

# Supporting Information

© Wiley-VCH 2007

69451 Weinheim, Germany

# Catalytic Asymmetric Reaction with Water: Enantioselective Synthesis of α-Hydroxyesters by Coppercarbenoid O–H Insertion Reaction

Shou-Fei Zhu, Chao Chen, Yan Cai, and Qi-Lin Zhou\*

State Key Laboratory and Institute of Elemento-organic Chemistry, Nankai University Tianjin 300071, China

#### **CONTENTS:**

- 1. Typical Procedure for Cu-catalyzed Asymmetric Insertion of Carbenoid into Water
- 2. Analytical Data for Insertion Products
- 3. Typical Procedure for Hydrolysis of Methyl 2-Hydroxyphenylacetate
- 4. Analytical Data for Mandelic Acids
- 5. NMR Spectra for New Compounds
- 6. HPLC and SFC Charts of O-H Insertion Products

**General.** All reactions and manipulations were performed using standard Schlenk techniques. All solvents were purified and dried using standard procedures. CuCl and CuPF<sub>6</sub>(MeCN)<sub>4</sub> were prepared according to the literature procedures.<sup>1</sup> The other copper salts were purchased and used without further purification. Ligands  $1^{2}$ , (*S*<sub>a</sub>,*S*,*S*)-Ph-Binabox and (*R*<sub>a</sub>,*S*,*S*)-Ph-Binabox, <sup>3</sup> (*S*,*S*)-Ph-Box,<sup>4</sup> (*S*,*S*)-<sup>*i*</sup>Pr-Pybox,<sup>5</sup> (*R*)-BINAP,<sup>6</sup> (*S*)-SDP,<sup>7</sup> (*S*)-Phox,<sup>8</sup> and SIPHOX<sup>9</sup>

<sup>3</sup> Y. Uozumi, H. Kyota, E. Kishi, K. Kitayama, T. Hayashi, *Tetrahedron: Asymmetry* **1996**, *7*, 1603.

<sup>&</sup>lt;sup>1</sup> Inorg. Synth. Vol. II, p. 1

<sup>&</sup>lt;sup>2</sup> a) B. Liu, S.-F. Zhu, L.-X. Wang, Q.-L. Zhou, *Tetrahedron: Asymmetry* **2006**, *17*, 634. b) B. Liu, S.-F. Zhu, W. Zhang, C. Chen, Q.-L. Zhou, J. Am. Chem. Soc. **2007**, *129*, 5834.

<sup>&</sup>lt;sup>4</sup> D. A. Evans, K. A. Woerpel, M. M. Hinman, M. M. Faul, J. Am. Chem. Soc. 1991, 113, 726.

<sup>&</sup>lt;sup>5</sup> H. Nishiyama, H. Sakaguchi, T. Nakamura, M. Horihata, M. Kondo, K. Itoh, *Organometallics* **1989**, *8*, 846.

<sup>&</sup>lt;sup>6</sup> D. Cai, J. F. Payack, D. R. Bender, D. L. Hughes, T. R. Verhoeven, P. J. Reider, J. Org. Chem. 1994, 59, 7180.

were prepared by literature methods. All the 2-diazophenylacetates were prepared according to the literature procedure.<sup>10</sup> Melting points were measured on a RY–I apparatus and uncorrected. NMR spectra were recorded on a Bruker or Varian spectrometer at 400 or 300 (<sup>1</sup>H NMR), 100 or 75 (<sup>13</sup>C NMR) MHz. Chemical shifts ( $\delta$  values) were reported in ppm down field from internal Me<sub>4</sub>Si (<sup>1</sup>H and <sup>13</sup>C NMR). Optical rotations were determined using a Perkin Elmer 341 MC polarimeter. HRMS were recorded on VG ZAB-HS mass spectrometer with EI resource. HPLC analyses were performed on a Hewlett Packard Model HP 1100 Series chromatography. SFC analyses were performed on Mettler-Toledo Model Analytix SFC.

