

Supporting Information © Wiley-VCH 2008

69451 Weinheim, Germany

Supporting Information

Active Template Synthesis of Rotaxanes and Molecular Shuttles with Switchable Dynamics via Four-Component Pd(II)-Promoted Michael Additions

Stephen M. Goldup, David A. Leigh*, Paul J. Lusby*, Roy T. McBurney and Alexandra M. Z. Slawin

School of Chemistry, University of Edinburgh, The King's Buildings, West Mains

Road, Edinburgh, EH9 3JJ, United Kingdom and School of Chemistry, University of

St. Andrews, Purdie Building, St. Andrews, Fife, KY16 9ST, United Kingdom

Email: David.Leigh@ed.ac.uk, Paul.Lusby@ed.ac.uk

Table of Co	ntents	S2				
General Exp	perimental Section	S4				
Synthesis an	d Experimental Section	S5				
Scheme S1:	Synthesis of vinyl ketone "stopper" 1	S5				
Scheme S2:	Synthesis of benzyl aniline S8					
Scheme S3:	3: Synthesis of [L2Pd(CH ₃ CN)] from S8					
Representat	ive Synthesis of Rotaxane [L3Pd]	S15				
Figure S1:	¹ H NMR (400 MHz, CDCl ₃ , 300 K) spectra of (a) H ₂ L2 (b) H ₂	₂ L3 (c)				
	[L3Pd] and (d) S10	S18				
Scheme S4:	Synthesis of 2-cyanopropanoic acid S12	S19				
Scheme S5:	Synthesis of nitrile "stopper" L5	S19				
Scheme S6:	Synthesis of bis-vinyl ketone 2	S21				
Synthesis of	Molecular Shuttle [L4Pd]	S22				
Synthesis of	Thread S15	S24				
Variable Te	mperature ¹ H NMR investigation of Degenerate Shuttling Pro	cess in				
[L4Pd]		S26				
Figure S2:	¹ H NMR (600 MHz, [D ₇]DMF) spectra of [L4 Pd] at 10 K in	ıtervals				
	from 300 K to 360 K	S26				
Table S1:	Estimation of kinetic parameters of [L4Pd] from VT ¹ H NMR	S27				
Exchange S	Spectroscopy (2D-EXSY) Investigation of Degenerate Sh	uttling				
Process in [I	_4Pd]	S28				
Figure S3:	Partial 2D-EXSY spectrum of [L4Pd] (400 MHz, [D ₇]DMF, 3	300 K)				
		S29				
Table \$2.	Estimation of kinetic parameters of [I 4Pd] in [Da]DMF	\$29				

Controlling S	Shuttling Rates via the Addition and Removal of Pyridine	S29
Figure S4:	Partial 2D-EXSY spectrum of [L4Pd] (400 MHz, CDCl ₃ , 300 K)	S30
Table S3:	Estimation of kinetic parameters of [L4Pd] in CDCl ₃	S30
Figure S5:	Partial 2D-EXSY spectrum of [L4Pd] plus 1 equiv. of pyridine	(400
	MHz, CDCl ₃ , 300 K)	S31
Table S4:	Estimation of kinetic parameters of [L4Pd] in CDCl ₃ with 1 equal	iv. of
	pyridine	S31
Figure S6:	The X-ray crystal structure of [L2 Pd(CH ₃ CN)]	S32
Table S5:	Crystal data for [L2Pd(CH ₃ CN)]	S32
Figure S7:	The X-ray crystal structure of [L2PdL1]	S33
Table S6:	Crystal data for [L2PdL1]	S33
Figure S8:	The X-ray crystal structure of [L3Pd]	S35
Table S7:	Crystal data for [L3Pd]	S35
References		S36

General Experimental Section

Unless stated otherwise, all reagents and solvents were purchased from Aldrich Chemicals and used without further purification, tetrahydrofuran, dichloromethane, chloroform, acetonitrile and N,N-dimethylformamide were dried using a solvent purification system manufactured by Innovative Technology, Newburyport, MA, USA. 4-[Tris(4-tert-butylphenyl)methyl]-phenol^[1] was prepared according to literature procedures. Unless stated otherwise, all reactions were carried out under an atmosphere of nitrogen. Column chromatography was carried out using Silica 60A (particle size 35-70 µm, Fisher, UK) as the stationary phase, and TLC was performed on precoated silica gel plates (0.25 mm thick, 60 F₂₅₄, Merck, Germany) and observed under UV light. By petrol is meant the fraction of petroleum ether boiling between 40 °C - 60 °C. ¹H spectra were recorded on Bruker AV 400, Bruker DMX 500 and Bruker AVA 600 instruments whilst all ¹³C NMR spectra were recorded on a Bruker AV 400 instrument. Chemical shifts are reported in parts per million (ppm) from low to high frequency and referenced to the residual solvent resonance. Coupling constants (J) are reported in hertz (Hz). Standard abbreviations indicating multiplicity were used as follows: s = singlet, d = doublet, t = triplet, dd = double doublet, q = doubletquartet, m = multiplet, b = broad, ddd = doublet of double doublets. Melting points (m.p.) were determined using a Sanyo Gallenkamp apparatus and are reported uncorrected. FAB mass spectrometry was carried out by the services at the University of Edinburgh and the EPSRC National Mass Spectrometry Service Centre, Swansea, UK.

Synthesis and Experimental Section

Scheme S1: a) ethyl 4-bromobutyrate, K₂CO₃, butanone, reflux, 94%; b) LiOH, THF, H₂O, RT, 85%; c) (COCl)₂, CH₂Cl₂, DMF (cat.), RT, 96%; d) *N*,*O*-dimethylhydroxylamine hydrochloride, Et₃N, THF, 0 °C, 95%; e) vinyl magnesium bromide, THF, -78 °C, 92%.

