.77 (m, 1 H), 3.78 (s, 3 H), 3.77 (s, 3 H), 3.67 (d, *J* = 21.6 Hz, 1 H), 3.57 (s, 1 H), 3.49 (d, *J* = 21.6 Hz, 1 H);

¹³C NMR (150 MHz, CDCl₃) δ 210.4, 160.0, 156.8, 141.5, 137.5, 130.8, 129.6, 129.5, 117.9, 117.4, 113.7, 111.3, 110.0, 82.2, 55.5, 55.2, 40.2;

HRMS (ESI) calcd. for $C_{17}H_{16}O_4$ [M + Na⁺] 307.0941, found 307.0929.

Allyl stannane 31:

The corresponding allyl iodide (1.41 g, 3.99 mmol, synthesized as previously described³) was dissolved in dry THF (20 mL) and treated with bis(tributyltin) (2.0 mL, 3.99 mmol, 1.0 equiv) followed by Pd_2dba_3 •CHCl₃ (207 mg, 0.20 mmol, 0.05 equiv). Argon was bubbled through the solution for 25 min and it was then heated to 55° for 3 h. Sat. aq.

NaHCO₃ (50 mL) was added and the mixture was extracted with Et_2O (2 × 100 mL). The combined organic layers were washed with water (50 mL) and brine (50 mL) and dried over MgSO₄, filtered and concentrated. Flash column chromatography (triethylamine neutralized silica gel, 100% hexanes) afforded the title allyl stannane as a clear oil (1.78 g, 86%).

 $\mathbf{R}_{\mathbf{f}} = 0.15$ (silica gel, hexanes);

IR (film) \mathbf{v}_{max} 2953 (s), 1560, 1462 (s), 1300, 1231 (s), 1016 (s) cm⁻¹;

¹H NMR (600 MHz, CDCl₃) δ 7.41 (d, J = 8.7 Hz, 1 H), 6.74 (d, J = 3.1 Hz, 1 H), 6.66 (dd, J = 8.7, 3.1 Hz, 1 H), 4.99 (m, 1 H), 4.71 (m, 1 H), 3.78 (s, 3 H), 2.23 (s, 2 H), 1.35 (m, 6 H), 1.23 (qd, J = 14.6, 7.3, 6 H), 0.84 (t, J = 7.3 Hz, 9 H), 0.76 (m, 6 H);
¹³C NMR (150 MHz, CDCl₃) δ 158.8, 150.4, 146.3, 133.7, 115.8, 114.1, 112.4, 110.9,

55.6, 29.1, 27.5, 20.1, 13.8, 9.8.

Ketone 3:

To a solution of α -hydroxy ketone **30** (490 mg, 1.72 mmol) and allyl stannane **31** (1.78 g, 3.45 mmol, 2.0 equiv) in THF (11.5 mL) at 0 °C was added indium(III) trifluoromethanesulfonate (1.16 g, 2.06 mmol, 1.2 equiv). After complete dissolution, the reaction mixture was allowed to warm to room temperature and stirred for 1.5 h. Saturated aqueous sodium potassium tartrate (20 mL) and EtOAc (50 mL) were added,

and the organic layer was washed with brine (20 mL). The combined aqueous layers were extracted with EtOAc (50 mL), and the combined organic layers were dried over MgSO₄, filtered, and concentrated. Flash column chromatography (silica gel, $6:1 \rightarrow 4:1$ hexanes/EtOAc) afforded the homoallylic diol as a clear oil (755 mg, 86%). To a solution of this diol (755 mg, 1.48 mmol) in DCM (14.8 mL) at 0 °C was added boron triflouride diethyl etherate (204 µL, 1.62 mmol, 1.1 equiv) dropwise. After stirring for 10 min at 0 °C, sat. aq. NaHCO₃ (20 mL) and EtOAc (20 mL) were added. The organic layer was washed with brine (20 mL), and the combined aqueous layers were extracted with EtOAc (20 mL). The combined organic layers were dried over MgSO₄, filtered and concentrated. Flash column chromatography (silica gel, 9:1 \rightarrow 6:1 hexanes/EtOAc) afforded the title ketone as a white solid (603 mg, 83%).

m.p. = $88 - 90 \,^{\circ}\text{C};$

 $\mathbf{R}_{\mathbf{f}} = 0.39$ (silica gel, 1:1 hexanes/Et₂O);