# 1. Typical Procedure for Cu-catalyzed Asymmetric Insertion of Carbenoid into Water

The CuSO<sub>4</sub> (2.4 mg, 0.015 mmol, 5 mol%), ( $S_a$ ,S,S)-**1a** (9.1 mg, 0.018 mmol, 6 mol%) and NaBARF (16.9 mg, 0.018 mmol, 6 mol%) were introduced into an oven-dried Schlenk tube in argon-filled glovebox. After CHCl<sub>3</sub> (3 mL) was injected into the Schlenk tube, the solution was stirred at room temperature under the argon atmosphere for 4 h. Then the Schlenk tube was heated to 40 °C, H<sub>2</sub>O (27 mg, 1.5 mmol) and diazoesters (0.3 mmol) were injected. The resulting mixture was stirred at 40 °C for 15 min and the product was purified by flash chromatography (ethyl acetate/petroleum ether = 1:5). The analytical data for  $\alpha$ -hydroxyesters are listed below.

#### 2. Analytical Data for Insertion Products



(*R*)-(–)-Methyl 2-hydroxy-2-phenylacetate (3a). <sup>11</sup> Colorless oil; 91% yield; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.43–7.33 (m, 5H), 5.18 (d, *J* = 4.8 Hz, 1H), 3.76 (s, 3H), 3.46 (d, *J* = 5.2 Hz, 1H); 90% ee [SFC condition:

<sup>&</sup>lt;sup>7</sup> J.-H. Xie, L.-X. Wang, Y. Fu, S.-F. Zhu, B.-M. Fan, H.-F. Duan, Q.-L. Zhou, J. Am. Chem. Soc. 2003, 125, 4404.

<sup>&</sup>lt;sup>8</sup> J. V. Allen, G. J. Dawson, C. G. Frost, J. M. J. Willams, S. J. Coote, *Tetrahedron* **1994**, *50*, 799.

<sup>&</sup>lt;sup>9</sup>S.-F. Zhu; J.-B. Xie, Y.-Z. Zhang, S. Li, Q.-L. Zhou, J. Am. Chem. Soc. 2006, 128, 12886.

<sup>&</sup>lt;sup>10</sup> a) M. Regitz, Angew. Chem. **1967**, 79, 786; Angew. Chem. Int. Ed. Engl. **1967**, 6, 733; b) T. C. Maier, G. C. Fu, J. Am. Chem. Soc. **2006**, 128, 4594.

<sup>&</sup>lt;sup>11</sup> O. Kuisle, E. Quiñoá, R. Riguera, J. Org. Chem. **1999**, 64, 8063.

Chiralcel OD-H column, sc CO<sub>2</sub>/*i*-PrOH = 80:20, flow rate = 2.0 mL/min, wavelength = 220 nm, pressure = 100 bar,  $t_{\rm R}$  = 2.35 min for (*S*)-enantiomer,  $t_{\rm R}$  = 2.87 min for (*R*)-enantiomer]; [ $\alpha$ ]<sub>D</sub><sup>25</sup> = -122 (*c* 1.00, EtOH) [lit: [ $\alpha$ ]<sub>D</sub><sup>20</sup> = -130 (*c* 1.03, EtOH) for (*R*)].<sup>12</sup>

(*R*)-(-)-Ethyl 2-hydroxy-2-phenylacetate (3b).<sup>13</sup> Colorless oil; 91% yield; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.43–7.30 (m, 5H), 5.15 (d, J = 5.6 Hz, 1H), 4.31–4.13 (m, 2H), 3.47 (d, J = 5.6 Hz, 1H), 1.23 (t, J = 7.2 Hz, 3H); 88% ee [SFC condition: Chiralcel OD-H column, sc CO<sub>2</sub>/*i*-PrOH = 94:6, flow rate = 2.0 mL/min, wavelength = 220 nm, pressure = 100 bar,  $t_{\rm R} = 4.15$  min for (*S*)-enantiomer,  $t_{\rm R} = 5.71$  min for (*R*)-enantiomer];  $[\alpha]_{\rm D}^{25} = -104$  (*c* 1.00, CHCl<sub>3</sub>) [lit:  $[\alpha]_{\rm D}^{25} = -126$  (*c* 2.01, CHCl<sub>3</sub>) for (*R*)].<sup>14</sup>