Ethyl 4-(4-(tris(4-tert-butylphenyl)methyl)phenoxy)butanoate, S1

To a stirred solution of 4-[tris(4-*tert*-butylphenyl)methyl]-phenol (2.10 g, 4.1 mmol) and ethyl 4-bromobutyrate (0.90 ml, 6.2 mmol) in butanone (50 ml) was added K₂CO₃ (5.70 g, 41 mmol). The suspension was heated at reflux for 18 h. The solvent was removed under reduced pressure and the residue was redissolved in CH₂Cl₂ (200 ml), washed with H₂O (3 × 100 ml), dried (MgSO₄) and concentrated under reduced pressure. The crude residue was purified by column chromatography (CH₂Cl₂:petroleum ether 1:1) to yield the title compound as a colorless powder (2.40 g, 94%). m.p. 212 °C; ¹H NMR (400 MHz, CDCl₃, 300 K): δ = 1.26 (t, J = 7.1 Hz, 3H, H_a), 1.30 (s, 27H, H_f), 2.09 (m, 2H, H_d), 2.51 (t, J = 7.3 Hz, 2H, H_c), 3.98 (t, J = 6.1 Hz, 2H, H_e), 4.14 (q, J = 7.1 Hz, 2H, H_b), 6.75 (d, J = 8.9 Hz, 2H, H_f), 7.08 (d, J = 8.6

Hz, 8H, H_{g+h}), 7.23 (d, J = 8.6 Hz, 6H, H_i); ¹³C NMR (100 MHz, CDCl₃, 300 K): $\delta = 14.2$, 24.7, 30.9, 31.4, 34.3, 60.4, 63.0, 66.5, 112.9, 124.0, 130.7, 132.2, 139.6, 144.1, 148.3, 156.6, 173.3; LRFAB-MS (3-NOBA matrix): m/z = 618 [M]; HRFAB-MS (Glycerol matrix): m/z = 618.4096 (calcd. for C₄₃H₅₄O₃, 618.4073).

4-(4-(Tris(4-tert-butylphenyl)methyl)phenoxy)butanoic acid, S2

A solution of ester **S1** (3.75 g, 6.06 mmol) and LiOH (1.02 g, 24.2 mmol) in THF (45 ml) and H₂O (15 ml) was stirred at RT until **S1** had been consumed, as evidenced by TLC (EtOAc). The reaction mixture was diluted with CH₂Cl₂ (100 ml), washed with 1 M HCl (50 ml), a saturated aqueous solution of NaHCO₃ (50 ml) and brine (50 ml). The organic layer was dried (MgSO₄), and concentrated under reduced pressure to yield the title compound as a colorless solid (3.03 g, 85%). The product was used without further purification. m.p. 272 °C; ¹H NMR (400 MHz, CDCl₃, 300 K): δ = 1.30 (s, 27H, H_b), 2.11 (m, 2H, H_b), 2.58 (t, J = 7.3 Hz, 2H, H_a), 4.00 (t, J = 6.0 Hz, 2H, H_c), 6.75 (d, J = 8.75 Hz, 2H, H_d), 7.08 (d, J = 8.7 Hz, 8H, H_{e+f}), 7.23 (d, J = 8.7 Hz, 6H, H_g); ¹³C NMR (100 MHz, CDCl₃, 300 K): δ = 24.4, 30.3, 31.4, 34.3, 63.0, 66.3, 112.9, 124.0, 130.7, 132.3, 139.7, 144.1, 148.3, 156.5, 177.8; LRFAB-MS (3-NOBA matrix): m/z = 590.3752 (calcd. for C₄₁H₅₀O₃, 590.3760).

$$\begin{array}{c|c} h & g & f \\ \hline \\ \hline \\ \hline \\ \hline \\ \end{array} \begin{array}{c} e & d \\ \hline \\ \hline \\ \hline \\ \end{array} \begin{array}{c} 0 \\ \hline \\ \hline \\ \end{array} \begin{array}{c} b \\ \hline \\ \hline \\ CI \end{array}$$

4-(4-(Tris(4-tert-butylphenyl)methyl)phenoxy)butanoyl chloride, S3

To a solution of acid **S2** (3.4 g, 5.7 mmol) in CH₂Cl₂ (60 ml) was added dropwise (COCl)₂ (2.9 ml, 29 mmol) and DMF (0.1 ml). The solution was stirred at RT for 5 h at which time the solvent was removed under reduced pressure. The crude residue was redissolved in boiling hexane and filtered whilst hot. The filtrate was concentrated under reduced pressure to yield the title compound as a colorless solid (3.30 g, 96%). m.p. 254 °C; ¹H NMR (400 MHz, CDCl₃, 300 K): δ = 1.30 (s, 27H, H_h), 2.16 (m, 2H, H_b), 3.14 (t, J = 7.1 Hz, 2H, H_a), 3.98 (t, J = 5.8 Hz, 2H, H_c), 6.74 (d, J = 8.9 Hz, 2H, H_d), 7.07 (d, J = 8.6 Hz, 6H, H_f), 7.09 (d, J = 8.9 Hz, 2H, H_e), 7.23 (d, J = 8.6 Hz, 6H, H_g); ¹³C NMR (100 MHz, CDCl₃, 300 K): δ = 24.5, 30.3, 31.4, 34.3, 63.0, 66.3, 112.9, 124.0, 130.7, 132.2, 139.8, 144.1, 148.3, 156.5, 177.6; LRFAB-MS (3-NOBA matrix): m/z = 608.3420 (calcd. for C₄₁H₄₉³⁵ClO₂, 608.3421).

N-Methoxy-N-methyl-4-(4-(tris(4-tert-butylphenyl)methyl)phenoxy)butanamide,

To a solution of N,O-dimethyl hydroxylamine (0.58 g, 5.9 mmol) and Et₃N (1.7 ml, 12 mmol) in CH₂Cl₂ (60 ml) at 0 °C was added dropwise a solution of acid chloride **S3** (3.3 g, 5.4 mmol) in CH₂Cl₂ (10 ml). The solution was allowed to warm to RT and stirred for 18 h. The reaction mixture was diluted with CH₂Cl₂ (200 ml) and washed with 1M HCl (100 ml), saturated aqueous NaHCO₃ (100 ml) and brine (100 ml). The organic layer was dried (MgSO₄) and concentrated under reduced pressure. The residue was purified by column chromatography (CH₂Cl₂) to yield the title compound as a colorless solid (3.27 g, 95%). m.p. 218 °C; ¹H NMR (400 MHz, CDCl₃, 300 K): δ = 1.30 (s, 27H, H_j), 2.11 (m, 2H, H_d), 2.65 (t, J = 7.0 Hz, 2H, H_c), 3.19 (s, 3H, H_b), 3.67 (s, 3H, H_a), 4.01 (t, J = 6.0 Hz, 2H, H_e), 6.77 (d, J = 8.9 Hz, 2H, H_f), 7.09 (d, J = 8.6 Hz, 8H, H_{g+h}), 7.23 (d, J = 8.6 Hz, 6H, H_i); ¹³C NMR (100 MHz, CDCl₃, 300 K): δ = 24.2, 28.3, 31.4, 32.2, 34.3, 61.2, 63.0, 66.8, 112.9, 124.0, 130.7, 132.2, 139.5, 144.2, 148.3, 156.7, 174.0; LREI-MS: m/z = 634 [MH]⁺; HRFAB-MS (3-NOBA matrix): m/z = 634.4260 (calcd. for C₄₃H₅₆NO₃, 634.4260).

