

Supporting Information © Wiley-VCH 2008

69451 Weinheim, Germany

Supporting Information

Iron-Catalyzed S-Arylation of Thiols with Aryl Iodides

Arkaitz Correa, Mónica Carril, and Carsten Bolm*

[*] Dr. A. Correa, Dr. M. Carril, Prof. Dr. C. Bolm, Institut für Organische Chemie der RWTH Aachen, Landoltweg 1, D-52056 Aachen, Germany, carsten.bolm@oc.rwth-aachen.de, Fax: +49 (241) 8092391

Supporting Information Available. Experimental details for compounds **3a-r** and ¹H-NMR and ¹³C-NMR spectra of all compounds are included.

General information	S2
General procedure for the S-arylation of thiols	S2
Spectroscopic data of thioethers 3a-r	S3
¹ H-NMR and ¹³ C-NMR spectra	S14

General information: All reagents were purchased from commercial suppliers and used without further purification. All experiments were carried out under argon. Flash chromatography was carried out with Merck silica gel 60 (63-200 mesh). Analytical TLC was performed with Merck silica gel 60 F₂₅₄ plates, and the products were visualized by UV detection. 1 H-NMR and 13 C-NMR (300 or 400 MHz and 75 or 100 MHz, respectively) spectra were recorded in CDCl₃. Chemical shifts (δ) are reported in ppm using TMS as internal standard, and spin-spin coupling constants (J) are given in Hz. IR spectra were recorded on a Perkin-Elmer FT/IR 1760 as KBr pellets. Melting points were determined in open-end capillary tubes on a Büchi B-540 melting point apparatus and are uncorrected. Mass spectra were acquired on a Varian MAT 212 spectrometer (CI, 100 eV and EI, 70 eV). Microanalyses were obtained with a Vario EL element analyzer.

General procedure for *S*-arylation of thiols: A sealable tube equipped with a magnetic stir bar was charged with thiophenol (1, 1.0 equiv), NaOtBu (2.0 equiv) and FeCl₃ (0.10 equiv). The aperture of the tube was then covered with a rubber septum, and an argon atmosphere was established. Phenyliodide (2, 1.5 equiv), *N*,*N*'-dimethylethylendiamine (0.20 equiv) and toluene (1 mL/mmol of 1) were added via syringe. The septum was then replaced by a teflon-coated screw cap, and the reaction vessel was placed in a 135 °C oil bath. After stirring at this temperature for 24 h, the heterogeneous mixture was cooled to room temperature and diluted with dichloromethane. The resulting solution was directly filtered through a pad of silica and concentrated to afford the product, which was purified by silica gel chromatography to yield thioether 3. The identity and purity of the known products was confirmed by ¹H- and ¹³C-NMR spectroscopic analysis, and the new products were fully characterized.

Diphenyl sulfide¹ (3a). Following the general procedure using thiophenol (0.05 mL, 0.48 mmol) and iodobenzene (80 mL, 0.72 mmol) provided 82.4 mg (91% yield) of the coupling product as a colorless liquid after purification by flash chromatography (pentane) of the crude oil.

¹H-NMR (400 MHz, CDCl₃) δ 7.36-7.22 (m, 10H)

 13 C-NMR (100 MHz, CDCl₃) δ 135.7 (C), 131.0 (CH), 129.1 (CH), 127.0 (CH).

All spectral data correspond to those given in the literature.

Phenyl tolyl sulfide¹ **(3b).** Following the general procedure using thiophenol (0.05 mL, 0.48 mmol) and 4-iodotoluene (162.2 mg, 0.72 mmol) provided 95.5 mg (98% yield) of the coupling product as a pale yellow liquid after purification by flash chromatography (pentane) of the crude oil.

 1 H-NMR (400 MHz, CDCl₃) δ 7.41-7.16 (m, 9H), 2.42 (s, 3H).

¹³C-NMR (100 MHz, CDCl₃) δ 137.5 (C), 132.2 (C), 131.2 (CH), 129.9 (CH), 129.7 (CH), 128.9 (CH), 128.5 (C), 126.3 (CH), 20.9 (CH₃).

All spectral data correspond to those given in the literature.

4-Nitrophenyl phenyl sulfide¹ (**3c**). Following the general procedure using thiophenol (0.08 mL, 0.77 mmol) and 4-iodonitrobenzene (119.6 mg, 0.47 mmol) provided 95.6 mg (88% yield) of the coupling product as a yellow solid after purification by flash chromatography (dichloromethane/pentane 3/7) of the crude oil.

-

¹ T. Itoh, T. Mase, Org. Lett. **2004**, *6*, 4587.

M.p.: 55-56 °C (lit. 1 54-55 °C).

¹H-NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 8.8 Hz, 2H), 7.55-7.52 (m, 2H), 7.46-7.44 (m, 3H), 7.17 (d, J = 8.8 Hz, 2H).

 $^{13}\text{C-NMR}$ (100 MHz, CDCl₃) δ 148.3 (C), 145.1 (C), 134.5 (CH), 130.2 (C), 129.9 (CH), 129.5 (CH), 126.5 (CH), 123.8 (CH).

All spectral data correspond to those given in the literature.

2-Phenylthiobenzoic acid² (3d). Following the general procedure using thiophenol (0.08 mL, 0.77 mmol) and 2-iodobenzoic acid (123 mg, 0.48 mmol) provided 101.1 mg (90% yield) of the coupling product as a white solid after washing the crude mixture with water and dichloromethane, further acidification with 1M HCl and extraction of the aqueous layer with dichloromethane.

M.p.: 166-168 °C (lit.2 166.5-167 °C).

