

Supporting Information

© Wiley-VCH 2008

69451 Weinheim, Germany

From Disulfide- to Thioether-linked Glycoproteins

Gonçalo J. L. Bernardes, Elizabeth J. Grayson, Sam Thompson, Justin M. Chalker, James C. Errey, Farid El Oualid, Timothy D. W. Claridge, Benjamin G. Davis*

Chemistry Research Laboratory, Dept. of Chemistry, University of Oxford Mansfield Road, OX1 3TA Oxford, UK <u>Ben.Davis@chem.ox.ac.uk</u>

	Page
Scheme S1	S2
Scheme S2	S2
Scheme S3	S2
General procedures	S3
<i>p</i> -Nitrophenyl 2,3,4,6-tetra- <i>O</i> -benzyl-1-thio- α -D-glucopyranoside 2	S5
General procedure for desulfurization reaction	S5
<i>N</i> -Acetyl-DL-cysteine- <i>S</i> -(2,3,4,6-tetra- <i>O</i> -benzyl- β -D-glucopyaranoside) methyl ester 4	S6
<i>N</i> -Acetyl-DL-cysteine- <i>S</i> -(2,3,4-tri- <i>O</i> -benzyl-1-thio- α -L-fucopyranoside) methyl ester 6	S7
N-Acetyl-DL-cysteine-S-(2,3,4,6-tetra-O-acetyl-β-D-glucopyaranoside) methyl ester 8	S8
N-Acetyl-DL-cysteinamide-S-(2.3.4.6-tetra-O-acetyl-B-D-glucopyaranoside) 10	S9
N-Acetyl-DL-cysteine-S-(2.3.4.6-tetra-O-acetyl-B-D-galactopyaranoside) methyl ester 12	S10
N-Acetyl-Di-cysteine-S-(3.4.6-tetra-O-acetyl-2-acetamido-2-deoxy-8-D-olucopyaranoside)	0.0
methyl ester 14	S11
N-Acetyl-Di-cysteine-S-(B-D-alucopyranoside) methyl ester 16	S12
N-Acetyl-pi -cysteine-S-(2-acetamido-2-deoxy-B-p-dicopyranoside) methyl ester 18	<u>\$12</u>
N_{A} cetyl DL cystaine S (2.3.4.6-tetra- Ω -acetyl β D glucopyranoside). Ω -tert-butyl -	012
serine-alvoine ethyl ester 20	S13
N-Acetyl-DL-cysteine-S-(2.3.4.6-tetra-Q-acetyl-B-D-galactonyaranoside)-glycine-Q-tert-	
hutyl-Lesering-glycing athyl aster 22	S14
Protein modification experiments	S16
Preparation of Sodium phenylthiosulfonate (Na-PTS) 26	S20
Synthesis of Macatula costeine-methyl ester 27	<u> </u>
Synthesis of N-Acetyl-L-cysteine (2.3.4.6-tetra-O-benzyl-1-dithio-B-D-gluconvarance)	020
disulfide) methyl ester 3	S21
Synthesis of N-Acetyl-i-cysteine (2.3.4-tri-O-benzyl-1-dithio-q-i-fucopyranosyl disulfide)	
methyl ester 5	S25
Synthesis of N-Acetyl-L-cysteine (2.3.4.6-tetra-O-acetyl-1-dithio-B-D-dlucopyaranosyl	
disulfide) methyl ester 7	S29
Synthesis of N-Acetyl-L-cysteinamide 43	S32
Synthesis of N-Acetyl-L-cysteinamide (2,3,4,6-tetra-O-acetyl-1-dithio-β-D-glucopyaranosyl	000
disulfide) 9	532
Synthesis of N-Acetyl-L-cysteine (2,3,4,6-tetra-O-acetyl-1-dithio-β-D-galactopyaranosyl	004
disulfide) methyl ester 11	534
Synthesis of <i>N</i> -Acetyl-L-cysteine (3,4,6-tetra- <i>O</i> -acetyl-2-acetamido-2-deoxy-1-dithio-β-D-	607
glucopyaranosyl disulfide) methyl ester 13	337
Synthesis of <i>N</i> -Acetyl-L-cysteine (1-dithio- β -D-glucopyranosyl disulfide) methyl ester 15	S41
<i>N</i> -Acetyl-L-cysteine (2-acetamido-2-deoxy-1-dithio- β -D-glucopyranosyl disulfide) methyl	044
ester 17	544
General procedures for peptide synthesis	S46
Synthesis of Ac-Cys-Ser(<i>t</i> Bu)-Gly-OEt 58	S47
Synthesis of Ac-Cys-Gly-Thr(<i>t</i> Bu)-Gly-OEt 63	S50
Synthesis of <i>N</i> -Acetyl-L-cysteine-(2,3,4,6-tetra- <i>O</i> -acetyl-1-dithio-β-D-glucopyaranosyl	S54
disultide)- <i>U-tert</i> -butyl-L-serine-glycine ethyl ester 19	
Synthesis of N-Acetyl-L-cysteine-(2,3,4,6-tetra-O-acetyl-1-dithio-β-D-galactopyaranosyl)-	S55
glycine- <i>O-tert</i> -butyl-L-threonine-glycine ethyl ester 21	05-
Mechanistic studies on desulfurization reaction	557
Hererences	565
Spectral data for all new compounds	S66

Table of Contents

Scheme S1. S δ -attack followed by thio-mitsunobu mechanism.

Scheme S2. S γ -attack followed by thio-mitsunobu mechanism.

Scheme S3. Sy-attack followed by elimination-conjugate addition mechanism.

General procedures

Melting points were recorded on a Kofler hot block and are uncorrected. Proton nuclear magnetic resonance (δ_{H}) spectra were recorded on a Bruker AV400 (400 MHz), or by Dr. B. Odell or Dr. T. Claridge on a Bruker AVII500 (500 MHz) spectrometer. Carbon nuclear magnetic resonance (δ_{C}) spectra were recorded on a Bruker AV400 (100.7 MHz) spectrometer or by Dr. B. Odell or Dr. T. Claridge on a Bruker AVII500 (125.8 MHz) spectrometer. Spectra were fully assigned using COSY and HMQC; multiplicities were assigned using DEPT 135. All chemical shifts are quoted on the δ scale in ppm using residual solvent as the internal standard (1H NMR: CDCl₃ = 7.26, CD₃OD = 4.87; ¹³C NMR: CDCl₃ = 77.0; CD₃OD = 49.0; D₂O = 4.80). The following splitting abbreviations were used: s = singlet, d = doublet, t = triplet, q = quartet, a = apparent.

Infrared spectra were recorded on a Bruker Tensor 27 Fourier Transform spectrophotometer using thin films on NaCl plates for oils and KBr discs for solids and crystals. Absorption maxima (v_{max}) are reported in wavenumbers (cm⁻¹) and classified as strong (s) or broad (br). Only signals representing functional groups are reported; C-H absorptions as well as the fingerprint region are not listed.

Low resolution mass spectra were recorded on a Micromass Platform 1 spectrometer using electrospray ionization (ESI) or by Mr. Robin Proctor using a Walters 2790-Micromass LCT electrospray ionization mass spectrometer. High resolution mass spectra were recorded by Mr. Robin Proctor on a Walters 2790-Micromass LCT electrospray ionization mass spectrometer. m/z values are reported in Daltons.

Optical rotations were measured on a Perkin-Elmer 241 polarimeter with a path length of 1 dm and are reported with implied units of 10^{-1} deg cm² g⁻¹. Concentrations (c) are given in g/100 ml.

Thin layer chromatography (TLC) was carried out using Merck aluminium backed sheets coated with $60F_{254}$ silica gel. Visualization of the silica plates was achieved using a UV lamp ($\lambda_{max} = 254$ nm), and/or ammonium molybdate (5% in 2M H₂SO₄), or potassium permanganate (5% in 1M NaOH). Flash column chromatography was carried out using BDH PROLAB[®] 40-63 mm silica gel (VWR).

Anhydrous solvents were purchased from Fluka or Acros except dichloromethane which was distilled over calcium hydride. All other solvents were used as supplied (Analytical or HPLC grade), without prior purification. Distilled water was used for chemical reactions and Milli-Q water for protein modifications. Reagents were purchased from Aldrich and used as supplied. 'Petrol' refers to the fraction of light petroleum ether boiling in the range 40-60 °C. All reactions using anhydrous conditions were performed using flame-dried apparatus under an atmosphere of argon or nitrogen.

Protein Mass Spectrometry: Liquid chromatography-mass spectrometry (LC-MS) was performed on a Micromass LCT (ESI-TOF-MS) coupled to a Waters Alliance 2790 HPLC using a Phenomenex Jupiter C4 column (250 x 4.6 mm x 5 μ m). Water:acetonitrile, 95:5 (solvent A) and acetonitrile (solvent B), each containing 0.1% formic acid, were used as the mobile phase at a flow rate of 1.0 mL min⁻¹. The gradient was programmed as follows: 95% A (5 min isocratic) to 100% B after 15 min then isocratic for 5 min. The electrospray source of LCT was operated with a capillary voltage of 3.2 kV and a cone voltage of 25 V. Nitrogen was used as the nebulizer and desolvation gas at a total flow of 600 l hr⁻¹. Spectra were calibrated using a calibration curve constructed from a minimum of 17 matched peaks from the multiply charged ion series of equine myoglobin, which was also obtained at a cone voltage of 25V. Total mass spectra were reconstructed from the ion series using the MaxEnt algorithm preinstalled on MassLynx software (v. 4.0 from Waters) according to manufacturer's instructions.

p-Nitrophenyl 2,3,4,6-tetra-*O*-benzyl-1-thio-α-D-glucopyranoside 2

Tributylphosphine (51 µl, 0.206 mmol) was added to a stirred solution of *p*-nitrophenyl 2,3,4,6-tetra-O-benzyl- β -D-glucopyranosyl disulfide¹ **1** (73 mg, 0.103 mmol) in anhydrous dichloromethane (2 ml) under an atmosphere of argon. The reaction mixture instantly became a dark orange red, but the colour faded rapidly to very pale yellow within 15 min. After 1 h, t.l.c. (petrol:ethyl acetate, 8:2) showed formation of a major product (R_f 0.4). The reaction mixture was concentrated *in vacuo* and the resulting residue purified by flash column chromatography (petrol:ethyl acetate, 9:1) to afford pnitrophenyl 2,3,4,6-tetra-O-benzyl-1-thio- α -D-glucopyranoside 2 (52 mg, 74%) as a pale yellow solid; $[\alpha]_D^{25}$ +184 (c, 1 in CHCl₃); υ_{max} (KBr disc) no significant peaks; δ_H (400 MHz, CDCl₃) 3.58 (1H, dd, J_{5.6} 1.8 Hz, J_{6.6} 10.7 Hz, H-6), 3.69-3.76 (2H, m, H-4, H-6'), 3.90 (1H, at, J 9.1 Hz, H-3), 3.98 (1H, dd, J_{1,2} 5.3 Hz, J_{2,3} 9.6 Hz, H-2), 4.17 (1H, ddd, J_{4.5} 10.0 Hz, J_{5.6} 1.8 Hz, J_{5.6}, 3.6 Hz, H-5), 4.42, 4.58 (2H, ABq, J_{A.B} 11.9 Hz, OCH₂Ph), 4.50, 5.00 (2H, ABq, J_{A,B} 10.7 Hz, OCH₂Ph), 4.74 (2H, s, OCH₂Ph), 4.83, 4.87 (2H, ABq, J_{AB} 9.6 Hz, OCH₂Ph), 5.80 (1H, d, J_{1.2} 5.3 Hz, H-1), 7.14-7.38 (20H, m, Ar-H), 7.56 (2H, d, J 8.8 Hz, o-PhNO₂), 8.08 (2H, d, J 8.8 Hz, p-PhNO₂); $\delta_{\rm C}$ (100.7 MHz, CDCl₃) 68.3 (t, C-6), 71.7 (d, C-5), 73.0, 73.5, 75.2, 75.9 (4 x t, 4 x OCH₂Ph), 77.1 (d, C-4), 79.4 (d, C-2), 82.4 (d, C-3), 85.3 (d, C-1), 123.8, 127.8, 127.9, 128.0, 128.1, 128.4, 128.5, 128.6, 129.1 (9 x d, 24 x Ar-C), 137.3, 137.6, 137.9, 138.4, 144.9, 145.9 (6 x s, 6 x Ar-C); *m/z* (ES⁺) 700 (MNa⁺, 100%); HRMS (ES⁺) Calcd. for C₄₀H₃₉NNaO₇S (MNa⁺) 700.2340. Found: 700.2339; Found: C, 72.44%; H, 5.68%, N, 2.09%. C₄₀H₃₉NO₇S requires: C, 71.88%; H, 5.80%; N, 2.07%.

A) General procedure for desulfurization reaction

Typically, the disulfide-linked glycoaminoacid/glycopeptide was dissolved in degassed anhydrous methanol (1 mL for a 50 mg scale reaction). The phosphine reagent (2.0-2.2 equivalents) was added *via* microsyringe, and the resulting solution stirred under an atmosphere of argon. After t.l.c. (petrol:ethyl acetate) showed complete consumption of starting material and formation of a major product, the reaction mixture was concentrated *in vacuo* and the resulting residue purified by flash column chromatography.

N-Acetyl-DL-cysteine-*S*-(2,3,4,6-tetra-*O*-benzyl-β-D-glucopyaranoside) methyl ester 4

Using the general procedure, *N*-acetyl-DL-cysteine-*S*-(2,3,4,6-tetra-*O*-benzyl- β -Dglucopyaranoside) methyl ester 4 was prepared as a thin film being a mixture of epimers (D:L, 1:1) on a 0.068 mmol (substrate) scale; Yield: 73%; Rf 0.4 (petrol:ethyl acetate, 1:1); [α]_D¹⁸ -13.6 (c, 0.5 in CHCl₃); υ_{max} (thin film) 3361 (br, NH) 1744 (s, C=O) 1661 (s, C=O) cm⁻¹; δ_H (500 MHz, CDCl₃) 1.84, 1.87 (6H, 2 x s, HNC(O)CH₃D, HNC(O)C<u>H</u>₃L), 3.10, 3.14 (2H, 2 x dd, J_{CH,H'} 14.6 Hz, J_{CH,αH} 7.2 Hz, C<u>H</u>,H'D, C<u>H</u>,H'L), 3.22, 3.23 (2H, dd, J_{CH,H'} 14.6 Hz, J_{CH',αH} 4.2 Hz, CH,<u>H</u>'D, CH,<u>H</u>'L), 3.25-3.29 (2H, m, H-5D, H-5L), 3.32, 3.36 (2H, 2 x at, J 9.1 Hz, H-2D, H-2L), 3.40-3.49 (2H, m, H-4D, H-4L), 3.66-3.68 (2H, 2 x at, J 8.6 Hz, H-3D, H-3L), 3.70-3.77 (4H, m, H-6D, H-6L, H-6'D, H-6'L), 3.75, 3.78 (6H, 2 x s, OCH₃D, OCH₃L), 4.38, 4.40 (2H, 2 x d, J_{1.2} 9.8 Hz, H-1D, H-1L), 4.49-4.99 (18H, m, 4 x OCH₂PhD, 4 x OCH₂PhL, αHD, αHL) 6.85, 6.95 (2H, 2 x d, J_{NH,oH} 7.9 Hz, <u>H</u>NC(O)CH₃D, <u>H</u>NC(O)CH₃L), 7.15-7.36 (40H, m, 20 x Ar-HD, 20 x Ar-HL); δ_C (125.8 MHz, CDCl₃) 22.5, 22.6 (2 x q, HNC(O)CH₃D, HNC(O)CH₃L), 32.8, 34.6 (2 x t, CH,H'D, CH,H'L), 52.4, 52.5 (2 x d, aCD, aCL), 52.6, 52.9 (2 x q, OCH₃D, OCH₃L), 68.7, 69.7 (2 x t, C-6D, C-6L), 73.6, 73.7, 75.1, 75.2, 75.5, 75.6, 75.7, 75.8 (8 x t, 4 x OCH₂PhD, 4 x OCH₂PhL), 77.5, 77.7 (2 x d, C-4D, C-4L), 78.5, 78.8 (2 x d, C-2D, C-2L), 81.0, 81.7 (2 x d, C-5D, C-5L), 85.6, 86.1 (2 x d, C-1D, C-1L), 86.4, 86.5 (2 x d, C-3D, C-3L), 127.6, 127.7, 127.8, 127.9, 128.0, 128.1, 128.2, 128.3, 128.4, 128.5 (10 x d, 20 x Ar-CD, 20 x Ar-CL), 137.3, 137.5, 137.6, 137.7, 137.8, 138.2, 138.3 (7 x s, 4 x Ar-CD, 4 x Ar-CL), 170.2, 170.3, 170.5, 170.9 (4 x s, HNC(O)CH₃D, HN<u>C</u>(O)CH₃L, <u>C</u>O₂CH₃D, <u>C</u>O₂CH₃L); *m/z* (ES⁺) 758 (MMeCNNH₄⁺, 100%); HRMS (ES⁺) Calcd. for C₄₀H₄₅NNaO₈S (MNa⁺) 722.2758. Found: 722.2759.

N-Acetyl-DL-cysteine-*S*-(2,3,4-tri-*O*-benzyl-1-thio-α-L-fucopyranoside) methyl ester 6

Using the general procedure, *N*-acetyl-DL-cysteine-*S*-(2,3,4-tri-*O*-benzyl-1-thio- α -Lfucopyranoside) methyl ester 6 was prepared as a colourless oil being a mixture of epimers (D:L, 1:1) on a 0.048 mmol (substrate) scale; Yield: 61%; Rf 0.4 (ethyl acetate); $[\alpha]_{D}^{22}$ -4.3 (c, 0.5 in CHCl₃); v_{max} (thin film) 3299 (br, NH) 1746 (s, C=O) 1654 (s, C=O) cm⁻¹; δ_H (500 MHz, CDCl₃) δ_H (500 MHz, CDCl₃) 1.14 (1H, d, *J* 6.5 Hz, CH₃D), 1.22 (1H, d, J 6.4 Hz, CH₃L), 1.97 (3H, s, HNC(O)CH₃D), 1.98 (3H, s, HNC(O)CH₃L), 2.77 (1H, dd, $J_{CH,H'}$ 14.5 Hz, $J_{CH,\alpha H}$ 3.3 Hz, CH,H'D), 2.85 (1H, dd, $J_{CH,H'}$ 14.0 Hz, J_{CH.αH} 5.7 Hz, C<u>H</u>,H'L), 3.07 (1H, dd, J_{CH.H'} 13.8 Hz, J_{CH'.αH} 4.3 Hz, CH,<u>H'</u>L), 3.29 (1H, dd, J_{CH,H'} 14.7 Hz, J_{CH',αH} 4.7 Hz, CH,<u>H</u>'D), 3.63-3.67 (2H, m, H-3D, H-4D), 3.74-3.79 (2H, m, H-3L, H-4L), 3.76, 3.77 (6H, 2 x s, OCH₃D, OCH₃L), 4.07 (1H, q, J 6.5 Hz, H-5D), 4.15 (1H, q, J 6.5 Hz, H-5L), 4.28 (2H, dd, J_{1.2} 5.7 Hz, J_{2.3} 9.9 Hz, H-2D, H-2L), 4.64-4.99 (14H, m, 3 x OCH₂PhD, 3 x OCH₂PhL, αHD, αHL), 5.21 (1H, d, J_{1.2} 5.6 Hz, H-1D), 5.48 (1H, d, J_{1,2} 5.4 Hz, H-1L), 6.21 (1H, br d, J_{NH,αH} 7.8 Hz, <u>H</u>NC(O)CH₃D), 7.07 (1H, br d, J_{NH,aH} 9.0 Hz, <u>H</u>NC(O)CH₃L), 7.29-7.40 (30H, m, 15 x Ar-HD, 15 x Ar-HL); δ_C (125.8 MHz, CDCl₃) 14.1, 16.5 (2 x q, CH₃D, CH₃L), 22.7, 23.1 (2 x q, HNC(O)CH₃D, HNC(O)<u>C</u>H₃L), 35.0, 37.3 (2 x t, CH,H'D, CH,H'L), 52.1, 52.2 (2 x d, αCD, αCL), 52.5, 52.7 (2 x q, OCH₃D, OCH₃L), 67.8, 68.0 (2 x d, C-5D, C-5L), 72.6, 72.8, 73.5 (3 x t, 3 x OCH₂PhD, 3 x OCH₂PhL), 75.0, 75.9 (2 x d, C-2D, C-2L), 76.0, 76.7, 76.9, 77.2 (4 x d, C-3D, C-3L, C-4D, C-4L), 86.5 (d, C-1D, C-1L), 127.4, 127.5, 127.6, 127.7, 127.8, 127.9, 128.0, 128.2, 128.3, 128.4, 128.5, 128.6 (12 x d, 15 x Ar-CD, 15 x Ar-CL), 138.2, 138.6 (2 x s, 3 x Ar-CD, 3 x Ar-CL), 169.9, 170.0, 170.9 (3 x s, <u>C</u>OOCH₃D, <u>C</u>OOCH₃L, HNCOCH₃D, HNCOCH₃L); m/z (ES⁺) 615 (MNa⁺, 100%); HRMS (ES⁺) Calcd. for C₃₃H₃₉NNaO₇S (MNa⁺) 616.2339. Found: 616.2340.

N-Acetyl-DL-cysteine-*S*-(2,3,4,6-tetra-*O*-acetyl-β-D-glucopyaranoside) methyl ester 8

general procedure, *N*-acetyl-DL-cysteine-*S*-(2,3,4,6-tetra-*O*-acetyl-β-D-Usina the glucopyaranoside) methyl ester 8 was prepared as a colourless oil being a mixture of epimers (D:L, 1:1) on a 0.093 mmol (substrate) scale; Yield: 72%; Rf 0.3 (petrol:ethyl acetate, 1:4); $[\alpha]_D^{18}$ +4.0 (c, 0.75 in CHCl₃); υ_{max} (thin film) 3383 (br, NH) 1750 (s, C=O) 1668 (s, C=O) cm⁻¹; δ_H (500 MHz, CDCl₃) 2.01, 2.02, 2.03, 2.04, 2.06, 2.07, 2.08, 2.11, 2.13 (30H, 9 x s, 4 x C(O)CH₃D, 4 x C(O)CH₃L, HNC(O)CH₃D, HNC(O)CH₃L), 3.05, 3.08 (2H, 2 x dd, J_{CH,H'} 14.2 Hz, J_{CH,αH} 5.7 Hz, C<u>H</u>,H'D, C<u>H</u>,H'L), 3.20, 3.23 (2H, dd, J_{CH,H} 14.1 Hz, J_{CH',αH} 3.3 Hz, CH,<u>H</u>'D, CH,<u>H</u>'L), 3.70-3.75 (2H, m, H-5D, H-5L), 3.77, 3.78 (6H, 2 x s, OCH₃D, OCH₃L), 4.17, 4.20 (2H, 2 x dd, J_{5.6} 2.1 Hz, J_{6.6}, 12.4 Hz, H-6D, H-6L), 4.24, 4.26 (2H, 2 x dd, J_{5,6'} 5.4 Hz, J_{6,6'} 12.4 Hz, H-6'D, H-6'L), 4.49, 4.53 (2H, 2 x d, J_{1.2} 10.1 Hz, H-1D, H-1L), 4.78-4.84 (2H, m, αHD, αHL), 4.98, 4.99 (2H, 2 x at, J 9.7 Hz, H-2D, H-2L), 5.04, 5.08 (2H, 2 x at, J 9.5 Hz, H-4D, H-4L), 5.20, 5.23 (2H, 2 x at, J 9.4 Hz, H-3D, H-3L), 6.46, 6.53 (2H, 2 x d, J_{NH,oH} 7.4 Hz, <u>H</u>NC(O)CH₃D, <u>HNC(O)CH₃L);</u> δ_C (125.8 MHz, CDCl₃) 20.6, 20.7 (2 x q, 4 x C(O)<u>C</u>H₃D, 4 x C(O)<u>C</u>H₃L), 22.9 (q, HNC(O)CH₃D, HNC(O)CH₃L), 31.7, 32.4 (2 x t, CH,H'D, CH,H'L), 51.8, 52.2 (2 x d, αCD, αCL), 52.7, 52.8 (2 x q, OCH₃D, OCH₃L), 61.8, 62.1 (2 x t, C-6D, C-6L), 68.0, 68.1 (2 x d, C-4D, C-4L), 69.7, 69.9 (2 x d, C-2D, C-2L), 73.5 (d, C-3D, C-3L), 76.0, 76.1 (2 x d, C-5D, C-5L), 83.3, 83.7 (2 x d, C-1D, C-1L), 169.3, 169.4, 169.5, 169.6, 169.8, 169.9, 170.0, 170.1, 170.6, 170.7, 170.8, 170.9 (12 x s, 4 x <u>C(O)CH₃D</u>, 4 x $\underline{C}(O)CH_{3}L$, $HN\underline{C}(O)CH_{3}D$, $HN\underline{C}(O)CH_{3}L$, $\underline{C}O_{2}CH_{3}D$, $\underline{C}O_{2}CH_{3}L$); m/z (ES⁺) 566 (MMeCNNH₄⁺, 100%); HRMS (ES⁺) Calcd. for $C_{20}H_{29}NNaO_{12}S$ (MNa⁺) 530.1303. Found: 530.1296.