6-(4-(Tris(4-tert-butylphenyl)methyl)phenoxy)hex-1-en-3-one, 1

To a solution of Weinreb amide **S4** (1.33 g, 2.1 mmol) in THF (20 ml) at -78 °C was added dropwise vinyl magnesium bromide (1 M in THF, 5.2 mmol, 5.2 ml). The solution was stirred at -78 °C for 30 min, and then allowed to warm to 0 °C for 2 h. The reaction was quenched with a cold solution of saturated aqueous NH₄Cl (50 ml), extracted with CH₂Cl₂ (4 × 50 ml), the combined organic layers were washed with

brine (50 ml), dried (MgSO₄) and concentrated under reduced pressure. The residue was purified by column chromatography (CH₂Cl₂:petrol 1:1) to yield the title compound as colorless solid (1.13 g, 92%) which was stored under an atmosphere of N₂ in a freezer. m.p. 208 °C; ¹H NMR (400 MHz, CDCl₃, 300 K): δ = 1.30 (s, 27H, H_j), 2.10 (m, 2H, H_d), 2.82 (t, J = 7.1 Hz, 2H, H_c), 3.98 (t, J = 5.9 Hz, 2H, H_e), 5.84 (d, J = 10.5 Hz, 1H, H_b), 6.25 (d, J = 17.3 Hz, 1H, H_a·), 6.37 (dd, J = 10.5 Hz, 17.3 Hz, 1H, H_a), 6.75 (d, J = 8.8 Hz, 2H, H_f), 7.08 (d, J = 8.6 Hz, 8H, H_{g+h}), 7.23 (d, J = 8.6 Hz, 6H, H_i); ¹³C NMR (100 MHz, CDCl₃, 300 K): 23.5, 31.4, 34.3, 35.9, 63.0, 66.6, 112.9, 124.0, 128.2, 130.7, 132.3, 136.6, 139.6, 144.1, 148.3, 156.6, 200.2; LRFAB-MS (3-NOBA matrix): m/z = 600.3966 (calcd. for C₄₃H₅₂O₂, 600.3967).

Scheme S2: a) BnBr, K_2CO_3 , KI, DMF, RT, 97%; b) 1,6-dibromohexane, K_2CO_3 , butanone, reflux, 66%; c) i) **S5**, n-BuLi, THF, -78 °C, ii) **S6**, THF, -78 °C; d) NaBH₄, TFA, CH₂Cl₂, RT, 46% (over 2 steps).

$$I - \stackrel{A \quad B}{\longleftarrow} - NBn_2$$

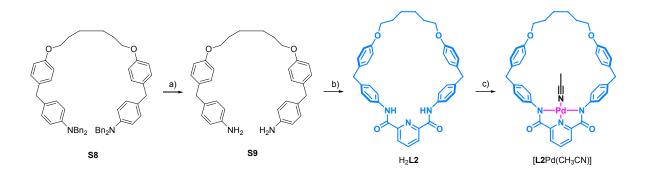
N,N-Dibenzyl-4-iodoaniline, S5

To a vigorously stirred solution of 4-iodoaniline (16.1 g, 73.4 mmol), BnBr (18.3 ml, 154 mmol) and KI (2.40 g, 14.7 mmol) in DMF (75 ml) was added K₂CO₃ (24.4 g, 176 mmol). The reaction was stirred for 18 h at RT. CH₂Cl₂ (200 ml) was added and the reaction mixture was washed with H₂O (100 ml), the organic layer was dried

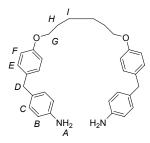
(MgSO₄) and concentrated under reduced pressure. The crude residue was recrystallized from EtOH (1 L) to yield the title compound as colorless needles (25.5 g, 97%). m.p. 122 °C; ¹H NMR (400 MHz, CDCl₃, 300 K): δ = 4.54 (s, 4H, H_{benzylic}), 6.41 (d, J = 9.1 Hz, 2H, H_A), 7.21 (m, 12H, H_{B+phenyl}); ¹³C NMR (100 MHz, CDCl₃, 300 K): δ = 54.2, 77.6, 114.7, 126.4, 127.1, 128.8, 137.7, 137.9, 148.6; LRFAB-MS (3-NOBA matrix): m/z = 399 [M]; HRFAB-MS (3-NOBA matrix): m/z = 399.0502 (calcd. for C₂₀H₁₈IN, 399.0484).

4,4'-Hexanediyldioxy dibenzaldehyde, S6

To a solution of 1,6-dibromohexane (4.4 ml, 29 mmol) and 4-hydroxybenzaldehyde (10.5 g, 85.9 mmol) in butanone (300 ml) was added K₂CO₃ (39.5 g, 286 mmol). The suspension was heated at reflux for 18 h. The solvent was removed under reduced pressure and the crude residue was redissolved in CH₂Cl₂ (500 ml) and washed with H₂O (200 ml). The organic layer was dried (MgSO₄) and concentrated under reduced pressure. The crude residue was dissolved in hot MeOH and allowed to cool to RT, the resultant precipitate was collected by suction filtration to yield the title compound as a colorless powder (6.11 g, 66%). m.p. 81-83 °C; ¹H NMR (400 MHz, CDCl₃, 300 K): δ = 1.57 (m, 4H, H_F), 1.87 (m, 4H, H_E), 4.06 (t, J = 6.4 Hz, 4H, H_D), 6.99 (d, J = 8.8 Hz, 4H, H_C), 7.83 (d, J = 8.8 Hz, 4H, H_B), 9.88 (s, 2H, H_A); ¹³C NMR (100 MHz, CDCl₃, 300 K): δ = 25.8. 29.0, 68.0, 114.7, 129.8, 132.0, 164.1, 190.8; LRFAB-MS (3-NOBA matrix): m/z = 327.1593 (calcd. for C₂₀H₂₃O₄, 327.1596).