 $[\mathbf{\alpha}]_{\mathbf{D}} = +6.8^{\circ} (CH_2Cl_2, c \ 0.5);$

IR (film) \mathbf{v}_{max} 1749 (s), 1586 (s), 1482 (s), 1463 (s), 1289 (s), 1264 (s), 1050 (s), 1016 cm⁻¹;

¹**H NMR** (**600 MHz**, **CDCl**₃) δ 7.27 (d, *J* = 6.0 Hz, 1 H), 7.23 (t, *J* = 7.9 Hz, 1 H), 7.16 (t, *J* = 8.0 Hz, 1 H), 6.91 (d, *J* = 7.2 Hz, 1 H), 6.79 (d, *J* = 7.9 Hz, 1 H), 6.76 (dd, *J* = 8.4, 6.3 Hz, 1 H), 6.74 (dd, *J* = 8.1, 1.9 Hz, 1 H), 6.53 (dd, *J* = 8.8, 3.1 Hz, 1 H), 6.51 (d, *J* = 10.0 Hz, 1 H), 5.63 (d, *J* = 3.1 Hz, 1 H), 5.24 (s, 1 H), 4.88 (d, *J* = 1.4 Hz, 1 H), 3.91 (d, *J* = 13.2 Hz, 1 H), 3.74 (s, 3 H), 3.72 (d, *J* = 13.1 Hz, 1 H), 3.57 (s, 3 H), 3.48 (d, *J* = 22.5 Hz, 1 H), 3.42 (m, 3 H), 3.11 (d, *J* = 22.5 Hz, 1 H);

¹³C NMR (150 MHz, CDCl₃) δ 215.2, 159.6, 158.0, 157.3, 147.5, 143.7, 142.4, 138.5, 132.7, 130.3, 129.6, 129.3, 120.4, 119.2, 116.8, 115.6, 114.6, 113.2, 112.7, 111.8, 109.2, 63.4, 55.3, 55.2, 54.6, 42.9, 41.3;

HRMS (ESI) calcd. for $C_{27}H_{25}BrO_4$ [M + H⁺] 493.1014, found 493.0988.

The following compounds were spectroscopically identical to those we reported previously¹ except for optical rotation data given below:

 $[\mathbf{\alpha}]_{\mathbf{D}} = -13.5^{\circ} (CH_2Cl_2, c \ 0.45)$

 $[\mathbf{\alpha}]_{\mathbf{D}} = +18.8^{\circ} (2:1 \text{ MeOH/CH}_2\text{Cl}_2, c \ 0.47)$

 $[\mathbf{\alpha}]_{\mathbf{D}} = +66.3^{\circ} (CH_2Cl_2, c \ 0.40)$

(+)-Haouamine A: $[\alpha]_{D} = +45.8^{\circ}$ (MeOH, c 0.05)

Figure S1. Circular dichroism spectrum of natural-(-)- and synthetic-(+)-haouamine A.

Scheme S3.

Homoallylic diol S2:

To a solution of racemic α -hydroxy ketone **30** (50 mg, 0.18 mmol) in toluene (3.6 mL) at -78° was added allylmagnesium bromide (880 μ L, 1.0 M, 0.88 mmol, 5.0 equiv). The reaction mixture was allowed to stir at -78° for 20 min and then warmed to room temperature before being quenched with sat. aq. NH₄Cl (5 mL). This mixture was extracted with EtOAc (2 × 20 mL), and the combined organic layers were dried over MgSO₄, filtered, and concentrated. Flash column chromatography (silica gel, 8:1 hexanes/EtOAc) afforded the title diol as a clear oil (47 mg, 82%).

 $\mathbf{R}_{\mathbf{f}} = 0.32$ (silica gel, 1:1 hexanes/Et₂O);

IR (film) v_{max} 3509 (br), 2937, 2834, 1592, 1480 (s), 1260 (s), 1085, 1039 cm⁻¹;