¹H-NMR (400 MHz, CDCl₃) δ 11.5 (bs, 1H) 8.14 (dd, J = 7.8, 1.6 Hz, 1H), 7.63-7.55 (m, 2H), 7.49-7.41 (m, 3H), 7.32-7.23 (m, 1H), 7.15 (dt, J = 7.6, 1.2 Hz, 1H), 6.82 (dd, J = 8.2, 0.9 Hz, 1H)

¹³C-NMR (100 MHz, CDCl₃) δ 171.9 (C), 144.7 (C), 135.9 (CH), 133.2 (CH), 132.2 (CH), 132.1 (CH), 129.9 (CH), 129.3 (CH), 127.2 (CH), 125.3 (C), 124.3 (CH).

MS (EI) *m/z* (%) 230 (M⁺, 100), 184 (36), 137 (66).

Calcd. for $C_{13}H_{10}O_2S$: C, 67.80; H, 4.38; found C, 67.83; H, 4.20.

² J. Nakayama, T. Fujita, M. Hoshino, *Chem. Lett.* **1982**, 1777.

2-Naphthyl phenyl sulfide³ **(3e).** Following the general procedure using 2-naphthalenthiol (100 mg, 0.61 mmol) and iodobenzene (0.093 mL, 0.92 mmol) provided 122 mg (85% yield) of the coupling product as a white solid after purification by flash chromatography (pentane) of the crude oil.

M.p.: 51-52 °C (lit. 3 50 °C).

¹H-NMR (400 MHz, CDCl₃) δ 7.73-7.58 (m, 4H), 7.36-7.13 (m, 8H).

 13 C-NMR (100 MHz, CDCl₃) δ 135.9 (C), 133.8 (C), 133.0 (C), 132.3 (C), 130.9 (CH), 129.9 (CH), 129.3 (CH), 128.9 (CH), 128.8 (CH), 127.8 (CH), 127.4 (CH), 127.1 (CH), 126.6 (CH), 126.2 (CH).

All spectral data correspond to those given in the literature.

3,5-Dimethylphenyl 2-naphthyl sulfide (3f). Following the general procedure using 2-naphthalenthiol (100 mg, 0.61 mmol) and 5-iodo-*m*-xylene (0.13 mL, 0.92 mmol) provided 135 mg (84% yield) of the coupling product as a white solid after purification by flash chromatography (pentane) of the crude oil.

M.p.: 99-100 °C.

¹H-NMR (400 MHz, CDCl₃) δ 7.70-7.58 (m, 4H), 7.35-7.27 (m, 3H), 6.92 (s, 2H), 6.77 (s, 1H), 2.14 (s, 6H).

³ C. Mispelaere-Canivet, J.-F. Spindler, S. Perrio, P. Beslin, *Tetrahedron* **2005**, *61*, 5253.

¹³C-NMR (100 MHz, CDCl₃) δ 138.9 (C), 134.9 (C), 133.8 (C), 133.6 (C), 132.2 (C), 129.3 (CH), 129.2 (CH), 129.0 (CH), 128.8 (CH), 128.6 (CH), 127.8 (CH), 127.4 (CH), 126.6 (CH), 126.1 (CH), 21.4 (CH₃).

MS (EI) *m/z* (%) 264 (M⁺, 100), 249 (18), 234 (19).

Calcd. for C₁₈H₁₆S: C, 81.77; H, 6.10; found C, 81.49; H, 5.98.

4-(Thio-2-naphthyl)benzoic acid ethylester (3g). Following the general procedure using 2-naphthalenthiol (100 mg, 0.61 mmol) and 4-iodobenzoic acid ethylester (0.16 mL, 0.92 mmol) provided 152 mg (81% yield) of the coupling product as a white solid after purification by flash chromatography (dichloromethane/pentane 2/8) of the crude oil.

M.p.: 55-56 °C.

¹H-NMR (400 MHz, CDCl₃) δ 7.91-7.90 (m, 1H), 7.83-7.79 (m, 2H), 7.75-7.65 (m, 3H), 7.44-7.39 (m, 2H), 7.37 (dd, J = 8.5, 1.9 Hz, 1H), 7.17-7.13 (m, 2H), 4.25 (q, J = 7.1 Hz, 2H), 1.27 (t, J = 7.1 Hz, 3H).

¹³C-NMR (100 MHz, CDCl₃) δ 166.1 (C), 143.9 (C), 133.8 (C), 132.9 (C), 132.8 (CH), 130.9 (CH), 130.2 (CH), 130.1 (CH), 129.8 (C), 129.3 (CH), 127.9 (C), 128.8 (CH), 127.7 (CH), 126.9 (CH), 126.8 (CH), 61.0 (CH₂), 14.5 (CH₃).

MS (EI) *m/z* (%) 308 (M⁺, 100), 280 (15), 263 (22), 234 (36), 115 (20).

Calcd. for C₁₉H₁₆O₂S: C, 74.00; H, 5.23; found C, 73.66; H, 5.23.

3-Chlorophenyl 2-naphthyl sulfide (3h). Following the general procedure using 2-naphthalenthiol (100 mg, 0.61 mmol) and 1-iodo-3-chlorobenzene (0.14 mL, 0.92 mmol) provided 140 mg (85% yield) of the coupling product as a white solid after purification by flash chromatography (pentane) of the crude oil.

M.p.: 64-65 °C.

¹H-NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 1.6 Hz, 1H), 7.72-7.62 (m, 3H), 7.39-7.35 (m, 2H), 7.31 (dd, J = 8.5, 1.9 Hz, 1H), 7.18-7.17 (m, 1H), 7.05 (s, 3H).

