

Supporting Information © Wiley-VCH 2008 69451 Weinheim, Germany

Catalytic Enantioselective 1,6-Conjugate Addition of Grignard Reagents to Linear Dienoates

Tim den Hartog, Syuzanna R. Harutyunyan, Daniel Font, Adriaan J. Minnaard, and Ben L. Feringa

Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4, 9747 AG, Groningen (The Netherlands)

Experimental Section

General procedures: Thin-layer chromatography (TLC) was performed on commercial Kieselgel $60F_{254}$ silica gel plates and compounds were visualized with KMnO₄ reagent. Flash chromatography was performed on silica gel. Drying of solutions was performed with MgSO₄. Concentration of solutions was conducted with a rotary evaporator. Progress of the reactions and conversion were determined by GC-MS (GC, HP6890; MS, HP5973) with an HP5 column (Agilent Technologies, Palo Alto, CA). Enantio- and regioselectivities were determined by capillary GC analysis (HP6890, CP-Chiralsil-Dex-CB (25 m x 0.25 mm); Shimadzu GC-17A, CP-Chiraldex-B-PM (30 m x 0.25 mm)) using flame ionization detection or HPLC analysis ((*R*,*R*)-Whelk-01, 4.6 x 250 mm, 5 m, 40 °C, 0.5 mL/min, 205 nm; chiralcel OD-H, 4.6 x 250 mm, 5 m, 40 °C, 0.5 mL/min, 205 nm) (in comparison to authentic samples of racemates of 1,6- and 1,4-addition products). Optical rotations were measured in CH₂Cl₂ on a Schmidt + Haensch polarimeter (Polartronic MH8) with a 10 cm cell (c given in g/100 mL), a trace contamination (~2%) of 1,4-addition product was present; which in all cases was inseparable by column chromotography. Absolute configurations were determined by comparison of retention times on chiral GC-spectra (2-methylbutanoic acid) or optical rotation of compounds previously published. ¹ H NMR spectra were recorded at 400 MHz with CDCl₃ as solvent (Varian AMX400 spectrometer). ¹³C NMR spectra were obtained at 100.59 MHz in CDCl₃. The nature of the carbon was determined from APT ¹³C NMR experiments. Chemical shifts were determined relative to the residual solvent peaks (CHCl₃, $\delta = 7.26$ for hydrogen atoms, $\delta = 77.0$ for carbon atoms). The following abbreviations are used to indicate signal multiplicity: s, singlet; d, doublet; t, triplet; q, quartet; br, broad; m, multiplet. High resolution mass spectra were determined on a AEI-MS-902 mass spectrometer by EI (70ev) measurements.

All reactions were conducted under N₂ atmosphere using standard Schlenk techniques. CH_2Cl_2 was distilled from CaH_2 under N₂ prior to use. $CuBr \cdot SMe_2$ was purchased from Aldrich. (+)-(*S*,*R*)- reversed Josiphos was generously donated by Solvias. (-)-(*R*,*S*)- reversed Josiphos was purchased from Aldrich. Grignard reagents were purchased from Aldrich (MeMgBr, EtMgBr, *i*BuMgBr and PhMgBr) or prepared from the corresponding alkyl bromides and magnesium turnings in anhydrous Et₂O following standard procedures. Grignard reagents were titrated using *s*BuOH and catalytic amounts of 1,10- phenanthroline before use.

Ethyl sorbate (4) was purchased from Aldrich, before use this substrate was purified by column chromatography (10% Et₂O/pentane) to remove antioxidant and polymer. (*2E*,4*E*)-ethyl hepta-2,4-dienoate (**17a**), (*2E*,4*E*)-ethyl nona-2,4-dienoate (**17b**) and (*2E*,4*E*)-ethyl 6-methylhepta-2,4-dienoate (**17c**) were prepared from the corresponding enaldehydes (purchased from Aldrich), via Horner-Emmons reaction (triethylphosphonoacetate was purchased from Aldrich) according or analogous to a well established protocol.¹ (*2E*,4*E*)-ethyl 7-methylocta-2,4-dienoate (**17d**), (*2E*,4*E*)-ethyl 7-phenylhepta-2,4-dienoate (**17e**), (*2E*,4*E*)-ethyl 6-(*tert*-butyldiphenylsilyloxy)hexa-2,4-dienoate (**17f**) and (*2E*,4*E*)-ethyl 6-(benzyloxy)hexa-2,4-dienoate (**17g**) were prepared from the corresponding aldehyde (purchased from Aldrich), via Horner-Emmons reaction with (*2E*)-triethylphosphonocrotonate according or analogous to a well established protocol.² Triethylphosphono-crotonate was purchased from Aldrich (90% technical grade) and purified by column chromatography (gradient 25% Et₂O/pentane to 100% Et₂O) to give pure (*2E*)-triethylphosphonocrotonate. (*2E*,4*E*)-sethyl hepta-2,4-dienethioate (**22**) was prepared from (*E*)-pent-2-enal (purchased from Aldrich), via a Wittig reaction according to a well established protocol.³

RuCl₃•3H₂O, DIBAL-H (1.0 M solution in CH₂Cl₂), LiAlH₄ and NMe₃ were purchased from Aldrich. NalO₄ was purchased from Merck. Et₂O was distilled from benzophenone-ketyl under nitrogen prior to use. Chlorosulfonic acid was purchased from Aldrich and distilled under nitrogen prior to use.

Experimental data for substrates:

(2E,4E)-ethyl hepta-2,4-dienoate (17a) data are in accordance with data described in ref 1.