(*R*)-(–)-Isopropyl 2-hydroxy-2-phenylacetate (3c).<sup>13</sup> Colorless oil; 81% yield; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): δ 7.44–7.31 (m, 5H), 5.13– 5.03 (m, 1H), 3.48 (d, *J* = 6.0 Hz, 1H), 1.28 (d, *J* = 6.0 Hz, 3H), 1.11 (d,

J = 6.0 Hz, 3H); 86% ee [SFC condition: Chiralcel OD-H column, sc CO<sub>2</sub>/*i*-PrOH = 94:6, flow rate = 2.0 mL/min, wavelength = 220 nm, pressure = 100 bar,  $t_{\rm R} = 3.46$  min for (*S*)-enantiomer,  $t_{\rm R} = 4.71$  min for (*R*)-enantiomer];  $[\alpha]_{\rm D}^{25} = -96.1$  (*c* 1.15, CHCl<sub>3</sub>) [lit:  $[\alpha]_{\rm D}^{25} = -98.9$  (*c* 1.00, CHCl<sub>3</sub>) for (*R*)].<sup>15</sup>

OH (*R*)-(-)-Methyl 2-hydroxy-2-*p*-tolylacetate (3d).<sup>13</sup> Colorless oil; 83% yield; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.29 (d, *J* = 8.0 Hz, 2H), 7.17 (d, *J* = 8.0 Hz, 2H), 5.14 (d, *J* = 5.2 Hz, 1H), 3.75 (s, 3H), 3.40 (brs, 1H), 2.35 (s, 3H); 92% ee [SFC condition: Chiralcel OD-H column, sc CO<sub>2</sub>/*i*-PrOH = 90:10, flow rate = 2.0 mL/min, wavelength = 220 nm, pressure = 100 bar, *t*<sub>R</sub> = 3.41 min for (*S*)-enantiomer, *t*<sub>R</sub> = 3.89 min for (*R*)-enantiomer];  $[\alpha]_D^{25} = -108$  (*c* 0.90, EtOH).

OH Ph O (-)-Mehtyl 2-hydroxy-2-(4-biphenyl)acetate (3e). White solid; 87% yield; mp = 103-104 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.50–7.24 (m, 9H), 5.13 (s, 1H), 3.66 (s, 3H), 3.53 (d, *J* = 1.5 Hz, 1H); <sup>13</sup>C NMR (75

<sup>&</sup>lt;sup>12</sup> A. Ohno, M. Ikeguchi, T. Kimura, S. Oka, J. Am. Chem. Soc. 1979, 101, 7036.

<sup>&</sup>lt;sup>13</sup> D. Basavaiah, P. R. Krishna, *Tetrahedron* **1995**, *51*, 2403.

<sup>&</sup>lt;sup>14</sup> R. Roger, J. Chem. Soc. **1932**, 2168.

<sup>&</sup>lt;sup>15</sup> H. C. Brown, G. G. Pai, J. Org. Chem. **1985**, 50, 1384.

MHz, CDCl<sub>3</sub>):  $\delta$  174.1, 141.5, 140.6, 137.3, 128.8, 127.5, 127.4, 127.1, 72.8, 53.0; HRMS (EI) Calcd for C<sub>15</sub>H<sub>14</sub>O<sub>3</sub>: 242.0943; Found: 242.0969; 92% ee [SFC condition: Chiralcel OD-H column, sc CO<sub>2</sub>/*i*-PrOH = 94:6, flow rate = 2.0 mL/min, wavelength = 220 nm, pressure = 100 bar,  $t_{\rm R}$  = 18.69 min for minor isomer,  $t_{\rm R}$  = 20.47 min for major isomer];  $[\alpha]_{\rm D}^{25}$  = -135 (*c* 1.80, CHCl<sub>3</sub>).