¹³C-NMR (100 MHz, CDCl₃) δ 138.9 (C), 134.9 (C), 133.8 (C), 132.7 (C), 131.6 (CH), 131.1 (C), 130.1 (CH), 129.4 (CH), 129.3 (CH), 129.2 (CH), 127.9 (CH), 127.8 (CH), 127.6 (CH), 126.8 (CH), 126.7 (CH).

MS (EI) m/z (%) 272 (M⁺ +2, 33), 270 (M⁺, 100), 234 (50), 115 (19).

Calcd. for C₁₆H₁₁ClS: C, 70.97; H, 4.09; found C, 70.68; H, 4.23.

4-Methylphenyl 2-naphthyl sulfide⁴ **(3i).** Following the general procedure using 2-naphthalenthiol (100 mg, 0.61 mmol) and 4-iodotoluene (205 mg, 0.92 mmol) provided 145 mg (96% yield) of the coupling product as a white solid after purification by flash chromatography (pentane) of the crude oil.

M.p.: 67-68 °C (lit. 4 66-67 °C)

¹H-NMR (400 MHz, CDCl₃) δ 7.67-7.57 (m, 4H), 7.36-7.29 (m, 2H), 7.26-7.22 (m, 3H), 7.03 (d, J = 7.7 Hz, 2H), 2.24 (s, 3H).

¹³C-NMR (100 MHz, CDCl₃) δ 137.6 (C), 134.4 (C), 133.8 (C), 132.1 (CH), 132.0 (C), 131.4 (C), 130.1 (CH), 128.7 (CH), 128.4 (CH), 127.9 (CH), 127.7 (CH), 127.3 (CH), 126.5 (CH), 125.9 (CH), 21.3 (CH₃).

All spectral data correspond to those given in the literature.

⁴ T. Nakazawa, N. Hirose, K. Itabashi, *Synthesis* **1989**, 955.

2-(Phenylsulfanyl)-*N***-methylimidazole (3j).** Following the general procedure using 2-mercapto-*N*-methylimidazole (100 mg, 0.86 mmol) and iodobenzene (0.14 mL, 1.29 mmol) and Cs_2CO_3 (560.4 mg, 1.72 mmol) as base provided 86 mg (52% yield) of the coupling product as a yellow oil after purification by flash chromatography (ethyl acetate) of the crude oil.

¹H-NMR (400 MHz, CDCl₃) δ 7.20-7.14 (m, 2H), 7.10-7.04 (m, 4H), 6.98 (d, J = 1.4 Hz, 1H), 3.54 (s, 3H).

¹³C-NMR (100 MHz, CDCl₃) δ 137.9 (C), 134.9 (C), 130.1 (CH), 129.2 (CH), 127.9 (CH), 126.5 (CH), 123.8 (CH), 33.9 (CH₃).

MS (EI) *m/z* (%) 190 (M⁺, 75), 189 (100), 91 (16), 51 (18).

Calcd. for C₁₀H₁₀NS: C, 63.13; H, 5.30; N, 14.72; found C, 62.83; H, 5.28; N, 14.81.

2-(2-Methoxyphenylsulfanyl)-*N***-methylimidazole** (**3k**). Following the general procedure using 2-mercapto-*N*-methylimidazole (100 mg, 0.86 mmol) and 2-iodoanisole (0.18 mL, 1.29 mmol) and Cs₂CO₃ (560.4 mg, 1.72 mmol) as base provided 134 mg (71% yield) of the coupling product as a yellow oil after purification by flash chromatography (ethyl acetate) of the crude oil.

¹H-NMR (300 MHz, CDCl₃) δ 7.10-7.03 (m, 2H), 7.02-7.00 (m, 1H), 6.77-6.68 (m, 2H), 6.52-6.49 (m, 1H), 3.78 (s, 3H), 3.54 (s, 3H).

¹³C-NMR (75 MHz, CDCl₃) δ 155.6 (C), 137.2 (C), 130.3 (CH), 127.6 (CH), 127.3 (CH), 124.0 (CH), 123.9 (CH), 121.5 (CH), 110.8 (CH), 55.9 (CH₃), 33.8 (CH₃).

MS (EI) *m/z* (%) 220 (M⁺, 9), 189 (100).

Calcd. for C₁₁H₁₂N₂OS: C, 59.97; H, 5.49; N, 12.72; found C, 60.01; H, 5.43; N, 12.84.

4,5-Diphenyl-2-(phenylsulfanyl)imidazole (31). Following the general procedure using 4,5-diphenyl-2-imidazolethiol (126.4 mg, 0.48 mmol) and iodobenzene (0.08 mL, 0.72 mmol) provided 96.8 mg (61% yield) of the coupling product as a white solid after purification by flash chromatography (ethyl acetate) of the crude oil.

M.p.: 207-209 °C

¹H-NMR (400 MHz, CDCl₃) δ 7.62 (dd, J = 8.3, 1.1 Hz, 4H), 7.39 (d, J = 6.0 Hz, 1H), 7.21 (m, 6H), 7.02 (t, J = 7.8 Hz, 4H).

¹³C-NMR (100 MHz, CDCl₃) δ 137.4 (CH), 134.0 (C), 130.2 (CH), 129.5 (CH), 129.4 (CH), 128.6 (CH), 127.7 (CH), 127.7 (CH), 127.4 (CH), 127.3 (CH), 94.4 (C).

MS (EI) *m/z* (%) 328 (M⁺, 100), 165 (12).