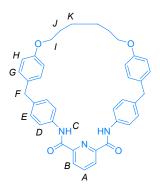

S7

To a solution of aldehyde **S6** (6.55 g, 20.1 mmol) in THF (200 ml) at -78 °C was added n-BuLi (1.6 M in hexane, 36.4 ml, 58.2 mmol) dropwise. The temperature was maintained at -78 °C for 30 min. A solution of iodide **S5** (24.1 g, 60.3 mmol) in THF (100 ml) was added dropwise whilst maintaining the temperature at -78 °C. The reaction was allowed to warm to RT over 2 h. The reaction mixture was diluted with CH_2Cl_2 (500 ml) and washed with saturated aqueous NH_4Cl (300 ml) and brine (300 ml). The organic layer was dried (MgSO₄) and concentrated under reduced pressure. The product was used without further purification. LRFAB-MS (3-NOBA matrix): m/z = 872; HRFAB-MS (3-NOBA matrix): m/z = 872.4553 (calcd. for $C_{60}H_{60}N_2O_4$, 872.4553).


$\label{eq:continuous} \mbox{4-(4-(6-(4-(4-(Dibenzylamino)benzyl)phenoxy)hexyloxy)benzyl)-N,N-dibenzylamiline, $\mathbf{S8}^{[2]}$$

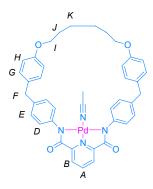
To a solution of diol **S7**, obtained from the previous reaction, and TFA (90 ml) in CH₂Cl₂ (120 ml) at 0 °C was added NaBH₄ (7.53 g, 199 mmol) portion-wise. The reaction was stirred for 18 h. The reaction was diluted with CH₂Cl₂ (1 L) and neutralized with 1 M NaOH (1.5 L). The organic layer was washed with brine (500

ml), dried (MgSO₄) and concentrated under reduced pressure. The residue was purified by column chromatography (petrol:CH₂Cl₂3:2) to yield the title compound as a colorless solid (7.82 g, 46% from **S6**). m.p. 105 °C; ¹H NMR (400 MHz, CDCl₃, 300 K): $\delta = 1.56$ (m, 4H, H_H), 1.83 (m, 4H, H_G), 3.84 (s, 4H, H_C), 3.97 (t, J = 6.5 Hz, 4H, H_F), 4.66 (s, 8H, H_{benzyl}), 6.70 (d, J = 8.7 Hz, 4H, H_A), 6.84 (d, J = 8.6 Hz, 4H, H_E), 7.01 (d, J = 8.7 Hz, 4H, H_B), 7.13 (d, J = 8.6 Hz, 4H, H_D), 7.33 (m, 20H, H_{phenyl}); ¹³C NMR (100 MHz, CDCl₃, 300 K): $\delta = 25.9$, 29.3, 40.0, 54.3, 67.8, 112.5, 114.5, 126.8, 127.0, 128.3, 129.2, 129.8, 131.3, 138.8, 133.9, 147.5, 157.3; LRFAB-MS (3-NOBA matrix): m/z = 841 [MH]⁺; HRFAB-MS (3-NOBA matrix): m/z = 841.4710 (calcd. for C₆₀H₆₁N₂O₂, 841.4733).


Scheme S3: a) Pd/C (10% w/w), H_2 , THF, EtOH, RT, 78%; b) pyridine-2,6-dicarbonyl dichloride, Et₃N, THF, RT, 30%; b) Pd(OAc)₂, CH₃CN, reflux then RT, 88%.

4-(4-(4-(4-Aminobenzyl)phenoxy)hexyloxy)benzyl)aniline, S9

To a solution of benzyl aniline **S8** (7.82 g, 9.30 mmol) in THF (80 ml) and EtOH (20 ml) was added 10% w/w Pd/C (1.56 g). The reaction mixture was initially purged


with an atmosphere of N_2 and then purged with H_2 before being stirred for 18 h under an atmosphere of H_2 . The reaction mixture was filtered through celite, concentrated under reduced pressure and purified by column chromatography (CH₂Cl₂:MeOH 99.5:0.5) to give the title compound as a colorless solid (3.48 g, 78%). m.p. 120 °C; ¹H NMR (400 MHz, CDCl₃, 300 K): $\delta = 1.53$ (m, 4H, H_I), 1.80 (m, 4H, H_J), 3.56 (br, 4H, H_A), 3.82 (s, 4H, H_D), 3.94 (t, J = 6.4 Hz, 4H, H_G), 6.63 (d, J = 8.3 Hz, 4H, H_B), 6.82 (d, J = 8.5 Hz, 4H, H_F), 6.98 (d, J = 8.3 Hz, 4H, H_C), 7.08 (d, J = 8.5 Hz, 4H, H_E); ¹³C NMR (100 MHz, CDCl₃, 300 K): $\delta = 25.9$, 29.3, 40.2, 67.8, 114.4, 115.3, 129.6, 129.7, 131.7, 133.9, 144.4, 157.3; LRFAB-MS (3-NOBA matrix): m/z = 480 [M]; HRFAB-MS (3-NOBA matrix): m/z = 480.2765 (calcd. for $C_{32}H_{36}N_2O_2$, 480.2777).

 H_2L2

To a solution of aniline **S9** (3.363 g, 7.00 mmol) and Et₃N (2.9 ml, 21.0 mmol) in THF (4 L) was added, in one portion, pyridine-2,6-dicarbonyl dichloride (1.429 g, 7.00 mmol), the reaction was stirred for 18 h. The reaction mixture was filtered, concentrated under reduced pressure, and purified first by column chromatography (CH₂Cl₂:MeOH; 99.5:0.5) then recrystallized from acetonitrile (50 ml) to yield the title compound as colorless powder (1.28 g, 30%). m.p. 325 °C (dec.); ¹H NMR (400 MHz, CDCl₃, 300 K): δ = 1.52 (m, 4H, H_K), 1.82 (m, 4H, H_J), 3.94 (s, 4H, H_F), 3.97 (t, J = 6.3 Hz, 4H, H_I), 6.83 (d, J = 8.6 Hz, 4H, H_H), 7.07 (d, J = 8.5 Hz, 4H, H_E), 7.08

(d, J = 8.6 Hz, 4H, H_G), 7.55 (d, J = 8.5 Hz, 4H, H_D), 8.15 (t, J = 7.8 Hz, 1H, H_A), 8.44 (d, J = 7.8 Hz, 2H, H_B), 9.52 (s, 2H, H_C); ¹³C NMR (100 MHz, CDCl₃, 300 K): δ = 25.4, 29.1, 40.0, 67.8, 114.7, 119.5, 125.1, 129.3, 130.4, 132.7, 134.8, 139.2, 140.0, 148.7, 157.7, 160.5; LRFAB-MS (3-NOBA matrix): m/z = 612 [MH]⁺; HRFAB-MS (3-NOBA matrix): m/z = 612.2864 (calcd. for C₃₉H₃₈N₃O₄, 612.2862).