(2E,4E)-ethyl nona-2,4-dienoate (17b)

colorless oil; ¹H NMR δ 7.24- 7.15 (m, 1H), 6.15-6.00 (m, 2H), 5.71 (d, *J* = 15.3 Hz, 1H), 4.13 (qd, *J* = 7.1 Hz, 1.1 Hz, 2H), 2.10 (q, *J* = 6.6 Hz, 2H), 1.27 (m, 7H), 0.84 (t, *J* = 7.1 Hz, 3H); ¹³C NMR δ 167.0 (C), 144.8 (CH), 144.4 (CH), 128.2 (CH), 119.0 (CH), 59.9 (CH₂), 32.5 (CH₂), 30.7 (CH₂), 22.1 (CH₂), 14.1 (CH₃), 13.7 (CH₃); MS *m*/*z* 182 (M⁺, 68), 125 (M-*n*Bu, 100), 97 (C₇H₁₃, 48); HRMS calcd. for C₁₁H₁₈O₂ 182.1307, found 182.1316.

(2E,4E)-ethyl 6-methylhepta-2,4-dienoate (17c) data are in accordance with data described in ref 4.

(2*E*,4*E*)-ethyl 7-methylocta-2,4-dienoate (**17d**) data are in accordance with data described in ref 2. Additional data: MS m/z 182 (M⁺, 100), 127 (88), 125 (M-*i*Bu, 91), 67 (C₅H₇, 94); HRMS calcd. for C₁₁H₁₈O₂ 182.1307, found 182.1311.

(2E,4E)-ethyl 7-phenylhepta-2,4-dienoate (17e)

colorless oil; ¹H NMR δ 7.34-7.14 (m, 6H), 6.27-6.08 (m, 2H), 5.79 (d, *J* = 15.1 Hz, 1H), 4.20 (q, *J* = 7.1 Hz, 2H), 2.75 (t, *J* = 8.0 Hz, 2H), 2.56-2.43 (m, 2H), 1.29 (t, *J* = 7.1 Hz, 3H); ¹³C NMR δ 167.2 (C), 144.8 (CH), 143.1 (CH), 141.1 (C), 128.9 (CH), 128.4 (CH), 128.4 (CH), 126.0 (CH), 119.6 (CH), 60.2 (CH₂), 35.1 (CH₂), 34.7 (CH₂), 14.3 (CH₃); MS *m*/*z* 230 (M⁺, 10), 91 (C₇H₇, 100); HRMS calcd. for C₁₅H₁₈O₂ 230.1307, found 230.1308.

(2E,4E)-ethyl 6-(tert-butyldiphenylsilyloxy)hexa-2,4-dienoate (17f)

colorless oil; ¹H NMR δ 7.70-7.65 (m, 4H), 7.48-7.36 (m, 6H), 7.31 (dd, *J* = 11.2 Hz, 15.3 Hz, 1H), 6.59-6.42 (m, 1H), 6.16 (dt, *J* = 15.2 Hz, 4.2 Hz, 1H), 5.89 (d, *J* = 15.2 Hz, 1H), 4.34-4.30 (m, 2H), 4.22 (q, *J* = 7.1 Hz, 2H), 1.31 (t, *J* = 7.1 Hz, 3H), 1.08 (s, 9H); ¹³C NMR δ 166.9 (C), 143.9 (CH), 141.2 (CH), 135.3 (CH), 133.1 (C), 129.7 (CH), 127.7 (CH), 126.8 (CH), 120.8 (CH), 63.5 (CH₂), 60.1 (CH₂), 26.7 (CH₃), 19.1 (C), 14.2 (CH), 14.2 (CH), 135.3 (CH), 135.3 (CH), 120.7 (CH), 126.8 (CH), 120.8 (CH), 63.5 (CH₂), 60.1 (CH₂), 26.7 (CH₃), 19.1 (C), 14.2 (CH), 14.2 (C

¹ S. Mann, S. Carillon, O. Breyne, C. Duhayon, L. Hamon, A. Marquet, Eur. J. Org. Chem. 2002, 736-744.

² J. M. Takacs, F. Clement, J. Zhu, S. V. Chandramouli, X. Gong, J. Am. Chem. Soc. **1997**, *119*, 5804 – 5817.

³ Described for reaction of aldehyde with Ph₃PCHCOSEt (procedure D, 16 h reaction time): R. Des Mazery, M. Pullez, F. López, S. R. Harutyunyan, A. J. Minnaard, B. L. Feringa, *J. Am. Chem. Soc.* **2005**, *127*, 9966-9967.

⁴ B. Bennacer, D. Trubuil, C. Rivalle, D. S. Grierson, Eur. J. Org. Chem. 2003, 4561-4568.

 (CH_3) ; MS m/z 394 (M⁺, 27), 337 (M-*t*Bu, 100), 227 (TBDPSOEt-*t*Bu, 41), 199 (TBDPSOH-*t*Bu, 66); HRMS calcd. for C₂₄H₃₀O₃Si 394.1964, found 394.1982.

(2E,4E)-ethyl 6-(benzyloxy)hexa-2,4-dienoate (17g)

colorless oil; ¹H NMR δ 7.45-7.27 (m, 6H), 6.42 (m, 1H), 6.18 (dt, *J* = 14.8 Hz, 5.0 Hz, 1H), 5.89 (dd, *J* = 15.4 Hz, 0.5 Hz, 1H), 4.54 (s, 2H), 4.21 (q, *J* = 7.1 Hz, 2H), 4.13 (d, *J* = 5.3 Hz, 2H), 1.29 (t, *J* = 7.1 Hz, 3H); ¹³C NMR δ 166.9 (C), 143.6 (CH), 138.5 (CH), 137.8 (C), 129.1 (CH), 128.4 (CH), 127.7 (CH), 127.7 (CH), 121.4 (CH), 72.5 (CH₂), 69.5 (CH₂), 60.3 (CH₂), 14.2 (CH₃); MS *m/z* 246 (M⁺, 1), 91 (C₇H₇, 100); HRMS calcd. for C₁₅H₁₈O₃ 246.1256, found 246.1256.