N-Acetyl-DL-cysteinamide-S-(2,3,4,6-tetra-O-acetyl-β-D-glucopyaranoside) 10

Using the general procedure, N-acetyl-DL-cysteinamide-S-(2,3,4,6-tetra-O-acetyl- β -Dglucopyaranoside) 10 was prepared as a colourless oil being a mixture of epimers (D:L, 1:1) on a 0.067 mmol (substrate) scale; Yield: 75%; Rf 0.3 (ethyl acetate:methanol, 95:5); [α]_D²⁵ -1.6 (c, 0.5 in CHCl₃); υ_{max} (KBr disc) 3057 (br, NH NH₂) 1752 (s, C=O) 1643 (s, C=O) cm⁻¹; δ_H (500 MHz, CDCl₃) 2.01, 2.03, 2.04, 2.05, 2.06. 2.07, 2.08, 2.09, 2.10, 2.11 (30H, 10 x s, 4 x C(O)CH₃D, 4 x C(O)CH₃L, HNC(O)CH₃D, HNC(O)CH₃L), 2.69 (1H, dd, J_{CH,H'} 14.2 Hz, J_{CH,αH} 7.4 Hz, C<u>H</u>,H'D), 2.79 (1H, dd, J_{CH,H'} 14.2 Hz, J_{CH,αH} 9.0 Hz, C<u>H</u>,H'L), 3.16 (1H, dd, J_{CH,H'} 14.2 Hz, J_{CH',αH} 4.4 Hz, CH,<u>H'</u>L), 3.34 (1H, dd, J_{CH.H}, 14.3 Hz, J_{CH.aH} 5.3 Hz, CH,<u>H</u>'D), 3.76-3.83 (1H, m, H-5D), 3.88 (1H, ddd, J_{4.5} 10.1 Hz, J_{5.6} 5.2 Hz, J_{5.6}, 2.0 Hz, H-5L), 4.12 (1H, dd, J_{5.6} 5.3 Hz, J_{6.6}, 12.4 Hz, H-6L), 4.22 (1H, dd, J_{5,6} 4.4 Hz, J_{6,6'} 12.5 Hz, H-6D), 4.29 (1H, dd, J_{5,6} 2.1 Hz, J_{6,6'} 12.5 Hz, H-6'D), 4.37 (1H, dd, J_{5.6'} 2.0 Hz, J_{6.6'} 12.4 Hz, H-6'L), 4.59 (1H, d, J_{1.2} 9.9 Hz, H-1D), 4.62-4.67 (1H, m, αHD), 4.76-4.80 (1H, m, αHL), 4.77 (1H, d, J_{1.2} 10.3 Hz, H-1L), 4.99 (1H, at, J 9.8 Hz, H-2L), 5.07 (1H, at, J 9.8 Hz, H-2D), 5.13 (1H, at, J 9.7 Hz, H-4L), 5.18 (1H, at, J 9.7 Hz, H-4D), 5.26, 5.27 (2H, 2 x at, J 9.3 Hz, H-3D, H-3L), 6.54, 6.63 (2H, 2 x d, J_{NH,αH} 7.4 Hz, <u>H</u>NC(O)CH₃D, <u>H</u>NC(O)CH₃L); δ_C (125.8 MHz, CDCl₃) 20.5, 20.6, 20.7, 20.8 (4 x q, 4 x C(O)<u>C</u>H₃D, 4 x C(O)<u>C</u>H₃L), 23.0, 23.1 (2 x q, HNC(O)<u>C</u>H₃D, HNC(O)<u>C</u>H₃L), 31.0, 33.9 (2 x t, CH,H'D, CH,H'L), 52.2, 52.7 (2 x d, αCD, αCL), 61.6, 61.8 (2 x t, C-6D, C-6L), 67.9, 68.1 (2 x d, C-4D, C-4L), 69.2, 69.7 (2 x d, C-2D, C-2L), 73.5, 73.6 (2 x d, C-3D, C-3L), 76.0, 76.5 (2 x d, C-5D, C-5L), 83.1, 85.7 (2 x d, C-1D, C-1L), 169.4, 169.5, 169.6, 170.0, 170.1, 170.2, 170.3, 170.7 (8 x s, 4 x C(O)CH₃D, 4 x <u>C(O)CH₃L</u>, HN<u>C(O)CH₃D</u>, HN<u>C(O)CH₃L</u>), 172.3, 173.9 (2 x s, <u>C</u>ONH₂D, <u>C</u>ONH₂L); m/z (ES⁺) 515 (MNa⁺, 100%); HRMS (ES⁺) Calcd. for C₁₉H₂₈N₂NaO₁₁S (MNa⁺) 515.1306. Found: 515.1304.

N-Acetyl-DL-cysteine-*S*-(2,3,4,6-tetra-*O*-acetyl-β-D-galactopyaranoside) methyl ester 12

Using the general procedure, N-Acetyl-DL-cysteine-S-(2,3,4,6-tetra-O-acetyl- β -Dgalactopyaranoside) methyl ester 12 was prepared as a colourless oil being a mixture of epimers (D:L, 1:1) on a 0.124 mmol (substrate) scale; Yield: 70%; Rf 0.5 (ethyl acetate:methanol, 9:1); v_{max} (thin film) 3366 (br, NH) 1749 (s, C=O) 1664 (s, C=O) cm⁻¹; δ_H (500 MHz, CDCl₃) 1.98, 1.99, 2.05, 2.06, 2.07, 2.08, 2.08, 2.09, 2.16, 2.17 (30H, 10 x s, 4 x C(O)CH₃D, 4 x C(O)CH₃L, HNC(O)CH₃D, HNC(O)CH₃L), 3.04 (1H, dd, *J*_{CH,H'} 14.1 Hz, *J*_{CH,αH} 6.4 Hz, C<u>H</u>,H'D), 3.09 (1H, dd, *J*_{CH,H'} 14.1 Hz, *J*_{CH',αH} 4.4 Hz, CH,<u>H</u>'D), 3.21 (1H, dd, J_{CH,H'} 13.9 Hz, J_{CH,aH} 5.4 Hz, C<u>H</u>,H'L), 3.24 (1H, dd, J_{CH,H} 13.9 Hz, J_{CH,aH} 4.5 Hz, CH,<u>H</u>'L), 3.77, 3.82 (6H, 2 x s, OCH₃D, OCH₃L), 3.96 (2H, at, J 6.5 Hz, H-5D, H-5L), 4.13 (2H, dd, J_{5.6} 2.6 Hz, J_{6.6}, 11.4 Hz, H-6D, H-6L), 4.18 (2H, dd, J_{5,6'} 4.4 Hz, J_{6,6'} 11.4 Hz, H-6'D, H-6'L), 4.49 (2H, 2 x d, J_{1.2} 10.3 Hz, H-1D, H-1L), 4.79-4.85 (2H, m, αHD, αHL), 5.03 (1H, dd, J_{2,3} 10.4 Hz, J_{3,4} 3.4 Hz, H-3D), 5.07 (1H, dd, J_{2.3} 10.4 Hz, J_{3.4} 3.4 Hz, H-3L), 5.18 (1H, at, J 10.0 Hz, H-2D), 5.21 (1H, at, J 10.0 Hz, H-2L), 5.44 (2H, br s, H-4D, H-4L), 6.44 (1H, d, J 7.4 Hz, <u>H</u>NC(O)CH₃D), 6.55 (1H, d, J 7.3 Hz, HNC(O)CH₃L); δ_C (125.8 MHz, CDCl₃) 20.3, 20.5, 20.7, 20.8 (4 x q, 4 x C(O)<u>C</u>H₃D, 4 x C(O)<u>C</u>H₃L), 22.9, 23.0 (2 x q, HNC(O)<u>C</u>H₃D, HNC(O)<u>C</u>H₃L), 31.5, 32.6 (2 x t, CH,H'D, CH,H'L), 51.7, 52.2 (2 x d, αCD, αCL), 52.7, 52.8 (2 x q, OCH₃D, OCH₃L), 61.4, 61.8 (2 x t, C-6D, C-6L), 66.8, 67.1 (2 x d, C-2D, C-2L), 67.2, 67.4 (2 x d, C-4D, C-4L), 71.6, 71.7 (2 x d, C-3D, C-3L), 74.6, 74.9 (2 x d, C-5D, C-5L), 83.6, 84.2 (2 x d, C-1D, C-1L), 169.6, 169.7, 169.8, 169.9, 169.9, 170.0, 170.1, 170.2, 170.3, 170.4, 170.6, 170.9 (12 x s, 4 x C(O)CH₃D, 4 x C(O)CH₃L, HNC(O)CH₃D, HNC(O)CH₃L, \underline{CO}_2CH_3D , \underline{CO}_2CH_3L); m/z (ES⁺) 566 (MMeCNNH₄⁺, 100%); HRMS (ES⁺) Calcd. for C₂₀H₂₉NNaO₁₂S (MNa⁺) 530.1303. Found: 530.1321.

N-Acetyl-DL-cysteine-*S*-(3,4,6-tetra-*O*-acetyl-2-acetamido-2-deoxy- β -D-glucopyaranoside) methyl ester 14

Using the general procedure, N-acetyl-DL-cysteine-S-(3,4,6-tetra-O-acetyl-2-acetamido-2-deoxy- β -D-glucopyaranoside) methyl ester **14** was prepared as a colourless oil being a mixture of epimers (D:L, 6:5) on a 0.082 mmol (substrate) scale; Yield: 73%; Rf 0.3 (ethyl acetate); $[\alpha]_D^{24}$ -15.6 (c, 1 in CHCl₃); v_{max} (thin film) 3386 (br, NH) 1743 (s, C=O) 1656 (s, C=O) cm⁻¹; δ_H (400 MHz, CDCl₃) 1.96, 1.97, 1.98, 2.03, 2.04, 2.06, 2.07, 2.10, 2.11, 2.20 (30H, 10 x s, 3 x C(O)CH₃D, 3 x C(O)CH₃L, 2 x HNC(O)CH₃D, 2 x HNC(O)C<u>H</u>₃L), 3.02 (1H, dd, J_{CH,H} 14.2 Hz, J_{CH,αH} 6.5 Hz, C<u>H</u>,H'D), 3.05 (1H, dd, J_{CH,H'} 14.2 Hz, J_{CH',aH} 4.8 Hz, CH,<u>H</u>'D), 3.21 (1H, dd, J_{CH,H'} 14.2 Hz, J_{CH,aH} 5.7 Hz, CH,H'L), 3.29 (1H, dd, J_{CH,H'} 14.2 Hz, J_{CH',aH} 3.9 Hz, CH,<u>H</u>'L), 3.67-3.73 (2H, m, H-5D, H-5L), 3.76, 3.77 (6H, 2 x s, OCH₃D, OCH₃L), 4.04 (1H, at, J 9.8 Hz, H-2D), 4.06 (1H, at, J 9.8 Hz, H-2L), 4.14 (2H, dd, J_{5.6} 2.2 Hz, J_{6.6}, 12.5 Hz, H-6D, H-6L), 4.24 (2H, dd, J_{5,6'} 4.7 Hz, J_{6,6'} 12.5 Hz, H-6'D, H-6'L), 4.57 (1H, d, J_{1,2} 10.4 Hz, H-1D), 4.59 (1H, d, J_{1.2} 10.0 Hz, H-1L), 4.88-4.94 (2H, m, αHD, αHL), 5.06 (1H, at, J 9.8 Hz, H-4D), 5.10 (1H, at, J 9.8 Hz, H-4D), 5.13 (1H, at, J 9.6 Hz, H-3D), 5.16 (1H, at, J 9.5 Hz, H-3L), 5.71 (1H, d, J_{NH,H-2} 9.4 Hz, <u>H</u>NC(O)CH₃D, H-2D), 5.81 (1H, d, J_{NH,H-2} 9.3 Hz, <u>H</u>NC(O)CH₃L, H-2L), 6.58 (1H, d, J_{NH,αH} 8.1 Hz, <u>H</u>NC(O)CH₃D, αHD), 6.68 (1H, d, J_{NH,αH} 7.3 Hz, <u>H</u>NC(O)CH₃L, αHL); δ_C (125.8 MHz, CDCl₃) 20.5, 20.6, 20.7, 20.8 (4 x q, 3 x C(O)<u>C</u>H₃D, 3 x C(O)<u>C</u>H₃L), 22.9, 23.0, 23.2, 23.3 (4 x q, 2 x HNC(O)<u>C</u>H₃D, 2 x HNC(O)<u>C</u>H₃L), 31.9, 32.2 (2 x t, CH,H'D, CH,H'L), 50.8, 52.2 (2 x d, αCD, αCL), 52.7, 52.8 (2 x q, OCH₃D, OCH₃L), 52.9, 53.5 (2 x d, C-2D, C-2L), 62.0, 62.1 (2 x t, C-6D, C-6L), 67.9, 68.2 (2 x d, C-4D, C-4L), 73.5, 73.8 (2 x d, C-3D, C-3L), 76.1, 76.3 (2 x d, C-5D, C-5L), 84.2, 84.3 (2 x d, C-1D, C-1L), 169.2, 169.3, 169.4, 170.1, 170.4, 170.5, 170.6, 170.7, 170.8, 170.9, 171.0, 171.3 (12 x s, 3 x C(O)CH₃D, 3 x C(O)CH₃L, 2 x HNC(O)CH₃D, 2 x HNC(O)CH₃L, CO₂CH₃D, CO₂CH₃L); m/z (ES⁺) 565 (MMeCNNH₄⁺, 100%). HRMS (ES⁺) Calcd. for C₂₀H₃₀N₂NaO₁₁S (MNa⁺) 529.1463. Found: 529.1462.

N-Acetyl-DL-cysteine-*S*-(β -D-glucopyranoside) methyl ester 16

Using the general procedure, N-acetyl-DL-cysteine-S-(β -D-glucopyranoside) methyl ester 16 was prepared as a white foam being a mixture of epimers (D:L, 1:1) on a 0.064 mmol (substrate) scale; Yield: 68%; Rf 0.3 (ethyl acetate: iso-propanol:water, 5:3:1); $[\alpha]_{D}^{22}$ +0.0 (c, 0.5 in MeOH); υ_{max} (thin film) 3442 (br, NH OH) 1643 (s, C=O) cm⁻¹; δ_H (500 MHz, CD₃OD) 2.03, 2.04 (6H, 2 x s, HNC(O)C<u>H</u>₃D, HNC(O)C<u>H</u>₃L), 2.95 (1H, dd, *J*_{CH,H'} 14.2 Hz, *J*_{CH,αH} 8.1 Hz, C<u>H</u>,H'D), 3.09 (1H, dd, *J*_{CH,H'} 14.3 Hz, *J*_{CH,αH} 8.3 Hz, C<u>H</u>,H'L), 3.20 (1H, dd, J_{CH,H'} 14.5 Hz, J_{CH',αH} 7.8 Hz, CH,<u>H</u>'L), 3.26-3.40 (7H, m, H-2D, H-2L, H-3D, H-3L, H-4D, H-4L, CH,H'D), 3.59-3.66 (2H, m, H-5D, H-5L), 3.69 (1H, dd, J_{5.6} 6.0 Hz, J_{6.6}, 13.0 Hz, H-6D), 3.76 (6H, s, OCH3D, OCH3L), 3.77-3.79 (1H, m, H-6L), 3.83 (1H, dd, J_{5.6'} 2.4 Hz, J_{6.6'} 12.0 Hz, H-6'D), 3.90 (1H, dd, J_{5.6'} 1.7 Hz, J_{6.6'} 12.0 Hz, H-6'L), 4.41 (1H, d, J_{1,2} 9.7 Hz, H-1D), 4.43 (1H, d, J_{1,2} 9.7 Hz, H-1L), 4.69-4.72 (1H, m, αHD), 4.76-4.78 (1H, m, αHL); δ_C (125.8 MHz, CD₃OD) 22.4, 22.5 (2 x q, HNC(O)<u>C</u>H₃D, HNC(O)<u>C</u>H₃L), 31.9, 33.0 (2 x t, CH,H'D, CH,H'L), 52.9, 54.3 (2 x d, αCD, αCL), 54.6, 55.5 (2 x q, OCH₃D, OCH₃L), 62.7, 62.9 (2 x t, C-6D, C-6L), 71.6, 71.8 (2 x d, C-2D, C-2L), 74.2, 74.4 (2 x d, C-5D, C-5L), 78.1, 79.5 (2 x d, C-4D, C-4L), 82.1, 82.3 (2 x d, C-3D, C-3L), 86.8, 87.8 (2 x d, C-1D, C-1L), 172.7, 173.5 (2 x s, HNC(O)CH₃D, HN<u>C</u>(O)CH₃L, <u>C</u>O₂CH₃D, <u>C</u>O₂CH₃L); *m/z* (ES⁺) 362 (MNa⁺, 100%); HRMS (ES⁺) Calcd. for C₁₂H₂₁NNaO₈S (MNa⁺) 362.0880. Found: 362.0870.

N-Acetyl-DL-cysteine-*S*- (2-acetamido-2-deoxy- β -D-glucopyranoside) methyl ester 18

Using the general procedure, *N*-acetyl-DL-cysteine-*S*-(2-acetamido-2-deoxy- β -D-glucopyranoside) methyl ester **18** was prepared as a white amorphous solid being a mixture of epimers (D:L, 1:1) on a 0.072 mmol (substrate) scale; Yield: 74%; R_f 0.3 (ethyl acetate:*iso*-propanol:water, 5:3:1); [α]_D¹⁸ +1.6 (c, 1 in MeOH); υ_{max} (KBr disc) 3413 (br, NH OH) 1735 (s, C=O) 1646 (s, C=O) cm⁻¹; δ_{H} (500 MHz, CD3OD) 1.99,

2.00, 2.04, 2.18 (12H, 4 x s, 2 x HNC(O)C $\underline{H}_{3}D$, 2 x HNC(O)C $\underline{H}_{3}L$), 2.83 (1H, dd, $J_{C\underline{H},H'}$ 14.2 Hz, $J_{CH,\alpha H}$ 9.1 Hz, C \underline{H} ,H'D), 3.07 (1H, dd, $J_{C\underline{H},H'}$ 14.1 Hz, $J_{CH,\alpha H}$ 7.8 Hz, C \underline{H} ,H'L), 3.11 (1H, dd, $J_{CH,\underline{H'}}$ 14.2 Hz, $J_{CH',\alpha H}$ 5.5 Hz, CH, $\underline{H'}L$), 3.33-3.37 (3H, m, CH, $\underline{H'}D$, H-4D), 3.48 (2H, at, *J* 9.0 Hz, H-3D, H-3L), 3.54-3.59 (1H, m, H-5D), 3.74, 3.75 (6H, 2 x s, OCH_{3}D, OCH_{3}L), 3.66-3.76 (4H, m, H-2L, H-5L, H-6D, H-6L), 3.80-3.97 (3H, m, H-2D, H-6'D, H-6'L), 4.52 (1H, d, $J_{1,2}$ 10.3 Hz, H-1D), 4.58 (1H, d, $J_{1,2}$ 10.3 Hz, H-1L), 4.67-4.76 (2H, m, α HD, α HL); δ_{C} (125.8 MHz, CD₃OD) 22.5, 22.6, 23.0, 25.3 (4 x q, 2 x HNC(O) $\underline{C}H_{3}D$, OCH₃L), 54.1, 54.5 (2 x d, α CD, α CL), 55.8, 56.3 (2 x d, C-2D, C-2L), 62.7, 62.8 (2 x t, C-6D, C-6L), 73.0, 73.7 (2 x d, C-4D, C-4L), 77.1, 77.2 (2 x d, C-5D, C-5L), 82.2, 82.4 (2 x d, C-3D, C-3L), 85.3, 86.8 (2 x d, C-1D, C-1L), 172.7, 172.8, 173.5, 173.6, 173.7, 173.8 (6 x s, 2 x HNC(O)CH_{3}D, 2 x HNC(O)CH_{3}L, CO_2CH_{3}D, CO_2CH_{3}L); *m/z* (ES⁺) 403 (MNa⁺, 100%); HRMS (ES⁺) Calcd. for C₁₄H₂₄N₂NaO₈S (MNa⁺) 403.1146. Found: 403.1141.

N-Acetyl-DL-cysteine-*S*-(2,3,4,6-tetra-*O*-acetyl- β -D-glucopyaranoside)-*O*-*tert*-butyl-L-serine-glycine ethyl ester 20

Using the general procedure, *N*-acetyl-DL-cysteine-*S*-(2,3,4,6-tetra-*O*-acetyl-β-D-glucopyaranoside)-*O*-tert-butyl-L-serine-glycine ethyl ester **20** was prepared as a colourless oil being a mixture of epimers (D:L, 1:1) on a 0.066 mmol (substrate) scale; Yield: 73%; R_f 0.6 (petrol:ethyl acetate, 1:4); $[\alpha]_D^{22}$ +0.1 (c, 0.5 in CHCl₃); v_{max} (thin film) 3334 (br, NH) 1751 (s, C=O) 1661 (s, C=O) cm⁻¹; δ_H (500 MHz, CDCl₃) 1.19, 1.22 (18H, 2 x s, C(CH₃)₃D, C(CH₃)₃L), 1.26 (6H, t, *J* 7.2 Hz, OCH₂CH₃D, OCH₂CH₃L), 1.99, 2.01, 2.03, 2.04, 2.05, 2.06, 2.07, 2.08, 2.09, 2.12 (30H, 10 x s, 4 x C(O)CH₃D, 4 x C(O)CH₃L, HNC(O)CH₃D, HNC(O)CH₃L), 2.90 (2H, 2 x dd, *J*_{CH,H'} 14.0 Hz, *J*_{CH,aH} 9.5 Hz, CH,H'cysL), 3.35-3.48 (4H, m, CH,H'serD, CH,H'serL), 3.75-3.80 (1H, m, H-5D), 3.85-3.93 (1H, m, H-5L), 4.01-4.06 (4H, m, 2 x αHglyD, 2 x αHglyL), 4.16-4.26 (6H, m, OCH₂CH₃D, OCH₂CH₃L, H-6D, H-6L), 4.38 (1H, dd, *J*_{5,6'} 2.0 Hz, *J*_{6,6'} 12.6 Hz, H-6'D), 4.41 (1H, dd, *J*_{5,6'} 2.0 Hz, *J*_{6,6'} 12.6 Hz, H-6'L), 4.46-4.56 (2H, m, αHserD,

αHserL), 4.59 (1H, d, J_{1,2} 9.8 Hz, H-1D), 4.77 (1H, d, J_{1,2} 10.2 Hz, H-1L), 4.85-4.88 (2H, m, αHcysD, αHcysL), 5.03 (2H, at, J 9.8 Hz, H-2D, H-2L), 5.11 (1H, at, J 9.7 Hz, H-4D), 5.17 (1H, at, J 9.7 Hz, H-4L), 5.26 (2H, at, J 9.9 Hz, H-3D, H-3L), 6.51 (2H, d, $J_{\text{NH},\alpha\text{H}}$ 7.4 Hz, <u>H</u>NC(O)CH₃cysD, <u>H</u>NC(O)CH₃cysL), 6.65 (2H, d, $J_{\text{NH},\alpha\text{H}}$ 6.9 Hz, HNC(O)CH₃serD, HNC(O)CH₃serL), 7.44 (2H, d, J_{NH,eH} 7.8 Hz, HNC(O)CH₃glyD, <u>H</u>NC(O)CH₃glyL); δ_C (125.8 MHz, CDCl₃) 14.1, 14.2 (2 x q, OCH₂CH₃D, OCH₂CH₃L), 20.5, 20.6, 20.7, 2.08, 21.0 (5 x q, 4 x C(O)CH₃D, 4 x C(O)CH₃L), 22.9, 23.0 (2 x q, HNC(O)<u>C</u>H₃D, HNC(O)<u>C</u>H₃L), 27.3, 27.4 (2 x q, C(<u>C</u>H₃)₃D, C(<u>C</u>H₃)₃L), 34.6 (2 x t, CH,H'cysD, CH,H'cysL), 41.2, 41.4 (2 x t, aCglyD, aCglyL), 52.4, 53.1, 53.4, 54.1 (4 x d, αCcysD, αCcysL, αCserD, αCserL), 60.4, 60.9, 61.1, 61.3, 61.4, 62.3 (6 x t, OCH₂CH₃D, OCH₂CH₃L, C-6D, C-6L, CH,H'serD, CH,H'serL), 67.8, 68.3 (2 x d, C-4D, C-4L), 69.0, 69.7 (2 x d, C-2D, C-2L), 73.6, 74.1 (d, C-3D, C-3L), 76.4, 76.5 (2 x d, C-5D, C-5L), 83.1, 85.6 (2 x d, C-1D, C-1L), 169.0, 169.2, 169.4, 169.5, 169.6, 169.7, 169.8, 169.9, 170.0, 170.1, 170.2, 170.4, 170.9, 171.1 (14 x s, 4 x <u>C</u>(O)CH₃D, 4 x <u>C</u>(O)CH₃L, HN<u>C</u>(O)CH₃D, $HNC(O)CH_{3L}$, $C(O)HN\alpha CserD$, $C(O)HN\alpha CserL$, $C(O)HN\alpha CglyD$, $C(O)HN\alpha CglyL$, CO_2CH_{3D} , CO_2CH_{3L} ; m/z (ES⁺) 780 (MMeCNNH₄⁺, 100%); HRMS (ES⁺) Calcd. for C₃₀H₄₇N₃NaO₁₅S (MNa⁺) 744.2620. Found: 744.2608.