(-)-Methyl 2-(4-fluorophenyl)-2-hydroxyacetate (3f).<sup>16</sup> Colorless oil;
90% yield; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): δ 7.32 (dd, J = 5.4 and 8.4 Hz, 2H), 6.97 (t, J = 8.7 Hz, 2H), 5.09 (s, 1H), 3.68 (s, 3H), 3.47 (brs, 1H);

92% ee [SFC condition: Chiralpak AD-H column, sc  $CO_2/i$ -PrOH = 90:10, flow rate = 2.0 mL/min, wavelength = 220 nm, pressure = 100 bar,  $t_R$  = 3.61 min for minor isomer,  $t_R$  = 3.90 min for major isomer];  $[\alpha]_D^{25} = -89.4$  (*c* 0.70, acetone).

(*R*)-(-)-Methyl 2-(4-chlorophenyl)-2-hydroxyacetate (3g).<sup>16</sup> Colorless oil; 83% yield; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.39–7.32 (m, 4H), 5.16 (d, J = 5.4 Hz, 1H), 3.77 (s, 3H), 3.45 (d, J = 5.4 Hz, 1H); 92% ee [SFC condition: Chiralcel OD-H column, sc CO<sub>2</sub>/*i*-PrOH = 94:6, flow rate = 2.0 mL/min, wavelength = 220 nm, pressure = 100 bar,  $t_{\rm R} = 5.80$  min for (*S*)-enantiomer,  $t_{\rm R} = 6.26$  min for (*R*)-enantiomer];  $[\alpha]_{\rm D}^{25} = -61.4$  (*c* 0.35, acetone).

Br

(*R*)-(-)-Methyl 2-(4-bromophenyl)-2-hydroxyacetate (3h).<sup>16</sup> Colorless oil; 86% yield; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.50 (d, *J* = 8.4 Hz, 2H), 7.31 (d, *J* = 8.4 Hz, 2H), 5.14 (s, 1H), 3.77 (s, 3H), 3.48

(brs, 1H); 91% ee [SFC condition: Chiralcel OD-H column, sc  $CO_2/i$ -PrOH = 94:6, flow rate = 2.0 mL/min, wavelength = 220 nm, pressure = 100 bar,  $t_R$  = 7.07 min for (*S*)-enantiomer,  $t_R$  = 7.65 min for (*R*)-enantiomer];  $[\alpha]_D^{25} = -71.2$  (*c* 0.70, acetone).



(-)-Methyl 2-hydroxy-2-*m*-tolylacetate (3i). Colorless oil; 87% yield; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.19–7.04 (m, 4H), 5.04 (d, J = 5.7 Hz, 1H), 3.66 (s, 3H), 3.45 (d, J = 5.7 Hz, 1H), 2.27 (s, 3H); <sup>13</sup>C NMR (75

MHz, CDCl<sub>3</sub>): δ 174.2, 138.4, 138.3, 129.3, 128.5, 127.2, 123.8, 73.0, 52.9, 21.4; HRMS (EI) Calcd for C<sub>10</sub>H<sub>12</sub>O<sub>3</sub>: 180.0786; Found: 180.0789; 92% ee [SFC condition: Chiralcel OD-H

<sup>&</sup>lt;sup>16</sup> R. Chênevert, M. Létourneau, Can. J. Chem. 1990, 68, 314.

column, sc CO<sub>2</sub>/*i*-PrOH = 94:6, flow rate = 2.0 mL/min, wavelength = 220 nm, pressure = 100 bar,  $t_{\rm R}$  = 4.68 min for minor isomer,  $t_{\rm R}$  = 5.78 min for major isomer];  $[\alpha]_{\rm D}^{25}$  = -112 (*c* 0.35, EtOH).