(2E,4E)-S-ethyl hepta-2,4-dienethioate (22)

colorless oil; ¹H NMR δ 7.17 (dd, *J* = 15.2 Hz, 10.6 Hz, 1H), 6.22 (dt, *J* = 15.1 Hz, 6.4 Hz, 1H), 6.15-6.01 (m, 2H), 2.93 (q, *J* = 7.4 Hz, 2H), 2.23-2.12 (m, 2H), 1.26 (t, *J* = 7.4 Hz, 3H), 1.03 (t, *J* = 7.5 Hz, 3H); ¹³C NMR δ 190.1 (C), 147.5 (CH), 140.9 (CH), 127.2 (CH), 126.4 (CH), 26.2 (CH₂), 23.1 (CH₂), 14.8 (CH₃), 12.8 (CH₃); MS *m*/*z* 170 (M⁺, 16), 109 (M - SEt, 100), 81 (M - COSEt, 66); HRMS calcd. for C₉H₁₄OS 170.0765, found 170.0773.

General procedure for the enantioselective 1,6-conjugate addition:⁵

(exemplified for the addition of EtMgBr to 4)

In a dried Schlenk tube equipped with septum and stirring bar under nitrogen, CuBr•SMe₂ (5.14 mg, 25 µmol, 5.0 mol%) and (*R*,*S*)-reversed Josiphos (15.46 mg, 26 µmol, 5.25 mol%) were dissolved in dry CH_2Cl_2 (2 mL). After 5 min stirring at room temperature the mixture was cooled to -70 °C and EtMgBr (Aldrich, 3.0M solution in Et₂O, 0.33 mL, 1.0 mmol, 2.0 equiv.) was added. After stirring for an additional 10 min, a solution of **4** (70.1 mg, 0.5 mmol, 1.0 equiv.) in dry CH_2Cl_2 (additional 0.5 mL) was added with syringe pump over 2 h. The reaction mixture was stirred overnight (16 h including addition) at -70 °C and subsequently EtOH (0.1 mL) and an aq. NH₄Cl-solution (1 M, 0.5 mL) were added. The mixture was warmed to RT and an additional 5 mL of the NH₄Cl-solution and 5 mL of CH_2Cl_2 were added and the layers were separated. After extraction with CH_2Cl_2 (2 x 5 mL), the combined organic extracts were dried and carefully concentrated to a yellow oil. Flash chromatography (5% Et₂O/pentane) yielded **5** as a colorless⁶ oil.

(R)-(-)-(E)-ethyl 5-methylhept-3-enoate (5)

[84% yield, 95% ee, regioselectivity 1,6:1,4 = 98:2, $[\alpha]_{D}^{20}$ = -20.0 (c = 2.0, CH₂Cl₂); colorless oil]; ¹H NMR δ 5.56-5.34 (m, 2H), 4.12 (qd, *J* = 7.1 Hz, 1.3 Hz, 2H), 3.00 (dd, *J* = 6.4 Hz, 0.8 Hz, 2H), 2.10-1.95 (m, 1H), 1.35-1.17 (m, 5H), 0.96 (dd, *J* = 6.8 Hz, 1.3 Hz, 3H), 0.84 (t, *J* = 7.4 Hz, 3H); ¹³C NMR δ 172.3 (C), 140.3 (CH), 120.0 (CH), 60.4 (CH₂), 38.3 (CH), 38.2 (CH₂), 29.5 (CH₂), 20.0 (CH₃), 14.2 (CH₃), 11.6 (CH₃); MS (GC/MS) *m/z* 170 (M⁺, 4), 82 (C₆H₁₀, 55), 55 (C₃H₃O, 100); HRMS calcd. for C₁₀H₁₈O₂ 170.1307, found 170.1315. Enantioselectivity was determined by chiral GC analysis for 2-methylbutanoic acid, ⁷ column: Chiraldex-B-PM, 60 °C, retention times (min): 42.8 (minor), 45.5 (major). Regioselectivity was determined by chiral GC analysis, column: Chiraldex-B-PM, 60 °C, retention times (min): 95.2 (1,4-product, major), 100.5 (1,4 product, minor), 104.3 (1,6-product).

(S)-(+)-(E)-ethyl 5-methylhept-3-enoate (5)

[95% ee, regioselectivity 1,6:1,4 = 99:1, $[\alpha]_D^{20}$ = 20.2 (c = 1.0, CH₂Cl₂); colorless oil]; . Enantioselectivity was determined by chiral GC analysis for 2-methylbutanoic acid,⁷ column: Chiraldex-B-PM, 60 °C, retention times (min): 41.5 (major), 49.0 (minor). Regioselectivity was determined by chiral GC analysis, column: Chiraldex-B-PM, 60 °C, retention times (min): 102.8 (1,4-product, major), 108.4 (1,6-product).

(-)-(E)-ethyl 5-methylnon-3-enoate (15a)

[85% yield, 97% ee, regioselectivity 1,6:1,4 = 99:1, $[\alpha]_D^{20}$ = -12.0 (c = 1.0, CH₂Cl₂); colorless oil]; ¹H NMR δ 5.55-5.32 (m, 2H), 4.12 (q, *J* = 7.1 Hz, 2H), 3.00 (d, *J* = 5.8 Hz, 2H), 2.17-2.03 (m, 1H), 1.34-1.14 (m, 9H), 0.95 (d, *J* = 6.7 Hz, 3H), 0.86 (t, *J* = 6.9 Hz, 3H); ¹³C NMR δ 172.2 (C), 140.6 (CH), 119.8 (CH), 60.4 (CH₂), 38.2 (CH₂), 36.6 (CH), 36.5 (CH₂), 29.4 (CH₂), 22.7 (CH₂), 20.4 (CH₃), 14.2 (CH₃), 14.1 (CH₃); MS (GC/MS) *m/z* 198 (M⁺, 5), 110 (C₈H₁₄, 100), 69 (C₄H₅O, 70), 55 (C₃H₃O, 76); HRMS calcd. for C₁₂H₂₂O₂ 198.1620, found 198.1613. Regio- and enantioselectivity were determined by chiral GC analysis, column: Chiraldex-B-PM, 80 °C, retention times (min): 80.9 (1,4-product, major), 85.8 (1,4-product, minor), 95.1 (1,6-product, minor), 96.0 (1,6-product, major).