N-Acetyl-DL-cysteine-*S*- (2,3,4,6-tetra-*O*-acetyl- β -D-galactopyaranoside)-glycine-*O*-tert-butyl-L-threonine-glycine ethyl ester 22

Using the general procedure, *N*-acetyl-DL-cysteine-*S*-(2,3,4,6-tetra-*O*-acetyl- β -D-galactopyaranoside)-glycine-*O*-*tert*-butyl-L-threonine-glycine ethyl ester **22** was prepared as a colourless oil being a mixture of epimers (D:L, 1:1) on a 0.057 mmol (substrate) scale; Yield: 67%; R_f 0.5 (DCM:methanol, 9:1); $[\alpha]_D^{18}$ -1.7 (c, 0.5 in CHCl₃); υ_{max} (thin film) 3382 (br, NH) 1725 (s, C=O) 1652 (s, C=O) cm⁻¹; δ_H (500 MHz, CDCl₃) 1.05, 1.07 (6H, 2 x d, *J* 6.5 Hz, CHC<u>H</u>₃thrD, CHC<u>H</u>₃thrL), 1.28-1.54 (24H, m, C(CH₃)₃D, C(CH₃)₃L, OCH₂C<u>H</u>₃D, OCH₂C<u>H</u>₃L), 1.98, 1.99, 2.00, 2.01, 2.05, 2.06, 2.07, 2.09 (24H, 8 x s, 4 x C(O)CH₃D, 4 x C(O)CH₃L), 2.18, 2.22 (6H, 2 x s, HNC(O)C<u>H</u>₃D, HNC(O)C<u>H</u>₃L), 2.87-3.00 (3H, m, C<u>H</u>,H'cysD, C<u>H</u>,H'cysL, CH,<u>H</u>'cysL), 3.13 (1H, dd, *J*_{CH,<u>H'} 14.4 Hz, *J*_{CH',\alphaH} 5.4 Hz, CH,<u>H</u>'cysD), 3.53-4.23 (16H, m, H-5D, H-5L, H-6D, H-6L, H-6'D, H-6'L, OCH₂CH₃D, OCH₂CH₃L, 2 x α HglyD, 2 x α HglyL, C<u>H</u>CH₃thrD, C<u>H</u>CH₃thrL),</sub></u>

4.49 (2H, dd, J 3.6 Hz, J 6.2 Hz, αHthrD, αHthrL), 4.66 (2H, 2 x d, J_{1.2} 10.1 Hz, H-1D, H-1L), 4.77 (1H, dd, J 3.8 Hz, J 6.3 Hz, αHcysD), 4.83 (1H, dd, J 3.6 Hz, J 5.8 Hz, αHcysL), 4.99-5.47 (6H, m, H-2D, H-2L, H-3D, H-3L, H-4D, H-4L), 6.60, 6.97, 7.10, 7.17, 7.37, 7.66 (6H, 6 x d, J 4.2 Hz, J 5.4 Hz, J 5.8 Hz, J 6.7 Hz, J 8.3 Hz, 4 x HNC(O)CH₃D, 4 x <u>H</u>NC(O)CH₃L); δ_C (125.8 MHz, CDCl₃) 14.1, 14.2 (2 x q, OCH₂CH₃D, OCH₂CH₃L), 17.3, 17.4 (2 x q, CH<u>C</u>H₃thrD, CH<u>C</u>H₃thrL), 20.5, 20.6, 20.7, 2.08, 20.9, 21.0 (6 x q, 4 x C(O)<u>C</u>H₃D, 4 x C(O)<u>C</u>H₃L), 22.9, 23.0 (2 x q, HNC(O)<u>C</u>H₃D, HNC(O)<u>C</u>H₃L), 28.1, 28.2 (6 x q, $C(\underline{C}H_3)_{3}D$, $C(\underline{C}H_3)_{3}L$), 41.3, 41.4, 41.5, 41.6, 41.7, 41.8 (6 x t, 2 x CH,H'glyD, 2 x CH,H'glyL, CH,H'cysD, CH,H'cysL), 52.3, 52.7 (2 x d, α CcysD, αCcysL), 57.5, 57.6 (2 x d, αCthrD, αCthrL), 61.4, 61.5 (2 x t, OCH₂CH₃D, OCH₂CH₃L), 62.0, 62.4 (2 x t, C-6D, C-6L), 65.9, 66.1, 66.4, 66.7, 67.2, 67.6 (6 x d, C-2D, C-2L, C-3D, C-3L, C-4D, C-4L), 71.3, 71.6 (2 x s, C(CH₃)₃D, C(CH₃)₃L), 74.9, 75.4 (2 x d, C-5D, C-5L), 75.7, 75.9 (2 x d, <u>C</u>HCH₃thrD, <u>C</u>HCH₃thrL), 83.1, 84.9 (2 x d, C-1D, C-1L), 169.9, 170.1, 170.3, 170.8, 170.9, 172.4, 172.5 (7 x s, 4 x C(O)CH₃D, 4 x C(O)CH₃L, HNC(O)CH₃D, HNC(O)CH₃L); *m/z* (ES⁺) 851 (MMeCNNH₄⁺, 100%); HRMS (ES⁺) Calcd. for C₃₃H₅₂N₄NaO₁₆S (MNa⁺) 815.2991. Found: 815.2990.

Protein Modification

Preparation of SBL-S156C-SS-Glc(OAc)₄ 23

SBL-S156C mutant **25** (2.5 mg) was dissolved in buffer (500 μ L, 70 mM CHES, 5 mM MES, 2 mM CaCl₂, pH 9.5). A solution of 2,3,4,6-tetra-*O*-acetyl- β -D-glucopyranoside phenylthiosulfonate **26** (100 μ L of a 10 mM solution in acetonitrile) was added and placed on an end-over-end rotator. After 30 min, the reaction mixture was purified by size exclusion chromatography Sephadex[®] G25 column against the above buffer. The protein fraction was analysed by LC-mass spectrometry to afford the modified protein **23** (calculated mass, 27078; observed mass, 27075).

Figure S1. ESI-MS spectrum of SBL-S156C-SS-Glc(OAc)₄ 23.

Desulfurization of SBL-S156C-SS-Glc(OAc)₄ 23

To a degassed solution of SBL-S156C-SS-Glc(OAc)₄ **23** (250 μ L of a 2 mg/mL solution in buffer (70 mM CHES, 5 mM MES, 2 mM CaCl₂, pH 9.5)) hexamethylphosphorus triamide was added (6.0 μ L, 2 equivalent). The reaction was placed on an end-over-

end rotator. After 12 h, the reaction mixture was purified by size exclusion chromatography Sephadex[®] G25 column against the above buffer and analysed by LC-mass spectrometry to afford SBL-S156C-S-Glc(OAc)₄ **24** (calculated mass, 27046; observed mass 27044).

Figure S2. ESI-MS spectrum of SBL-S156C-S-Glc(OAc)₄ 24.

To a degassed solution of SBL-S156C-S-Glc(OAc)₄ **24** (80 μ L of a 2 mg/mL solution in buffer (70 mM CHES, 5 mM MES, 2 mM CaCl₂, pH 9.5)) tris(2-carboxyethyl) phosphine (TCEP) (0.4 μ L of a 200 mmol aqueous solution, pH 7.0). The reaction was placed on an end-over-end rotator for 10 min, purified by size exclusion chromatography Sephadex[®] G25 column against the above buffer and analysed by LC-mass spectrometry and the tioether-linked glycoprotein 24 was shown to be stable under reducing conditions (calculated mass, 27044; observed mass 27046).

Figure S3. ESI-MS spectrum of SBL-S156C-S-Glc(OAc)₄ 24 when treated with TCEP.

Treatment of 23 with TCEP

Scheme S7.

To a degassed solution of SBL-S156C-SS-Glc(OAc)₄ **23** (150 μ L of a 2 mg/mL solution in buffer (70 mM CHES, 5 mM MES, 2 mM CaCl₂, pH 9.5)) tris(2-carboxyethyl) phosphine (TCEP) (1 μ L of a 200 mmol aqueous solution, pH 7.0). The reaction was placed on an end-over-end rotator for 10 min, purified by size exclusion chromatography Sephadex[®] G25 column against the above buffer and analysed by LC-mass spectrometry to afford SBL-S156C **25** (calculated mass, 26714; observed mass 26718).

Figure S4. ESI-MS spectrum of SBL-S156C 25, formed from reaction of 23 with TCEP.

Trypsin digestion and MALDI analysis of 24

Thioether protein **24** (20 μ l of 1mg/mL in 100 mM NH₄HCO₃, pH 8.0) was incubated with 1 μ g of trypsin (Promega) overnight at 37 °C. Peptides were extracted and desalted with a C18 ZipTip (Millipore Corp.) according to the manufacturer's specifications. Eluted peptides were mixed 1:1 (v/v) with a solution of α -cyano-4-hydroxycinnamic acid (saturated in 50% MeCN in H₂O with 0.1% TFA). From this mixture, 2 μ l were spotted onto a steel target and analyzed in positive mode on a Waters Micro-Mass MALDI. A three point calibration curve of Angiotensin (1296.5), Renin (1759.0), and ACTH (18-34 clip, 2465.7) was applied to data with ACTH as the lock mass. 8 of 13 predicted peptides of **24** were observed including the peptide containing Cys156Glc(OAc)₄. (2312 calculated, 2312 found).

Peptide Fragment	Calcd.	Observed
(cut predicted after all R and K residues)	Mass	Mass
AQSVPWGISR	1101	1087
VQAPAAHNR	964	967
GLTGSGVK	718	-
VAVLDTGISTHPDLNIR	1822	1849
GGASFVPGEPSTQDGNGHGTHVAGTIAALNNSIGVLGVAPSAELYAVK	4591	-
VLGASGSGSVSSIAQGLEWAGNNGMHVANLSLGSPSPSATLEQAVNSATSR	4927	-
GVLVVAASGN <mark>[CGlc(OAc)₄]</mark> GAGSISYPAR	2313	2312
YANAMAVGATDQNNNR	1711	1719
ASFSQYGAGLDIVAPGVNVQSTYPGSTYASLNGTSMATPHVAGAAALVK	4800	-
QK	275	-
NPSWSNVQIR	1201	1201
NHLK	511	516
NTATSLGSTNLYGSGLVNAEAATR	2370	2386

Disulfide-linked glycoaminoacids and glycopeptides - prepared using glycoPTS² or glycoSeS³ strategy

Preparation of Sodium phenylthiosulfonate (Na-PTS)⁴ 26

Sodium benzenesulfinate (10.0 g, 61 mmol) and elemental sulphur (1.9 g, 61 mmol) was dissolved in anhydrous pyridine (60 mL) to give a yellow solution. The reaction was stirred under argon and after 1 h gave a white suspension. The reaction was filtered and washed with anhydrous diethyl ether. Recrystalisation from anhydrous ethanol afforded sodium phenylthiosulfonate **26** (9.8 g, 83%) as a white crystalline solid; m.p. 282-284 °C (ethanol) [Lit. 287 °C]⁴; δ_H (400 MHz, D₂O) 3.26 (3H, s, CH₃); m/z (ES⁻) 173 (M-Na⁺, 100%).

Synthesis of N-acetyl-L-cysteine-methyl ester⁵ 27

Thionyl chloride (2 mL, 26.99 mmol) was carefully added to a solution of *N*-acetyl-Lcysteine (4 g, 24.54 mmol) in anhydrous methanol, and the resulting mixture was stirred for 3 h at RT. The reaction mixture was concentrated *in vacuo*, diluted with ethyl acetate (75 mL), and washed with sodium hydrogen carbonate (50 mL of a saturated aqueous solution). The aqueous layer was re-extracted with ethyl acetate (2 x 75 mL). The organic layers were combined, dried (MgSO₄), filtered, and concentrated *in vacuo* to afford *N*-acetyl-L-cysteine methyl ester **27** (2.32 g, 54%) as a white crystalline solid; m.p. 78-80 °C (ethyl acetate) [Lit. 79-80 °C (ethyl acetate)]⁵; $[\alpha]_D^{22}$ -23.2 (c, 1 in CD₃OD) [Lit. $[\alpha]_D^{25}$ -24 (c, 1 in MeOH)]⁶; δ_H (400 MHz, CDCl₃) 1.34 (1H, t, *J* 9.0 Hz, SH), 2.08 (3H, s, COCH₃), 3.00-3.04 (2H, m, CH₂), 3.80 (3H, s, CO₂CH₃), 4.88-4.92 (1H, m, α H), 6.40 (1H, br s, NH); *m/z* (ES⁻) 176 (M-H⁺, 100%).

Scheme S8.

Methyl 2,3,4,6-tetra-*O*-benzyl-α-D-glucopyranoside⁷ 29

Methyl a-D-glucopyranoside 28 (25 g, 129 mmol) was dissolved in anhydrous DMF (250 mL), and sodium hydride (60% dispersed in mineral oil) (31 g, 774 mmol) was added portionwise for a period of 10 min at 0 °C. Benzyl bromide (92 mL, 770 mmol) was then added dropwise and the mixture left to stir under an atmosphere of argon at room temperature. After a 24 h period, t.l.c. (petrol:ethyl acetate, 3:1) indicated the formation of a product (R_f 0.4) with complete consumption of the starting material (R_f 0). The reaction mixture was quenched by the slow addition of methanol (150 mL) and stirred for 30 min, at which point the resulting solution was concentrated in vacuo. The residue was dissolved in DCM (800 mL), washed with water (2 x 500 mL), and brine (500 mL), dried (MgSO₄), filtered and concentrated in vacuo. Purification by flash column chromatography (petrol:ethyl acetate, 6:1) afforded methyl 2,3,4,6-tetra-Obenzyl- α -D-glucopyranoside **29** (51.5 g, 72%) as a viscous yellow oil; $[\alpha]_D^{21}$ +19.3 (c, 1 in CHCl₃) [Lit. $[\alpha]_D^{22}$ +21.2 (c, 1 in H₂O)]⁷; δ_H (400 MHz, CDCl₃) 3.39 (3H, s, OCH₃), 3.57 (1H, dd, J_{1,2} 3.6 Hz, J_{2,3} 9.6 Hz, H-2), 3.63 (1H, d, J 9.6 Hz, H-4), 3.64 (1H, dd, J_{5,6} 2.3 Hz, J_{6,6'} 13.1 Hz, H-6), 3.71-3.78 (2H, m, H-5, H-6'), 4.00 (1H, at, J_{2,3} 9.6 Hz, J_{3,4} 9.2 Hz, H-3), 4.48, 4.84 (2H, ABq, J_{A,B} 11.0 Hz, OCH₂Ph), 4.49, 4.68 (2H, ABq, J_{A,B} 12.1 Hz, OCH₂Ph), 4.59, 4.81 (2H, ABq, J_{A,B} 8.9 Hz, OCH₂Ph), 4.64 (1H, d, *J*_{1,2} 3.6 Hz, H-1), 4.91, 4.92 (2H, ABq, *J*_{A,B} 10.9 Hz, OCH₂Ph), 7.13-7.16 (2H, m, Ar-H), 7.27-7.39 (18H, m, Ar-H); *m/z* (ES⁺) 577 (MNa⁺, 50%) 613 (MMeCNNH₄⁺, 100%).

2,3,4,6-Tetra-O-benzyl-D-glucopyranose⁸ 30

Methyl 2,3,4,6-tetra-*O*-benzyl- α -D-glucopyranoside **29** (15.33 g, 27.64 mmol) was dissolved in glacial acetic acid (300 mL). The mixture was heated to 90 °C with stirring, at which point sulfuric acid (2M, 75 mL) was added. After a further 2 h period, sulfuric acid (2M, 75 mL) was added. After 22 h, t.l.c. (petrol:ethyl acetate, 4:1) indicated formation of a major product (R_f 0.4) and complete consumption of starting material (R_f 0.5). Water (200 mL) was added and the reaction mixture cooled to 0 °C, at which point a crystalline solid precipitated. The crystals were filtered off and washed with methanol (80% V/V) affording 2,3,4,6-tetra-O-benzyl-D-glucopyranose **30** (10.25 g, 68%) as a white crystalline solid, being a mixture of anomers (α : β , 1:1); m.p. 148-150 °C (ethyl acetate/petrol) [Lit. 151-152 °C]⁸; $[\alpha]_D^{23}$ +20.7 (c, 1 in CHCl₃) [Lit. $[\alpha]_D^{25}$ +22 (c, 1.0 in CHCl₃)]⁸; $\delta_{\rm H}$ (400 MHz, CDCl₃) 3.42 (1H, dd, $J_{1,2}$ 7.8 Hz, $J_{2,3}$ 9.1 Hz, H-2 β), 3.47-3.74 (8H, m, H-4α, H-6α, H-6'α, H-3β, H-4β, H-5β, H-6β, H-6'β), 3.60 (1H, dd, $J_{1,2}$ 3.7 Hz, $J_{2,3}$ 9.5 Hz, H-2 α), 3.99 (1H, at, $J_{2,3}$ 9.5 Hz, $J_{3,4}$ 9.2 Hz, H-3 α), 4.05 (1H, ddd, J_{4,5} 10.1 Hz, J_{5,6} 3.8 Hz, J_{5,6} 2.1 Hz, H-5a), 4.48-4.97 (16H, m, 4 x OCH₂Pha, 4 x OCH₂Phβ), 4.73 (1H, d, J_{1.2} 7.8 Hz, H-1β), 5.24 (1H, d, J_{1,2} 3.7 Hz, H-1α), 7.15-7.38 (40H, m, 20 x Ar-H α , 20 x Ar-H β).

2,3,4,6-Tetra-*O*-benzyl- α -D-glucopyranose bromide 31

2,3,4,6-Tetra-*O*-benzyl-D-glucopyranose **30** (4.0 g, 7.39 mmol) was dissolved in anhydrous DCM (24 mL) and anhydrous DMF (2 mL). The resulting solution was cooled to 0 °C, at which point oxalyl bromide (16 mL, 2M in DCM, 29.56 mmol) was added dropwise. The reaction mixture was allowed to warm to room temperature and left to stir under an atmosphere of argon. After 2 h, t.l.c. (petrol:ethyl acetate, 1:1) indicated the formation of a major product (R_f 0.6). The reaction was cooled to 0 °C and guenched with ice cold water (60 mL) added over a 5 min period. The mixture was

partitioned between DCM (80 mL) and water. The aqueous layer was re-extracted with DCM (3 x 80 mL), and the combined organic layers were washed with brine (150 mL), dried (MgSO₄), filtered and concentrated *in vacuo* to afford 2,3,4,6-tetra-*O*-benzyl- α -D-glucopyranose bromide **31** (4.20 g, 94%) as a crude yellow oil which was used without any further purification; δ_{H} (400 MHz, CDCl₃) 3.55 (1H, dd, $J_{1,2}$ 3.7 Hz, $J_{2,3}$ 9.2 Hz, H-2), 3.66 (1H, dd, $J_{5,6}$ 1.8 Hz, $J_{5,6'}$ 11.0 Hz, H-6), 3.76-3.80 (1H, m, H-4, H-6'), 4.04 (1H, at, $J_{2,3}$ 9.2 Hz, $J_{3,4}$ 9.2 Hz, H-3), 4.55-5.00 (8H, m, 4 x OCH₂Ph), 6.44 (1H, d, $J_{1,2}$ 3.7 Hz, H-1), 7.14-7.42 (20H, m, Ar-H).

2,3,4,6-Tetra-O-benzyl-β-D-glucopyranosyl phenylthiosulfonate² 32

2,3,4,6-Tetra-*O*-benzyl- α -D-glucopyranose bromide **31** (3.5 g, 5.804 mmol) and sodium phenylthiosulfonate 26 (4.41 g, 22.47 mmol) were dissolved in anhydrous dioxane (90 mL). The resulting reaction mixture was heated to 70 °C under an atmosphere of argon. After a 24 h period, t.l.c. (petrol:ethyl acetate, 2:1) indicated the formation of a major product (R_f 0.5) with complete consumption of the starting material (R_f 0.6). The reaction mixture was cooled to room temperature and filtered. The precipitate was washed with petrol/ethyl acetate and the filtrate concentrated in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate, 4:1) to afford 2,3,4,6-tetra-O-benzyl-D-glucopyranosyl phenylthiosulfonate 32 (3.26 g, 81%) as a white viscous gum being a mixture of anomers (α : β , 1:2). Selective recrystallisation from ethyl acetate/petrol afforded pure 2,3,4,6-tetra-O-benzyl-β-D-glucopyranosyl phenylthiosulfonate **X** as a white crystalline solid; m.p. 106-108 °C (ethyl acetate/petrol) [Lit. 106-108 °C (ethyl acetate/petrol)]²; $[\alpha]_D^{23}$ +47.8 (c, 1 in CHCl₃) [Lit. $[\alpha]_D^{22}$ +21.4 (c, 0.35 in CHCl₃)]²; δ_{H} (400 MHz, CDCl₃) 3.45 (1H, ddd, $J_{4,5}$ 9.6 Hz, $J_{5,6}$ 1.6 Hz, J_{5.6'} 3.6 Hz, H-5), 3.49 (1H, dd, J_{5.6} 1.4 Hz, J_{6.6'} 11.7 Hz, H-6), 3.54 (1H, dd, J_{1.2} 9.9 Hz, J_{2.3} 8.7 Hz, H-2), 3.57 (1H, dd, J_{5.6}, 3.6 Hz, J_{6.6}, 11.6 Hz, H-6'), 3.62 (1H, at, J 9.4 Hz, H-3), 3.72 (1H, at, J 8.8 Hz, H-4), 4.34-4.90 (8H, m, 4 x OCH₂Ph), 5.13 (1H, d, J_{1.2} 10.0 Hz, H-1), 7.09-7.15 (3H, m, Ar-H), 7.27-7.54 (20H, m, Ar-H), 7.90-7.98 (2H, m, Ar-H); *m/z* (ES⁺) 718 (MNa⁺, 20%) 755 (MMeCNNH₄⁺, 100%).

$(2,3,4,6-tetra-O-benzyl-1-dithio-\beta-D-glucopyaranosyl$

2,3,4,6-Tetra-*O*-benzyl-β-D-glucopyranosyl phenylthiosulfonate **32** (1.10 g, 1.581 mmol) and triethylamine (74 μ L, 0.527 mmol) were dissolved in anhydrous DCM (15 mL), and the resulting solution stirred at room temperature under an atmosphere of argon. A solution of N-acetyl-L-cysteine methyl ester 27 (0.15 g, 0.847 mmol) in a mixture of anhydrous DCM (15 mL) and anhydrous methanol (12 mL) was added slowly to the above solution. After a 2 h period, t.l.c. (petrol:ethyl acetate, 1:1) indicated the formation of a product (R_f 0.2) along with complete consumption of the starting material $(R_{f} 0.1)$. The reaction mixture was concentrated *in vacuo* and the resulting residue purified by flash column chromatography (petrol:ethyl acetate, 1:1) to afford N-acetyl-Lcysteine (2,3,4,6-tetra-O-benzyl-1-dithio- β -D-glucopyaranosyl disulfide) methyl ester **3** (0.52 g, 89%) as a white crystalline solid; m.p. 108-110 °C (ethyl acetate/petrol); [α]_D²³ +35.2 (c, 1 in CHCl₃); υ_{max} (KBr disc) 3330 (br, NH) 1740 (s, C=O) 1651 (s, C=O) cm⁻¹; δ_H (400 MHz, CDCl₃) 1.99 (3H, s, HNC(O)C<u>H₃</u>), 3.24 (1H, dd, J_{CH,H} 13.9 Hz, J_{CH,αH} 7.7 Hz, C<u>H</u>,H'), 3.45 (1H, dd, J_{CH,H'} 13.9 Hz, J_{CH',αH} 3.9 Hz, CH,<u>H</u>'), 3.54 (1H, m, H-5), 3.68 (1H, at, J_{1,2} 9.1 Hz, J_{2,3} 9.0 Hz, H-2), 3.69-3.72 (2H, m, H-3, H-4), 3.74 (3H, s, OCH₃), 3.77 (1H, dd, J_{5,6} 1.9 Hz, J_{6,6'} 11.4 Hz, H-6), 3.80 (1H, dd, J_{5,6'} 3.8 Hz, J_{6,6'} 11.4 Hz, H-6'), 4.48 (1H, d, J_{1,2} 9.1 Hz, H-1), 4.52-4.93 (8H, m, 4 x OCH₂Ph), 4.77 (1H, d, J 7.7 Hz, αH), 6.86 (1H, d, J_{NH,αH} 8.0 Hz, <u>H</u>NC(O)CH₃), 7.13-7.16 (2H, m, Ar-H), 7.27-7.35 (18H, m, Ar-H); δ_C (100.7 MHz, CDCl₃) 23.0 (q, HNC(O)CH₃), 41.4 (t, CH,H'), 52.3 (d, αC), 52.6 (q, OCH₃), 68.7 (t, C-6), 73.5, 75.1, 75.5, 75.7 (4 x t, 4 x OCH₂Ph), 78.9, 79.5 (3 x d, C-2, C-4, C-5), 86.4 (d, C-3), 89.9 (d, C-1), 127.7, 127.8, 127.9, 128.0, 128.1, 128.3, 128.4, 128.5, 128.6 (9 x d, 20 x Ar-C), 137.5, 137.6, 137.8, 138.2 (4 x s, 4 x Ar-C), 170.2, 171.0 (2 x s, <u>C</u>OOCH₃, HN<u>C</u>OCH₃); *m/z* (ES⁺) 790 (MMeCNNH₄⁺, 100%); HRMS (ES⁺) Calcd. for $C_{40}H_{45}NNaO_8S_2$ (MNa⁺) 754.2479. Found: 754.2479.; Found: C, 64.78%; H, 6.30%, N, 1.75%. C₄₀H₄₅NO₈S₂ requires: C, 64.64%; H, 6.20%; N, 1.91%.

Synthesis of *N*-Acetyl-L-cysteine (2,3,4-tri-*O*-benzyl-1-dithio- α -L-fucopyranosyl disulfide) methyl ester 5

Scheme S9.

1,2,3,4-Tetra-*O*-acetyl-α-L-fucopyranoside⁹ 34

L-Fucose **33** (2.0 g, 12.2 mmol) was dissolved in pyridine (25 mL) under an atmosphere of argon. Acetic anhydride (25 mL) was added portionwise over 30 min and the mixture was left to stir at room temperature. After 16 h, t.l.c. (petrol:ethyl acetate, 1:1) indicated the formation of a product (R_f 0.4) with complete consumption of starting material (R_f 0). The reaction mixture was co-evaporated with toluene until no pyridine or acetic anhydride remained. The residue was recrystallised (diethyl ether/petrol) to afford 1,2,3,4-tetra-*O*-acetyl- α -L-fucopyranoside **34** (3.3 g, 81%) as a white crystalline solid; m.p. 94-96 °C (diethyl ether/petrol) [Lit. 93 °C (diethyl ether/petrol)]⁹; [α]_D²¹ -105.7 (c, 1 in CHCl₃) [Lit. [α]_D¹⁴ -129.9 (c, 2 in acetone)]⁹; δ_{H} (400 MHz, CDCl₃) 1.16 (3H, d, *J* 6.5 Hz, CH₃), 2.00, 2.01, 2.14, 2.17 (12H, 4 x s, 4 x C(O)CH₃), 4.27 (1H, q, *J* 6.5 Hz, H-5), 5.29-5.37 (3H, m, H-2, H-3, H-4), 6.34 (1H, d, *J*_{1,2} 2.7 Hz, H-1); *m/z* (ES⁺) 391 (MMeCNNH4+, 100%).