H (-)-Methyl 2-(3-fluorophenyl)-2-hydroxyacetate (3k). Colorless oil; 85% yield; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.25–7.05 (m, 3H), 6.96– 6.90 (m, 1H), 5.09 (d, *J* = 3.3 Hz, 1H), 3.69 (s, 3H), 3.59 (d, *J* = 4.5 Hz,

1H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  173.6, 164.5, 161.3, 140.7, 140.6, 130.1, 130.0, 122.2, 115.5, 115.2, 113.8, 113.5, 72.3, 53.1; HRMS (EI) Calcd for C<sub>9</sub>H<sub>9</sub>FO<sub>3</sub>: 184.0536; Found: 184.0534; 89% ee [SFC condition: Chiralcel OD-H column, sc CO<sub>2</sub>/*i*-PrOH = 95:5, flow rate = 2.0 mL/min, wavelength = 220 nm, pressure = 100 bar,  $t_{\rm R}$  = 4.15 min for minor isomer,  $t_{\rm R}$  = 4.64 min for major isomer];  $[\alpha]_{\rm D}^{25}$  = -117 (*c* 0.70, CHCl<sub>3</sub>).

(*R*)-(-)-Methyl 2-(3-chlorophenyl)-2-hydroxyacetate (3l). <sup>17</sup> Colorless oil; 88% yield; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.43–7.31 (m, 4H), 5.15 (s, 1H), 3.78 (s, 3H), 3.51 (brs, 1H); 88% ee [SFC condition:

Chiralcel OD-H column, sc CO<sub>2</sub>/*i*-PrOH = 90:10, flow rate = 2.0 mL/min, wavelength = 220 nm, pressure = 100 bar,  $t_{\rm R}$  = 3.93 min for (*S*)-enantiomer,  $t_{\rm R}$  = 4.20 min for (*R*)-enantiomer];  $[\alpha]_{\rm D}^{25} = -111$  (*c* 1.80, CHCl<sub>3</sub>).



(-)-Methyl 2-(3-bromophenyl)-2-hydroxyacetate (m). <sup>18</sup> Colorless oil; 92% yield; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.61–7.26 (m, 4H), 5.16 (d, J = 5.4 Hz, 1H), 3.80 (s, 3H), 3.52 (d, J = 5.4 Hz, 1H); 88% ee

[SFC condition: Chiralcel OJ-H column, sc CO<sub>2</sub>/*i*-PrOH = 94:6, flow rate = 2.0 mL/min,

<sup>&</sup>lt;sup>17</sup> G. C. Lloyd-Jones, P. D. Wall, J. L. Slaughter, A. J. Parker, D. P. Laffan, *Tetrahedron* 2006, 62, 11402.

<sup>&</sup>lt;sup>18</sup> B. M. Bocknack, L.-C. Wang, F. W. Hughes, M. J. Krische, *Tetrahedron* **2005**, *61*, 6266.

wavelength = 220 nm, pressure = 100 bar,  $t_{\rm R}$  = 5.42 min for major isomer,  $t_{\rm R}$  = 5.94 min for minor isomer];  $[\alpha]_{\rm D}^{26}$  = -100 (*c* 0.90, EtOH).



corresponding acid with the literature data. See next section for details.



= 6.9 Hz, 1H); 50% ee [SFC condition: Chiralcel OD-H column, sc CO<sub>2</sub>/*i*-PrOH = 90:10, flow rate = 2.0 mL/min, wavelength = 220 nm, pressure = 100 bar,  $t_{\rm R}$  = 4.48 min for (*S*)-enantiomer,  $t_{\rm R}$  = 4.88 min for (*R*)-enantiomer]; [ $\alpha$ ]<sub>D</sub><sup>25</sup> = -70.7 (*c* 0.40, EtOH).