(-)-(E)-ethyl 5-methylnona-3,8-dienoate (15b)

[57% yield, 92% ee, regioselectivity 1,6:1,4 = 97:3, [α]_D²⁰ = -17.6 (c = 1.0, CH₂Cl₂, for 88% ee); colorless oil]; ¹H NMR δ 5.76 (ddt, *J* = 16.9 Hz, 10.2 Hz, 6.7 Hz, 1H), 5.55-5.31 (m, 2H), 5.02-4.86 (m, 2H), 4.11 (q, *J* = 7.1 Hz, 2H), 2.99 (d, *J* = 6.5 Hz, 2H), 2.20-2.07 (m, 1H), 2.06-1.91 (m, 2H), 1.34 (q, *J* = 7.5 Hz, 2H), 1.23 (td, *J* = 7.13 Hz, 0.5 Hz, 3H), 0.96 (d, *J* = 6.8 Hz, 3H); ¹³C NMR δ 172.1 (C), 140.0 (CH), 138.8 (CH), 120.3 (CH), 114.2 (CH₂), 60.4 (CH₂), 38.1 (CH₂), 36.1 (CH), 35.9 (CH₂), 31.4 (CH₂), 20.3 (CH₃), 14.1 (CH₃); MS *m/z* 196 (M⁺, 1), 108 (C₆H₁₂, 56), 81 (C₅H₅O, 100), 67 (C₅H₇, 59), 55 (C₃H₃O, 57); HRMS calcd. for C₁₂H₂₀O₂ 196.1463, found 196.1464. Regio- and enantioselectivity were determined by chiral GC analysis, column: Chiraldex-B-PM, 80 °C, retention times (min): 83.8 (1,4-product, major), 88.3 (1,4-product, minor), 97.0 (1,6-product, minor), 98.5 (1,6-product, major).

(-)-(*E*)-ethyl 5,6-dimethylhept-3-enoate (**15c**)

[54% yield, 72% ee, regioselectivity 1,6:1,4 = 99:1, [α]_D²⁰ = -17.6 (c = 1.0, CH₂Cl₂); colorless oil]; ¹H NMR δ 5.57-5.36 (m, 2H), 4.13 (q, *J* = 7.2 Hz, 2H), 3.01 (d, *J* = 5.5 Hz, 2H), 2.04-1.87 (m, 1H), 1.56-1.44 (m, 1H), 1.25 (td, *J* = 7.1 Hz, 0.7 Hz, 3H) 0.94 (d, *J* = 6.8 Hz, 3H), 0.87-0.78 (m, 6H); ¹³C NMR δ 172.3 (C), 138.9 (CH), 120.7 (CH), 60.4 (CH₂), 42.9 (CH₂), 38.2 (CH), 32.8 (CH₂), 19.8 (CH₃), 19.6 (CH₃), 17.2 (CH₃), 14.2 (CH₃); MS (GC/MS) *m/z* 184 (M⁺, 10), 96 (C₆H₈O, 91), 68 (C₄H₄O, 88), 55 (C₃H₃O, 100); HRMS calcd. for C₁₁H₂₀O₂ 184.1463, found 184.1461.

 $^{^{5}}$ 0.5 g scale synthesis was performed via the same procedure using CuBr•SMe₂ (14.7 mg, 71 µmol, 2.0 mol%) and (*R*,*S*)-reversed Josiphos (44.5 mg, 75 µmol, 2.1 mol%) in dry CH₂Cl₂ (10 mL); EtMgBr (Aldrich, 3.0 M solution in Et₂O, 1.8 mL, 5.4 mmol, 1.5 equiv.); **4** (500 mg, 3.6 mmol, 1.0 equiv.) in dry CH₂Cl₂ (additional 4.0 mL).

⁶ Occasionally the product is polluted with a yellow coloured side product undetectable by GC/MS or NMR.

⁷ a) R. Hoen, J. A. F. Boogers, H. Bernsmann, A. J. Minnaard, A. Meetsma, T. D. Tiemersma-Wegman, A. H. M. de Vries, J. G. de Vries, B. L. Feringa, *Angew. Chem.* **2005**, *117*, 4281-4284, *Angew. Chem. Int. Ed.* **2005**, *44*, 4209-4212. b) Acid was obtained by Ru-catalysed NaIO₄-oxidation.

Regio- and enantioselectivity were determined by chiral GC analysis, column: Chiraldex-B-PM, 70 °C, retention times (min): 92.9 (1,4-product, major), 99.0 (1,6-product, minor), 100.0 (1,6-product, major).

(-)-(E)-ethyl 5-ethylnon-3-enoate (18a)⁸

[88% yield, 96% ee, regioselectivity 1,6:1,4 = 99:1, $[\alpha]_{D}^{20}$ = -0.2 (c = 1.0, CH₂Cl₂); colorless oil]; ¹H NMR δ 5.55-5.37 (m, 1H), 5.30-5.21 (m, 1H), 4.12 (q, *J* = 7.1 Hz, 2H), 3.01 (dd, *J* = 6.9 Hz, 1.3 Hz, 2H), 1.91-1.77 (m, 1H), 1.44-1.15 (m, 11H), 0.92-0.76 (m, 6H); ¹³C NMR δ 172.2 (C), 139.0 (CH), 121.4 (CH), 60.4 (CH₂), 44.4 (CH), 38.2 (CH₂), 34.5 (CH₂), 29.4 (CH₂), 27.9 (CH₂), 22.8 (CH₂), 14.2 (CH₃), 14.1 (CH₃), 11.6 (CH₃); MS *m*/*z* 212 (M⁺, 28), 124 (C₉H₁₆, 100), 67 (C₅H₇, 54), 55 (C₃H₃O, 57); HRMS calcd. for C₁₃H₂₄O₂ 212.1776, found 212.1786. Regio- and enantioselectivity were determined by chiral GC analysis, column: Chiraldex-B-PM, 80 °C, retention times (min): 42.7 (1,4-product, major), 43.3 (1,4-product, minor), 46.4 (1,6-product, minor), 47.0 (1,6-product, major).