[L2Pd(CH₃CN)]

A stirred suspension of amide H_2L2 (1.163 g, 1.90 mmol) and $Pd(OAc)_2$ (0.470 g, 2.094 mmol) in CH_3CN (50 ml) was heated at reflux for 10 mins then stirred at RT for 18 h. The resulting suspension was filtered and the precipitate was redissolved in CH_2Cl_2 (50 ml) and filtered through celite. The filtrate was concentrated under reduced pressure to yield the title compound as a yellow solid (1.27 g, 88%). m.p. 310 °C (dec.); ¹H NMR (400 MHz, $CDCl_3:CD_3CN$ 95:5, 300 K): δ = 1.46 (m, 4H, H_K), 1.75 (m, 4H, H_J), 3.79 (s, 4H, H_F), 3.84 (t, J = 6.2 Hz, 4H, H_J), 6.66 (d, J = 8.6 Hz, 4H, H_H), 6.98 (d, J = 8.6 Hz, 4H, H_G), 7.05 (d, J = 8.3 Hz, 4H, H_E), 7.11 (d, J = 8.3 Hz, 4H, H_D), 7.85 (d, J = 7.8 Hz, 2H, H_B), 8.10 (t, J = 7.8 Hz, 1H, H_A); ¹³C NMR (100 MHz, $CDCl_3:CD_3CN$ 95:5, 300 K): 23.6, 26.8, 38.9, 65.9, 112.3, 123.8, 124.5, 126.7, 127.4, 132.8, 136.5, 139.1, 142.9, 151.1, 155.5, 166.4; LRFAB-MS (3-NOBA matrix): m/z = 756.1922 (calcd. for $C_{41}H_{38}N_4O_4^{106}Pd$, 756.1928).

[**L3**Pd]

Representative Synthesis of Rotaxane [L3Pd]

To a solution of complex [L2Pd(CH₃CN)] (0.0304 g, 0.0402mmol), ketone 1 (0.1208 g, 0.201 mmol) and ethyl cyano acetate **L1** (10.7 µl, 0.1005 mmol) in CH₂Cl₂ (0.4 ml) was added DIPEA (0.698 µl, 0.004 mmol). The solution was stirred for 7 d at 40°C. The solvent was removed under reduced pressure and the crude residue was purified by column chromatography (CH₂Cl₂ then CH₂Cl₂:MeOH 99:1) to yield rotaxane [L3Pd] as a yellow solid (0.081 g, >99%). m.p. 213 °C (dec.); ¹H NMR (400 MHz, CDCl₃, 323 K): $\delta = 0.32$ (br, 2H, H_c), 0.90 (br, 2H, H_c), 1.17 (t, J = 7.1 Hz, 3H, H_a), 1.25 (br, 2H, $H_{d'}$), 1.31 (s, 54H, H_{l}), 1.44 (br, 4H, H_{K}), 1.49 (br, 2H, $H_{d'}$), 1.73 (br, 4H, H_{i}), 2.02 (br, 4H, H_{i}), 2.36 (br, 4H, H_{e}), 3.75 (s, 4H, H_{F}), 3.87 (m, J = 7.1 Hz, 2H, H_b), 3.89 (br, 4H, H_I), 4.00 (t, J = 4.0 Hz, 4H, H_g), 6.71 (dd, J = 8.5 Hz, 16.5 Hz, 4H, H_H), 6.81 (d, J = 8.3 Hz, 4H, H_h), 6.99 (dd, J = 8.5 Hz, 22.7 Hz, 4H, H_G), 7.10 (m, 20H, H_{E+i+i}), 7.19 (d, J = 8.2 Hz, 4H, H_D), 7.23 (d, J = 8.6 Hz, 12H, H_k), 7.83 (dd, J =3.6 Hz, 7.8 Hz, 2H, H_B), 8.05 (t, J = 7.8 Hz, 1H, H_A); ¹³C NMR (100 MHz, CDCl₃, 300 K): $\delta = 13.8, 25.3, 25.7, 28.9, 29.4, 31.4, 34.3, 40.9, 48.8, 63.0, 63.5, 66.3, 67.9,$ 68.1, 112.8, 114.7, 121.5, 124.1, 125.8, 126.3, 128.4, 129.4, 130.7, 132.4, 134.3, 138.7, 139.1, 139.9, 141.1, 144.1, 144.6, 148.3, 152.9, 156.5, 157.5, 165.1, 168.6, 206.3; LRFAB-MS (3-NOBA matrix): $m/z = 2030 \text{ [M}H\text{]}^+$; HRFAB-MS (3-NOBA matrix): m/z = 2030.015 (calcd. for $C_{130}H_{147}N_4O_{10}Pd^{106}$, 2030.015).

Thread, S10

m.p. 202 °C; ¹H NMR (400 MHz, CDCl₃, 300 K): $\delta = 1.32$ (s, 57H, H_{a+l}), 2.07 (m, 4H, H_f), 2.13 (ddd, J = 5.1 Hz, 10.3 Hz, 15.8 Hz, 2H, H_c·), 2.28 (ddd, J = 5.4 Hz, 10.3 Hz, 15.8, 2H, H_c·), 2.58 (ddd, J = 5.4 Hz, 10.3 Hz, 17.7 Hz, 2H, H_d·), 2.66 (t, J = 7.1 Hz, 4H, H_e), 2.74 (ddd, J = 5.1 Hz, 10.3 Hz, 17.7 Hz, 2H, H_d), 3.95 (t, J = 5.9 Hz, 4H, H_g), 4.25 (q, J = 7.1 Hz, 2H, H_b), 6.75 (d, J = 8.9 Hz, 4H, H_h), 7.10 (d, J = 8.7 Hz, 16H, H_{i+j}), 7.24 (d, J = 8.6 Hz, 12H, H_k); ¹³C NMR (100 MHz, CDCl₃, 300 K): $\delta = 14.1$, 22.6, 29.7, 31.4, 34.5, 38.3, 39.3, 48.1, 63.1, 63.2, 66.5, 112.9, 118.5, 124.3, 131.1, 132.6, 139.7, 144.2, 148.3, 156.5, 168.5, 207.3; LRFAB-MS (3-NOBA matrix): m/z = 1314 [M]; HRFAB-MS (3-NOBA matrix): m/z = 1313.846 (calcd. for C₉₁H₁₁₁O₆N, 1313.841).