Calcd. for C₂₁H₁₆N₂S: C, 76.80; H, 4.91; N, 8.53; found C, 76.65; H, 5.22; N, 8.45.

4,5-Diphenyl-2-(2-methoxyphenylsulfanyl)imidazole (3m). Following the general procedure using 4,5-diphenyl-2-imidazolethiol (126.4 mg, 0.48 mmol) and 2-iodoanisole (0.10 mL, 0.72 mmol) and K_3PO_4 (204.4 mg, 0.96 mmol) as base provided 56.4 mg (33% yield) of the coupling product as a white solid after purification by flash chromatography (ethyl acetate) of the crude oil.

M.p.: 170-172 °C

¹H-NMR (400 MHz, CDCl₃) δ 7.40 (dd, J = 7.7, 1.7 Hz, 4H), 7.27-7.12 (m, 8H), 6.88-6.75 (m, 2H), 3.83 (s, 3H).

¹³C-NMR (100 MHz, CDCl₃) δ 157.0 (C), 137.4 (C), 131.6 (CH), 129.1 (CH), 128.6 (CH), 127.7 (CH), 127.6 (CH), 127.3 (C), 122.3 (C), 121.8 (CH), 111.4 (CH), 56.2 (CH₃).

MS (EI) *m/z* (%) 358 (M⁺, 65), 327 (100).

Calcd. for C₂₃H₂₀N₂OS: C, 73.71; H, 5.06; N, 7.82; found C, 73.69; H, 5.34; N, 7.65.

2-(3,5-Dimethylphenylsulfanyl)-4,5-diphenylimidazole (3n). Following the general procedure using 4,5-diphenyl-2-imidazolethiol (126.4 mg, 0.48 mmol) and 5-iodo-*m*-xylene (0.11 mL, 0.72 mmol) provided 54.7 mg (32% yield) of the coupling product as a pale yellow solid after purification by flash chromatography (ethyl acetate) of the crude oil.

M.p.: 143-145 °C

¹H-NMR (400 MHz, CDCl₃) δ 7.44-7.40 (m, 4H), 7.26-7.21 (m, 6H), 6.99 (s, 2H), 6.83 (s, 1H), 2.22 (s, 6H).

¹³C-NMR (100 MHz, CDCl₃) δ. 139.1 (C), 138.3 (C), 133.0 (C), 132.3 (C), 129.4 (CH), 128.5 (CH), 127.9 (CH), 127.8 (CH), 127.5 (CH), 104.7 (C), 21.2 (CH₃).

MS (EI) m/z (%) 356 (M⁺, 100).

Calcd. for C₂₄H₂₂N₂S: C, 77.49; H, 5.65; N, 7.86; found C, 77.10; H, 5.91; N, 7.66.

2-Phenylsulfanyl-benzothiazole⁵ **(30).** Following the general procedure using 2-mercaptobenzothiazole (100 mg, 0.58 mmol) and iodobenzene (0.09 mL, 0.87 mmol) provided 128 mg (91% yield) of the coupling product as a yellow oil after purification by flash chromatography (pentane/dichloromethane 9/1) of the crude oil.

¹H-NMR (400 MHz, CDCl₃) δ 7.78-7.76 (m, 1H), 7.63-7.61 (m, 2H), 7.54-7.51 (m, 1H), 7.42-7.33 (m, 3H), 7.28 (dt, J = 7.8, 1.4 Hz, 1H), 7.14 (dt, J = 7.4, 1.1 Hz, 1H).

¹³C-NMR (100 MHz, CDCl₃) δ 169.6 (C), 153.9 (C), 135.2 (C), 135.3 (CH), 130.5 (CH), 129.9 (CH), 126.2 (CH), 124.3 (CH), 121.9 (CH), 120.8 (CH).

All spectral data correspond to those given in the literature.

2-(2-Chlorophenylsulfanyl)benzothiazole (3p). Following the general procedure using 2-mercaptobenzothiazole (100 mg, 0.58 mmol) and 1-iodo-2-chlorobenzene (0.10 mL, 0.87 mmol) provided 128 mg (80% yield) of the coupling product as a white solid after purification by flash chromatography (dichloromethane/pentane 1/1) of the crude oil.

M.p.: 55-56 °C.

¹H-NMR (300 MHz, CDCl₃) δ 7.79-7.83 (m, 1H), 7.68 (dd, J = 7.7, 1.7 Hz, 1H), 7.59-7.56 (m, 1H), 7.47 (dd, J = 7.9, 1.5 Hz, 1H), 7.36-7.16 (m, 4Hz).

 13 C-NMR (75 MHz, CDCl₃) δ 166.9 (C), 153.8 (C), 138.9 (C), 137.0 (CH), 135.8 (C), 131.8 (CH), 130.8 (CH), 129.5 (C), 127.9 (CH), 126.3 (CH), 124.6 (CH), 122.2 (CH), 120.9 (CH).

⁵ C. Savarin, J. Srogl, L. S. Liebeskind, *Org. Lett.* **2002**, *4*, 4309.

MS (EI) *m/z* (%) 277 (M⁺, 13), 242 (100), 108 (21).

Calcd. for C₁₃H₈ClNS₂: C, 56.21; H, 2.90; N, 5.04; found C, 56.45; H, 3.15; N, 5.05.

2-(2-Methoxyphenylsulfanyl)benzothiazole (3q). Following the general procedure using 2-mercaptobenzothiazole (100 mg, 0.58 mmol) and 2-iodoanisole (0.12 mL, 0.87 mmol) provided 145 mg (91% yield) of the coupling product as a white solid after purification by flash chromatography (dichloromethane) of the crude oil.