¹**H NMR** (**600 MHz, CDCl**₃) δ 7.29 (t, *J* = 7.9 Hz, 1 H), 7.17 (t, *J* = 7.9 Hz, 1 H), 6.93 (d, *J* = 7.5 Hz, 1 H), 6.85 (m, 1 H), 6.78 (dd, *J* = 8.2, 1.9 Hz, 1 H), 6.75 (d, *J* = 8.2 Hz, 1 H), 6.65 (m, 1 H), 5.93 (m, 1 H), 5.04 (dd, *J* = 9.2, 0.9 Hz, 1 H), 4.96 (dd, *J* = 17.1, 0.6 Hz, 1 H), 4.25 (s, 1 H), 3.77 (s, 3 H), 3.71 (s, 3 H), 3.63 (s, 1 H), 2.97 (d, *J* = 16.2 Hz, 1 H), 2.91 (d, *J* = 16.2 Hz, 1 H), 2.19 (dd, *J* = 14.1, 6.3 Hz, 1 H), 1.65 (dd, *J* = 14.1, 7.9 Hz, 1 H);

¹³C NMR (150 MHz, CDCl₃) δ 159.6, 156.3, 144.6, 142.7, 134.7, 132.7, 130.3, 129.2, 118.5, 118.3, 117.6, 112.3, 112.2, 109.4, 87.7, 84.5, 55.5, 55.3, 42.7, 41.6;
HRMS (ESI) calcd. for C₂₀H₂₂O₄ [M + Na⁺] 349.1416, found 349.1399.

Homoallylic diol S2-*d*₂:

Diol **S2** (66 mg, 0.20 mmol) was dissolved in MeOH (3 mL) and CH_2Cl_2 (1 mL) and cooled to -78°. Ozone was bubbled through the solution for 5 min, and the reaction mixture was then quenched with Me₂S (2 mL) and warmed to room temperature. Et₂O (20 mL) and 5 % NaHCO₃ (3 mL) were added and the organic phase was washed with H₂O (10 mL) and brine (10 mL), dried over MgSO₄, filtered, and concentrated. The

crude aldehyde was dissolved in dry THF (3 mL) and a solution of $Ph_3P=CD_2$ (2.0 mmol, 10 equiv) in dry THF (4.4 mL) was added at RT. The resulting solution was stirred for 1.5 hours and then quenched with sat. aq. NH₄Cl (5 mL) and H₂O (20 mL) and diluted with Et₂O (20 mL). The organic phase was washed with brine (20 mL) and the aqueous phase was extracted with Et₂O (20 mL). The combined organic layers were dried over MgSO₄, filtered, and concentrated. Flash column chromatography (silica gel, 3:1 hexanes/EtOAc) afforded the title diol as colorless/white needles (34 mg, 51%).

m.p. = $124 \,^{\circ}\text{C}$;

 $\mathbf{R}_{f} = 0.67$ (silica gel, 1:1 hexanes/EtOAc);

IR (film) **v**_{max} 3509 (br), 1592, 1480 (s), 1261 (s), 1083, 1042 (s) cm⁻¹;

¹**H NMR** (**600 MHz, CDCl**₃) δ 7.29 (m, 1 H), 7.17 (t, *J* = 7.9 Hz, 1 H), 6.94 (d, *J* = 7.5 Hz, 1 H), 6.86 (m, 1 H), 6.78 (dd, *J* = 8.2, 1.8 Hz, 1 H), 6.63 (m, 1 H), 6.75 (d, *J* = 8.2 Hz, 1 H), 5.94 (m, 1 H), 5.04 (m, 0.2 H [80% D]), 4.96 (m, 0.2 H [80% D]), 4.27 (s, 1 H), 3.77 (s, 3 H), 3.70 (s, 3 H), 3.66 (s, 1 H), 2.98 (d, *J* = 16.2 Hz, 1 H), 2.92 (d, *J* = 16.2 Hz, 1 H), 2.20 (dd, *J* = 14.1, 6.3Hz, 1 H), 1.66 (dd, *J* = 14.1, 7.9 Hz, 1 H);

¹³C NMR (150 MHz, CDCl₃) δ 159.4, 156.1, 144.4, 142.5, 134.3, 132.5, 130.1, 129.0, 118.3, 118.06, 118.05, 112.1, 112.0, 109.2, 87.4, 84.3, 55.3, 55.1, 42.5, 41.3;

GC/MS calcd. for $C_{20}H_{20}D_2O_4$ [M ⁺] 328, found 328.