Half thread, S11

m.p. 194 °C; ¹H NMR (400 MHz, CDCl₃, 300 K): $\delta = 1.22$ (s, 30H, H_{a+m}), 1.98 (m, 2H, H_g), 2.17 (m, 1H, H_d), 2.28 (m, 1H, H_d), 2.58 (t, J = 7.1 Hz, 2H, H_f), 2.64 (t, 7.0 Hz, 2H, H_e), 3.62 (dd, J = 6.1 Hz, 8.3 Hz, 1H, H_c), 3.87 (d, J = 5.9 Hz, 2H, H_h), 4.18 (q, J = 7.1 Hz, 2H, H_b), 6.74 (d, J = 8.9 Hz, 2H, H_i), 7.08 (d, J = 8.6 Hz, 8H, H_{i+k}),

7.23 (d, J = 8.6 Hz, 6H, H_I); ¹³C NMR (100 MHz, CDCl₃, 300 K): $\delta = 14.0$, 23.4, 23.5, 31.4, 34.3, 36.4, 38.6, 39.3, 63.0, 63.0, 66.4, 112.9, 116.2, 124.1, 130.7, 132.3, 139.7, 144.1, 148.3, 156.5, 165.7, 208.1; LRFAB-MS (3-NOBA matrix): m/z = 713; HRFAB-MS (3-NOBA matrix): m/z = 713.4442 (calcd. for C₄₈H₅₉NO₄, 713.4444).

 H_2L3

A solution of [L3Pd] (0.222 g, 0.109 mmol) in CH₂Cl₂ (0.5 ml) and 1M HCl (0.5 ml) was heated at reflux for 18 h. The solution was diluted with CH₂Cl₂ (50 ml) and washed with saturated NaHCO₃ (20 ml), brine (20 ml), dried (MgSO₄), filtered and concentrated under reduced pressure. The crude residue was purified by column chromatography (CH₂Cl₂:MeOH 99:1) to yield the title compound as a colorless solid (0.194 g, 92%). m.p. 141 °C (dec.); ¹H NMR (400 MHz, CDCl₃, 300 K): δ = 1.13 (t, J = 7.1 Hz, 3H, H_a), 1.30 (s, 56H, H_{c'+l}), 1.39 (m, 4H, H_K), 1.71 (m, 6H, H_{J+c}), 1.80 (m, 4H, H_f), 2.00 (m, 2H, H_{d'}), 2.06 (m, 2H, H_d), 2.22 (t, J = 7.1 Hz, 4H, H_e), 3.72 (t, J = 5.9 Hz, 4H, H_g), 3.81 (q, J = 4.3 Hz, 6.4 Hz, 4H, H_f), 3.85 (d, J = 4.1 Hz, 4H, H_f), 4.00 (q, J = 7.1 Hz, 2H, H_b), 6.60 (d, J = 8.9 Hz, 4H, H_h), 6.70 (dd, J = 5.3 Hz, 8.5 Hz, 4H, H_H), 7.00 (m, 8H, H_{G+E}), 7.08 (d, J = 8.6 Hz, 16H, H_{i+j}), 7.22 (d, J = 8.6 Hz, 12H, H_k), 7.46 (dd, J = 8.4 Hz, 15.0 Hz, 4H, H_D), 8.07 (t, J = 7.8 Hz, 1H, H_A), 8.43 (d, J = 7.8 Hz, 2H, H_B), 9.89 (d, J = 9.0 Hz, 2H, H_C); ¹³C NMR (100 MHz, CDCl₃, 300 K): δ = 13.9, 23.1, 25.4, 29.1, 30.1, 31.4, 34.3, 37.9, 40.2, 40.4, 47.7, 63.0, 66.3, 67.8, 112.8,

114.7, 118.7, 121.4, 124.1, 125.1, 129.0, 130.1, 130.7, 131.1, 132.3, 133.5, 134.9, 139.3, 139.6, 139.7, 144.1, 148.3, 149.0, 156.4, 157.7, 161.1, 167.7, 207.3; LRFAB-MS (3-NOBA matrix): $m/z = 1926 \text{ [M}H]^+$; HRFAB-MS (3-NOBA matrix): m/z = 1926.121 (calcd. for $C_{130}H_{149}N_4O_{10}$, 1926.127).

Scheme S4: a) LiOH, MeOH, H₂O, RT, 89%.

2-Cyanopropanoic acid, S12

To a solution of ethyl 2-cyanopropionate (0.749 g, 5.89 mmol) in MeOH (10 ml) and water (10 ml) was added LiOH (1.24 g, 29.5 mmol). The suspension was stirred at RT for 36 h. The reaction mixture was acidified with 1M HCl (100 ml), saturated with NaCl, the crude product was then extracted with Et₂O (3 x 100 ml), dried (MgSO₄) and concentrated under reduced pressure to yield acid **S12** as a colorless liquid (0.521 g, 89%). ¹H NMR and ¹³C NMR data were consistent with the published data. ^[3]

Scheme S5: a) 3-bromopropan-1-ol, K_2CO_3 , butanone, reflux, 87%; b) **S12**, EDCI, DMAP, CH_2CI_2 , 0 °C \rightarrow RT, 79%.