Cl OH (*R*)-(-)-Methyl 2-(2-chlorophenyl)-2-hydroxyacetate (3q).<sup>17</sup> Colorless oil; 90% yield; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.41–7.38 (m, 2H), 7.30– 7.26 (m, 2H), 5.57 (d, *J* = 5.1 Hz, 1H), 3.77 (s, 3H), 3.57 (d, *J* = 4.8 Hz,

1H); 36% ee [SFC condition: Chiralcel OJ-H column, sc  $CO_2/i$ -PrOH = 94:6, flow rate = 2.0

mL/min, wavelength = 220 nm, pressure = 100 bar,  $t_{\rm R}$  = 5.43 min for (*R*)-enantiomer,  $t_{\rm R}$  = 6.12 min for (*S*)-enantiomer];  $[\alpha]_{\rm D}^{25}$  = -84.6 (*c* 0.92, CHCl<sub>3</sub>).



(*R*)-(–)-Methyl 2-hydroxy-2-naphthalen-2-ylacetate (3r).<sup>19</sup> White solid; 76% yield; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.90–7.82 (m, 4H), 7.53–7.48 (m, 3H), 5.35 (d, *J* = 5.4 Hz, 1H), 3.76 (s, 3H), 3.55 (d, *J* =

5.7 Hz, 1H); 90% ee [SFC condition: Chiralcel OD-H column, sc CO<sub>2</sub>/*i*-PrOH = 90:10, flow rate = 2.0 mL/min, wavelength = 220 nm, pressure = 100 bar,  $t_{\rm R}$  = 9.76 min for (*S*)-enantiomer,  $t_{\rm R}$  = 10.60 min for (*R*)-enantiomer];  $[\alpha]_{\rm D}^{25}$  = -144 (*c* 1.00, CHCl<sub>3</sub>).



<sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  173.5, 139.3, 126.3, 125.9, 122.7, 69.5, 52.8; HRMS (EI) Calcd for C<sub>7</sub>H<sub>8</sub>O<sub>3</sub>S: 172.0194; Found: 172.0194; 90% ee [SFC condition: Chiralcel OD-H column, sc CO<sub>2</sub>/*i*-PrOH = 90:10, flow rate = 2.0 mL/min, wavelength = 220 nm, pressure = 100 bar, *t*<sub>R</sub> = 3.79 min for minor isomer, *t*<sub>R</sub> = 4.21 min for major isomer];  $[\alpha]_D^{25} = -108$  (*c* 0.65, CHCl<sub>3</sub>).



(*R*)-(+)-Benzyl 2-hydroxypropionate (3t).<sup>20</sup> Colorless oil; 78% yield; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.40–7.33 (m, 5H), 5.21 (s, 2H), 4.36– 4.28 (m, 1H), 2.85 (d, *J* = 5.1 Hz, 1H), 1.43 (d, *J* = 6.9 Hz, 3H); 78% ee

[HPLC condition: Chiralcel OD-H column, *n*-Hex/*i*-PrOH = 96:4, flow rate = 1.0 mL/min, wavelength = 220 nm,  $t_{\rm R}$  = 20.95 min for (*S*)-enantiomer,  $t_{\rm R}$  = 21.86 min for (*R*)-enantiomer];  $[\alpha]_{\rm D}^{25}$  = +13.2 (*c* 0.72, MeOH).

#### 3. Typical Procedure for Hydrolysis of Methyl 2-Hydroxyphenylacetate

A solution of methyl 2-hydroxyphenylacetate (170 mg, 1.02 mmol) in EtOH (3 mL) was added to an aqueous solution of NaOH (4 mL, 1.25 M) at 0 °C. After being stirred for 2 h, the reaction mixture was acidified by 3 M hydrochloric acid and extracted with EtOAc (10 mL X

<sup>&</sup>lt;sup>19</sup> M. Kimura, A. Kuboki, T. Sugai, *Tetrahedron: Asymmetry* 2002, 13, 1059.