(+)-(E)-ethyl 5-ethylnon-3-enoate (18a)⁸

[80% yield, 93% ee, regioselectivity 1,6:1,4 = 99:1, $[\alpha]_D^{20} = 0.2$ (c = 1.0, CH₂Cl₂); colorless oil]; data was in accordance to (-)-**18a**. Regio- and enantioselectivity were determined by chiral GC analysis, column: Chiraldex-B-PM, 80 °C, retention times (min): 43.0 (1,4-product, major), 46.0 (1,6-product, major), 47.0 (1,6-product, minor).

(-)-(*E*)-ethyl 5-ethyl-6-methylhept-3-enoate (β , γ - **18c**) and

(-)-(E)-ethyl 5-ethyl-6-methylhept-2-enoate (α,β-19c)

[82% yield, 79% ee, regioselectivity 1,6:1,4 = 96:4, $[\alpha]_D^{20} = -1.0$ (c = 1.0, CH₂Cl₂); colorless oil]; ¹H NMR δ 5.51-5.36 (m, 1H), 5.33-5.25 (m, 0.7H), 5.12 (ddd, *J* = 15.4 Hz, 8.2 Hz, 1.2 Hz, 0.3H), 4.10 (m, 2H), 3.04 (dd, *J* = 6.9 Hz, 1.3 Hz, 0.9H, β,γ-), 2.40-2.16 (m, *J* = 1.1H, α,β-), 1.72-1.52 (m, 2H), 1.51-1.35 (m, 1H), 1.33-1.14 (m, 5H), 0.98-0.92 (dd, *J* = 6.7 Hz, 2.9 Hz, 2H), 0.89-0.75 (m, 8H); ¹³C NMR δ 172.9 (C, β,γ-), 172.3 (C, α,β-), 138.6 (CH, β,γ-), 136.6 (CH, α,β-), 129.0 (CH, β,γ-), 122.6 (CH, α,β-), 60.4 (CH₂, α,β-), 60.0 (CH₂, β,γ-), 51.1 (CH, α,β-), 41.2 (CH, β,γ-), 40.6 (CH₂, β,γ-), 38.3 (CH₂, α,β-), 31.4 (CH, α,β-), 31.0 (CH, β,γ-), 27.8 (CH₂, β,γ-), 24.9 (CH₂, α,β-), 62.7 (CH₃, α,β-), 22.6 (CH₃, α,β-), 20.7 (CH₃, β,γ-), 18.9 (CH₃, β,γ-), 14.3 (CH₃, α,β-), 14.2 (CH₃, β,γ-), 12.1 (CH₃, β,γ-), 11.5 (CH₃, α,β-); MS (GC/MS) *m/z* α,β-unsaturated product 198 (M⁺, 3), 110 (C₇H₁₀O, 100), 95 (C₆H₇O, 62), 69 (C₅H₇, 48), β,γ-unsaturated product 198 (M⁺, 5), 110 (C₇H₁₀O, 56), 81 (C₅H₅O, 100); HRMS calcd. for C₁₂H₂₂O₂ 198.1620, found 198.1627. Regio- and enantioselectivity were determined by chiral GC analysis, column: Chiraldex-B-PM, 75 °C, retention times (min): 54.6 (α,β-unsaturated-1,6-product, minor), 55.3 (α,β-unsaturated-1,6-product, major), 104.2 (1,4-product, minor), 107.2 (β,γ-unsaturated 1,6-product, minor), 108.5 (β,γ-unsaturated-1,6-product, major), 114.1 (1,4-product, major).

(+)-(*E*)-ethyl 5-ethyl-7-methyloct-3-enoate (**18d**)

[77% yield, 97% ee, regioselectivity 1,6:1,4 = 98:2, $[\alpha]_D^{20}$ = 9.5 (c = 1.0, CH₂Cl₂); colorless oil]; ¹H NMR δ 5.46 (dtd, *J* = 15.3 Hz, 7.0 Hz, 0.6 Hz, 1H), 5.22 (ddt, *J* = 15.3 Hz, 9.0 Hz, 1.3 Hz, 1H), 4.12 (q, *J* = 7.1 Hz, 2H), 3.01 (dd, *J* = 7.0 Hz, 1.3 Hz, 2H), 2.01-1.86, (m, 1H), 1.62-1.05 (m, 8H), 0.92-0.65 (m, 9H) (spectrum contains traces of α,β-unsaturated 1,6-product δ 2.38-2.16 (m)); ¹³C NMR δ 172.2 (C), 139.0 (CH), 121.4 (CH), 60.4 (CH₂), 44.3 (CH₂), 42.3 (CH), 38.2 (CH₂), 28.2 (CH₂), 25.3 (CH₃), 23.5 (CH₃), 21.8 (CH₃), 14.1 (CH₃), 11.6 (CH₃); MS (GC/MS) *m/z* 212 (M⁺, 1), 97 (C₇H₁₃, 84), 95 (C₆H₇O, 100), 81 (C₅H₅0, 64), 55 (C₃H₃O, 69); HRMS calcd. for C₁₃H₂₄O₂ 212.1776, found 212.1768. Regio- and enantioselectivity were determined by chiral GC analysis, column: Chiraldex-B-PM, 75 °C (isothermic), retention times (min): 125.1 (1,4-product, minor), 134.5 (1,4-product, major).