Phenyl 2,3,4-tri-O-acetyl-1-thio-L-fucopyranoside¹⁰ 35

1,2,3,4-Tetra-*O*-acetyl- α -L-fucopyranoside **34** (1.91 g, 5.74 mmol) was dissolved in anhydrous DCM (12 mL) under argon. Thiophenol (1.2 mL, 11.49 mmol) and boron trifluoride diethyl etherate (1.7 mL, 14.37 mmol) were added and the mixture was left to

stir at room temperature. After 16 h, t.l.c. (petrol:ethyl acetate, 3:1) indicated the formation of a major product (R_f 0.6) and the complete consumption of starting material (R_f 0.1). Triethylamine was added dropwise until the effervescence ceased. The reaction mixture was diluted with DCM (40 mL), washed with sodium hydrogen carbonate (2 x 30 mL of a saturated aqueous solution), water (30 mL) and brine (30 mL), dried (MgSO₄), filtered and concentrated *in vacuo*. The residue was purified by flash column chromatography (petrol:ethyl acetate, 2:1) to give phenyl 2,3,4-tri-*O*-acetyl-1-thio-L-fucopyranoside **35** (2.10 g, 96%) as a colourless oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.14 (3H, d, *J* 6.5 Hz, CH₃ α), 1.25 (3H, d, *J* 6.4 Hz, CH₃ β), 1.98, 2.09, 2.15 (9H, 3 x s, 3 x C(O)CH₃ β), 2.02, 2.05, 2.17 (9H, 3 x s, 3 x C(O)CH₃ α), 3.84 (1H, q, *J* 6.4 Hz, H-5 β), 4.62 (1H, q, *J* 6.5 Hz, H-5 α), 4.71 (1H, d, *J*_{1,2} 9.9 Hz, H-1 β), 5.06 (1H, dd, *J*_{2,3} 9.9 Hz, *J*_{3,4} 3.4 Hz, H-3 β), 5.23 (1H, at, *J* 9.9 Hz, H-2 β), 5.27 (1H, br d, *J* 3.4 Hz, H-4 β), 5.30-5.37 (3H, m, H-2 α , H-3 α , H-4 α), 5.94 (1H, d, *J*_{1,2} 5.2 Hz, H-1 α), 7.27-7.53 (10H, m, 5 x Ar-H α , 5 x Ar-H β).

Phenyl 2,3,4-Tri-O-benzyl-1-thio-L-fucopyranoside¹¹ 36

A solution of phenyl 2,3,4-tri-O-acetyl-1-thio-L-fucopyranoside 35 (2.01 g, 5.27 mmol) in anhydrous methanol (12 mL) was treated with sodium methoxide (57 mg, 1.05 mmol). The mixture was stirred under an atmosphere of argon for 10 min, when t.l.c. (petrol:ethyl acetate, 1:1) indicated formation of a single product ($R_f 0$) and complete consumption of starting material (Rf 0.5). The reaction mixture was then concentrated in vacuo. The resulting residue was dissolved in anhydrous DMF (20 mL), and sodium hydride (60% dispersed in mineral oil) (1.82 g, 45.50 mmol) was added portionwise for a period of 10 min at 0 °C. Benzyl bromide (3.8 mL, 31.62 mmol) was then added dropwise and the mixture left to stir under an atmosphere of argon at RT. After a 16 h period, t.l.c. (petrol:ethyl acetate, 7:3) indicated the formation of a major product $(R_f 0.5)$ with complete consumption of the starting material $(R_f 0)$. The reaction mixture was quenched by the slow addition of methanol (8 mL) and stirred for 10 min. The resulting solution was diluted with water (15 mL) and extracted with ether (3 x 20 mL). The organic layers were combined and washed with sodium hydrogen carbonate (40 mL of a saturated aqueous solution), and water (40 mL), dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate, 6:1) to afford phenyl 2,3,4-tri-*O*-benzyl-1-thio-L-fucopyranoside **36** (2.79 g) being a mixture of anomers (α:β, 3:2) in quantitative yield over two steps; <u>α anomer:</u> $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.13 (3H, d, *J* 6.5 Hz, CH₃), 3.71 (1H, br d, *J* 2.3 Hz, H-4), 3.84 (1H, dd, *J*_{2,3} 10.0 Hz, *J*_{3,4} 2.9 Hz, H-3), 4.34 (1H, q, *J* 6.5 Hz, H-5), 4.38 (1H, dd, *J*_{1,2} 5.5 Hz, *J*_{2,3} 10.1 Hz, H-2), 4.66-5.05 (6H, m, 3 x OCH₂Ph), 5.74 (1H, d, *J*_{1,2} 5.5 Hz, H-1), 7.21-7.62 (20H, m, Ar-H); <u>β anomer:</u> $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.29 (3H, d, *J* 6.4 Hz, CH₃), 3.55 (1H, q, *J* 6.4 Hz, H.5), 3.62 (1H, dd, *J*_{2,3} 9.1 Hz, *J*_{3,4} 2.8 Hz, H-3), 3.66 (1H, br d, *J* 2.7 Hz, H-4), 3.95 (1H, at, *J* 9.4 Hz, H-2), 4.62 (1H, d, *J*_{1,2} 9.7 Hz, H-1), 4.66-5.05 (6H, m, 3 x OCH₂Ph), 7.21-7.62 (20H, m, Ar-H); *m/z* (ES⁺) 585 (MMeCNNH₄⁺, 100%); HRMS (ES⁺) Calcd. for C₃₃H₃₄NaO₄S (MNa⁺) 549.2070. Found: 549.2060.

2,3,4-Tri-O-benzyl-α-L-fucopyranosyl phenylthiosulfonate 38

Bromine (38 µL, 0.799 mmol) was added to a solution of phenyl 2,3,4-tri-O-benzyl-1thio-L-fucopyranoside 36 (363 mg, 0.699 mmol) in anhydrous DCM (3 mL), and after stirring for 1 h at room temperature cyclohexane (100 μ L) was added. The resulting glycosyl bromide solution 37 was added dropwise to a solution of sodium phenylthiosulfonate 26 (315 mg, 1.605 mmol) and tetrabutylammonium bromide (23 mg, 0.069 mmol) in anhydrous acetonitrile (6 mL). The resulting mixture heated to 50 °C and stirred under an atmosphere of argon. After 4 h, t.l.c. (petrol:ethyl acetate, 3:1) indicated the formation of a major product (R_f 0.3). The reaction mixture was diluted with DCM (20 mL), washed with brine (15 mL) and the aqueous layer reextracted with DCM (2 x 20 mL). The organic layers were combined and washed with water (50 mL), dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate, 8:1) to afford 2,3,4-tri-Obenzyl- α -L-fucopyranosyl phenylthiosulfonate **38** (155 mg, 38% yield over two steps) as a colourless oil; $[\alpha]_D^{18}$ -35.1 (c, 1 in CHCl₃); υ_{max} (thin film) 1325 (s, SO₂) cm⁻¹; δ_H (400 MHz, CDCl₃) 0.66 (3H, d, J 6.4 Hz, CH₃), 3.45 (1H, dd, J_{2,3} 10.0 Hz, J_{3.4} 2.8 Hz, H-3), 3.53 (1H, br d, J 2.0 Hz, H-4), 3.67 (1H, q, J 6.4 Hz, H-5), 4.32 (1H, dd, J_{1.2} 5.5 Hz, J_{2.3} 10.0 Hz, H-2), 4.57-4.94 (6H, m, 3 x OCH₂Ph), 6.20 (1H, d, J_{1.2} 5.5 Hz, H-1), 7.27-7.37 (15H, m, Ar-H), 7.47-7.60 (3H, m, Ar-H), 7.93-7.96 (2H, m, Ar-H); δ_{C} (100.7 MHz, CDCl₃) 15.8 (q, CH₃), 69.3 (d, C-5), 72.5, 73.5, 75.0 (3 x t,

3 x OCH₂Ph), 75.5 (d, C-2), 76.9 (d, C-4), 79.9 (d, C-3), 90.9 (d, C-1), 127.3, 127.5, 127.7, 127.8, 127.9, 128.0, 128.2, 128.5, 128.9 (9 x d, 16 x Ar-C), 133.4, 137.3, 138.1, 138.3 (4 x s, 4 x Ar-C); m/z (ES⁺) 649 (MMeCNNH₄⁺, 100%); HRMS (ES⁺) Calcd. for C₃₃H₃₄NaO₆S₂ (MNa⁺) 613.1689. Found: 613.1692.

N-Acetyl-L-cysteine (2,3,4-tri-*O*-benzyl-1-dithio- α -L-fucopyranosyl disulfide) methyl ester 5

A solution of 2,3,4-tri-O-benzyl-1-thio- α -L-fucopyranosyl phenylthiosulfonate 38 (148 mg, 0.251 mmol) and triethylamine (12 μ L, 0.084 mmol) were dissolved in anhydrous DCM (3 mL), and the resulting solution stirred at room temperature under an atmosphere of argon. A solution of N-acetyl-L-cysteine methyl ester 27 (16 mg, 0.084 mmol) in a mixture of anhydrous DCM (3 mL) and anhydrous methanol (2 mL) was slowly added via a syringe pump over a 2 h period. After 2 h, t.l.c. (petrol:ethyl acetate, 3:7) indicated the formation of a product (R_f 0.4) along with complete consumption of the starting material (R_f 0.1). The reaction mixture was concentrated in vacuo and the resulting residue purified by flash column chromatography (petrol:ethyl acetate, 4:6) to afford N-acetyl-L-cysteine (2,3,4-tri-O-benzyl-1-dithio- α -Lfucopyranosyl disulfide) methyl ester 5 (48 mg, 31%) as white foam; [α]_D²⁵ -37.3 (c, 0.5 in CHCl₃); v_{max} (KBr disc) 3299 (br, NH) 1746 (s, C=O) 1654 (s, C=O) cm⁻¹; δ_H (500 MHz, CDCl₃) 1.17 (1H, d, *J* 6.4 Hz, CH₃), 2.03 (3H, s, HNC(O)C<u>H₃</u>), 3.34 (1H, dd, J_{CH,H'} 14.5 Hz, J_{CH,aH} 5.0 Hz, C<u>H</u>,H'), 3.41 (1H, dd, J_{CH,H'} 14.5 Hz, J_{CH',aH} 4.5 Hz, CH,<u>H</u>'), 3.71 (1H, br s, H-4), 3.73-3.75 (1H, m, H-3), 3.76 (3H, s, OCH₃), 4.06 (1H, q, J 6.5 Hz, H-5), 4.35 (1H, dd, J_{1.2} 5.4 Hz, J_{2.3} 9.6 Hz, H-2), 4.66-5.00 (6H, m, 3 x OCH₂Ph), 4.93-4.96 (1H, m, αH), 5.63 (1H, d, J_{1,2} 5.5 Hz, H-1), 6.36 (1H, br d, J_{NH,αH} 7.7 Hz, <u>H</u>NC(O)CH₃), 7.29-7.39 (15H, m, Ar-H); δ_C (125.8 MHz, CDCl₃) 16.3 (q, CH₃), 23.2 (q, HNC(O)<u>C</u>H₃), 41.3 (t, CH,H'), 51.8 (d, αC), 52.8 (q, OCH₃), 68.5 (d, C-5), 72.7, 73.3, 74.9 (3 x t, 3 x OCH₂Ph), 76.5 (d, C-2), 77.6 (d, C-4), 79.6 (d, C-3), 90.2 (d, C-1), 127.4, 127.6, 127.7, 127.8, 127.9, 128.2, 128.3, 128.4, 128.5 (9 x d, 15 x Ar-C), 137.7, 138.3, 138.5 (3 x s, 3 x Ar-C), 169.7, 170.8 (2 x s, <u>C</u>OOCH₃, HN<u>C</u>OCH₃); m/z (ES⁺) 684 (MMeCNNH₄⁺, 100%); HRMS (ES⁺) Calcd. for C₃₃H₃₉NNaO₇S₂ (MNa⁺) 648.2060. Found: 648.2067.

Scheme S10.

1,2,3,4,6-Penta-O-acetyl-D-glucopyranoside^{12,13} 40

D-Glucose **39** (50.0 g, 278 mmol) was dissolved in pyridine (200 mL) under an atmosphere of argon. Acetic anhydride (250 mL) was added portionwise over 30 min and the mixture was left to stir at room temperature. After 22 h, t.l.c. (petrol:ethyl acetate, 1:1) indicated the formation of a product (R_f 0.6) with complete consumption of starting material (R_f 0). The reaction mixture was co-evaporated with ethanol until no pyridine or acetic anhydride remained. The residue was recrystallised (ethanol) to afford 1,2,3,4,6-penta-*O*-acetyl-D-glucopyranoside **40** (90.5 g, 84%) as a white crystalline solid being a mixture of anomers (α : β , 1:1.2); m.p. 98-100 °C (ethanol) [Lit. 100-102 °C]¹²; [α]_D²¹ +51.3 (c, 1.01 in CHCl₃) [Lit. [α]_D +54.5 (c, 3.8 in CHCl₃)]¹³; $\delta_{\rm H}$ (400 MHz, CDCl₃) 2.02, 2.03, 2.09, 2.11, 2.18 (15H, 5 x s, 5 x C(O)CH₃ α), 2.02, 2.03, 2.09, 2.12, 2.18 (15H, 5 x s, 5 x C(O)CH₃ β), 3.82-3.86 (1H, m, H-5 β), 4.08-4.14 (3H, m, H-5 α , H-6 α , H-6 β), 4.25-4.31 (2H, m, H-6 α , H-6 β), 5.08-5.17 (4H, m, H-2 α , H-4 α , H-2 β , H-4 β), 5.25 (1H, at, *J* 9.4 Hz, H-3 β), 5.47 (1H, at, *J* 9.8 Hz, H-3 α), 5.72 (1H, d, *J*_{1,2} 8.3 Hz, H-1 β), 6.33 (1H, d, *J*_{1,2} 8.6 Hz, H-1 α).

2,3,4,6-Tetra-*O*-acetyl-α-D-glucopyranosyl bromide¹⁴ 41

1,2,3,4,6-Penta-O-acetyl-D-glucopyranoside 40 (20.0 g, 51.2 mmol) was dissolved in anhydrous DCM (200 mL) and to this hydrogen bromide (33% w/w in acetic acid, 150 mL) was added. The mixture was stirred under argon at room temperature. After a 2 h period, t.l.c. (petrol:ethyl acetate, 3:1) indicated the formation of a product ($R_f 0.4$) with complete consumption of starting material ($R_f 0.1$). Ice water (250 mL) was added and the mixture stirred for 10 min. The two phases were separated and the aqueous layer re-extracted with DCM (3 x 50 mL). The combined organic layers were washed with sodium hydrogen carbonate (saturated aqueous solution) until pH 8 was obtained. The combined organics were washed with brine (200 mL), dried (MgSO₄), filtered and concentrated in vacuo. Recrystallisation (ethyl acetate/petrol) afforded 2,3,4,6-tetra-Oacetyl- α -D-glucopyranosyl bromide **41** (17.5 g, 83%) as a white crystalline solid; m.p. 84-86 °C (ethyl acetate/petrol) [Lit. 89.5-90.5 °C]¹⁴; $[\alpha]_{D}^{22}$ +182.1 (c, 1.01 in CHCl₃) [Lit. $[\alpha]_D$ +186 (c, 6 in CH₂Cl₂)]¹⁴; δ_H (400 MHz, CDCl₃) 2.04, 2.06, 2.10, 2.11 (12H, 4 x s, 4 x C(O)CH₃), 4.14 (1H, dd, J_{5.6} 1.9 Hz, J_{6.6} 12.6 Hz, H-6), 4.28-4.36 (2H, m, H-5, H-6'), 4.85 (1H, dd, J_{1,2} 4.0 Hz, J_{2,3} 10.0 Hz, H-2), 5.17 (1H, at, J 9.8 Hz, H-4), 5.56 (1H, at, J 9.7 Hz, H-3), 6.25 (1H, d, J_{1.2} 4.0 Hz, H-1).

2,3,4,6-Tetra-*O*-acetyl-β-D-glucopyranosyl phenylthiosulfonate² 42

2,3,4,6-Tetra-*O*-acetyl- α -D-glucopyranose bromide **41** (7.90 g, 19.21 mmol) was dissolved in anhydrous acetonitrile (80 mL). To this solution sodium phenylthiosulfonate (7.51 g, 38.42 mmol) and tetrabutylammonium bromide (0.62 g, 1.92 mmol) were added. The resulting mixture was stirred under argon at 70 °C. After a 4.5 h period, t.l.c. (petrol:ethyl acetate, 1:1) indicated the formation of a major product (R_f 0.2) with complete consumption of the starting material (R_f 0.3). The reaction mixture was concentrated *in vacuo*. The crude solid was partitioned between DCM (100 mL) and water (80 mL), and the aqueous layer re-extracted with DCM (2 x 100 mL). The combined organic layers were washed with brine (80 mL), dried (MgSO₄), filtered and concentrated *in vacuo*. Recrystallisation (ethyl acetate/petrol) afforded 2,3,4,6-tetra-*O*-

acetyl-β-D-glucopyranosyl phenylthiosulfonate **42** (6.81 g, 70 %) as a white crystalline solid; m.p. 128-130 °C (ethyl acetate/petrol) [Lit. 129-130 °C (ethyl acetate/petrol)]²; $[\alpha]_D^{23}$ +48.3 (c, 1 in CHCl₃) [Lit. $[\alpha]_D^{25}$ +51.2 (c, 1 in CHCl₃)]²; δ_H (400 MHz, CDCl₃) 1.99, 2.00, 2.02, 2.05 (12H, 4 x s, 4 x C(O)CH₃), 3.74 (1H, ddd, $J_{4,5}$ 10.1 Hz, $J_{5,6}$ 2.3 Hz, $J_{5,6'}$ 4.3 Hz, H-5), 3.91 (1H, dd, $J_{5,6}$ 2.3 Hz, $J_{6,6'}$ 12.5 Hz, H-6), 4.11 (1H, dd, $J_{5,6'}$ 4.3 Hz, $J_{6,6'}$ 12.5 Hz, H-6), 4.99-5.05 (2H, m, H-2, H-4), 5.26 (1H, d, $J_{1,2}$ 10.4 Hz, H-1), 5.27 (1H, at, *J* 9.3 Hz, H-3), 7.53-7.67 (3H, m, Ar-H), 7.93-7.95 (2H, m, Ar-H).

N-Acetyl-L-cysteine (2,3,4,6-tetra-*O*-acetyl-1-dithio- β -D-glucopyaranosyl disulfide) methyl ester 7

2,3,4,6-Tetra-O-acetyl-β-D-glucopyranosyl phenylthiosulfonate 42 (200 mg, 0.397 mmol) was dissolved in anhydrous DCM (8 mL) and stirred at room temperature under an atmosphere of argon. A solution of N-acetyl-L-cysteine methyl ester 27 (70 mg, 0.397 mmol) and triethylamine (55 µL, 0.397 mmol) in a mixture of anhydrous DCM (15 mL) and anhydrous methanol (2 mL) was slowly added via a syringe pump over a 2 h period. After 2 h, t.l.c. (ethyl acetate) indicated the formation of a product (Rf 0.4) along with complete consumption of the starting material ($R_f 0.3$). The reaction mixture was concentrated in vacuo and the resulting residue purified by flash column chromatography (ethyl acetate) to afford N-acetyl-L-cysteine (2,3,4,6-tetra-O-acetyl-1dithio- β -D-glucopyaranosyl disulfide) methyl ester 7 (164 mg, 76%) as a white amorphous solid; $[\alpha]_{D}^{18}$ +19.8 (c, 1 in CHCl₃); v_{max} (KBr disc) 3290 (br, NH) 1749 (s, C=O) 1663 (s, C=O) cm⁻¹; δ_H (400 MHz, CDCl₃) 2.00, 2.02, 2.03, 2.04, 2.08 (15H, 5 x s, 4 x C(O)CH₃, HNC(O)C<u>H</u>₃), 3.09 (1H, dd, J_{CH,H'} 14.2 Hz, J_{CH,αH} 6.8 Hz, C<u>H</u>,H'), 3.33 (1H, dd, $J_{CH,\underline{H'}}$ 14.2 Hz, $J_{CH',\alpha H}$ 4.4 Hz, $CH,\underline{H'}$), 3.77 (3H, s, OCH_3), 3.81-3.85 (1H, m, H-5), 4.18 (1H, dd, J_{5.6} 2.2 Hz, J_{6.6'} 12.5 Hz, H-6), 4.27 (1H, dd, J_{5.6'} 4.7 Hz, J_{6,6'} 12.5 Hz, H-6'), 4.59 (1H, d, J_{1,2} 9.5 Hz, H-1), 4.95-4.99 (1H, m, αH), 5.10 (1H, at, J 9.7 Hz, H-4), 5.21 (1H, at, J 9.4 Hz, H-2), 5.25 (1H, at, J 9.2 Hz, H-3), 6.41 (1H, d, J_{NH,oH} 8.0 Hz, <u>H</u>NC(O)CH₃); δ_C (100.7 MHz, CDCl₃) 20.6, 20.7, 20.8 (3 x q, 4 x C(O)<u>C</u>H₃), 23.1 (q, HNC(O)<u>C</u>H₃), 41.9 (t, CH,H'), 51.9 (d, αC), 52.8 (q, OCH₃), 61.9 (t, C-6), 67.9 (d, C-4), 68.9 (d, C-2), 73.7 (d, C-3), 76.1 (d, C-5), 88.9 (d, C-1), 169.4,

169.8, 170.1, 170.6, 171.0, 172.4 (6 x s, 4 x $\underline{C}(O)CH_3$, $HN\underline{C}(O)CH_3$, $\underline{C}O_2CH_3$); *m/z* (ES⁺) 598 (MMeCNNH₄⁺, 100%); HRMS (ES⁺) Calcd. for C₂₀H₂₉NNaO₁₂S₂ (MNa⁺) 562.1017. Found: 562.1023; Found: C, 44.43%; H, 5.49%, N, 2.58%. C₄₀H₄₅NO₈S₂ requires: C, 44.52%; H, 5.42%; N, 2.60%.

Synthesis of *N*-Acetyl-L-cysteinamide¹⁵ **43**

N-acetyl-L-cysteine methyl ester (387 mg, 2.19 mmol) was stirred in a 1:1 mixture of toluene and ammonium hydroxide. After 19 h, t.l.c. (ethyl acetate) showed comsumption of starting material (R_f 0.3) and formation of a product (R_f 0). The reaction mixture was concentrated *in vacuo* at 60 °C and the resulting residue purified by recrystallisation (ethanol) to afford *N*-acetyl-L-cysteinamide **43** (322 mg, 91%) as a white crystalline solid; m.p. 147-149 °C (ethanol) [Lit. 148-150 °C (ethanol)]¹⁵; $[\alpha]_D^{25}$ -44.0 (c, 1 in H₂O) [Lit. $[\alpha]_D^{25}$ -12.28 (c, 5 in H₂O)]¹⁵; δ_H (400 MHz, CDCl₃) 2.03 (3H, s, HNC(O)CH₃), 2.80 (1H, dd, $J_{CH,H'}$ 13.9 Hz, $J_{CH,\alpha H}$ 7.3 Hz, CH,H'), 2.92 (1H, dd, $J_{CH,H'}$ 13.8 Hz, $J_{CH',\alpha H}$ 9.2 Hz, CH,H'), 4.72 (1H, dd, J 4.9 Hz, J 9.2 Hz, αH); δ_C (100.7 MHz, CDCl₃) 21.5 (q, HNC(O)CH₃), 25.9 (t, CH,H'), 55.8 (d, α C), 172.4 (s, HNC(O)CH₃), 174.2 (s, C(O)NH₂); *m/z* (ES⁻) 161 (M-H⁺, 100%).

Synthesis of *N*-Acetyl-L-cysteinamide (2,3,4,6-tetra-*O*-acetyl-1-dithio- β -D-glucopyaranosyl disulfide) 9

Scheme S11.