3-(4-(Tris(4-tert-butylphenyl)methyl)phenoxy)propan-1-ol, S13

To a solution of 4-[tris(4-*tert*-butylphenyl)methyl]-phenol (2.06 g, 4.08 mmol) and 3-bromopropan-1-ol (0.540 ml, 6.12 mmol) in butanone (40 ml) was added K₂CO₃ (2.82 g, 20.4 mmol), the suspension was heated at reflux for 36 h. The suspension was diluted with CH₂Cl₂ (100 ml) and washed with H₂O (100 ml), the aqueous layer was further extracted with CH₂Cl₂ (100 ml), the combined organic layers were dried (MgSO₄), and concentrated under reduced pressure. The crude residue was purified by column chromatography (CH₂Cl₂) to yield the title compound as a colorless powder (2.00 g, 87%). ¹H NMR and ¹³C NMR data were consistent with the published data. ^[4]

3-(4-(Tris(4-tert-butylphenyl)methyl)phenoxy)propyl 2-cyanopropanoate, L5

To a 0 °C solution of alcohol **S13** (0.938 g, 1.67 mmol) and 2-cyanopropanoic acid **S12** (0.206 g, 2.08 mmol) in CH₂Cl₂ (20 ml) was added DMAP (0.102 g, 0.835 mmol) and EDCI (0.640 g, 3.34 mmol). The solution was stirred for 18 h. The reaction was diluted with CH₂Cl₂ (100 ml) and washed with 1M HCl (50 ml), NaHCO₃ (50 ml) and brine (50 ml). The organic layer was dried (MgSO₄), filtered, concentrated under reduced pressure and purified by column chromatography (CH₂Cl₂) to yield the title compound as colorless solid (0.855 g, 79%). m.p. 224 °C; ¹H NMR (400 MHz, CDCl₃, 300 K): δ = 1.30 (s, 27H, H_a), 1.59 (d, J = 7.4 Hz, 3H, H_j), 2.16 (m, 2H, H_g), 3.55 (q, J = 7.4 Hz, 1H, H_i), 4.04 (t, J = 5.9 Hz, 2H, H_f), 4.41 (t, J = 6.3 Hz, 2H, H_h), 6.76 (d, J = 8.9 Hz, 2H, H_e), 7.08 (d, J = 8.9 Hz, 12H, H_c), 7.09 (d, J = 8.6 Hz, 2H, H_d), 7.23 (d, J = 8.6 Hz, 12H, H_b); ¹³C NMR (100 MHz, CDCl₃, 300 K): δ = 15.3, 28.4, 31.4, 31.5,

34.3, 63.0, 63.6, 63.8, 112.9, 117.5, 124.1, 130.7, 132.3, 139.9, 144.1, 148.3, 156.4, 166.5; LRFAB-MS (3-NOBA matrix): m/z = 643 [M]; HRFAB-MS (3-NOBA matrix): m/z = 643.4070 (calcd. for $C_{44}H_{53}NO_3$, 643.4025).

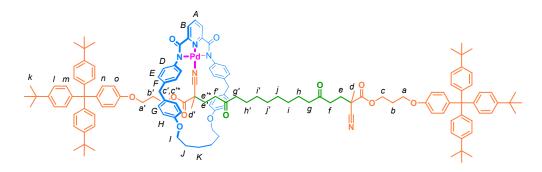
Scheme S6: a) i) (COCl)₂, CH₂Cl₂, DMF (cat.), ii) *N*,*O*-dimethyl hydroxylamine hydrochloride, Et₃N, CH₂Cl₂, 0 °C, 95%; b) vinyl magnesium bromide, THF, -78 °C, 75%.

N-Methoxy-11-(methoxy(methyl)amino)-N-methyl-10-oxoundecanamide, S14

To a suspension of sebacic acid (5.20 g, 25.7 mmol) in CH_2Cl_2 (250 ml) and DMF (0.1 ml) was added dropwise (COCl)₂ (22.1 ml, 257 mmol). The suspension was stirred for 16 h. The resulting solution was concentrated under reduced pressure and the residue was redissolved in CH_2Cl_2 (20 ml) and added slowly to a 0 °C solution of N_iO -dimethyl hydroxylamine hydrochloride (5.52 g, 56.54 mmol) and Et_3N (14.4 ml, 102 mmol) in CH_2Cl_2 (250 ml). After the addition was complete the reaction was allowed to warm to RT and stirred for 2 h. The reaction was diluted with Et_2O (1 L) and washed with 1M HCl (500 ml), saturated aqueous $NaHCO_3$ (500 ml) and brine (500 ml) before being dried (MgSO₄) and concentrated under reduced pressure to give the title compound as a pale oil (7.08 g, 95%). The product was used without further purification. 1H NMR (400 MHz, CDCl₃, 300 K): 1.30 (br, 8H, H_{e+j}), 1.60 (m, 4H, H_d), 2.38 (t, J = 7.5 Hz, 4H, H_c), 3.16 (s, 6H, H_b), 3.66 (s, 6H, H_a); ^{13}C NMR (100 MHz, CDCl₃, 300 K): 24.6, 24.8, 29.2, 29.4, 32.1, 61.2, 174.8; LRFAB-MS (3-NOBA)

matrix): $m/z = 289 \text{ [M}H]^+$; HREI-MS (perfluorotributylamine): m/z = 288.2043 (calcd. for $C_{14}H_{28}N_2O_4$, 288.2044).

$$b$$
 c e d f


Tetradeca-1,13-diene-3,12-dione, 2

To a solution of Weinreb amide **S14** (6.87 g, 23.8 mmol) in THF (200 ml) at -78 °C was added dropwise a 1M solution of vinyl magnesium bromide in THF (119 ml, 119 mmol). The reaction was stirred at -78 °C for 30 min, then allowed to warm to 0 °C and stirred for 1 h. The reaction was poured into cold saturated NH₄Cl (500 ml) and extracted with Et₂O (2 x 1 L). The combined organic extracts were washed with brine (500 ml), dried (MgSO₄) and concentrated under reduced pressure. The crude residue was purified by column chromatography (Et₂O:petrol 1:1) to yield the title compound as a waxy pale solid (3.99 g, 75%). m.p. 60 °C (dec.); ¹H NMR (400 MHz, CDCl₃, 300 K): 1.30 (br, 8H, H_{e+f}), 1.60 (m, 4H, H_d), 2.57 (t, J = 7.4 Hz, 4H, H_c), 5.81 (dd, J = 1.2, 10.5 Hz, 2H, H_b), 6.21 (dd, J = 1.2, 17.7 Hz, 2H, H_d), 6.35 (dd, J = 10.5, 17.7 Hz, 2H, H_a·); ¹³C NMR (100 MHz, CDCl₃, 300 K): 23.9, 29.2, 29.2, 39.6, 127.9, 136.6, 201.2; LRFAB-MS (3-NOBA matrix): m/z = 223 [MH]⁺; HREI-MS (perfluorotributylamine): m/z = 222.1617 (calcd. for C₁₄H₂₂O₂, 222.1614).