(+)-(*E*)-ethyl 5-ethyl-7-phenylhept-3-enoate (**18e**)

[73% yield, 90% ee, regioselectivity 1,6:1,4 = 98:2, [a]_D²⁰ = 4.1 (c = 1.0, CH₂Cl₂); colorless oil]; ¹H NMR δ 7.38-7.10 (m, 5H), 5.58 (dt, *J* = 15.3 Hz, 7.0 Hz, 1H), 5.36 (dd, *J* = 8.9 Hz, 15.3 Hz, 1H), 4.19 (q, *J* = 7.1 Hz, 2H), 3.10 (dd, *J* = 6.9 Hz, 1.0 Hz, 2H), 2.82-2.43 (m, 2H), 2.03-1.90 (m, 1H), 1.80-1.20 (m, 7H), 0.89 (t, *J* = 7.4 Hz, 3H); ¹³C NMR δ 172.0 (C), 142.6 (C), 138.3 (CH), 128.3 (CH), 128.1 (CH), 125.4 (CH), 122.3 (CH), 60.4 (CH₂), 43.9 (CH), 38.1 (CH₂), 36.5 (CH₂), 33.4 (CH₂), 27.8 (CH₂), 14.1 (CH₃), 11.5 (CH₃); MS *m*/*z* 260 (M⁺, 28), 104 (C₈H₈, 79), 91 (C₇H₇, 100); HRMS calcd. for C₁₇H₂₄O₂ 260.1776, found 260.1768. Enantioselectivity was determined by chiral HPLC analysis, column: Whelk (99.9% heptane/*i*PrOH), 40 °C, retention times (min): 23.5 (major), 25.0 (minor). Regioselectivity was determined by chiral GC analysis, column: Chiraldex-B-PM, 170 °C, retention times (min): 26.4 (1,4-product), 27.6 (1,6-product).

(-)-(*E*)-ethyl 5-[(*tert*-butyldiphenylsilyloxy)methyl]hept-3-enoate (**18f**)

[82% yield, 73% ee, regioselectivity 1,6:1,4 = 96:4, $[a]_{D}^{20}$ = -8.5 (c = 0.8, CH₂Cl₂); colorless oil]; ¹H NMR δ 7.68- 7.61 (m, 4H), 7.46-7.34 (m, 6H), 5.61-5.50 (m, 1H), 5.42-5.31 (m, 1H), 4.12 (q, *J* = 7.1 Hz, 2H), 3.56 (d, *J* = 6.1 Hz, 2H), 3.02 (dd, *J* = 6.9 Hz, 1.3 Hz, 2H), 2.18-2.08 (m, 1H), 1.33-1.18 (m, 5H), 1.04 (s, 9H), 0.83 (t, *J* = 7.5 Hz, 3H); ¹³C NMR δ 172.0 (C), 135.8 (CH), 135.6 (CH), 133.9 (C), 129.4 (CH), 127.5 (CH), 123.0 (CH), 67.0 (CH₂), 60.5 (CH₂), 47.0 (CH), 38.4 (CH₂), 26.8 (CH₃), 23.8 (CH₂), 19.3 (C), 14.2 (CH₃), 11.5 (CH₃); MS *m*/*z* 423 (M⁺-H, 0.3), 368 (57), 367 (M- *t*Bu, 100), 227 (TBDPSOEt-*t*Bu, 58), 199 (TBDPSOH-*t*Bu, 50); HRMS calcd. for C₂₂H₂₇O₃Si 367.1729 (Mass -*t*Bu), found 367.1729. Regio- and enantioselectivity were determined by chiral HPLC analysis for (*E*)-5-((tert-butyldiphenylsilyloxy)methyl)hept-3-en-1-ol, ⁹column: chiralcel OD-H (99% heptane/*i*PrOH), 40 °C, retention times (min): 19.6 (1,4-product), 20.7 (1,6-product, minor), 21.9 (1,6-product, major).

(-)-(E)-ethyl 5-(benzyloxymethyl)hept-3-enoate (18g)

[69% yield, 90% ee, regioselectivity 1,6:1,4 = >95:5, $[\alpha]_D^{20}$ = -12.3 (c = 1.0, CH₂Cl₂); colorless oil]; ¹H NMR δ 7.39-7.23 (m, 5H), 5.61 (dtd, *J* = 7.7 Hz, 6.9 Hz, 0.8 Hz, 1H), 5.40 (ddt, *J* = 15.5 Hz, 8.4 Hz, 1.3 Hz, 1H), 4.50 (s, 2H), 4.13 (q, *J* = 7.1 Hz, 2H), 3.39 (d, *J* = 6.4 Hz, 2H), 3.05 (dd, *J* = 6.9 Hz, 1.3 Hz, 2H), 2.34-2.21 (m, 1H), 1.64-1.49 (m, 1H), 1.34-1.17 (m, 4H), 0.87 (t, *J* = 7.4 Hz, 3H); ¹³C NMR δ 172.0 (C), 138.5 (C), 135.6 (CH), 128.2 (CH), 127.5 (CH), 127.4 (CH), 123.0 (CH), 73.6 (CH₂), 72.9 (CH₂), 60.5 (CH₂), 44.5 (CH), 38.2 (CH₂), 24.2 (CH₂), 14.2 (CH₃), 11.4 (CH₃); MS *m/z* 276 (M⁺, 2), 188 (C₁₃H₁₆O, 47), 155 (C₃H₁₅O₂, 36), 91 (C₇H₇, 100); HRMS calcd. for C₁₇H₂₄O₃ 276.1725, found 276.1728. Enantioselectivity was determined by chiral HPLC analysis for (*E*)-5-(benzyloxymethyl)hept-3-en-1-ol,⁹ column: chiralcel OD-H (99% heptane/*i*PrOH), 40 °C, retention times (min): 45.1 (1,6-product, minor), 48.9 (1,6-product, major). Regioselectivity was determined by NMR.