N-Acetyl-L-cysteinamide disulfide) 9

$(2,3,4,6-tetra-O-acetyl-1-dithio-\beta-D-glucopyaranosyl$

2,3,4,6-Tetra-O-acetyl-β-D-glucopyranosyl phenylthiosulfonate 42 (407 mg, 0.807 mmol) was dissolved in anhydrous DCM (8 mL) and stirred at room temperature under an atmosphere of argon. A solution of N-acetyl-L-cysteinamide 43 (131 mg, 0.807 mmol) and triethylamine (0.11 mL, 0.807 mmol) in a mixture of anhydrous DCM (10 mL) and anhydrous methanol (8 mL) was slowly added via a syringe pump over a 2 h period. After 3 h, t.l.c. (ethyl acetate:MeOH, 9:1) indicated the formation of a product (R_f 0.4) along with complete consumption of the starting material (R_f 0.3). The reaction mixture was concentrated in vacuo and the resulting residue purified by recrystallisation (ethyl acetate) to afford N-acetyl-L-cysteinamide (2,3,4,6-tetra-Oacetyl-1-dithio- β -D-glucopyaranosyl disulfide) **9** (260 mg, 61%) as a white amorphous solid; [α]_D²⁵ -173 (c, 1 in MeOH); υ_{max} (KBr disc) 3046 (br, NH NH₂) 1748 (s, C=O) 1638 (s, C=O) cm⁻¹; δ_H (400 MHz, CD₃OD) 1.99, 2.03, 2.07 (15H, 3 x s, 4 x C(O)CH₃, HNC(O)CH₃), 2.97 (1H, dd, J_{CH.H}, 13.8 Hz, J_{CH.aH} 9.7 Hz, CH,H), 3.36 (1H, dd, J_{CH,H}['] 13.9 Hz, J_{CH',αH} 4.6 Hz, CH,<u>H</u>[']), 3.97 (1H, ddd, J_{4,5} 10.2 Hz, J_{5,6} 2.3 Hz, J_{5,6}['] 4.3 Hz, H-5), 4.33 (1H, dd, J_{5.6} 2.2 Hz, J_{6.6}, 12.5 Hz, H-6), 4.38 (1H, dd, J_{5.6}, 4.4 Hz, J_{6.6'} 12.5 Hz, H-6'), 4.75-4.78 (1H, m, αH), 4.79 (1H, d, J_{1.2} 9.5 Hz, H-1), 5.07 (1H, at, J 9.7 Hz, H-4), 5.27 (1H, at, J 9.4 Hz, H-2), 5.34 (1H, at, J 9.3 Hz, H-3); δ_C (100.7 MHz, CD₃OD) 19.5, 19.6, 19.7, 19.8 (4 x q, 4 x C(O)<u>C</u>H₃), 21.6 (q, HNC(O)<u>C</u>H₃), 41.8 (t, CH,H'), 52.5 (d, αC), 62.1 (t, C-6), 68.3 (d, C-4), 69.4 (d, C-2), 74.2 (d, C-3), 76.0 (d, C-5), 87.4 (d, C-1), 169.9, 170.1, 170.5, 171.4, 172.5 (5 x s, 4 x C(O)CH₃, HNC(O)CH₃), 174.1 (s, CONH₂); *m/z* (ES⁺) 547 (MNa⁺, 100%) 583 (MMeCNNH₄⁺, 70%); HRMS (ES⁺) Calcd. for C₁₉H₂₈N₂NaO₁₁S₂ (MNa⁺) 547.1027. Found: 547.1027; Found: C, 44.85%; H, 5.73%, N, 5.34%. C₁₉H₂₈N₂O₁₁S₂ requires: C, 44.50%; H, 5.38%; N, 5.34%.

Synthesis of *N*-Acetyl-L-cysteine (2,3,4,6-tetra-*O*-acetyl-1-dithio- β -D-galactopyaranosyl disulfide) methyl ester 11

Scheme S12.

1,2,3,4,6-Penta-O-acetyl-α-D-galactopyranoside¹⁶ 45

A solution of D-galactose **44** (30.0 g, 167 mmol) in pyridine (200 mL) was treated with acetic anhydride (250 mL), and stirred at room temperature under an atmosphere of argon. After 24 h, t.l.c. (petrol:ethyl acetate, 1:1) indicated the formation of a product (R_f 0.5) with complete consumption of starting material (R_f 0). The reaction mixture was co-evaporated with ethanol until no pyridine or acetic anhydride remained. The residue was recrystallised (ethanol) to afford 1,2,3,4,6-penta-*O*-acetyl- α -D-galactopyranoside **45** (82.3 g, 74%) as white crystalline solid; m.p. 88-90 °C (ethanol) [Lit. 92-94 °C]¹⁶; [α]_D²¹ +87.7 (c, 1.06 in CHCl₃) [Lit. [α]_D²⁵ +107 (c, 1.0 in CHCl₃)]¹⁶; δ_{H} (400 MHz, CDCl₃) 2.00, 2.02, 2.04, 2.16 (15H, 4 x s, 5 x C(O)CH₃), 4.08 (1H, dd, *J*_{5,6} 4.2 Hz, *J*_{6,6'} 11.3 Hz, H-6), 4.12 (1H, dd, *J*_{5,6'} 6.7 Hz, H-6'), 4.34 (1H, dt, *J*_{4,5} 0.6 Hz, H-5), 5.33 (2H, at, *J* 1.3 Hz, *J* 1.7 Hz, H-2, H-4), 5.50 (1H, br s, H-3), 6.38 (1H, d, *J*_{1,2} 1.6 Hz, H-1).

2,3,4,6-Tetra-O-acetyl-α-D-galactopyranosyl bromide¹⁷ 46

1,2,3,4,6-Penta-*O*-acetyl- α -D-galactpyranoside **45** (1.0 g, 2.56 mmol) was dissolved in anhydrous DCM (10 mL) and to this hydrogen bromide (33% w/w in acetic acid, 10 mL)

was added. The mixture was stirred under argon at room temperature. After a 18 h period, t.l.c. (petrol:ethyl acetate, 3:1) indicated the formation of a product (R_f 0.3) with complete consumption of starting material (R_f 0.2). Ice water (15 mL) was added and the mixture stirred for 10 min. The two phases were separated and the aqueous layer re-extracted with DCM (3 x 10 mL). The combined organic layers were washed with sodium hydrogen carbonate (saturated aqueous solution) until pH 8 was obtained. The combined organics were washed with brine (20 mL), dried (MgSO₄), filtered and concentrated *in vacuo*. Recrystallisation (diethyl ether/petrol) afforded 2,3,4,6-tetra-*O*-acetyl- α -D-galactopyranosyl bromide **46** (1.0 g, 95%) as a white crystalline solid; m.p. 84-86 °C (diethyl ether/petrol) [Lit. 84-85 °C]¹⁷; [α]_D²¹ +212 (c, 1 in CHCl₃)][Lit. [α]_D²⁵ +210 (c, 1 in CHCl₃)]¹⁷; δ _H (400 MHz, CDCl₃) 2.02, 2.06, 2.12, 2.16 (12H, 4 x s, 4 x C(O)CH₃), 4.09-4.21 (2H, m, H-6, H-6'), 4.49 (1H, at, *J* 6.6 Hz, H-5), 5.05 (1H, dd, *J*_{1,2} 3.9 Hz, *J*_{2,3} 10.6 Hz, H-2), 5.41 (1H, dd, *J*_{2,3} 10.6 Hz, J_{3,4} 3.3 Hz, H-3), 5.53 (1H, br d, *J* 3.3 Hz, H-4), 6.76 (1H, d, *J*_{1,2} 3.9 Hz, H-1).

2,3,4,6-Tetra-O-acetyl-β-D-galactopyranosyl phenylthiosulfonate² 47

2,3,4,6-Tetra-O-acetyl-α-D-galactopyranose bromide 46 (1.0 g, 2.43 mmol) was dissolved in anhydrous acetonitrile (40 mL). To this solution sodium phenylthiosulfonate 26 (0.95 g, 4.86 mmol) and tetrabutylammonium bromide (78 mg, 0.243 mmol) were added. The resulting mixture was stirred under argon at 70 °C. After a 5 h period, t.l.c. (petrol:ethyl acetate, 1:1) indicated the formation of a major product (R_f 0.4) with complete consumption of the starting material (R_f 0.6). The reaction mixture was concentrated in vacuo. The crude solid was partitioned between DCM (50 mL) and water (30 mL), and the aqueous layer re-extracted with DCM (2 x 50 mL). The combined organic layers were washed with brine (80 mL), dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash column chromatography (ethyl acetate:petrol, 2:1) afforded 2,3,4,6-tetra-*O*-acetyl-β-D-galactopyranosyl phenylthiosulfonate 47 (0.82 g, 67%) as a white crystalline solid; m.p. 56-58 °C [Lit. 53-54 °C]²; $[\alpha]_D^{21}$ +21.2 (c, 1 in CHCl₃) [Lit. $[\alpha]_D^{27}$ +24.2 (c, 1 in CHCl₃)]²; δ_H (400 MHz, CDCl₃) 1.98, 2.03, 2.06, 2.11 (12H, 4 x s, 4 x C(O)CH₃), 3.85 (1H, dd, J_{5,6} 8.8 Hz, J_{6,6'} 13.6 Hz, H-6), 3.93-3.99 (2H, m, H-5, H-6'), 5.11 (1H, dd, J_{2,3} 9.6 Hz,
J_{3.4} 3.3 Hz, H-3), 5.22 (1H, at, J 9.9 Hz, H-2), 5.28 (1H, d, J_{1.2} 9.9 Hz, H-1), 5.43 (1H, br d, J 3.3 Hz, H-4), 7.54-7.68 (3H, m, Ar-H), 7.94-7.97 (2H, m, Ar-H).

N-Acetyl-L-cysteine

 $(2,3,4,6-tetra-O-acetyl-1-dithio-\beta-D-galactopyaranosyl$

disulfide) methyl ester 11

2,3,4,6-Tetra-*O*-acetyl- β -D-galactopyranosyl phenylthiosulfonate 47 (339 mg, 0.672 mmol) was dissolved in anhydrous DCM (10 mL) and stirred at room temperature under an atmosphere of argon. A solution of N-acetyl-L-cysteine methyl ester 27 (119 mg, 0.672 mmol) and triethylamine (0.1 mL, 0.672 mmol) in a mixture of anhydrous DCM (10 mL) and anhydrous methanol (2 mL) was slowly added via a syringe pump over a 2 h period. After a 2 h period, t.l.c. (ethyl acetate) indicated the formation of a product (R_f 0.4). The reaction mixture was concentrated in vacuo and the resulting residue purified by flash column chromatography (ethyl acetate) to afford *N*-acetyl-L-cysteine (2,3,4,6-tetra-*O*-acetyl-1-dithio- β -D-galactopyaranosyl disulfide) methyl ester **11** (228 mg, 63%) as a white amorphous solid; $[\alpha]_{D}^{20}$ +27.3 (c, 1 in CHCl₃); v_{max} (KBr disc) 3373 (br, NH) 1749 (s, C=O) 1665 (s, C=O) cm⁻¹; δ_{H} (400 MHz, CDCl₃) 1.99, 2.05, 2.06, 2.07, 2.17 (15H, 5 x s, 4 x C(O)CH₃, HNC(O)CH₃), 3.13 (1H, dd, *J*_{CH,H'} 14.3 Hz, *J*_{CH,αH} 6.8 Hz, C<u>H</u>,H'), 3.36 (1H, dd, *J*_{CH,H'} 14.2 Hz, *J*_{CH',αH} 4.3 Hz, CH,<u>H</u>'), 3.79 (3H, s, OCH₃), 4.06-4.09 (1H, m, H-5), 4.11-4.17 (2H, m, H-6, H-6'), 4.62 (1H, d, J_{1.2} 9.9 Hz, H-1), 4.97-5.02 (1H, m, αH), 5.09 (1H, dd, J_{2.3} 10.0 Hz, J_{3.4} 3.4 Hz, H-3), 5.36 (1H, at, J 9.9 Hz, H-2), 5.45 (1H, br d, J 3.3 Hz, H-4), 6.39 (1H, J_{NH,αH} 8.0 Hz, <u>H</u>NC(O)CH₃); δ_C (100.7 MHz, CDCl₃) 20.5, 20.6, 20.7, 20.8 (4 x q, 4 x C(O)<u>C</u>H₃), 23.2 (q, HNC(O)<u>C</u>H₃), 42.1 (t, CH,H'), 52.0 (d, αC), 52.8 (q, OCH₃), 61.5 (t, C-6), 66.6 (d, C-2), 67.2 (d, C-4), 71.7 (d, C-3), 74.9 (d, C-5), 90.3 (d, C-1), 169.5, 169.8, 170.0, 170.1, 170.4, 171.0 (6 x s, 4 x <u>C(O)CH₃</u>, HN<u>C(O)CH₃</u>, <u>CO₂CH₃</u>); *m/z* (ES⁺) 598 (MMeCNNH₄⁺, 100%); HRMS (ES⁺) Calcd. for C₂₀H₂₉NNaO₁₂S₂ (MNa⁺) 562.1023. Found: 562.1025.

Synthesis of *N*-Acetyl-L-cysteine (3,4,6-tetra-*O*-acetyl-2-acetamido-2-deoxy-1dithio- β -D-glucopyaranosyl disulfide) methyl ester 13

3,4,6-Tri-*O*-acetyl-2-*N*-acetylamido-2-deoxy- α -D-glucopyranosyl chloride^{18,19} 49

Acetyl chloride (40 mL, 563 mmol) was added through an air condenser into a round bottom flask containing 2-acetylamido-2-deoxy-D-glucose 48 (20.0 g, 90.41 mmol). The reaction mixture was heated for 1 h until a colour change was observed (pink) and the reaction mixture was stirred vigorously overnight. After 16 hours, t.l.c. (petrol:ethyl acetate, 1:2) indicated formation of a product (Rf 0.3) with complete consumption of the starting material (R_f 0). The reaction mixture was diluted with DCM (150 mL) and then poured on to ice water (100 mL). The organic layer was washed with ice cold sodium bicarbonate (3 x 100 mL) until no more gas was evolved. The organic layer was dried (MgSO₄), filtered and concentrated *in vacuo*. Recrystallization (diethyl ether/DCM) yielded 3,4,6-tri-O-acetyl-2-N-acetylamido-2-deoxy- α -D-glucopyranosyl chloride **49** as a solid (23.95 g, 72%); m.p. 120-122 °C (diethyl crvstalline ether/DCM) [Lit. 122-123 °C]¹⁸; $[\alpha]_D^{18}$ +127.0 (c, 1 in CHCl₃) [Lit. $[\alpha]_D^{26}$ +120.6 (c, 1.03 in CHCl₃)]¹⁹; δ_H (400 MHz, CDCl₃) 1.99, 2.06, 2.11 (12H, 3 x s, 3 x C(O)CH₃, HNC(O)C<u>H₃</u>), 4.05-4.14 (1H, m, H-6), 4.23-4.31 (2H, m, H-5, H-6'), 4.53 (1H, ddd, J_{1,2} 3.7 Hz, J_{2.3} 10.7 Hz, J_{2,NH} 8.9 Hz, H-2), 5.22 (1H, at, J 9.8 Hz, H-4), 5.32 (1H, at, J 10.0 Hz, H-3), 5.83 (1H, d, J 8.6 Hz, <u>H</u>NC(O)CH₃), 6.19 (1H, d, J_{1.2} 3.7 Hz, H-1).

(3,4,6-Tri-*O*-acetyl-2-acetamido-2-deoxy- β -D-glucopyranosyl)-1-isothiouronium chloride³ 50

3,4,6-Tri-O-acetyl-2-acetamido-2-deoxy-α-D-glucopyranosyl chloride 49 (5.0 g, 13.67 mmol) and thiourea (1.8 g, 23.24 mmol) were dissolved in anhydrous acetone (40 mL). The reaction mixture was stirred under an atmosphere of argon and heated to 60 °C. After a 2 h period a white solid precipitated. The precipitate was removed by filtration, the filtrate was returned to reflux, and this process was repeated until the solid ceased to precipitate. The off white crystals were combined and recrystallised from acetone/petrol to afford (3,4,6-tri-O-acetyl-2-acetamido-2-deoxy-\beta-D-glucopyranosyl)-1isothiouronium chloride 50 (4.5 g, 75%) as a white crystalline solid; m.p. 134-136 °C (acetone/petrol) [Lit. 134-137 °C (acetone/petrol)]³; $[\alpha]_D^{20}$ -24.6 (c, 1 in H₂O) [Lit. $[\alpha]_D^{25}$ -25.2 (c, 1 in H₂O)]³; δ_H (400 MHz, DMSO-d₆) 1.80 (3H, s, HNC(O)CH₃), 1.94, 1.97, 2.01 (9H, 3 x s, 3 x C(O)CH₃), 4.00 (1H, at, J 9.9 Hz, H-2), 4.06 (1H, dd, J_{5.6} 2.0 Hz, J_{6.6'} 11.4 Hz, H-6), 4.17 (1H, dd, J_{5.6'} 4.8 Hz, J_{6.6'} 11.4 Hz, H-6'), 4.22 (1H, ddd, J_{4,5} 9.9 Hz, J_{5,6} 2.0 Hz, J_{5,6}, 4.8 Hz, H-5), 4.93 (1H, at, J 9.6 Hz, H-4), 5.13 (1H, at, J 9.8 Hz, H-3), 5.67 (1H, d, J_{1.2} 10.5 Hz, H-1), 8.43 (1H, d, J 9.3 Hz, NH), 9.20 (2H, br s, NH₂), 9.39 (2H, br s, NH₂); δ_C (100.7 MHz, DMSO-d₆) 21.1, 21.3, 21.4 (3 x q, 3 x C(O)<u>C</u>H₃), 23.4 (q, HNC(O)<u>C</u>H₃), 52.0 (d, C-2), 62.3 (t, C-6), 68.7 (d, C-4), 73.5 (d, C-3), 75.6 (d, C-5), 81.5 (d, C-1), 168.0 (s, C=N), 170.1, 170.5, 170.8, 170.9 (4 x s, $3 \times \underline{C}(O)CH_3$, $HN\underline{C}(O)CH_3$).

1-Thio-3,4,6-Tri-O-acetyl-2-acetamido-2-deoxy-β-D-glucopyranose³ 51

 $(3,4,6-\text{Tri-}O-\text{acetyl-}2-\text{acetamido-}2-\text{deoxy-}\beta-D-\text{glucopyranosyl})-1-\text{isothiouronium chloride}$ **50** (4.4 g, 9.96 mmol) and sodium metabisulfite (2.3 g, 11.95 mmol) were dissolved in a mixture of DCM (60 mL) and water (30 mL). The mixture was heated to reflux under an atmosphere of argon. After a 2 h period the reaction was cooled to room temperature and the phases were separated. The aqueous layer was re-extracted with DCM (2 x 60 mL). The organics were combined and washed with water (60 mL) and brine (60 mL), dried (MgSO₄), filtered and concentrated *in vacuo*. Recrystallisation from ethyl acetate/petrol afforded 1-thio-3,4,6-Tri-*O*-acetyl-2-acetamido-2-deoxy-β-D-glucopyranose **51** (2.7 g, 74%) as a white solid; m.p. 166-168 °C (ethyl acetate/petrol) [Lit. 165-187 °C (ethyl acetate/petrol)]³; $[\alpha]_D^{20}$ -25.3 (c, 1 in CHCl₃) [Lit. $[\alpha]_D^{25}$ -24.8 (c, 1 in CHCl₃)]³; δ_H (400 MHz, CDCl₃) 1.99, 2.03, 2.05, 2.10 (12H, 4 x s, 3 x C(O)CH₃, HNC(O)C<u>H₃</u>), 2.57 (1H, d, *J*_{1,SH} 9.4 Hz, SH), 3.69 (1H, ddd, *J*_{4,5} 9.5 Hz, *J*_{5,6} 2.2 Hz, *J*_{5,6'} 4.8 Hz, H-5), 4.00 (1H, at, *J* 9.9 Hz, H-2), 4.13 (1H, dd, *J*_{5,6} 2.3 Hz, *J*_{6,6'} 12.4 Hz, H-6), 4.24 (1H, dd, *J*_{5,6'} 4.8 Hz, *J*_{6,6'} 12.4 Hz, H-6'), 4.58 (1H, at, *J* 9.7 Hz, H-1), 5.08 (1H, at, *J* 9.4 Hz, SD), 5.13 (1H, at, *J* 9.3 Hz, H-4), 5.70 (1H, d, *J* 9.5 Hz, <u>HNC(O)CH₃); δ_C (100.7 MHz, CDCl₃) 20.6, 20.7, 20.8 (3 x q, 3 x C(O)CH₃), 23.3 (q, HNC(O)CH₃), 56.8 (d, C-2), 62.1 (t, C-6), 68.0 (d, C-4), 73.5 (d, C-3), 76.3 (d, C-5), 80.4 (d, C-1), 169.2, 170.4, 170.8, 171.3 (4 x s, 3 x <u>C(O)CH₃, HNC(O)CH₃).</u></u>

Phenyl 3,4,6-tri-*O*-acetyl-2-acetamido-2-deoxy-1-selenenylsulfide- β -D-glucopyranoside³ 52

1-Thio-3,4,6-tri-O-acetyl-2-acetamido-2-deoxy- β -D-glucopyranose **51** (406 mg, 1.11 mmol) and phenylselenyl bromide (395 mg, 1.67 mmol) were dissolved in anhydrous DCM (10 mL). The resulting mixture was stirred under an atmosphere of argon at room temperature. After 10 min, t.l.c. (ethyl acetate) indicated the formation of a major product (R_f 0.4). The reaction was guenched with the addition of triethylamine (2 mL) and stirred for 5 min. The mixture was portioned between DCM (10 mL) and water (15 mL), the aqueous phase was separated and re-extracted with DCM (2 x 20 mL). The combined organic layers were washed with brine (25 mL), dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash column chromatography (ethyl acetate) to afford phenyl 3,4,6-tri-O-acetyl-2-acetamido-2-deoxy-1selenenylsulfide- β -D-glucopyranoside **52** (424 mg, 73 %) as a white crystalline solid; m.p. 176-178 °C [Lit. 177-179 °C]³; $[\alpha]_D^{20}$ -141.3 (c, 1 in CHCl₃) [Lit. $[\alpha]_D^{25}$ -134.0 (c, 1 in CHCl₃)]³; δ_H (400 MHz, CDCl₃) 1.89 (3H, s, HNC(O)C<u>H₃</u>), 2.01, 2.02, 2.04 (9H, 3 x s, 3 x C(O)CH₃), 3.75 (1H, ddd, J_{4.5} 10.0 Hz, J_{5.6} 2.3 Hz, J_{5.6}, 4.7 Hz, H-5), 4.08 (1H, dd, J_{5.6} 2.3 Hz, J_{6.6'} 12.3 Hz, H-6), 4.16 (1H, dd, J_{5.6'} 4.7 Hz, J_{6.6'} 12.3 Hz, H-6'), 4.20 (1H, at, J 10.3 Hz, H-2), 4.78 (1H, at, J 10.1 Hz, H-1), 5.11 (1H, at, J 9.7 Hz, H-4), 5.28 (1H, at, J 9.8 Hz, H-3), 5.46 (1H, d, J 9.0 Hz, HNC(O)CH₃), 7.26-7.29 (3H, m, Ar-H), 7.69-7.71 (2H, m, Ar-H); δ_c (100.7 MHz, CDCl₃) 20.6, 20.7 (2 x q, 3 x C(O)<u>C</u>H₃), 23.3 (q, HNC(O)<u>C</u>H₃), 54.3 (d, C-2), 62.1 (t, C-6), 68.1 (d, C-4), 73.3 (d, C-3), 76.0 (d, C-5), 86.9 (d, C-1), 127.9, 129.0, 131.3 (3 x d, 5 x Ar-C), 132.4 (s, Ar-C), 169.3, 170.0, 170.7, 171.0 (4 x s, 3 x \underline{C} (O)CH₃, HN<u>C</u>(O)CH₃); *m/z* (ES⁺) 578 (MMeCNNH₄⁺, 100%).

N-Acetyl-L-cysteine (3,4,6-tetra-*O*-acetyl-2-acetamido-2-deoxy-1-dithio- β -D-glucopyaranosyl disulfide) methyl ester 13

Phenyl 3,4,6-tri-O-acetyl-2-acetamido-2-deoxy-1-selenenylsulfide- β -D-glucopyranoside 52 (165 mg, 0.318 mmol) was dissolved in anhydrous DCM (5 mL) and stirred at room temperature under an atmosphere of argon. Triethylamine (50 μ L, 0.318 mmol) was added to the above solution. A solution of N-acetyl-L-cysteine methyl ester 27 (56 mg, 0.318 mmol) in a mixture of anhydrous DCM (5 mL) and anhydrous methanol (4 mL) was slowly added via a syringe pump over a 2 h period. After a 2 h period, t.l.c. (ethyl acetate) indicated the formation of a major product (Rf 0.2). The reaction mixture was concentrated in vacuo and the resulting residue purified by flash column chromatography (ethyl acetate) to afford N-acetyl-L-cysteine (3,4,6-tetra-O-acetyl-2acetamido-2-deoxy-1-dithio- β -D-glucopyaranosyl disulfide) methyl ester **13** (126 mg, 74%) as a white amorphous solid; $[\alpha]_D^{21}$ -28.9 (c, 1 in CHCl₃); v_{max} (KBr disc) 3309 (br, NH) 1746 (s, C=O) 1659 (s, C=O) cm⁻¹; δ_{H} (400 MHz, CDCl₃) 1.95, 2.03, 2.04, 2.06, 2.09 (15H, 5 x s, 3 x C(O)CH₃, 2 x HNC(O)CH₃), 3.12 (1H, dd, J_{CH,H'} 14.2 Hz, J_{CH,αH} 6.7 Hz, C<u>H</u>,H'), 3.34 (1H, dd, J_{CH,H'} 14.2 Hz, J_{CH',αH} 4.8 Hz, CH,<u>H</u>'), 3.79 (3H, s, OCH₃), 3.82 (1H, ddd, J_{4.5} 9.9 Hz, J_{5.6} 2.4 Hz, J_{5.6}, 4.6 Hz, H-5), 4.18 (1H, at, J 9.8 Hz, H-2), 4.20 (1H, dd, J_{5.6} 2.4 Hz, J_{6.6}, 12.5 Hz, H-6), 4.26 (1H, dd, J_{5.6}, 4.6 Hz, J_{6,6'} 12.5 Hz, H-6'), 4.77 (1H, d, J_{1,2} 10.4 Hz, H-1), 4.94-4.99 (1H, m, αH), 5.11 (1H, at, J 9.7 Hz, H-4), 5.24 (1H, at, J 9.8 Hz, H-3), 5.89 (1H, d, J_{NH,H-2} 9.2 Hz, <u>H</u>NC(O)CH₃, H-2), 6.46 (1H, d, J_{NH,αH} 7.9 Hz, <u>H</u>NC(O)CH₃,αH); δ_C (100.7 MHz, CDCl₃) 20.6, 20.7, 20.8 (3 x q, 3 x C(O)<u>C</u>H₃), 23.1, 23.2 (2 x q, 2 x HNC(O)<u>C</u>H₃), 42.0 (t, CH,H'), 52.1 (d, αC), 52.7 (d, C-2), 52.8 (q, OCH₃), 62.0 (t, C-6), 68.0 (d, C-4), 73.4 (d, C-3), 76.1 (d, C-5), 90.3 (d, C-1), 169.3, 169.9, 170.2, 170.6, 170.6 (5 x s, 3 x C(O)CH₃, 2 x HNC(O)CH₃, CO₂CH₃); *m/z* (ES⁺) 597 (MMeCNNH₄⁺, 100%); HRMS (ES⁺) Calcd. for C₂₀H₃₁N₂O₁₁S₂ (MH⁺) 539.1364. Found: 539.1372.