M.p.: 71-72 °C.

¹H-NMR (400 MHz, CDCl₃) δ 7.79-7.77 (m, 1H), 7.60 (dd, J = 7.7, 1.6 Hz, 1H), 7.55-7.52 (m, 1H), 6.97-6.92 (m, 1H); 6.74-6.66 (m, 1H), 6.61 (dt, J = 7.5, 1.4 Hz, 1H), 7.44-7.39 (m, 1H), 7.31-7.27 (m, 1H), 7.17-7.13 (m, 1H), 3.75 (s, 3H).

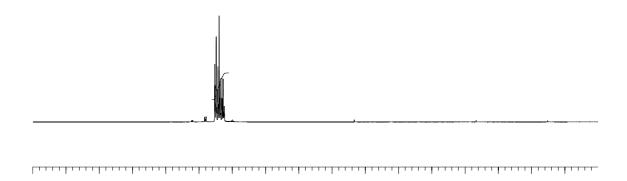
 13 C-NMR (100 MHz, CDCl₃) δ 169.8 (C), 159.9 (C), 154.0 (C), 137.4 (CH), 135.6 (C), 132.8 (CH), 125.9 (CH), 124.0 (CH), 121.8 (CH), 121.5 (CH), 120.7 (CH), 117.7 (C), 111.9 (CH), 56.1 (CH₃).

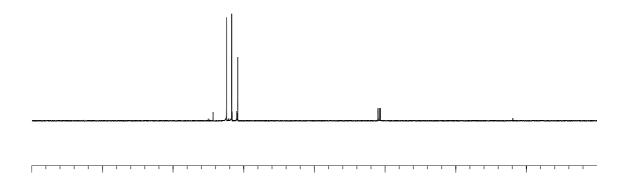
MS (EI) *m/z* (%) 273 (M⁺, 15), 242 (100).

Calcd. for C₁₄H₁₁NOS₂: C, 61.51; H, 4.06; N, 5.12; found C, 61.64; H, 4.29; N, 5.03.

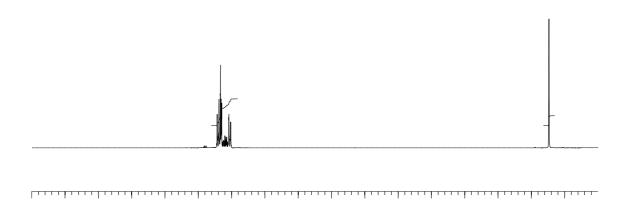
2-(4-Nitrophenylsulfanyl)benzothiazole (3r). Following the general procedure using 2-mercaptobenzothiazole (100 mg, 0.58 mmol) and 4-iodonitrobenzene (220 mg, 0.87 mmol) provided 134 mg (80% yield) of the coupling product as an orange solid after purification by flash chromatography (dichloromethane) of the crude oil.

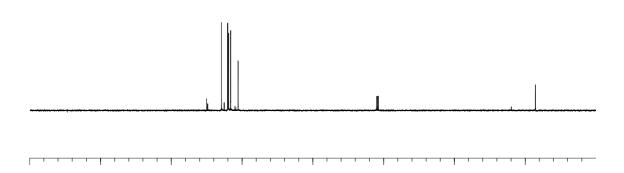
M.p.: 95-96 °C.

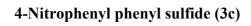

¹H-NMR (300 MHz, CDCl₃) δ 8.15-8.11 (m, 2H), 7.88-7.85 (m, 1H), 7.69-7.65 (m, 3H), 7.41-7.25 (m, 2H).

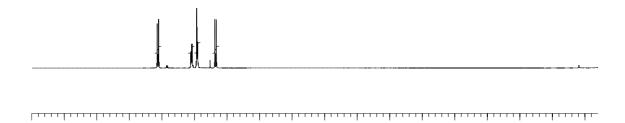

 13 C-NMR (75 MHz, CDCl₃) δ 162.8 (C), 153.4 (C), 147.9 (C), 140.0 (C), 136.2 (C), 132.7 (CH), 126.7 (CH), 125.5 (CH), 124.5 (CH), 122.8 (CH), 121.2 (CH).

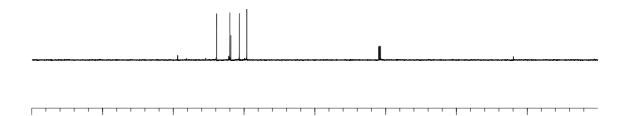
MS (EI) *m/z* (%) 290 (M⁺, 10), 288 (100), 241 (39).

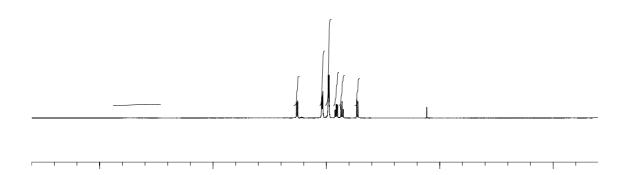

All spectral data correspond to those given in the literature.