(S)-(+)-(E)-S-ethyl 5-methylhept-3-enethioate (23)

⁸ R.Takeuchi, Y. Akiyama, *J. Organomet. Chem.* **2002**, *651*, 137-145.

⁹ Alcohol was obtained by DIBAL-H reduction. Reaction was performed for both racemic and chiral s22Et.

[85% yield, 93% ee, regioselectivity 1,6:1,4 = 99:1, $[\alpha]_D^{20}$ = 11.9 (c = 1.0, CH₂Cl₂); colorless oil]; ¹H NMR δ 5.52-5.39 (m, 2H), 3.23-3.15 (m, 2H), 2.85 (q, *J* = 7.4 Hz, 2H), 2.13-1.97 (m, 1H), 1.37-1.14 (m, 5H), 0.97 (d, *J* = 6.8 Hz, 3H), 0.85 (t, *J* = 7.4 Hz, 3H); ¹³C NMR δ 198.5 (C), 142.0 (CH), 119.6 (CH), 47.6 (CH₂), 38.4 (CH), 29.5 (CH₂), 23.3 (CH₂), 19.8(CH₃), 14.7 (CH₃), 11.7 (CH₃); MS (GC/MS) *m/z* 186 (M⁺, 0.2), 97 (C₇H₁₃, 37), 55 (C₃H₃O, 100); HRMS calcd. for C₁₀H₁₈OS 186.1078, found 186.1084. Enantioselectivity was determined by chiral GC analysis for 2-methylbutanoic acid,⁷ column: Chiraldex-B-PM, 60 °C, retention times (min): 41.5 (major), 47.8 (minor). Regioselectivity was determined by chiral GC analysis, column: Chiraldex-B-PM, 100 °C, retention times (min): 30.1 (1,4-product, minor), 30.6 (1,4-product, major), 32.5 (1,6-product).

(R)-(-)-(E)-ethyl 5,9-dimethyldeca-3,8-dienoate (24)

[34% yield (0.5 g scale, 2% catalyst, 1.2 equiv. Grignard reagent), 86% ee, regioselectivity 1,6:1,4 = 97:3, $[\alpha]_D^{20} = -14.1$ (c = 1.0, CH₂Cl₂); colorless oil]; ¹H NMR δ 5.55-5.32 (m, 2H), 5.12-5.01 (m, 1H), 4.11 (q, *J* = 7.1 Hz, 2H), 3.00 (d, *J* = 6.2 Hz, 2H), 2.19-2.04 (m, 1H), 2.01-1.86 (m, 2H), 1.61 (d, *J* = 36.2 Hz, 6H), 1.36-1.16 (m, 5H), 0.96 (t, *J* = 6.7 Hz, 3H); ¹³C NMR δ 172.1 (C), 140.3 (CH), 131.2 (C), 124.5 (CH), 120.1 (CH), 60.4 (CH₂), 38.2 (CH₂), 36.9 (CH₂), 36.2 (CH), 25.7 (CH₂), 25.6 (CH₃), 20.4 (CH₃), 17.6 (CH₃), 14.1 (CH₃); MS *m*/*z* 224 (M⁺, 15), 181 (C₁₁H₁₇O₂, 51), 82 (C₆H₁₀, 100), 69 (C₄H₅O, 56); HRMS calcd. for C₁₄H₂₄O₂ 224.1776, found 224.1767. Regio- and enantioselectivity was determined by chiral GC analysis, column: Chiralsil-Dex-CB, 105 °C, retention times (min): 81.3 (1,4-product, major), 94.2 (1,6-product, minor), 94.7 (1,6-product, major).

Synthesis of (R)-(-)-(E)-5,9-dimethyldeca-3,8-dien-1-ol (25):¹⁰

In a dried Schlenk tube equipped with septum and stirring bar under nitrogen, **24** (150 mg, 0.67 mmol, 1.0 equiv.) was dissolved in dry Et_2O (6.5 mL). The mixture was cooled to 0 °C and LiAlH₄ (56 mg, 1.48 mmol, 2.2 equiv.) was added in small portions. After stirring for 1 h at 0 °C the reaction was quenched with a 5% aq. HCl solution to a pH of 5. Et_2O (5 mL) and H_2O (5 mL) were added and the layers were separated. After extraction with Et_2O (2x 5 mL), the combined organic extracts were washed with H₂O and brine (10 mL), dried and carefully concentrated to a colorless oil. Flash chromatography (10% Et_2O /pentane) yielded **25** as a colorless oil.

Experimental data:

[93% yield, $[\alpha]_D^{20} = -21.1$ (c = 1.0, CH₂Cl₂); colorless oil]; ¹H NMR δ 5.46-5.27 (m, 2H), 5.12-5.03 (m, 1H), 3.61 (t, *J* = 6.3 Hz, 2H), 2.25 (q, *J* = 6.4 Hz, 2H), 2.17-2.03 (m, 1H), 1.98-1.88 (m, 2H), 1.70-1.54 (m, 6H), 1.28 (q, *J* = 7.0 Hz, 3H), 0.96 (d, *J* = 6.7 Hz, 3H); ¹³C NMR δ 140.1 (C), 131.2 (CH), 124.6 (CH), 124.0 (CH), 62.0 (CH₂), 37.0 (CH₂), 36.4 (CH), 36.0 (CH₂), 25.8 (CH₂), 25.7 (CH₃), 20.7 (CH₃), 17.6 (CH₃); MS *m*/z 182 (M⁺, 9), 82 (C₆H₁₀, 100), 69 (C₅H₉, 91), 55 (C₄H₇, 80); HRMS calcd. for C₁₂H₂₂O 182.1671, found 182.1678.