Synthesis of N-Acetyl-L-cysteine (1-dithio- β -D-glucopyranosyl disulfide) methyl

1-S-acetyl-2,3,4,6-tetra-O-acetyl-1-thio-β-D-glucopyranoside²⁰ 53

Lawesson's reagent (672 mg, 1.665 mmol) was added to a partial solution of D-glucose 39 (200 mg, 1.110 mmol) in anhydrous dioxane (6 mL) and the reaction mixture heated to 110 °C under an atmosphere of argon for 48 h. After this time, the reaction mixture was cooled to room temperature, filtered through Celite[®] and concentrated *in vacuo*. The resulting crude product was then dissolved in pyridine (3 mL) and acetic anhydride (3 mL) added to the solution. The reaction was stirred for 16 h, after which time a few drops of water were added and the reaction left to stir for 10 min. The reaction mixture was extracted with ether (3 x 90 mL), washed with hydrochloric acid (50 mL of a 1M solution), sodium hydrogen carbonate (50 mL of a saturated aqueous solution), and water (2 x 50 mL), dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate, 3:1) to afford 1-S-acetyl-2,3,4,6-tetra-O-acetyl-1-thio- β -D-glucopyranoside **53** (0.2 g, 44%) as a white solid; m.p. 100-102 °C [Lit. 119-120 °C]²⁰; $[\alpha]_D^{20}$ +11.4 (c, 1.10 in CHCl₃) [Lit. $[\alpha]_D^{23}$ +10.5 (c, 0.6 in CHCl₃)]²⁰; δ_H (400 MHz, CDCl₃) 2.00, 2.02, 2.03, 2.08 (12H, 4 x s, 4 x C(O)CH₃), 2.39 (3H, s, S(O)CH₃), 3.82-3.86 (1H, m, H-5), 4.10 (1H, dd, J_{5.6} 2.2 Hz, J_{6.6'} 12.5 Hz, H-6), 4.26 (1H, dd, J_{5,6'} 4.5 Hz, H-6'), 5.09-5.15 (2H, m, H-3, H-4), 5.26 (1H, d, J_{1,2} 10.6 Hz, H-1), 5.28 (1H, at, *J*_{2,3} 9.3 Hz, H-2); *m/z* (ES⁺) 465 (MMeCNNH₄⁺, 100%).

1-Thio-β-D-glucopyranose²¹ 54

1-*S*-acetyl-2,3,4,6-tetra-*O*-acetyl-1-thio-β-D-glucopyranoside **53** (0.2 g, 0.50 mmol) was dissolved in anhydrous methanol (5 mL) and sodium methoxide (27 mg, 0.50 mmol) was added. The mixture was stirred under an atmosphere of argon for 1 h, when t.l.c. (petrol:ethyl acetate, 1:1) indicated formation of a single product (R_f 0.1) and complete consumption of starting material (R_f 0.4). Ion exchange resin (DOWEX 50WX8-200) was added portionwise until the solution was neutralised, at which point the reaction mixture was concentrated *in vacuo* to yield 1-thio-β-D-glucopyranose **54** (quantitative yield) which was used directly without further purification; $[\alpha]_D^{22}$ +6.0 (c, 1.0 in MeOH); δ_H (400 MHz, CD₃OD) 2.61 (1H, d, $J_{1,SH}$ 8.0 Hz, SH), 3.12 (1H, at, $J_{1,2}$ 9.3 Hz, $J_{2,3}$ 9.3 Hz, H-2), 3.30-3.36 (2H, m, H-3, H-5), 3.51 (1H, at, $J_{3,4}$ 9.4 Hz, $J_{4,5}$ 9.4 Hz, H-4), 3.64 (1H, dd, $J_{5,6}$ 1.9 Hz, $J_{6,6'}$ 12.0 Hz, H-6), 3.85 (1H, dd, $J_{5,6'}$ 5.3 Hz, $J_{6,6'}$ 12.0 Hz, H-6), 4.42 (1H, d, $J_{1,2}$ 9.3 Hz, H-1); δ_C (100.7 MHz, CD₃OD) 61.8 (t, C-6), 72.1 (d, C-4), 76.4 (d, C-5), 77.2 (d, C-2), 78.2 (d, C-3), 80.9 (d, C-1); *m/z* (ES') 195 (M-H⁺, 100%).

Phenyl 1-selenenylsulfide-β-D-glucopyranoside³ 55

1-Thio-β-D-glucopyranose **54** (200 mg, 1.02 mmol) and phenylselenyl bromide (265 mg, 1.12 mmol) were dissolved in anhydrous dioxane (5 mL). The resulting mixture was stirred under an atmosphere of argon at room temperature. After 1 min, t.l.c. (ethyl acetate:methanol, 9:1) indicated the formation of a major product (R_f 0.4). The reaction was quenched with the addition of triethylamine (2 mL). The solution was concentrated *in vacuo*. The residue was purified by flash column chromatography (ethyl acetate) to afford phenyl 1-selenenylsulfide-β-D-glucopyranoside **55** (94 mg, 26 %) as an off white amorphous solid; $[\alpha]_D^{18}$ -93.8 (c, 1 in MeOH) [Lit. $[\alpha]_D^{22}$ -153.0 (c, 1 in MeOH)]³; δ_H (400 MHz, CD₃OD) 3.53-3.55 (2H, m, H-3, H-5), 3.61-3.66 (2H, m, H-2, H-4), 3.84 (1H, dd, *J*_{5,6} 5.1 Hz, *J*_{6,6}, 11.7 Hz, H-6), 4.04 (1H, dd, *J*_{5,6}, 1.7 Hz, *J*_{6,6}, 11.3 Hz, H-6'), 4.69 (1H, d, *J*_{1,2} 9.3 Hz, H-1), 7.47-7.56 (3H, m, Ar-H), 7.98-8.00 (2H, m, Ar-H); δ_C (100.7 MHz, CD₃OD) 62.2 (t, C-6), 70.6, 81.5 (2 x d, C-3, C-5), 73.8, 78.7 (2 x d, C-2, C-4), 89.8 (d, C-1), 127.8, 129.3, 130.9 (3 x d, 5 x Ar-C), 133.1 (s, Ar-C).

N-Acetyl-L-cysteine (1-dithio- β -D-glucopyranosyl disulfide) methyl ester 15

Phenyl 1-selenenylsulfide-β-D-glucopyranoside 55 (90 mg, 0.256 mmol) was dissolved in anhydrous methanol (8 mL) and stirred at room temperature under an atmosphere of argon. A solution of N-acetyl-L-cysteine methyl ester 27 (45 mg, 0.256 mmol) and triethylamine (40 µL, 0.256 mmol) in anhydrous methanol (5 mL) was slowly added via a syringe pump over a 2 h period. After a 2 h period, t.l.c. (ethyl acetate:methanol, 9:1) indicated the formation of a product (R_f 0.2) along with complete consumption of the starting material (R_f 0.4). The reaction mixture was concentrated in vacuo and the resulting residue purified by flash column chromatography (ethyl acetate:methanol, 9:1) to afford N-acetyl-L-cysteine (1-dithio- β -D-glucopyaranosyl disulfide) methyl ester 15 (75 mg, 79%) as a white amorphous solid; $[\alpha]_D^{21}$ -12.5 (c, 1 in MeOH); v_{max} (KBr disc) 3363 (br, NH OH) 1764 (s, C=O) 1653 (s, C=O) cm⁻¹; δ_H (400 MHz, CD₃OD) 2.00 (3H, s, HNC(O)CH₃), 3.02 (1H, dd, J_{CH,H'} 13.8 Hz, J_{CH,αH} 8.7 Hz, CH,H'), 3.31-3.34 (1H, m, H-5), 3.35-3.37 (2H, m, CH,H', H-4), 3.42 (1H, dd, J 8.0 Hz, J 10.3 Hz, H-3), 3.52 (1H, at, J 9.0 Hz, H-2), 3.71 (1H, dd, J_{5.6} 5.3 Hz, J_{6.6}, 11.9 Hz, H-6), 3.75 (3H, s, OCH₃), 3.89 (1H, dd, J_{5.6'} 1.9 Hz, J_{6.6'} 11.9 Hz, H-6'), 4.36 (1H, d, J_{1.2} 9.3 Hz, H-1), 4.90-4.93 (1H, m, αH); δ_C (100.7 MHz, CD₃OD) 21.4 (q, HNC(O)<u>C</u>H₃), 40.6 (t, CH,H'), 51.9 (d, αC), 52.4 (q, OCH₃), 61.9 (t, C-6), 70.2 (d, C-4), 71.4 (d, C-2), 78.4 (d, C-3), 81.5 (d, C-5), 90.5 (d, C-1), 171.8, 172.4 (2 x s, HNC(O)CH₃, CO₂CH₃); *m/z* (ES⁺) 394 (MNa⁺, 90%), 430 $(MMeCNNH_4^+, 100\%); HRMS (ES^+) Calcd. for C_{12}H_{21}NNaO_8S_2 (MNa^+) 394.0601.$ Found: 394.0601.

Synthesis

glucopyranosyl disulfide) methyl ester 17

of

Scheme S15.

1-Thio-2-acetamido-2-deoxy-β-D-glucopyranose³ 56

1-thio-3,4,6-Tri-O-acetyl-2-acetamido-2-deoxy-β-D-glucopyranose 51 (0.66 g, 1.829 mmol) was dissolved in anhydrous methanol (10 mL) and sodium methoxide (0.32 g, 5.961 mmol) was added. After 30 min, t.l.c. (ethyl acetate) indicated the formation of a single product (R_f 0) and the absence of starting material (R_f 0.2). Ion exchange resin (DOWEX 50WX8-200) was added portionwise until the solution was neutralised, at which point the reaction mixture was concentrated in vacuo. Recrsytalisation from methanol/ethyl acetate yielded 1-thio-2-acetamido-2-deoxy-β-Dglucopyranose 56 (0.38 g, 87%) as a white crystalline solid; m.p. 174-176 °C (methanol/ethyl acetate) [Lit. 177-179 °C (methanol/ethyl acetate)]³; $[\alpha]_{D}^{21}$ -12.1 (c, 1 in MeOH) [Lit. $[\alpha]_D^{22}$ -10.4 (c, 1 in MeOH)]³; δ_H (400 MHz, CD₃OD) 2.00 (3H, s, HNC(O)CH₃), 3.27-3.37 (2H, m, H-4, H-5), 3.41 (1H, at, J 9.0 Hz, H-3), 3.65 (1H, dd, J_{5.6} 5.6 Hz, J_{6.6}, 11.9 Hz, H-6), 3.87 (1H, dd, J_{5.6}, 2.0 Hz, J_{6.6}, 12.0 Hz, H-6'), 4.56 (1H, d, J_{1.2} 10.0 Hz, H-1), 8.15 (1H, d, J_{NH.H-2} 8.8 Hz, <u>H</u>NC(O)CH₃); δ_C (100.7 MHz, CD₃OD) 21.9 (q, HNC(O)<u>C</u>H₃), 58.9 (d, C-2), 61.8 (t, C-6), 70.8 (d, C-4), 76.0 (d, C-3), 79.9 (d, C-1), 81.5 (d, C-5), 172.8 (s, HNC(O)CH₃); *m/z* (ES⁻) 236 (M-H⁺, 100%).

Phenyl 2-acetamido-2 deoxy-1-selenenylsulfide-β-D-glucopyranoside³ 57

1-Thio-2-acetamido-2-deoxy- β -D-glucopyranose **56** (248 mg, 1.05 mmol) and phenylselenyl bromide (271 mg, 1.15 mmol) were dissolved in a mixture of anhydrous dioxane (5 mL) and anhydrous methanol (3 mL). The resulting mixture was stirred under an atmosphere of argon at room temperature. After 1 min, t.l.c. (ethyl acetate:methanol, 9:1) indicated the formation of a major product (Rf 0.4). The reaction was guenched with the addition of triethylamine (3 mL). The solution was concentrated in vacuo. The residue was purified by flash column chromatography (ethyl acetate:methanol, 9:1) to afford phenyl 2-acetamido-2 deoxy-1-selenenylsulfide- β -Dglucopyranoside 57 (271 mg, 66 %) as an white amorphous solid; $\left[\alpha\right]_{D}^{21}$ -171.3 (c, 1 in MeOH) [Lit. $[\alpha]_D^{22}$ -174.0 (c, 1 in MeOH)]³; δ_H (400 MHz, CD₃OD) 1.96 (3H, s, HNC(O)CH₃), 3.31-3.34 (1H, m, H-5), 3.36 (1H, dd, J_{5.6} 5.3 Hz, J_{6.6}, 11.9 Hz, H-6), 3.84 (1H, dd, J_{5.6'} 2.0 Hz, J_{6.6'} 11.9 Hz, H-6'), 3.87 (1H, at, J 10.0 Hz, H-2), 4.64 (1H, d, J_{1.2} 10.3 Hz, H-1), 7.27-7.34 (3H, m, Ar-H), 7.71-7.74 (2H, m, Ar-H); δ_C (100.7 MHz, CD₃OD) 21.9 (q, HNC(O)C<u>H</u>₃), 56.1 (d, C-2), 61.9 (t, C-6), 70.8 (d, C-5), 76.0 (d, C-3), 81.4 (d, C-4), 89.5 (d, C-1), 127.6, 129.1 (2 x d, 5 x Ar-C), 130.8 (s, Ar-C), 172.6 (s, $HNC(O)CH_3$).

N-Acetyl-L-cysteine (2-acetamido-2-deoxy-1-dithio- β -D-glucopyranosyl disulfide) methyl ester 17

Phenyl 3,4,6-tri-*O*-acetyl-2-acetamido-2-deoxy-1-selenenylsulfide- β -D-glucopyranoside **57** (112 mg, 0.286 mmol) and triethylamine (20 μ L, 0.143 mmol) were dissolved in anhydrous methanol (8 mL) and stirred at room temperature under an atmosphere of argon. A solution of *N*-acetyl-L-cysteine methyl ester **27** (17 mg, 0.095 mmol) in anhydrous methanol (5 mL) was added dropwise over a 10 min period. After 6 h, t.l.c. (ethyl acetate:methanol, 9:1) indicated the formation of a product (R_f 0.1) along with complete consumption of the starting material (R_f 0.2). The reaction mixture was concentrated *in vacuo* and the resulting residue purified by flash column

chromatography (ethyl acetate:methanol, 9:1) to afford *N*-acetyl-L-cysteine (2acetamido-2-deoxy-1-dithio-β-D-glucopyranosyl disulfide) methyl ester **17** (37 mg, 94%) as a white amorphous solid; $[\alpha]_D^{25}$ -74.1 (c, 1 in MeOH); υ_{max} (KBr disc) 3363 (br, NH OH) 1737 (s, C=O) 1654 (s, C=O) cm⁻¹; δ_H (500 MHz, CD₃OD) 1.99, 2.00 (6H, 2 x s, 2 x HNC(O)CH₃), 3.07 (1H, dd, $J_{CH,H'}$ 13.9 Hz, $J_{CH,\alpha H}$ 8.7 Hz, CH,H'), 3.30-3.39 (3H, m, H-3, H-4, CH,H'), 3.50-3.54 (1H, m, H-5), 3.72-3.78 (2H, m, H-6, H-6'), 3.79 (3H, s, OCH₃), 3.92 (1H, at, *J* 10.3 Hz, H-2), 4.57 (1H, d, $J_{1,2}$ 10.3 Hz, H-1), 4.73-4.77 (1H, m, αH), 7.32 (1H, d, $J_{NH,H-2}$ 7.5 Hz, <u>H</u>NC(O)CH₃,H-2), 7.74 (1H, d, $J_{NH,\alpha H}$ 7.0 Hz, <u>H</u>NC(O)CH₃,αH); δ_C (125.8 MHz, CD₃OD) 22.4, 22.9 (2 x q, 2 x HNC(O)CH₃), 41.9 (t, CH,H'), 52.9 (q, OCH₃), 53.6 (d, αC), 55.6 (d, C-2), 62.9 (t, C-6), 71.7 (d, C-4), 77.1 (d, C-5), 82.6 (d, C-3), 91.3 (d, C-1), 172.8, 173.4, 173.5 (3 x s, 2 x HNC(O)CH₃, <u>C</u>O₂CH₃); *m/z* (ES⁺) 471 (MMeCNNH₄⁺, 100%); HRMS (ES⁺) Calcd. for C₁₄H₂₄N₂NaO₈S₂ (MNa⁺) 435.0869. Found: 435.0866.

General procedures for peptide synthesis

General procedure 1 (**GP 1**): to a ~0.1M solution of the amine and appropriate amino acid (1.1 equivalents) in anhydrous DMF were added HBTU (1.1 equivalents), HOBt (0.37 equivalents) and DIPEA (2 equivalents). After t.l.c. analysis showed complete consumption of starting material and formation of a major product, the reaction mixture was concentrated *in vacuo*. The residue was diluted with DCM, washed with sodium hydrogen carbonate (saturated aqueous solution), potassium hydrogen sulfate (1N aqueous solution), and brine, dried (MgSO₄), filtered and concentrated *in vacuo*.

General procedure 2 (**GP 2**): a ~0.1M solution of the Fmoc building block in DCM ($c \approx 0.1M$) was treated with 1.05 equiv. DBU. After t.l.c. analysis showed complete consumption of starting material and formation of a major product, the reaction mixture was concentrated *in vacuo* ~20% of the original volume. The amine was subsequently purified by flash column chromatography. In case of the "one-pot" procedure (*i.e.* deprotection-coupling), the reaction mixture was not concentrated after completion but treated with 1.0 equivalents of HOBt and this solution was used for the amino acid coupling as described in **GP 1**.

General procedure 3 (**GP 3**): a solution of the amine in pyridine ($c \approx 0.1$ M) was cooled to 0°C and treated with acetic anhydride (5 mL mmol⁻¹). To speed up the reaction 0.33 equivalents of DMAP were added. After t.l.c. analysis showed complete consumption of starting material and formation of a major product, the reaction mixture was concentrated *in vacuo*. The residue was diluted with DCM, washed with sodium hydrogen carbonate (saturated aqueous solution), potassium hydrogen sulfate (1N aqueous solution), and brine, dried (MgSO₄), filtered and concentrated *in vacuo*.

Synthesis of Ac-Cys-Ser(tBu)-Gly-OEt 58

Scheme S16. Reagents and Conditions: (*i*) HBTU, HOBt, DiPEA, DCM, DMF (yield **59**: 99%); (*ii*) (a) DBU, DCM; (b) HOBt; (c) Fmoc-Cys(Tr)-OH, HBTU, HOBt, DiPEA, DCM, DMF (yield **60**: 89%); (*iii*) DBU, DCM (yield **61**: 86%). (*iv*) Ac_2O , pyridine (yield **62**: 84%). (*v*) TFA/DCM (5/95 v/v), *i*Pr₃SiH (yield **58**: 73%).

N-fluorenyl methoxycarbonyl-O-tert-butyl-L-serine-glycine ethyl ester 59

Fmoc-Ser(*t*Bu)-OH (5.00 g, 13.0 mmol) and HCI•Gly-OEt (2.00 g, 14.3 mmol) were treated according to GP 1; purification by flash column chromatography (diethyl ether) gave Fmoc-Ser(*t*Bu)-Gly-OEt **59** as a white solid; m.p. 119 °C; Yield: 99%; R_f 0.6 (diethyl ether); $[\alpha]_D^{18}$ +23.2 (c, 1 in CHCl₃); υ_{max} (KBr disc) 3300 (br, NH) 1726 (s, C=O) 1656 (s, C=O) cm⁻¹; δ_H (400 MHz, CDCl₃) 1.15 (9H, s, C(CH₃)₃), 1.21 (3H, dd, *J* 7.1 Hz, partially obscured by following resonance, OCH₂CH₃), 3.34 (1H, at, *J* 8.4 Hz, CH,H'ser), 3.77 (1H, dd, *J* 3.8 Hz, *J* 8.4 Hz, CH,H'ser), 3.99 (2H, ABX system, *J* 13.3 Hz, *J* 18.3 Hz, αHgly), 4.10 (4H, m, αHser, H^{Fmoc}, OCH₂CH₃), 4.32 (2H, d, *J* 6.8 Hz, CH₂^{Fmoc}), 5.72 (1H, d, *J* 5.2 Hz, NH), 7.18-7.36 (5H, m, 4×H^{Fmoc}, NH^{amide}), 7.55 (2H, d, *J* 7.4 Hz, H^{Fmoc}), 7.70 (1H, d, *J* 7.5 Hz, NH^{Fmoc}); δ_C (100.7 MHz, CDCl₃) 13.5 (q, OCH₂CH₃), 26.7 (q, C(CH₃)₃), 40.9 (t, αCgly), 46.5 (d, CH^{Fmoc}), 54.1 (d, αCser), 60.7 (t, CH,H'ser), 61.4 (t, OCH₂CH₃), 66.5 (s, <u>C</u>(CH₃)₃), 73.4 (t, CH₂^{Fmoc}), 119.4, 124.6, 126.5, 127.1 (4 x d, 4 x C^{Fmoc}), 140.6, 143.2, 143.3 (3 x s, 3 x C^{Fmoc}), 155.2 (s, CO^{Fmoc}), 169.2,

171.2 (2 x s, 2 x CO); m/z (ES⁺) 527 (MMeCNNH₄⁺, 100%); HRMS (ES⁺) Calcd. for $C_{26}H_{32}N_2NaO_6$ (MNa⁺) 491.2153. Found: 491.2136.

N-fluorenyl methoxycarbonyl-*S*-trityl-L-cysteine-*O*-*tert*-butyl-L-serine-glycine ethyl ester 60

Fmoc-Ser(tBu)-Gly-OEt 59 (2.50 g, 5.34 mmol) was deprotected according to GP 2 and coupled with Fmoc-Cys(Tr)-OH according to GP 1; purification by flash column chromatography (diethyl ether) gave 60 as a colourless foam; Yield: 89%; R_f 0.6 (diethyl ether); $[\alpha]_D^{18}$ +2.0 (c, 0.5 in CHCl₃); v_{max} (thin film) 3370 (br, NH) 1750 (s, C=O) 1650 (s, C=O) cm⁻¹; δ_H (400 MHz, CDCl₃) 1.09 (9H, s, C(CH₃)₃), 1.16 (3H, at, J 7.1 Hz, OCH₂CH₃), 2.64 (2H, d, J 6.8 Hz, CH,H'cys), 3.25 (1H, dd, J 6.2 Hz, J 8.8 Hz CH,H'ser), 3.51 (1H, dd, J 6.6 Hz, J 7.0 Hz, αHcys), 3.66, 3.71 (1H, ABX system, J 5.2 Hz, aHgly), 3.80 (1H, dd, J 3.3 Hz, J 8.8 Hz, CH, H'ser), 3.84, 3.88 (1H, ABX system, J 5.8 Hz, aHgly), 4.04 (2H, dd, J 6.9 Hz, J 7.2 Hz, OCH₂CH₃), 4.10 (1H, at, J 7.0 Hz, CH^{Fmoc}), 4.28 (2H, dd, J 5.4 Hz, J 7.2 Hz, CH₂^{Fmoc}), 4.37 (1H, ddd, J 3.3 Hz, J 6.5 Hz, J 6.9 Hz, αHser)[,] 5.00 (1H, d, J 7.0 Hz, NH), 6.64 (1H, d, J 7.3 Hz, NH), 7.09-7.38 (19 H, m, NH, 6 × H^{Fmoc}, 13 × H^{Tr}), 7.49 (2H, d, *J* 7.0 Hz, H^{Fmoc}), 7.65 (1H, d, J 3.5 Hz, H^{Tr}), 7.69 (1H, d, J 3.9 Hz, H^{Tr}); $\delta_{\rm C}$ (100.7 MHz, CDCl₃) 13.8 (g, OCH₂CH₃), 27.0 (q, C(<u>C</u>H₃)₃), 33.5 (t, CH,H'cys), 40.8 (t, αCgly), 46.7 (d, CH^{Fmoc}), 52.9, 53.7 (2 x d, α Cser, α Ccys), 60.8 (2 x t, O<u>C</u>H₂CH₃, CH,H'ser), 66.9 (t, CH₂^{Fmoc}), 73.6 (s, <u>C</u>(CH₃)₃), 119.6, 124.7 (2 x d, 3 x C^{Tr}), 126.6-127.8 (C^{Fmoc}, C^{Tr}), 140.9, 143.3, 143.5, 143.9 (4 x s, 3 x C^{Fmoc}, C^{Tr}), 155.5 (s, CO^{Fmoc}), 168.9, 169.6, 169.8 (3 x s, 2 × CO^{amide}, CO^{ester}); m/z (ES⁺) 872 (MMeCNNH₄⁺, 100%); HRMS (ES⁺) Calcd. for C₄₈H₅₁N₃NaO₇S (MNa⁺) 836.3340. Found: 836.3316.