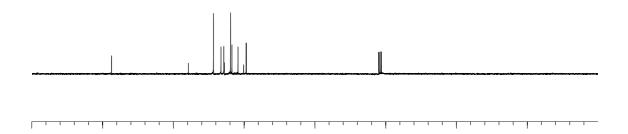

Diphenyl sulfide (3a)

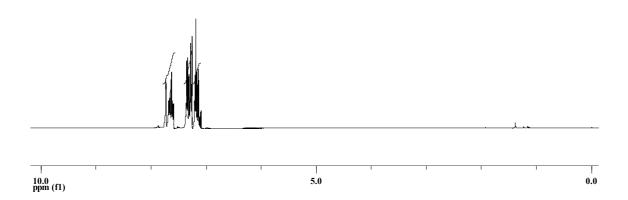


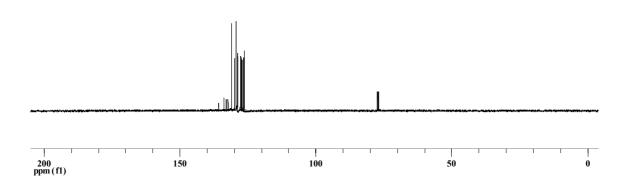


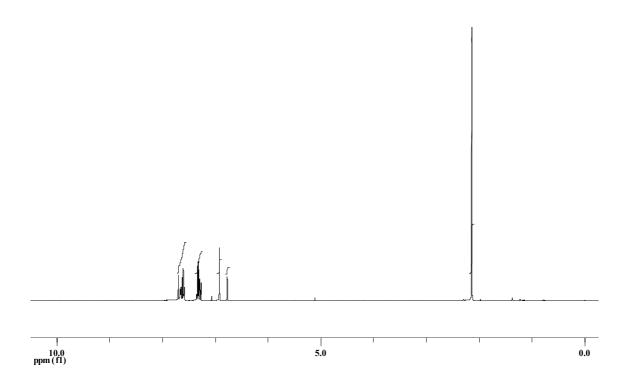

Phenyl tolyl sulfide (3b)

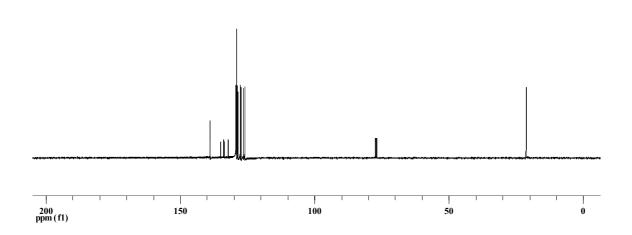


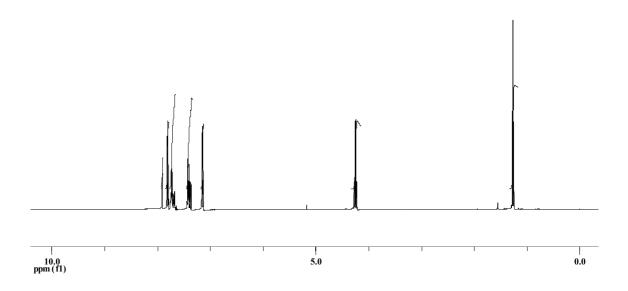


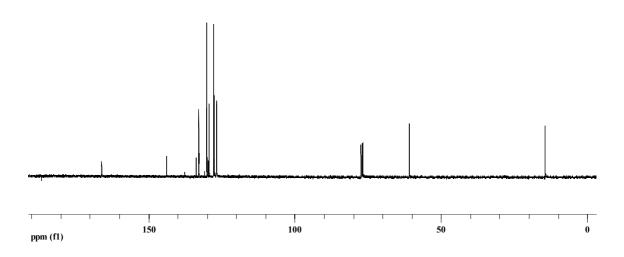


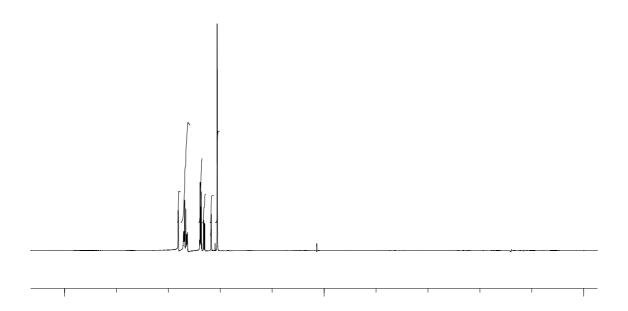

2-Phenylthiobenzoic acid (3d)

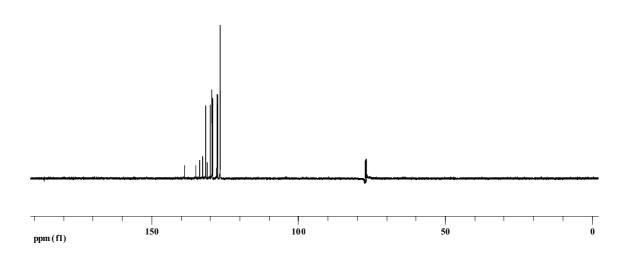


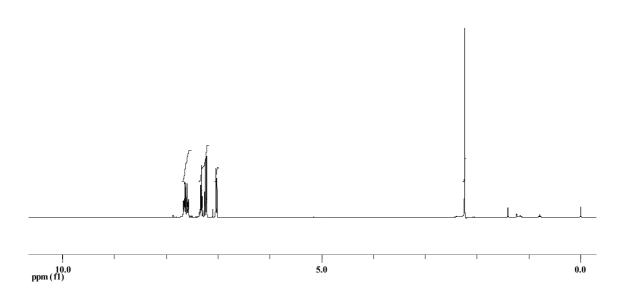

2-Naphthyl phenyl sulfide (3e)