<sup>&</sup>lt;sup>20</sup> I. Shin, M. Lee, J. Lee, M. Jung, W. Lee, J. Yoon, J. Org. Chem. **2000**, 65, 7667.

3). The organic layer was washed with brine, dried over anhydrous sodium sulfate, and concentrated in vacuum to give mandelic acid (**4a**) (154 mg, quant.) as a white solid which was recrystallized from DCE to give a optically pure (R)-mandelic acid in 74% yield. The analytical data for 2-hydroxyphenylacetic acids are listed below.

## 4. Analytical Data for Mandelic Acids



(*R*)-(–)-Mandelic acid (4a).<sup>21</sup> White solid; 74% yield; mp = 132–133 °C; <sup>1</sup>H NMR (300 MHz, Acetone-d<sub>6</sub>):  $\delta$  7.52–7.27 (m, 7H), 5.22 (s, 1H);  $[\alpha]_D^{25} = -157$  (*c* 2.00, EtOH).



(*R*)-(-)-2-(3,4-Dichlorophenyl)-2-hydroxyacetic acid (4n). <sup>22</sup> White solid; 65% yield; mp = 117–118 °C; <sup>1</sup>H NMR (300 MHz, Acetone-d<sub>6</sub>):  $\delta$  7.72–7.49 (m, 5H), 5.29 (s, 1H); [ $\alpha$ ]<sub>D</sub><sup>25</sup> = –115 (*c* 0.50, H<sub>2</sub>O).

<sup>&</sup>lt;sup>21</sup> P. L. Polavarapu, L. P. Fontana, H. E. Smith, J. Am. Chem. Soc. 1986, 108, 94.

<sup>&</sup>lt;sup>22</sup> J. R. E. Hoover, G. L. Dunn, D. R. Jakas, L. L. Lam, J. J. Taggart, J. R. Guarini, L. Phillips, *J. Med. Chem.* **1974**, *17*, 34.

# 5. NMR Spectra for New Compounds



Mehtyl 2-hydroxy-2-biphenylacetate (3e)

Methyl 2-hydroxy-2-m-tolylacetate (3i)





Methyl 2-(3-fluorophenyl)-2-hydroxyacetate (3k)



Methyl 2-(3,4-dichlorophenyl)-2-hydroxyacetate (3n)

Methyl 2-hydroxy-2-o-tolylacetate (3o)





Methyl 2-hydroxy-2-thiophene-3-ylacetate (3s)

# 6. HPLC and SFC Charts for O-H Insertion Products



# Methyl 2-hydroxy-2-phenylacetate (3a)

















Peak RetTime Type Width Area Area Name [min] # [min] mAU \*s 응 0.0877 49.80808 7.1859 ? 3.462 BB 1 2 4.708 BB 0.1191 643.32587 92.8141 ? Uncalib. totals : 693.13395 100.0000







Peak RetTime Type Width Area Area Name # [min] [min] mAU \*s 응 0.1226 1062.66467 4.1174 ? 3.414 VV 1 3.893 VB 2 0.1556 2.47464e4 95.8826 ? Uncalib. totals : 2.58090e4 100.0000





 # [min]
 [min]
 mAU
 \*s
 %

 1
 18.693 BV
 0.6932 1212.89990
 3.9385 ?

 2
 20.470 VB
 0.8907 2.95829e4
 96.0615 ?