S-trityl-L-cysteine-O-tert-butyl-L-serine-glycine ethyl ester 61

Fmoc-Cys(Tr)-Ser(*t*Bu)-Gly-OEt **60** (1.00 g, 1.23 mmol) was deprotected according to GP 2; purification by flash column cromatography (DCM→DCM:methanol, 9:1) gave H-

Cys(Tr)-Ser(*t*Bu)-Gly-OEt **61** as a yellow oil; Yield: 86%; R_f 0.5 (DCM:methanol, 9:1); δ_{H} (400 MHz, CDCl₃) 1.17 (9H, s, C(CH₃)₃), 1.25 (3H, at, *J* 7.2 Hz, OCH₂C<u>H₃</u>), 2.55 (1H, at, *J* 8.1 Hz, CH,H'cys), 2.75 (1H, dd, *J* 4.6 Hz, *J* 12.8 Hz, CH,H'cys), 2.83 (1H, dd, *J* 4.2 Hz, J 8.1 Hz, α Hcys), 3.33 (1H, at, *J* 7.7 Hz, CH,H'ser), 3.80 (1H, dd, *J* 4.0 Hz, *J* 8.8 Hz, CH,H'ser), 3.95 (2H, d, *J* 5.2 Hz, α Hgly), 4.18 (2H, at, *J* 7.2 Hz, OC<u>H</u>₂CH₃), 4.40 (1H, dd, *J* 4.0 Hz, *J* 7.3 Hz, α Hser), 7.20-7.45 (16 H, m, 15 x H^{Tr}, NH^{amide}), 7.62 (1H, d, *J* 7.2 Hz, NH^{amide}); δ_{C} (100.7 MHz, CDCl₃) 13.7 (q, OCH₂CH₃), 27.0 (q, C(<u>C</u>H₃)₃), 36.9 (t, CH,H'cys), 40. 9 (t, α Cgly), 52.4, 53.7 (2 x d, α Cser, α Ccys), 60.8, 66.4 (2 x t, O<u>C</u>H₂CH₃, CH,H'ser), 73.5 (s, <u>C</u>(CH₃)₃), 126.7, 127.6, 129.1 (3 x d, 3 x C^{Tr}), 144.1 (s, C^{Tr}), 169.0, 170.0, 173.0 (3 x s, 2 x CO^{amide}, CO^{ester}); *m/z* (ES⁺) 650 (MMeCNNH₄⁺, 100%); HRMS (ES⁺) Calcd. for C₃₃H₄₁N₃NaO₅S (MNa⁺) 614.2659. Found: 614.2647.

N-acetyl-*S*-trityl-L-cysteine-*O*-tert-butyl-L-serine-glycine ethyl ester 62

H-Cys(Tr)-Ser(tBu)-Gly-OEt 61 (351 mg, 593 µmol) was treated according to GP 3; purification by flash column chromatography (6% methanol in DCM) furnished Ac-Cys(Tr)-Ser(tBu)-Gly-OEt 62 as a white solid; m.p. 191 °C; Yield: 84%; R, 0.5 (6% methanol in DCM); [α]_D¹⁸ +14.4 (c, 0.25 in CHCl₃); υ_{max} (KBr disc) 3260 (br, NH) 1757 (s, C=O) 1640 (s, C=O) cm⁻¹; alternatively, Fmoc-Cys(Tr)-Ser(*t*Bu)-Gly-OEt **60** (1.00 g, 1.15 mmol) was deprotected according to GP 2 and acetylated following GP 3b; Yield: 81% over 2 steps; δ_H (400 MHz, CDCl₃) 1.18 (9H, s, C(CH₃)₃), 1.25 (3H, at, J 7.2 Hz, OCH₂CH₃), 1.90 (3H, s, C(O)CH₃), 2.65 (1H, at, J 6.6 Hz, CH, H'cys), 2.75 (1H, dd, J 5.9 Hz, J 6.6 Hz, CH, H'cys), 3.35 (1H, dd, J 6.0 Hz, J 8.8 Hz, CH, H'ser), 3.75 (1H, dd, J 5.4 Hz, J 8.0 Hz, aHgly), 3.88 (3H, m, aHgly, CH,H'ser, aHcys), 4.18 (2H, dd, J 7.0 Hz, J 14.0 Hz, OCH₂CH₃), 4.40 (1H, dd, J 3.3 Hz, J 7.3 Hz, αHser), 6.05 (1H, d, J 7.1 Hz, NH^{amide}), 6.70 (1H, d, J 7.4 Hz, NH^{amide}), 7.20-7.45 (16H, m, 15 x H^{Tr}, NH^{amide}); δ_H (100.7 MHz, CDCl₃) 13.9 (q, OCH₂CH₃), 22.7 (q, C(O)CH₃), 27.1 (q, C(CH₃)₃), 33.3 (t, CH,H'cys), 40.9 (t, αCgly), 52.1, 53.1 (2 x d, αCser, αCcys), 60.7, 60.9 (2 x t, OCH₂CH₃, CH,H'ser), 73.7 (s, C(CH₃)₃), 126.7, 127.9, 129.2 (3 x d, 3 x C^{Tr}), 144.0 (s, C^{Tr}), 169.0, 169.8, 169.9 (4 x CO); *m/z* (ES⁺) 692 (MMeCNNH₄⁺, 100%); HRMS (ES⁺) Calcd. for C₃₅H₄₃N₃NaO₆S (MNa⁺) 656.2765. Found: 656.2766.

Synthesis of Ac-Cys-Gly-Thr(*t*Bu)-Gly-OEt 63

Scheme S17. Reagents and Conditions: (*i*) HBTU, HOBt, DiPEA, DCM, DMF (yield **64**: 89%). (*ii*) (a) DBU, DCM; (b) HOBt; (c) Fmoc-Gly-OH, HBTU, HOBt, DiPEA, DCM, DMF (yield **65**: 85%); (*iii*) DBU, DCM (yield **66**: 82%); (*iv*) Fmoc-Cys(Tr)-OH, HBTU, HOBt, DiPEA, DCM, DMF (yield: 85%); (*v*) DBU, DCM (yield **67**: 70% from **65**); (*vi*) Ac₂O, pyridine (yield **69**: 82%); (*vii*) TFA/DCM (5/95 v/v), *i*Pr₃SiH (yield **63**: 38%).

N-fluorenyl methoxycarbonyl-L-threonine-glycine ethyl ester 64

Fmoc-Thr(tBu)-OH (5.00 g, 12.6 mmol) and HCI+H-Gly-OEt (2.11 g, 15.1 mmol) were treated according to GP 1; purification by flash column chromatography (petrol:diethyl ether, 1:3) gave **64** as a white solid; m.p. 93 °C; Yield: 89%; R_f 0.8 (diethyl ether); $[\alpha]_D^{18}$ +19.2 (c, 1 in CHCl₃); υ_{max} (KBr disc) 3310 (br, NH) 1742 (s, C=O) 1670 (s, C=O) cm⁻¹; δ_H (400 MHz, CDCl₃) 1.10 (3H, d, *J* 6.4 Hz, CH₃thr), 1.30 (12H, m, OCH₂CH₃, C(CH₃)₃), 4.07 (2H, ABX system, α Hgly), 4.18-4.26 (5H, m, α Hthr, CHthr, H^{Fmoc}, OCH₂CH₃), 4.40 (2H, d, *J* 7.5 Hz, CH₂^{Fmoc}), 6.03 (1H, d, *J* 5.0 Hz, NH), 7.31 (2H, at, *J* 7.4 Hz, H^{Fmoc}), 7.40 (2H, at, *J* 7.5 Hz, H^{Fmoc}), 7.61 (2H, d, *J* 7.6 Hz, H^{Fmoc}), 7.64 (1H, m, NH), 7.75 (2H, d, *J* 7.5 Hz, H^{Fmoc}); δ_C (100.7 MHz, CDCl₃) 13.9 (q, OCH₂CH₃), 16.6 (q, CH₃thr), 27.9 (q, C(CH₃)₃), 41.3 (t, α Cgly), 46.9 (d, CH^{Fmoc}), 58.3 (d, α Cthr), 61.1 (t, OCH₂CH₃), 66.4 (d, CHthr), 66.6 (t, CH₂^{Fmoc}), 143.4, 143.7, (2 x s, 2 x C^{Fmoc}), 155.7 (s, CO^{Fmoc}), 169.1,

169.3 (2 x d, 2 x CO); m/z (ES⁺) 505 (MNa⁺, 100%); HRMS (ES⁺) Calcd. for $C_{27}H_{34}N_2NaO_6$ (MNa⁺) 505.2309. Found: 505.2304.

N-fluorenyl methoxycarbonyl-glycine-*O*-*tert*-butyl-L-threonine-glycine ethyl ester 65

Fmoc-Thr(tBu)-Gly-OEt 64 (2.60 g, 5.39 mmol) was deprotected according to GP 1 and the free amine was coupled with Fmoc-Gly-OH following GP 2; purification by flash column chromatography (petrol:diethyl ether, $1:1 \rightarrow DCM \rightarrow 5\%$ methanol in DCM) furnished Fmoc-Gly-Thr(tBu)-Gly-OEt 65 as a foam; Yield: 85%; R, 0.4 (8% methanol in DCM);); $[\alpha]_{D}^{18}$ +23.6 (c, 0.5 in CHCl₃); v_{max} (thin film) 3320 (br, NH) 1726 (s, C=O) 1656 (s, C=O) cm⁻¹; δ_H (400 MHz, CDCl₃) 1.05 (3H, d, J 6.3 Hz, CH₂thr), 1.25 (3H, t, J 7.2 Hz, OCH₂CH₃), 1.28 (9H, s, C(CH₃)₃), 4.05-4.11 (4H, ABX system, α Hgly), 4.16-4.22 (4H, m, CH^{Fmoc}, CHthr, OCH₂CH₃), 4.38 (2H, d, J 7.0 Hz, CH₂^{Fmoc}), 4.44 (1H, at, J 4.6 Hz, aHser), 5.80 (1H, m, NH), 7.23 (1H, d, J 5.6 Hz, NHamide), 7.30 (2H, m, H^{Fmoc}), 7.37 (2H, at, *J* 7.4 Hz, H^{Fmoc}), 7.58 (2H, d, *J* 7.4 Hz, H^{Fmoc}), 7.68 (1H, at, J 5.0 Hz, NH^{amide}), 7.74 (2H, d, J 7.5 Hz, NH^{Fmoc}); δ_C (100.7 MHz, CDCl₃) 14.0 (q, OCH_2CH_3), 17.1 (q, CH₃thr), 28.0 (q, C(CH₃)₃), 41.4, 44.2 (2 x t, 2 x α Cgly), 46.9 (d, CH^{Fmoc}), 57.4 (d, αCthr), 61.4 (t, O<u>C</u>H₂CH₃), 66.0, 67.1 (2 x t, CH₂^{Fmoc}, CHthr), 75.5 (s, C(CH₃)₃), 119.8, 125.0, 126.9, 127.6 (4 X d, C^{Fmoc}), 141.1 (s, 2 x C^{Fmoc}), 143.7 (s, 2 x C^{Fmoc}), 156.5 (s, CO^{Fmoc}), 168.8, 169.3, 169.5 (3 x s, 3 x CO); *m/z* (ES⁺) 598 (MMeCNNH₄⁺, 100%); HRMS (ES⁺) Calcd. for C₂₉H₃₇N₃NaO₇ (MNa⁺) 562.2524. Found: 562.2525.

N-fluorenyl methoxycarbonyl-*S*-trityl-L-cysteine-glycine-*O*-*tert*-butyl-L-threonine-glycine ethyl ester 67

Fmoc-Gly-Thr(*t*Bu)-Gly-OEt **65** (108 mg, 200 μ mol) was deprotected following GP 2; (H-Gly-Thr(*t*Bu)-Gly-OEt: R_f 0.3 (DCM:methanol, 9:1). After t.l.c. showed completion (30 min), the solution was concentrated *in vacuo* and the residue purified by flash column chromatography (DCM \rightarrow DCM:methanol, 9:1). The amine (**66**, 52 mg,

164 µmol, 82%) was used directly for the coupling with Fmoc-Cys(Tr)-OH following GP 2; after strirring the reaction mixture overnight, t.l.c. analysis showed total consumption of starting material: purification bv flash column chromatography (DCM→DCM:methanol, 9:1) gave 67 as a white solid; m.p. 117 °C; Yield: 85%; R, 0.4 (5% methanol in DCM);); $[\alpha]_{D}^{18}$ +14.6 (c, 0.5 in CHCl₃); v_{max} (KBr disc) 3300 (br, NH) 1742 (s, C=O) 1632 (s, C=O) cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.91 (3H, d, J 6.2 Hz, CH₃thr), 1.13 (3H, t, J 7.1 Hz, OCH₂CH₃), 1.17 (9H, s, C(CH₃)₃), 2.61 (2H, m, CH,H'cys), 3.83 (2H, m, aHgly), 3.88-4.00 (3H, m, 2 x aHgly, aHcys), 4.00-4.13 (4H, m, CH^{Fmoc}, OC<u>H</u>₂CH₃, CHthr), 4.30 (3H, m, αHthr, CH₂^{Fmoc}), 5.40 (1H, d, *J* 6.9 Hz, NH), 7.10 (1H, m, NH), 7.10-7.22 (11H, m, 11 x Ar-H), 7.26-7.33 (8H, m, 8 x Ar-H), 7.51 (2H, m, H^{Fmoc}, NH), 7.65 (2H, dd, J 5.2 Hz, J 7.4 Hz, NH^{Fmoc}); δ_C (100.7 MHz, CDCl₃) 14.0 (q, OCH₂<u>C</u>H₃), 17.1 (q, CH₃thr), 28.0 (q, C(<u>C</u>H₃)₃), 41.4, 43.0 (2 x t, 2 x αCgly), 33.6 (t, CH, H'cys), 47.0 (d, CH^{Fmoc}), 53.8 (d, aCcys), 57.3 (d, aCthr), 61.3 (t, OCH₂CH₃), 66.0, 67.1 (2 x t, CH₂^{Fmoc}, CHthr), 75.4 (s, <u>C</u>(CH₃)₃), 119.8, 125.0, 126.7, 126.9, 127.6, 129.5 (6 x, d, C^{Fmoc,Tr}), 141.1, 143.6, 143.7, 144.3 (4 x s, C^{Fmoc,Tr}), 155.9 (s, CO^{Fmoc}), 168.0, 169.3, 170.5 (3 x s, 4 x CO); *m/z* (ES⁺) 907 (MNa⁺, 100%); HRMS (ES⁺) Calcd. for C₅₁H₅₆N₄NaO₈S (MNa⁺) 907.3711. Found: 907.3712.

N-acetyl-S-trityl-L-cysteine-glycine-O-tert-butyl-L-threonine-glycine ethyl ester 69

Fmoc-Cys(Tr)-Gly-Thr(*t*Bu)-Gly-OEt **67** was synthesised from Fmoc-Gly-Thr(*t*Bu)-Gly-OEt on a 4.36 mmol scale, however, in this case the crude tetrapeptide was used crude during the next removal of the Fmoc group on the cysteine residue according to GP 2; purification by flash column chromatography (DCM \rightarrow DCM:methanol, 9:1) gave H-Cys(Tr)-Gly-Thr(*t*Bu)-Gly-OEt (**68**, 2.03 g, 3.06 mmol) as a foam; Yield: 70% from Fmoc-Gly-Thr(*t*Bu)-Gly-OEt; R_f 0.5 (8% methanol in DCM); *m/z* (ES⁺) 721 (MMeCNNH₄⁺, 100%);

Next, H-Cys(Tr)-Gly-Thr(*t*Bu)-Gly-OEt (1.00 g, 1.51 mmol) was treated with acetic anhydride (10 mL) and pyridine (10 mL) for 20 h. The reaction mixture was diluted with ethyl acetate (100 mL), washed with sodium hydrogen carbonate (saturated aqueous solution), hydrochloric acid (1N aqueous solution), and brine, dried (MgSO₄), filtered and concentrated *in vacuo*. The residue was purified by flash column chromatography (petrol:ethyl acetate, $1/0 \rightarrow 0/1 \rightarrow 5\%$ methanol in ethyl acetate) yielding **69** as a glassy

oil; Yield: 82%; R_f 0.5 (8% methanol in DCM);); $[\alpha]_D^{18}$ +15.0 (c, 1 in CHCl₃); v_{max} (KBr disc) 3312 (br, NH) 1734 (s, C=O) 1656 (s, C=O) cm⁻¹; δ_H (400 MHz, CD₃OD) 1.01 (3H, d, *J* 6.4 Hz, CH₃thr), 1.13-1.17 (12H, m, OCH₂CH₃, C(CH₃)₃), 1.91 (3H, s, C(O)CH₃), 2.58 (1H, dd, *J*_{CH,H'} 13.0 Hz, *J*_{CH,αH} 5.9 Hz, CH,H'cys), 2.71 (1H, dd, *J*_{CH,H'} 13.0 Hz, *J*_{CH,αH} 6.7 Hz, CH,H'cys), 3.81-3.92 (1H, d, *J* 4.9 Hz, αHgly), 3.92-3.98 (1H, d, *J* 5.2 Hz, αHgly), 4.01-4.09 (2H, m, 2 x αHgly), 4.12 (1H, m, CHthr), 4.19 (3H, m, OCH₂CH₃, αHcys), 4.40 (1H, dd, *J* 3.8 Hz, *J* 5.9 Hz, αHthr), 6.25 (1H, m, NH^{amide}), 6.88 (1H, at, *J* 5.0 Hz, NH^{amide}), 7.19-7.30 (11H, m, 10 x H^{Tr}, NH^{amide}), 7.63 (1H, t, *J* 5.1 Hz, NH^{amide}), 7.41 (5H, m, 5 x H^{Tr}); δ_C (100.7 MHz, CD₃OD) 14.1 (q, OCH₂CH₃), 17.8 (q, CH₃thr), 23.0 (q, C(O)CH₃), 28.1 (q, C(CH₃)₃), 33.2 (t, CH,H'cys), 41.5, 43.2 (2 x t, 2 x αCgly), 52.0 (d, αCcys), 57.5 (d, αCthr), 61.4 (t, OCH₂CH₃), 66.1 (t, CHthr), 75.5 (s, C(CH₃)₃), 126.8, 128.0, 129.5 (3 x d, 3 x C^{Tr}), 144.4 (s, C^{Tr}), 168.1, 169.4, 169.5, 170.4, 170.6 (5 x s, 5 x CO); *m/z* (ES⁺) 763 (MNa⁺, 100%); HRMS (ES⁺) Calcd. for C₃₈H₄₈N₄NaO₇S (MNa⁺) 727.3136. Found: 727.3135.

N-acetyl-L-cysteine-glycine-O-tert-butyl-L-threonine-glycine ethyl ester 63

Ac-Cys(Tr)-Gly-Thr(*t*Bu)-Gly-OEt **68** (868 mg, 1.23 mmol) was dissolved in DCM (14 mL) and treated with *i*Pr₃SiH (1.6 mmol, 327 μ L) and trifluoroacetic acid (0.75 mL). After 6 h t.l.c. (DCM:methanol, 9:1) showed complete consumption of starting material and the formation of two lower running spots. The reaction mixture was co-evaporated with dry toluene and purified by flash column chromatography (petrol:ethyl acetate, $10/1 \rightarrow 1/1 \rightarrow$ ethyl acetate $\rightarrow 10\%$ methanol in ethyl acetate $\rightarrow 20\%$ methanol in ethyl acetate) to give **63** as a foam; Yield: 38%; R_f 0.4 (ethyl acetate:methanol, 9:1); $\delta_{\rm H}$ (400 MHz, CD₃OD) 1.12 (3H, d, *J* 6.3 Hz, CH₃thr), 1.24 (9H, s, C(CH₃)₃), 1.30 (3H, at, *J* 7.1 Hz, OCH₂CH₃), 2.05 (3H, s, C(O)CH₃), 2.83 (2H, d, *J* 6.1 Hz, CH,H'cys), 3.88-4.06 (4H, m, α Hgly), 4.17 (1H, m, CHthr'), 4.23 (2H, dd, *J* 7.1 Hz, *J* 14.1 Hz, OCH₂CH₃), 4.45 (1H, at, *J* 3.3 Hz, α Hthr), 4.58 (1H, at, *J* 6.1 Hz, α Hcys), 7.56 (1H, d, *J* 7.6 Hz, NH), 7.90 (1H, at, *J* 5.6 Hz, NH), 8.03 (1H, d, *J* 7.6 Hz, NH), 8.36 (1H, at, *J* 5.6 Hz, NH); $\delta_{\rm C}$ (100.7 MHz, CD₃OD) 13.8 (q, OCH₂CH₃), 17.8 (q, CH₃thr), 22.4 (q, C(O)CH₃), 27.9 (q, C(CH₃)₃), 34.3 (t, CH,H'cys), 41.2, 42.9 (2 x t, 2 x α Cgly), 54.6, 57.6 (2 x d, α Cthr, α Ccys), 61.4 (t, OCH₂CH₃), 66.3 (t, CHthr), 75.3 (s, C(CH₃)₃), 169.1-

171.3 (CO); m/z (ES⁺) 521 (MMeCNNH₄⁺, 100%); HRMS (ES⁺) Calcd. for $C_{19}H_{34}N_4NaO_7S$ (MNa⁺) 485.2040. Found: 485.2037.

Synthesis of *N*-Acetyl-L-cysteine-(2,3,4,6-tetra-*O*-acetyl-1-dithio- β -D-

glucopyaranosyl disulfide)-O-tert-butyl-L-serine-glycine ethyl ester 19

Scheme S18.

N-Acetyl-L-cysteine-(2,3,4,6-tetra-*O*-acetyl-1-dithio- β -D-glucopyaranosyl disulfide)-*O*-*tert*-butyl-L-serine-glycine ethyl ester 19

Ac-Cys(Tr)-Ser(*t*Bu)-Gly-OEt **58** (250 mg, 394 μmol) was dissolved in DCM (10 mL) and treated with *i*Pr₃SiH (513 μmol, 105 μL) and trifluoroacetic acid (0.5 mL). After 1 h the reaction mixture was co-evaporated with dry toluene (2×25 mL) and a solution of this tripeptide and triethylamine (394 μmol, 55 μL) in a mixture of DCM/methanol (9/1 v/v, 10 mL) was subsequently added dropwise (30 min period) to a solution of 2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl phenyl thiosulfonate **42** (398 mg, 0.79 mmol) in DCM/methanol (9/1 v/v, 10 mL). After stirring under an atmosphere of argon for 1 h 30 min, t.l.c. (6% methanol in DCM) showed complete consumption of starting material and formation of a major product (R_f 0.4). The reaction mixture was concentrated *in vacuo* and the resulting residue purified by flash column chromatography (DCM:methanol, 9:1) yielding **19** (137 mg, 46% over 2 steps) as an oil; $[\alpha]_D^{18}$ -159.2 (c, 0.5 in CHCl₃); v_{max} (thin film) 3300 (br, NH) 1750 (s, C=O) 1643 (s, C=O) cm⁻¹; δ_H (400 MHz, CDCl₃) 1.16 (9H, s, C(CH₃)₃), 1.23 (3H, at,

J 7.2 Hz,OCH₂CH₃), 1.96-2.02 (15H, m, 4 x C(O)CH₃, HNC(O)CH₃), 3.01 (1H, dd, J_{CH,H^+} 14.1 Hz, $J_{CH,\alpha H}$ 8.5 Hz, CH,H'cys), 3.22 (1H, dd, J_{CH,H^+} 14.2 Hz, $J_{CH',\alpha H}$ 5.2 Hz, CH,H'cys), 3.40, 3.73 (2H, 2 x m, CH,H'ser), 3.79-3.83 (1H, ddd, *J* 2.2 Hz, *J* 4.1 Hz, *J* 6.2 Hz, H-5), 3.93-4.05 (2H, ABX system, 2 x α Hgly), 4.13-4.19 (3H, m, OCH₂CH₃, H-6), 4.27 (1H, dd, $J_{5,6'}$ 2.0 Hz, $J_{6,6'}$ 12.5 Hz, H-6'), 4.44 (1H, m, α Hser), 4.58 (1H, d, $J_{1,2}$ 9.4 Hz, H-1), 4.85 (1H, m, α Hcys), 5.09 (1H, at, *J* 9.5 Hz, H-4), 5.21 (2H, m, H-2, H-3), 7.05 (1H, d, *J* 7.5 Hz, NH), 7.35 (1H, m, NH), 7.46 (1H, d, *J* 7.1 Hz, NH); $\delta_{\rm C}$ (100.7 MHz, CDCl₃) 14.0 (q, OCH₂CH₃), 20.3, 20.4, 20.5, 20.6 (4 x q, 4 x C(O)CH₃), 22.8 (q, HNC(O)CH₃), 27.2 (q, C(CH₃)₃), 41.3 (2 x t, α Cgly, CH,H'cys), 52.4, 53.3 (2 x d, α Cser, α Ccys), 61.0, 61.2, 61.3 (3 x t, OCH₂CH₃, C-6, CH,H'ser), 67.8 (d, C-4), 69.0, 73.4 (C-2, C-3) 76.0 (d, C-5), 77.2 (s, C(CH₃)₃), 88.3 (d, C-1)), 169.1-170.8 (8 x s, 8 x CO); m/z (ES⁺) 812 (MMeCNNH₄⁺, 100%); HRMS (ES⁺) Calcd. for C₃₀H₄₇N₃NaO₁₅S₂ (MNa⁺) 776.2341. Found: 776.2345.