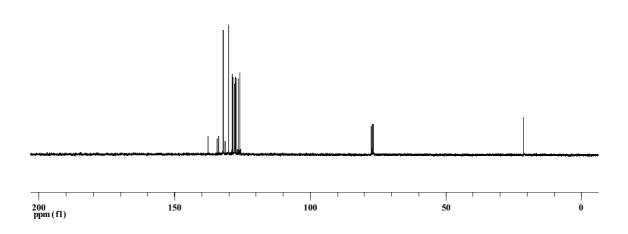


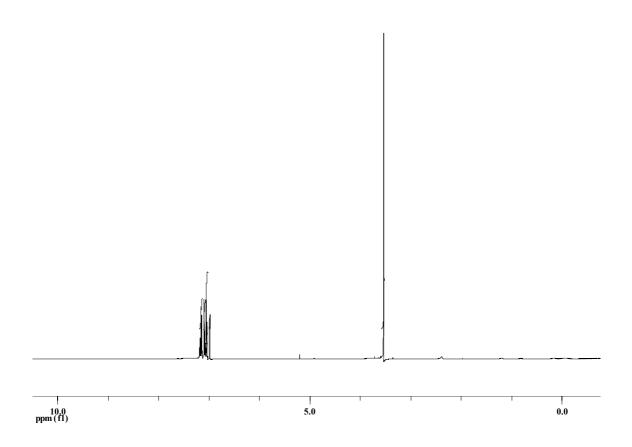

3,5-Dimethylphenyl 2-naphthyl sulfide (3f)

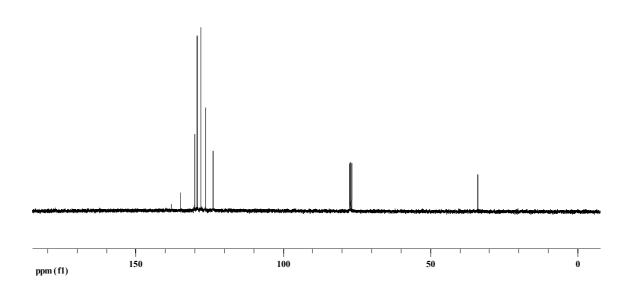


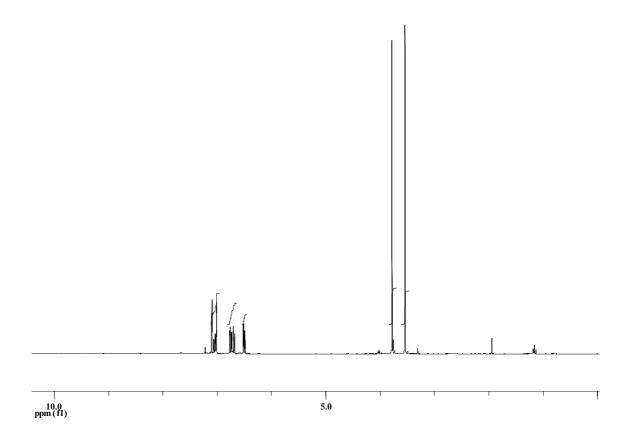

4-(Thio-2-naphthyl)benzoic acid ethylester (3g)

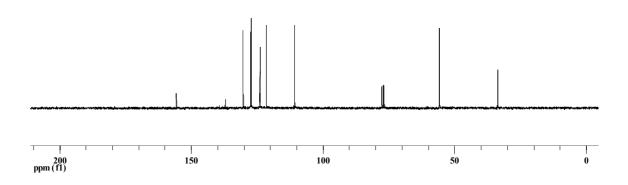


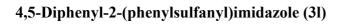

3-Chlorophenyl 2-naphthyl sulfide (3h)

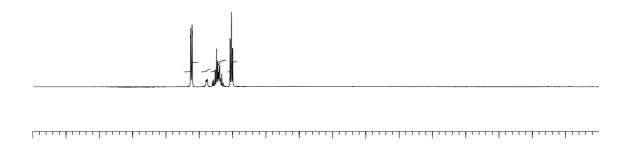


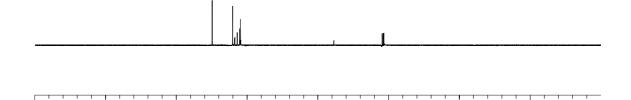

4-Methylphenyl 2-naphthyl sulfide (3i)



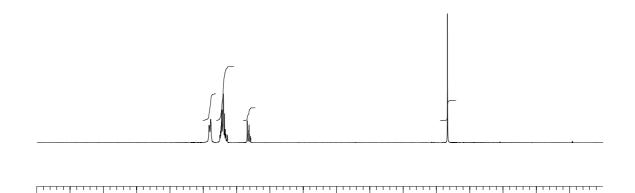

2-(Phenylsulfanyl)-N-methylimidazole (3j)