Synthesis of (R)-(-)-Trimethylammonium (E)-5,9-dimethyldeca-3,8-dienyl sulphate (26):¹¹

In a dried Schlenk tube equipped with septum and stirring bar under nitrogen, **25** (60 mg, 0.33 mmol, 1.0 equiv.) was dissolved in dry Et_2O (0.5 mL). The mixture was cooled to -5 $^{\circ}C$ and CISO₃H (22 µL, 0.33 mmol, 1.0 equiv.) was added dropwise. After stirring for 2 h at -5 $^{\circ}C$ the reaction was quenched with NMe₃ at -5 $^{\circ}C$ (45% aq. solution, 0.2 mL). Then H₂O (2 mL) and Et₂O (2 mL) were added and the solution was stirred for 2 min and decanted. This was repeated once with 2 mL Et₂O. The aqueous layer was concentrated to a slightly yellow oil. Flash chromatography (10% MeOH/CHCl₃) yielded **26** as a colorless oil.

Experimental data:

[55% yield, $[\alpha]_{D}^{20} = -10.5$ (c = 0.7, CHCl₃); lit.¹¹ = -17.0 (c = 1.89, CHCl₃) ; colorless oil];

¹ H NMR			¹³ C NMR		
position:	natural:	synthetic:	position:	natural:	synthetic:
1	4.02 (t, 7.3)	4.04 (t, 7.3, 2H)	1	67.8 CH ₂	68.4 CH ₂
2	2.37 (m)	2.35 (dd, 7.1, 13.0 Hz, 2H)	2	32.6 CH ₂	32.5 CH ₂
3	5.36		3	123.1 CH	123.1 CH
4	(dt, 15.4, 6.1) 5.38 (dd, 15.4, 7.0)	5.44-5.25 (m, 2H)	4	139.1 CH	139.2 CH
5	2.06 (m)	2.04 (dt, 13.5, 6.7 Hz, 1H)	5	36.2 CH	36.2 CH
6	1.27 (m)	1.31-1.17 (m, 2H)	6	36.9 CH ₂	37.0 CH ₂
7	1.92 (m)	1.90 (dd, 7.5, 15.2 Hz, 2H)	7	25.6 CH ₂	25.7 CH ₂
8	5.07 (t, 6.5)	5.05 (m, 1H)	8	124.5 CH	124.6 CH
10	1.58 (s)	1.56 (s, 3H)	9	131.1 C	131.1 C
11	0.94 (d, 6.6)	0.92 (d, 6.7 Hz, 3H)	10	17.6 CH ₃	17.7 CH ₃
12	1.67 (s)	1.65 (d, 0.9 Hz, 3H)	11	20.5 CH ₃	20.4 CH ₃
NH	9.75 (brs)	9.39 (brs, 1H)	12	25.5 CH ₃	25.7 CH ₃
N-CH ₃	2.96 (d, 3.7)	2.93 (d, 5.1 Hz, 5H)	N-CH ₃	45.3 CH ₃	45.7 CH_3
	Impurity:	3.94 (brs)			

¹⁰ N. F. Langille, J. S. Panek, Org. Lett. 2004, 6, 3203-3206.

¹¹ L. Chen, Y. Fang, X. Luo, H. He, T. Zhu, H. Liu, Q. Gu, W. Zhu, J. Nat. Prod. 2006, 69, 1787-1789.

Supporting information 2 Please note: the peak in ¹³C around 156 ppm is an artefact. (2E,4E)-ethyl nona-2 4-dieporte (17E) (2E,4E)-ethyl nona-2,4-dienoate (17b)

(2E,4E)-ethyl 7-phenylhepta-2,4-dienoate (17e)

(2E,4E)-ethyl 6-(tert-butyldiphenylsilyloxy)hexa-2,4-dienoate (17f)

(2E,4E)-ethyl 6-(benzyloxy)hexa-2,4-dienoate (17g)

(2E,4E)-S-ethyl hepta-2,4-dienethioate (22)

Stereoselectivity

For ee: 96%

(-)-(*E*)-ethyl 5-methylnon-3-enoate (**15a**)

(-)-(*E*)-ethyl 5-methylnona-3,8-dienoate (**15b**)

(-)-(*E*)-ethyl 5,6-dimethylhept-3-enoate (**15c**)

(-)-(*E*)-ethyl 5-ethylnon-3-enoate (**18a**)

(+)-(*E*)-ethyl 5-ethylnon-3-enoate (**18a**)

(-)-(*E*)-ethyl 5-ethyl-6-methylhept-3-enoate (β , γ - **18c**) and (-)-(*E*)-ethyl 5-ethyl-6-methylhept-2-enoate (α , β -**19c**)

ee α,β-: 83%; ee β,γ-: 77%

(+)-(*E*)-ethyl 5-ethyl-7-methyloct-3-enoate (18d)

(+)-(*E*)-ethyl 5-ethyl-7-phenylhept-3-enoate (**18e**)

Regioselectivity:

Stereoselectivity:

(-)-(*E*)-ethyl 5-[(*tert*-butyldiphenylsilyloxy)methyl]hept-3-enoate (**18f**)

for ee: 76%

(-)-(E)-ethyl 5-(benzyloxymethyl)hept-3-enoate (18g)

(S)-(+)-(E)-S-ethyl 5-methylhept-3-enethioate (23)

Regioselectivity

Stereoselectivity

(R)-(-)-(E)-ethyl <u>5</u>,9-dimethyldeca-3,8-dienoate (**24**)

(*R*)-(-)-(*E*)-5,9-dimethyldeca-3,8-dien-1-ol (**25**)

(*R*)-(-)-Trimethylammonium (*E*)-5,9-dimethyldeca-3,8-dienyl sulphate (**26**)