Synthesis of *N*-Acetyl-L-cysteine-(2,3,4,6-tetra-*O*-acetyl-1-dithio- β -D-galactopyaranosyl)-glycine-*O*-*tert*-butyl-L-threonine-glycine ethyl ester 21

N-Acetyl-L-cysteine-(2,3,4,6-tetra-*O*-acetyl-1-dithio-β-D-galactopyaranosyl)glycine-*O*-*tert*-butyl-L-threonine-glycine ethyl ester 21

A solution of Ac-Cys-Gly-Thr(*t*Bu)-Gly-OEt **63** (214 mg, 463 μ mol) in DCM/methanol (6/2 v/v, 8 mL) and triethylamine (463 μ mol, 65 μ L) was added dropwise (3 mL h⁻¹) to a solution of 2,3,4,6-tetra-O-acetyl- β -D-galactopyranoside phenylthiosulfonate **47** (0.70 g, 1.39 mmol) in DCM (10 mL). After stirring overnight, t.l.c. (DCM,methanol, 9:1) showed total consumption of starting material and formation of a major product (R_f 0.5). The

reaction mixture was concentrated in vacuo and purified by flash column chromatography (DCM:methanol, 9:1) to afford **21** (240 mg, 62%) as a glassy solid; $[\alpha]_{D}^{18}$ -58.0 (c, 1 in CHCl₃); υ_{max} (thin film) 3321 (br, NH) 1749 (s, C=O) 1654 (s, C=O) cm⁻¹; δ_H (500 MHz, CDCl₃) 1.05 (3H, d, J 6.3 Hz, CH₃thr), 1.27 (12H, m, OCH₂CH₃, C(CH₃)₃), 1.98, 2.03, 2.04, 2.05 (12H, 4 x s, 4 x C(O)CH₃), 2.17 (3H, s, HNC(O)CH₃), 3.04 (1H, dd, J_{CH,H} 14.2 Hz, J_{CH,αH} 8.2 Hz, C<u>H</u>,H'cys), 3.26 (1H, dd, J_{CH,H} 14.2 Hz, J_{CH',αH} 5.4 Hz, CH,<u>H</u>'cys), 3.85-4.23 (10H, m, H-5, H-6, OC<u>H</u>₂CH₃, 2 x αHgly, CH,H'thr), 4.40 (1H, dd, J 3.6 Hz, J 6.2 Hz, αHthr), 4.62 (1H, d, J_{1.2} 10.1 Hz, H-1), 4.90 (1H, dd, J 2.5 Hz, J 7.6 Hz, αHcys), 5.10 (1H, dd, J_{2.3} 10.1 Hz, J_{3.4} 3.5 Hz, H-3), 5.38 (1H, at, J 9.9 Hz, H-2), 5.43 (1H, dd, J 0.6 Hz, J 3.5 Hz, H-4), 6.84 (1H, d, J 8.3 Hz, NH), 7.22 (1H, d, J 6.3 Hz, NH), 7.39 (1H, m, NH), 7.64 (1H, at, J 4.8 Hz, NH); δ_C (125.7 MHz, CDCl₃) 14.2 (q, OCH₂CH₃), 17.3 (q, CH₃thr), 20.5, 20.6, 20.7, 20.8 (4 x q, 4 x C(O)CH₃), 23.1 (q, HNC(O)CH₃), 28.1 (q, C(CH₃)₃), 41.5, 41.7, 43.3 (3 x t, 2 x aCgly, CH, H'cys), 52.5 (d, aCcys), 57.5 (d, aCthr), 61.5 (t, C-6), 66.1, 66.6, 67.4 (3 x d, C-2, C-4, C-5), 71.7 (d, C-3), 75.0 (s, C(<u>C</u>H₃)₃), 75.6 (t, O<u>C</u>H₂CH₃), 89.8 (d, C-1), 168.2-170.8 (9 x s, 9 x CO); *m/z* (ES⁺) 883 (MMeCNNH₄⁺, 100%); HRMS (ES⁺) Calcd. for C₃₃H₅₂N₄NaO₁₆S₂ (MNa⁺) 847.2712. Found: 847.2717.

Mechanistic Studies on Desulfurization Reaction

Synthesis of Phenyl 2,3,4,6-tetra-O-benzyl- β -D-glucopyranosyl disulfide 71

Scheme S20.

Phenyl 2,3,4,6-tetra-O-benzyl- β -D-glucopyranosyl disulfide 71

A solution of thiophenol (34 µl, 0.34 mmol) in dichloromethane (20 ml) was added dropwise over 45 min to a stirred solution of 2,3,4,6-tetra-O-benzyl- β -D-glucopyranosyl methanethiosulfonate¹ (0.22 g, 0.34 mmol) and triethylamine (47 µl, 0.34 mmol) in dichloromethane (10 ml) at 0 °C. The ice bath was removed. After a further 1 h, t.l.c. (petrol:ethyl acetate, 4:1) showed disappearance of most of the starting material. The reaction mixture was passed through a short silica plug and the plug washed with dichloromethane. The filtrate was evaporated and the residue purified by flash column chromatography (petrol:ethyl acetate, 9:1) to give phenyl 2,3,4,6-tetra-O-benzyl- β -Dglucopyranosyl disulfide 71 (0.12 g, 50%) as a white crystalline solid; m.p. 80-82 °C; $[\alpha]_{D}^{25}$ -122 (c, 0.7 in CHCl₃); υ_{max} (thin film) no significant peaks; δ_{H} (500 MHz, CDCl₃) 3.48 (1H, m, H-5), 3.66-3.72 (4H, m, H-3, H-4, H-6, H-6'), 3.71 (1H, at, J 8.7 Hz, H-2), 4.41-4.90 (9H, m, H-1, 4 x OCH₂Ph), 7.13-7.46 (25H, m, Ar-H); δ_C (128.7 MHz, CDCl₃) 69.0 (t, C-6), 73.6, 75.0, 75.4, 75.7 (4 x t, 4 x OCH₂Ph), 77.6, 79.5, 80.1 (3 x d, C-2, C-4, C-5), 86.7 (d, C-3), 89.4 (d, C-1), 127.0, 127.5, 127.6, 127.7, 127.8, 127.9, 128.2, 128.3, 128.4, 128.7 (10 x d, Ar-C), 137.4, 137.8, 138.0, 138.2, 138.4 (5 x s, Ar-C); m/z (ES⁺) 687 HRMS (ES⁺) Calcd. for $C_{40}H_{40}NaO_5S_2$ (MNa⁺) (MNa⁺, 100%); 687.2209. Found: 687.2212.

Phenyl 2,3,4,6-tetra-*O*-benzyl-1-thio- α -D-glucopyranoside 72

Tributylphosphine (44 µl, 0.18 mmol) was added to a stirred solution of phenyl 2,3,4,6-tetra-*O*-benzyl- β -D-glucopyranosyl disulfide **71** (59 mg, 0.09 mmol) in anhydrous dichloromethane (2 ml) under an atmosphere of argon. After 5 h, t.l.c. (petrol:ethyl acetate, 8:2) showed incomplete consumption of the starting material along with the formation of two products. A further portion of tributylphosphine (44 µl, 0.18 mmol) was added and the reaction mixture stirred for 12 h. The solvent was removed *in vacuo* and the resulting residue purified by flash column chromatography (petrol:ethyl acetate, 95:5) to afford phenyl 2,3,4,6-tetra-*O*-benzyl-1-thio- α -D-glucopyranoside **72** (7 mg, 12%) as a white foam and 2,3,4,6-tetra-*O*-benzyl-1-thio-D-glucopyranose **73** (35 mg, 72%) as an oil being a mixture of anomers (α : β , 1:2);

Phenyl 2,3,4,6-tetra-*O*-benzyl-1-thio-α-D-glucopyranoside¹⁷ 72: $[α]_D^{20}$ +124 (c, 1 in CHCl₃) [Lit. $[α]_D^{25}$ +128.2 (c, 1 in CHCl₃)]¹⁷; $δ_H$ (500 MHz, CDCl₃) 3.59 (1H, dd, $J_{5,6}$ 2.0 Hz, $J_{6,6'}$ 10.8 Hz, H-6), 3.70-3.76 (2H, m, H-4, H-6'), 3.93 (1H, at, J 9.0 Hz, H-3), 3.99 (1H, dd, $J_{1,2}$ 4.7 Hz, $J_{2,3}$ 9.5 Hz, H-2), 4.28 (1H, ddd, $J_{4,5}$ 10.0 Hz, $J_{5,6}$ 1.8 Hz, $J_{5,6'}$ 3.6 Hz, H-5), 4.43-4.87 (8H, m, 4 x OCH₂Ph), 5.66 (1H, d, $J_{1,2}$ 4.8 Hz, H-1), 7.17-7.45 (25H, m, Ar-H); m/z (ES⁺) 650 (MNH₄⁺, 80%) 655 (MNa⁺, 100%).

2,3,4,6-Tetra-*O***-benzyl-1-thio-D-glucopyranose**²¹ **73**: m.p. 48-50 °C (ether/petrol) [Lit. 47-50 °C]²²; $[\alpha]_D^{22}$ +42.5 (c, 0.75 in CHCl₃); δ_H (500 MHz, CDCl₃) 1.95 (1H, d, $J_{1,SH}$ 4.8 Hz, SH α), 2.37 (1H, d, $J_{1,SH}$ 8.1 Hz, SH β), 3.43 (1H, at, *J* 9.0 Hz, H-2 β), 3.50-3.58 (1H, m, H-5 β), 3.67-3.73 (2H, m, H-3 α , H-3 β), 3.78-3.88 (6H, m, H-4 α , H-6 α , H-6' α , H-4 β , H-6 β , H-6' β), 3.92 (1H, dd, $J_{1,2}$ 4.9 Hz, $J_{2,3}$ 9.0 Hz, H-2 α), 4.25-4.28 (1H, m, H-5 α), 4.56 (1H, dd, $J_{1,SH}$ 8.1 Hz, $J_{1,2}$ 9.0 Hz, H-1 β), 4.57-5.01 (16H, m, 4 x OCH₂Ph α , 4 x OCH₂Ph β), 5.80 (1H, at, *J* 4.8 Hz, H-1 α), 7.19-7.43 (40H, m, 20 x Ar-H α , 20 x Ar-H β); *m/z* (ES⁺) 574 (MNH₄⁺, 100%) 579 (MNa⁺, 80%).

Crossover experiment

Methanol (100 mL) was added to a flame dried 250 mL round bottom flask equipped with a teflon stir bar. The solvent was stirred and cooled to 0 °C and acetyl chloride (17.6 mL, 248 mmol) was added dropwise over 5 minutes. The solution was stirred an additional 10 minutes at 0 °C to give a concentrated solution of HCI.L-cysteine (2α .00 g, 16.51 mmol) was then added in one portion and the flask flushed with argon. The ice bath was removed and the reaction was stirred at room temperature for 24 h. The solvent was then removed under reduced pressure to give the crude cysteine methyl ester hydrochloride as a pale yellow solid. This material was used immediately in the next step without purification. The crude ester was suspended in dichloromethane (100 mL) and cooled to 0 °C. Triethylamine (5.06 mL, 36.3 mmol) was added carefully followed by di-tert-butyl dicarbonate (4.32 g, 19.81 mmol). The reaction was stirred at room temperature for 3.25 h after which time t.l.c. (ethyl acetate:petrol, 3:7) revealed the desired product (R_f 0.6) and its corresponding disulfide (Rf 0.3). The solvent was removed under reduced pressure and the resulting residue was redissolved in methanol (40 mL) and water (8 mL). Tributylphosphine (2.0 mL, 8.1 mmol) was added dropwise to the stirred solution. t.l.c. revealed reduction of the disulfide. The reaction was diluted with diethyl ether (100 mL) and water (50 mL). The organic layer was separated and the aqueous layer was extracted with diethyl ether (2 × 50 mL). The combined organics were washed with brine (100 mL), dried over MgSO₄, and filtered. The solvent was removed by rotary evaporation and the residue purified by column chromatography eluting first with 5% ethyl acetate in petrol and then 20% ethyl acetate in petrol. The titled compound 74 was isolated as a clear oil (3.48 g, 89% from L-cysteine); $\left[\alpha\right]^{20}$ +28.3 (c = 7.5, CHCl₃) [Lit. $[\alpha]_{D}^{20}$ +28.5 (c, 7.5 in CHCl₃)]²³; δ_{H} (400 MHz, CDCl₃) 1.42 (10H, s, SH, C(CH₃)₃), 2.94 (2H, atd, J 4.3 Hz, J 8.7 Hz, CH₂SH), 3.76 (3H, s, CO₂CH₃), 4.58 (1H, m, αH), 5.44 (1H, d, J 5.8 Hz, NH); δ_C (100.7 MHz, CDCl₃) 27.3 (t, CH₂SH), 28.2 (q, C(<u>C</u>H₃)₃), 52.6 (q,

Preparation of *N*-(*tert*-Butoxycarbonyl)-L-cysteine methyl ester²³ 74

OCH₃), 54.8 (d, αC), 80.2 (s, <u>C</u>(CH₃)₃), 155.1, 170.8 (2 x s, 2 × CO); *m/z* (ES⁻) 234 (M-H⁺, 100%).

Synthesis of *N*-(*tert*-butoxycarbonyl)-L-cysteine (2,3,4,6-tetra-*O*-acetyl-1-dithio- β -D-glucopyaranosyl disulfide) methyl ester 75

Scheme S22.

N-(*tert*-butoxycarbonyl)-L-cysteine

 $(2,3,4,6-tetra-O-acetyl-1-dithio-\beta-D-$

glucopyaranosyl disulfide) methyl ester 75

2,3,4,6-Tetra-*O*-acetyl-β-D-glucopyranosyl phenylthiosulfonate **42** (200 mg, 0.397 mmol) was dissolved in anhydrous DCM (8 mL) and stirred at room temperature under an atmosphere of argon. A solution of N-(tert-butoxycarbonyl)-L-cysteine methyl ester 74 (93 mg, 0.397 mmol) and triethylamine (55 μ L, 0.397 mmol) in a mixture of anhydrous DCM (10 mL) and anhydrous methanol (2 mL) was slowly added via a syringe pump over a 2 h period. After 1 h, t.l.c. (petrol:ethyl acetate, 1:1) indicated the formation of a product $(R_f 0.5)$ along with complete consumption of the starting material $(R_f 0.4)$. The reaction mixture was concentrated in vacuo and the resulting residue purified by flash column chromatography (ethyl acetate:petrol, 1:2) to afford N-(tert-butoxycarbonyl)-L-cysteine (2,3,4,6-tetra-*O*-acetyl-1-dithio- β -D-glucopyaranosyl disulfide) methyl ester **75** (155 mg, 66%) as a white amorphous solid; $[\alpha]_D^{22}$ +105 (c, 1 in CHCl₃); υ_{max} (KBr disc) 3416 (br, NH) 1750 (s, C=O) 1645 (s, C=O) cm⁻¹; δ_H (400 MHz, CDCl₃) 1.46 (9H, s, C(CH₃)₃), 2.01, 2.03, 2.04, 2.09 (12H, 4 x s, 4 x C(O)CH₃), 3.06 (1H, dd, J_{CH,H} 13.8 Hz, J_{CH,αH} 7.7 Hz, CH,H'), 3.31 (1H, dd, J_{CH,H'} 13.9 Hz, J_{CH',αH} 4.7 Hz, CH,H'), 3.77 (3H, s, OCH₃), 3.80 (1H, m, H-5), 4.16 (1H, dd, J_{5,6} 2.1 Hz, J_{6,6}, 12.4 Hz, H-6), 4.27 (1H, dd, J_{5,6}, 4.6 Hz, $J_{6,6'}$ 12.4 Hz, H-6'), 4.57 (1H, d, $J_{1,2}$ 9.3 Hz, H-1), 4.68 (1H, m, α H), 5.14 (1H, at, J 9.7 Hz,

H-4), 5.24-5.34 (2H, m, H-2, H-3); δ_{C} (100.7 MHz, CDCl₃) 20.6, 20.7, 20.8 (3 x q, 4 x C(O)<u>C</u>H₃), 28.3 (q, C(<u>C</u>H₃)₃), 42.6 (t, CH,H'), 52.6 (d, α C), 52.8 (q, OCH₃), 61.9 (t, C-6), 67.8 (d, C-4), 68.9 (d, C-2), 73.8 (d, C-3), 76.1 (d, C-5), 80.3 (s, <u>C</u>(CH₃)₃), 87.8 (d, C-1), 169.2, 169.4, 170.2, 170.6 (4 x s, 4 x <u>C</u>(O)CH₃, <u>C</u>O₂CH₃); *m/z* (ES⁺) 615 (MNH₄⁺, 100%), 620 (MNa⁺, 95%); HRMS (ES⁺) Calcd. for C₂₃H₃₅NNaO₁₃S₂ (MNa⁺) 620.1451. Found: 6201451.

Scheme S23. Crossover experiment.

N-Acetyl-L-cysteine (2,3,4,6-tetra-*O*-benzyl-1-dithio- β -D-glucopyaranosyl disulfide) methyl ester **3** (12 mg, 17 μ mol) and *N*-(*tert*-butoxycarbonyl)-L-cysteine (2,3,4,6-tetra-*O*-acetyl-1-dithio- β -D-glucopyaranosyl disulfide) methyl ester **75** (10 mg, 17 μ mol) was dissolved in degassed anhydrous methanol (0.5 mL). Hexamethylphosphorus (7 μ L, 37 μ mol) was added *via* microsyringe, and the resulting solution stirred under an atmosphere of argon. The reaction was analysed directly by ESI mass spectrometry and distinct peaks were observed for **77** and **78**.

ESI (negative mode) after 1.5 h:

NMR kinetics on desulfurization reaction

N-Acetyl-L-cysteine (2,3,4,6-tetra-*O*-benzyl-1-dithio-β-D-glucopyaranosyl disulfide) methyl ester 3 (20 mg, 27 µmol) was dissolved in degassed deuterated methanol (0.5 mL) in a precision NMR tube. Hexamethylphosphorus triamide (11 µL, 62 µmol) was added via microsyringe, and the resulting solution placed in a Bruker AV II 500 spectrometer at 30

^oC equipped with a triple resonance (TBI) inverse probe. The ¹H NMR spectra were collected at 6 minute intervals which included 1 minute data acquisition. Integrated peak intensities were analysed as a function of the reaction time course.

The spectroscopic data for the dehydroalanine intermediate (δ 5.86 and 6.31 ppm) was identical to that previously reported in the literature.²⁴

Figure S6. Formation and consumption of dehydroalanine during the desulfurization reaction.

Figure S7. Plot of ¹H NMR signal intensities (relative to those in the first spectrum) showing the kinetics of the consumption of dehydroalanine.

References

- [1] E. J. Grayson, S. J. Ward, A. L. Hall, P. M. Rendle, D. P. Gamblin, A. S. Batsanov, B. G. Davis, *J. Org. Chem.* **2005**, *70*, 9740-9754.
- [2] D. P. Gamblin, P. Garnier, S. J. Ward, N. J. Oldham, A. J. Fairbanks, B. G. Davis, *Org. Biomol. Chem.* **2003**, *1*, 3642-3644.
- [3] D. P. Gamblin, P. Garnier, S. van Kasteren, N. J. Oldham, A. J. Fairbanks, B. G. Davis, *Angew. Chem. Int. Ed.* **2004**, *43*, 828-833.
- [4] R. Sato, T. Goto, Y. Takikawa, S. Takizawa, *Synthesis* **1980**, 615.
- [5] A. Conchillo, F. Camps, A. Messeguer, *J. Org. Chem.* **1990**, *55*, 1728-1735.
- [6] S. Abuzar, H. Kohn, *J. Org. Chem.* **1989**, *54*, 4000-4003.
- [7] H. Wang, L. Sun, S. Glazebrik, K. Khao, *Tetrahedron Lett.* **1995**, *36*, 2953-2956.
- [8] R. Rajanikanth, R. Seshadri, *Tetrahedron Lett.* **1989**, *30*, 755-758.
- [9] B. Iselin, T. Reichstein, *Helv. Chim. Acta* **1944**, *27*, 1200-1203.
- [10] L. E. Paquette, L. Barriault, D. Pissarnitski, J. N. Johnston, *J. Am. Chem. Soc.* **2000**, *122*, 619-631.
- [11] S. Komba, H. Ishida, M. Kiso, A. Hasegawa, *Bioorg. Med. Chem.* **1996**, *4*, 1833-1847.
- [12] V. I. Betaneli, M. V. Ovchinnikov, L. V. Backinowsky, N. K. Kochetkov, *Carbohydr. Res.* **1982**, *107*, 285-291.
- [13] D. Whaler, O. Boujard, F. Lefreve, J. L. Reymond, *Tetrahedron* **2004**, *60*, 703-710.
- [14] J. Leroux, S. A. Perlin, *Carbohydr. Res.* **1978**, *67*, 163-178.
- [15] T. A. Martin, D. H. Causey, A. L. Sheffner, A. D. Gutman, *J. Med. Chem.* **1967**, *10*, 1172-1176.
- [16] F. Dasgupta, P. P. Singh, H. H. Srivastava, *Carbohydr. Res.* **1980**, *80*, 346-349.
- [17] Z. Zhang, G. Magnusson, *Carbohydr. Res.* **1996**, *925*, 41-55.
- [18] N. Pravdic, I. Franjic-Mihalic, B. Danilov, *Carbohydr. Res.* 1975, 45, 302-306.
- [19] S. Singh, P. Packwood, C. J. Samuel, P. Critchley, D. H. G. Grout, *Carbohydr. Res.* **1995**, *279*, 293-305.
- [20] D. Horton, M. L. Wolfrom, J. Org. Chem. 1962, 27, 1794-1800.
- [21] G. J. L. Bernardes, D. P. Gamblin, B. G. Davis, *Angew. Chem. Int. Ed.* **2006**, *45*, 4007-4011.
- [22] B. D. Johnston, B. M. Pinto, J. Org. Chem. 2000, 65, 4607-4617.
- [23] M. D. Threadgill, A. P. Gledhill, J. Org. Chem. 1989, 54, 2940-2949.
- [24] L. A. Adams, V. K. Aggarwal, R. V. Bonnert, B. Bressel, R. J. Cox, J. Shepherd, J. deVicente, M. Walter, W. G. Whittingham, C. L. Winn, *J. Org. Chem.* 2003, 68, 9433-9440.

Spectral Data for all new compounds

p-Nitrophenyl 2,3,4,6-tetra-*O*-benzyl-1-thio- α -D-glucopyranoside 2

$\textit{N-Acetyl-DL-cysteine-S-(2,3,4,6-tetra-\textit{O-benzyl-}\beta-D-glucopyaranoside)}$

N-Acetyl-DL-cysteine-S-(2,3,4-tri-O-benzyl-1-thio- α -L-fucopyranoside)

 $\textit{N-Acetyl-DL-cysteine-S-(2,3,4,6-tetra-O-acetyl-\beta-D-glucopyaranoside)}$

 $\textit{N-Acetyl-DL-cysteinamide-S-(2,3,4,6-tetra-\textit{O}-acetyl-\beta-D-glucopyaranoside) 10}$

 $\textit{N-Acetyl-DL-cysteine-S-(2,3,4,6-tetra-O-acetyl-\beta-D-galactopyaranoside)}$

$\textit{N-Acetyl-DL-cysteine-S-} (3,4,6-tetra-\textit{O-acetyl-2-acetamido-2-deoxy-}\beta-D-deoxy-\beta-D-deoxy-})$

glucopyaranoside) methylester 14

N-Acetyl-DL-cysteine-*S*-(β -D-glucopyranoside) methylester 16

N-Acetyl-DL-cysteine-S-(2-acetamido-2-deoxy- β -D-glucopyranoside)

methylester 18

 $\textit{N-Acetyl-DL-cysteine-S-(2,3,4,6-tetra-\textit{O}-acetyl-\beta-D-glucopyaranoside)-\textit{O}-tert-beta}$

butyl-L-serine-glycine ethylester 20

 $\textit{N-Acetyl-DL-cysteine-S-(2,3,4,6-tetra-O-acetyl-\beta-D-galactopyaranoside)-glycine-beta acetyl-beta ac$

O-tert-butyl-L-serine-glycine ethylester 22

N-Acetyl-L-cysteine

disulfide) methylester 3

2,3,4-Tri-O-benzyl- α -L-fucopyranosyl phenylthiosulfonate 38

N-Acetyl-L-cysteine (2,3,4-tri-*O*-benzyl-1-dithio- α -L-fucopyranosyl disulfide)

methylester 5

N-Acetyl-L-cysteine

disulfide) methylester 7

N-Acetyl-L-cysteinamide

(2,3,4,6-tetra-O-acetyl-1-dithio- β -D-glucopyaranosyl

disulfide) 9

N-Acetyl-L-cysteine

 $(\textbf{2},\textbf{3},\textbf{4},\textbf{6}\textbf{-}\textbf{tetra}\textbf{-}\textbf{\textit{O}}\textbf{-}\textbf{acetyl}\textbf{-}\textbf{1}\textbf{-}\textbf{dithio}\textbf{-}\beta\textbf{-}\textbf{D}\textbf{-}\textbf{galactopyaranosyl}$

disulfide) methylester 11

N-Acetyl-L-cysteine

$(3,4,6-tetra-O-acetyl-2-acetamido-2-deoxy-1-dithio-\beta-D-$

glucopyaranosyl disulfide) methylester 13

N-Acetyl-L-cysteine (1-dithio- β -D-glucopyranosyl disulfide) methylester 15

N-Acetyl-L-cysteine

disulfide) methylester 17

N-fluorenyl methoxycarbonyl-*O*-tert-butyl-L-serine-glycine ethyl ester 59

N-fluorenyl methoxycarbonyl-*S*-trityl-L-cysteine-*O*-*tert*-butyl-L-serine-glycine

ethyl ester 60

S-trityl-L-cysteine-O-tert-butyl-L-serine-glycine ethyl ester 61

N-acetyl-*S*-trityl-L-cysteine-*O*-tert-butyl-L-serine-glycine ethyl ester 62

N-fluorenyl methoxycarbonyl-L-threonine-glycine ethyl ester 64

N-fluorenyl methoxycarbonyl-glycine-*O*-tert-butyl-L-threonine-glycine ethyl

ester 65

N-fluorenyl

methoxycarbonyl-*S*-trityl-L-cysteine-glycine-*O-tert*-butyl-L-

threonine-glycine ethyl ester 67

N-acetyl-*S*-trityl-L-cysteine-glycine-*O*-tert-butyl-L-threonine-glycine ethyl ester

69

N-acetyl-L-cysteine-glycine-O-tert-butyl-L-threonine-glycine ethyl ester 63

 $\textit{N}-Acetyl-L-cysteine-(2,3,4,6-tetra-\textit{O}-acetyl-1-dithio-\beta-D-glucopyaranosyl}$

disulfide)-O-tert-butyl-L-serine-glycine ethyl ester 19

N-Acetyl-L-cysteine-(2,3,4,6-tetra-O-acetyl-1-dithio- β -D-galactopyaranosyl)-

glycine-O-tert-butyl-L-threonine-glycine ethyl ester 21

N-(*tert*-butoxycarbonyl)-L-cysteine

(2,3,4,6-tetra-O-acetyl-1-dithio-β-D-

glucopyaranosyl disulfide) methyl ester 75