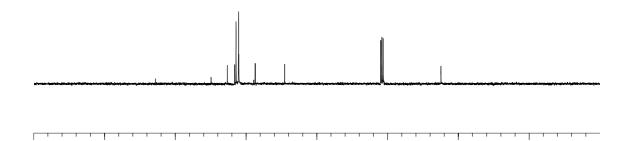


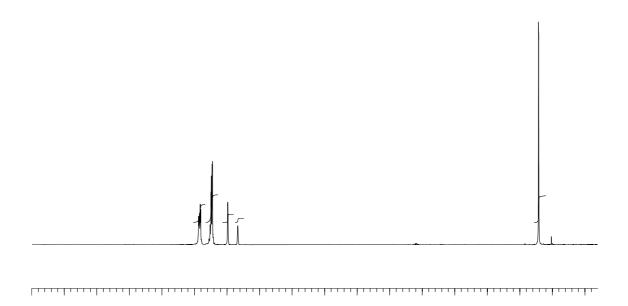


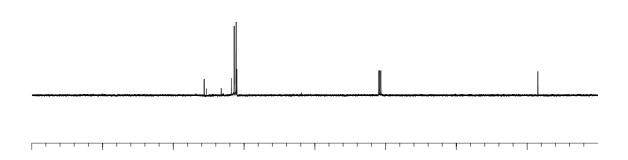

$\hbox{$2$-(2-Methoxyphenylsulfanyl)-N-methylimidazole (3k)}$

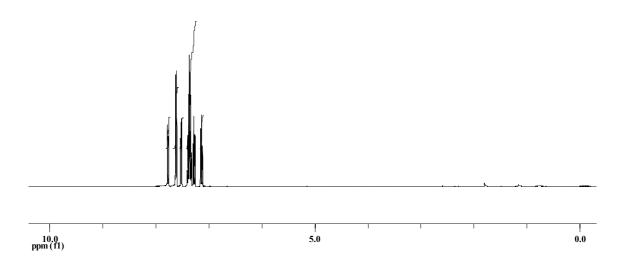


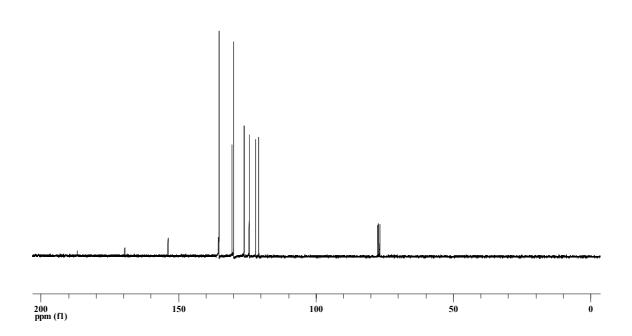


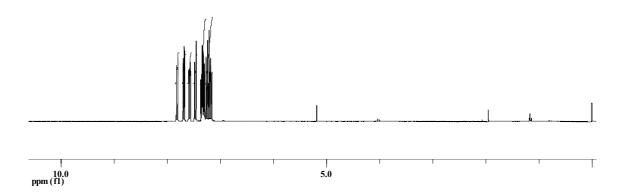


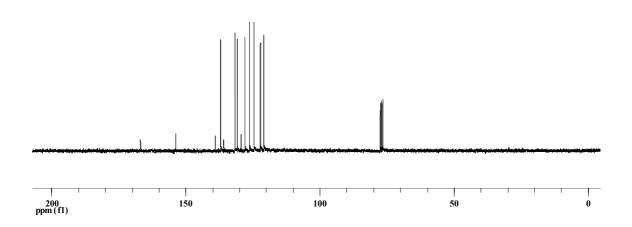


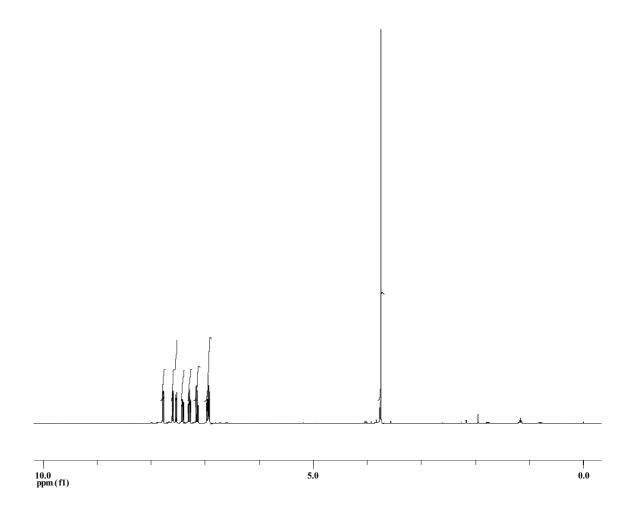


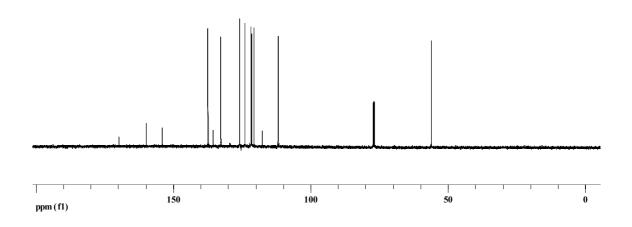


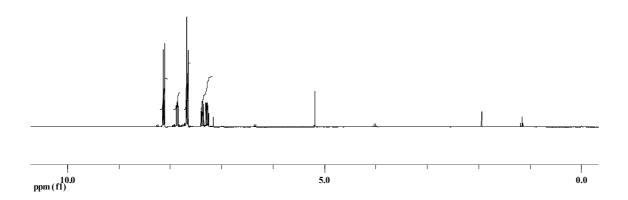

$\hbox{$2$-(3,5$-Dimethylphenylsulfanyl)$-4,5$-diphenylimidazole (3n)}$

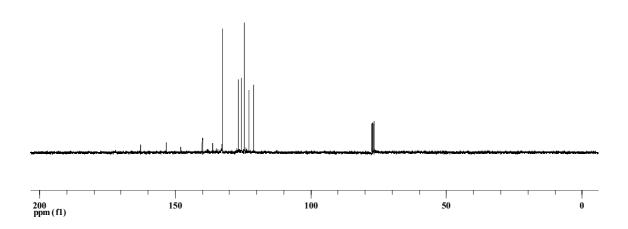



2-Phenylsulfanyl-benzothiazole (3o)




2-(2-Chlorophenylsulfanyl)benzothiazole (3p)




2-(2-Methoxyphenylsulfanyl)benzothiazole (3q)

2-(4-Nitrophenylsulfanyl)benzothiazole (3r)