Ketone S3:

To a solution of diol **S2** (40.0 mg, 12 mmol) in DCM (1.2 mL) at 0° was added boron triflouride diethyl etherate (17 μ L, 0.13 mmol, 1.1 equiv) dropwise. After stirring for 10 min at 0°, sat. aq. NaHCO₃ (5 mL) and EtOAc (20 mL) were added. The organic layer was washed with brine (10 mL), and the combined aqueous layers were extracted with EtOAc (20 mL). The combined organic layers were dried over MgSO₄, filtered and concentrated. Flash column chromatography (silica gel, 9:1 hexanes/Et₂O) afforded the title ketone as a clear oil (34 mg, 92%).

 $\mathbf{R}_{\mathbf{f}} = 0.35$ (silica gel, 4:1 hexanes/Et₂O);

IR (film) **v**_{max} 2915, 2841, 1746 (s), 1583, 1480, 1292, 1248 (s), 1053, 769, 695 cm⁻¹;

¹**H NMR (500 MHz, CDCl**₃) δ 7.33 (t, *J* = 7.9 Hz, 1 H), 7.17 (t, *J* = 8.0 Hz, 1 H), 6.97 (d, *J* = 7.5 Hz, 1 H), 6.86 (d, *J* = 8.3 Hz, 1 H), 6.77 – 6.74 (m, 3 H), 5.39 – 5.30 (m, 1 H), 5.01 (dd, *J* = 17.0, 1.7 Hz, 1 H), 4.82 (dd, *J* = 10.1, 1.8 Hz, 1 H), 3.75 (s, 3 H), 3.59 (d, *J* = 22.4 Hz, 1 H), 3.35 (d, *J* = 22.4 Hz, 1 H), 3.26 (dd, *J* = 13.0, 7.7 Hz, 1 H), 3.18 (dd, *J* = 13.0, 6.9 Hz, 1 H);

¹³C NMR (150 MHz, CDCl₃) δ 215.4, 159.5, 157.0, 142.0, 138.0, 134.1, 130.3, 129.3, 129.2, 119.0, 117.8, 117.1, 113.0, 111.8, 109.6, 63.3, 55.2, 55.1, 42.9, 39.4;

HRMS (ESI) calcd. for $C_{20}H_{21}O_3$ [M + H⁺] 309.1491, found 309.1485.

Ketone S3-*d*₂:

To a solution of **S2-***d*₂ (25 mg, 0.076 mmol) in DCM (1.0 mL) at 0 °C was added boron triflouride diethyl etherate (11 μ L, 0.084 mmol, 1.1 eq) dropwise. After stirring for 10 min at 0 °C, sat. aq. NaHCO₃ (5 mL) and EtOAc (10 mL) were added. The organic layer was washed with brine (10 mL), and the combined aqueous layers were extracted with EtOAc (10 mL). The combined organic layers were dried over MgSO₄, filtered and concentrated. Flash column chromatography (silica gel, 2:1 hexanes/Et₂O) afforded the title ketone as a white film (21.2 mg, 90%).

 $\mathbf{R}_{f} = 0.58$ (silica gel, 1:1 hexanes/Et₂O);

IR (film) \mathbf{v}_{max} 2936, 1749 (s), 1584 (s), 1482 (s), 1289 (s), 1252 (s), 1143, 1053 cm⁻¹;

¹H NMR (600 MHz, CDCl₃) δ 7.33 (t, J = 7.9 Hz, 1 H), 7.17 (t, J = 8.2 Hz, 1 H), 6.97 (d, J = 7.6 Hz, 1 H), 6.86 (d, J = 8.3 Hz, 1 H), 6.76 (m, 1 H), 5.34 (m, 1 H), 5.00 (m, 0.2 H [80% D]), 4.82 (m, 0.2 H [80% D]), 3.75 (s, 6 H), 3.59 (d, J = 22.4 Hz, 1 H), 3.36 (d, J = 22.4 Hz, 1 H), 3.26 (dd, J = 13.0, 7.7Hz, 1 H), 3.18 (dd, J = 12.9, 6.8 Hz, 1 H);
¹³C NMR (150 MHz, CDCl₃) δ 215.4, 159.5, 157.0, 142.0, 138.0, 134.0, 133.9, 130.3, 129.3, 129.2, 119.0, 117.0, 113.0, 111.8, 109.6, 63.3, 55.2, 55.1, 42.9, 39.3;

HRMS (ESI) calcd. for $C_{20}H_{18}D_2O_3$ [M + H⁺] 311.1616, found 311.1609.