 Uncalib. totals :
 3.07958e4
 100.0000











#### Methyl 2-(4-chlorophenyl)-2-hydroxyacetate (3g)







#### Methyl 2-(4-bromophenyl)-2-hydroxyacetate (3h)



Peak RetTime Type Width Area Name Area # [min] [min] mAU \*s 응 7.068 BV 0.2304 657.94080 4.7047 ? 1 2 7.649 VB 0.2495 1.33267e4 95.2953 ? Uncalib. totals : 1.39846e4 100.0000







Peak RetTime Type Width Area Name Area [min] [min] mAU \*s 응 # 4.676 BB 0.2146 4.0539 ? 1 281.81863 2 5.782 BB 0.2438 6669.95361 95.9461 ? 6951.77225 100.0000 Uncalib. totals :



# Methyl 2-hydroxy-2-(3-methoxyphenyl)acetate (3j)



Peak RetTime Type Width Area Area Name # [min] [min] mAU \*s 응 4.422 BB 0.1739 2121.41138 4.7026 ? 1 0.2540 4.29896e4 95.2974 ? 2 5.110 BB Uncalib. totals : 4.51110e4 100.0000







Peak RetTime Type Width Area Area Name [min] [min] mAU \*s 응 # 4.153 BV 0.1940 467.53360 5.7116 ? 1 0.2124 7718.12891 94.2884 ? 2 4.640 VB 8185.66251 100.0000 Uncalib. totals :



## (-)-Methyl 2-(3-chlorophenyl)-2-hydroxyacetate (3l)



Peak RetTime Type Width Area Area Name [min] [min] # mAU \*s 응 3.925 BV 0.1186 576.97192 6.2340 ? 1 2 4.200 VB 0.1323 8678.22070 93.7660 ? Uncalib. totals : 9255.19263 100.0000



### Methyl 2-(3-bromophenyl)-2-hydroxyacetate (3m)



Peak RetTime Type Width Area Area Name [min] [min] mAU \*s # 응 0.1819 2.58546e4 94.1936 ? 5.418 BV 1 2 5.940 VB 0.1838 1593.75732 5.8064 ? 2.74483e4 100.0000 Uncalib. totals :



#### Methyl 2-(3,4-dichlorophenyl)-2-hydroxyacetate (3n)







| #     | [min]          |       | [min]  | Area<br>mAU *s         | 00       |   |
|-------|----------------|-------|--------|------------------------|----------|---|
|       |                |       |        |                        |          |   |
| 1     | 3.341<br>3.738 | BB    | 0.1015 | 1.12703e4<br>654.27826 | 94.5132  | ? |
| Uncal | ib. tota       | als : |        | 1.19246e4              | 100.0000 |   |



## Methyl 2-hydroxy-2-(2-methoxyphenyl)acetate (3p)











| Uncalibrated Peaks:<br>Peak RetTime Type<br># [min] |        | Area<br>mAU *s          | Area<br>% | Name |
|-----------------------------------------------------|--------|-------------------------|-----------|------|
| 1 5.433 BB<br>2 6.122 BB                            | 0.1427 | 1.34908e4<br>6382.38525 |           |      |
| Uncalib. totals :                                   |        | 1.98732e4               | 100.0000  |      |



#### Methyl 2-hydroxy-2-naphthalen-2-ylacetate (3r)



#### Methyl 2-hydroxy-2-thiophene-3-ylacetate (3s)



Peak RetTime Type Width Area Area Name # [min] [min] mAU \*s 응 ----|-----|-----|-----|-----| 0.1443 514.14624 5.0422 ? 3.795 BB 1 2 4.214 BB 0.1610 9682.80273 94.9578 ? Uncalib. totals : 1.01969e4 100.0000





| Peak RetTime Type | Width     | Area       | Height    | Area    |
|-------------------|-----------|------------|-----------|---------|
| # [min]           | [min] r   | mAU *s     | [mAU ]    | 9       |
|                   |           |            |           |         |
| 1 20.951 BV       | 0.3742 2  | 2010.90552 | 84.34593  | 10.9802 |
| 2 21.861 VB       | 0.5926 1  | 1.63030e4  | 448.93365 | 89.0198 |
|                   |           |            |           |         |
| Totals :          | 1.83139e4 | 533.27959  |           |         |