Synthesis of Molecular Shuttle [L4Pd]

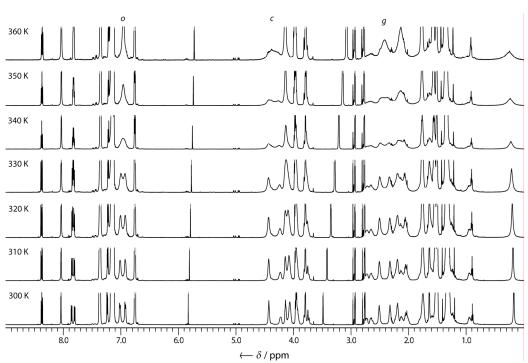
To a solution of complex [L2Pd(CH₃CN)] (0.0305 g, 0.040 mmol), nitrile L5 (0.0519 g, 0.081 mmol) and vinyl ketone 2 (0.0089 g, 0.040 mmol) in CH_2Cl_2 (0.4 ml) was added DIPEA (0.7 μ l, 0.004 mmol). The reaction was stirred at 40 °C for 7 days. The solvent was removed under reduced pressure and the crude residue was purified by

column chromatography (CH₂Cl₂ then CH₂Cl₂:MeOH 99:1) to yield rotaxane [**L4**Pd] as a yellow solid (0.024 g, 27 %) and [3]rotaxane [**L5**Pd] as a yellows solid (0.018 g, 32%).

[L4Pd]

¹H NMR (400 MHz, CDCl₃, 300 K): $\delta = 0.00$ (s, 3H, H_{d'}), 0.94 (m, 1H, H_{e'*}), 1.07 (m, 1H, $H_{e'}$), 1.30 (br, 64H, $H_{f+i+i'+j+j'+k}$), 1.45 (br, 4H, H_K), 1.52 (m, 4H, H_h), 1.59 (s, 3H, H_d), 1.74 (br, 4H, H_d), 2.01 (m, 2H, H_b), 2.12 (m, 2H, H_b), 2.17 (m, 2H, H_b), 2.19 (m, $2H, H_e$), 2.40 (t, J = 7.4 Hz, $2H, H_g$), 2.59 (m, $2H, H_f$), 3.72 (m, $4H, H_F$), 3.85 (m, $4H, H_g$) H_{I}), 3.98 (m, 3H, $H_{a'+c'}$ *), 4.04 (t, J = 5.9 Hz, 2H, H_{a}), 4.15 (m, 1H, $H_{c'}$), 4.40 (m, 2H, H_c), 6.64 (m, 4H, H_H), 6.76 (d, J = 8.9 Hz, 2H, $H_{o'}$), 6.82 (d, J = 8.9 Hz, 2H, H_o), 7.00 $(m, 6H, H_{n,G}), 7.07 (m, 18H, H_{m+E+G}), 7.14 (dd, J = 2.2, 8.6 Hz, 4H, H_D), 7.22 (dd, J$ = 2.5, 8.6 Hz, 12H, H_I), 7.84 (d, J = 7.8 Hz, 2H, H_B), 8.07 (t, J = 7.8 Hz, 1H, H_A); ¹³C NMR (100 MHz, CDCl₃, 300 K): $\delta = 21.5$, 23.5, 23.6, 23.7, 25.2, 25.4, 28.5, 28.9, 29.2, 29.3, 29.4, 29.7, 31.6, 34.3, 36.8, 38.3, 41.3, 42.7, 42.9, 43.2, 43.6, 63.0, 63.3, 63.6, 63.9, 64.1, 67.7, 68.1, 112.8, 112.9, 114.6, 114.8, 119.5, 121.9, 124.1, 124.1, 125.8, 126.2, 126.4, 128.2, 128.4, 128.8, 129.3, 130.7, 130.7, 132.3, 132.4, 134.0, 134.3, 138.8, 138.9, 139.9, 140.3, 141.1, 144.0, 144.1, 144.6, 144.7, 148.3, 148.4, 152.8, 152.9, 156.2, 156.4, 157.7, 157.7, 166.1, 168.6, 168.9, 207.0, 208.2; LRFAB-MS (3-NOBA matrix): m/z = 2224 [M]; HRFAB-MS (3-NOBA matrix): m/z = 22242224.148 (calcd. for $C_{141}H_{164}O_{12}N_5^{\ 105}Pd,$ 2224.142).

[**L6**Pd]


m.p. 219 °C; ¹H NMR (400 MHz, CDCl₃, 300 K): $\delta = 0.00$ (s, 6H, H_d), 1.04 (m, 4H, H_e), 1.29 (s, 54H, H_k), 1.38 (m, 10H, H_{half of f+i+j}), 1.46 (m, 8H, H_K), 1.53 (m, 4H, H_h), 1.74 (m, 10H, H_{half of f+j}), 2.01 (m, 4H, H_b), 2.14 (t, J = 7.4 Hz, 4H, H_g), 3.73 (m, 8H, H_F), 3.84 (m, 8H, H_I), 3.99 (m, 6H, H_{half of c+a}), 4.16 (m, 2H, H_{half of c}), 6.65 (m, 8H, H_H), 6.82 (d, J = 8.9 Hz, 4H, H_o), 7.07 (m, 32H, H_{m+n+E+G}), 7.14 (d, J = 8.2 Hz, 8H, H_D), 7.22 (d, J = 8.6 Hz, 12H, H_I), 7.83 (d, J = 7.8 Hz, 4H, H_B), 8.07 (t, J = 7.8 Hz, 2H, H_A); ¹³C NMR (100 MHz, CDCl₃, 300 K): $\delta = 21.5$, 23.5, 25.2, 25.2, 28.3, 28.9, 29.5, 31.0, 31.4, 34.3, 36.9, 41.3, 42.7, 43.6, 63.1, 63.3, 64.1, 67.8, 112.8, 114.8, 121.9, 124.1, 125.8, 126.2, 128.4, 129.3, 130.7, 132.4, 134.0, 138.8, 140.3, 141.2, 144.0, 144.6, 148.4, 152.8, 156.2, 157.7, 166.1, 168.6, 207.0; LRFAB-MS (3-NOBA matrix): m/z = 2940 [MH][†]; HRFAB-MS (3-NOBA matrix): m/z = 2940 [MH][†]; HRFAB-MS (3-NOBA matrix): m/z = 2944.326 (calcd. for 12 C₁₇₆ 13 C₄H₁₉₉O₁₆N₈ 102 Pd¹⁰⁴Pd, 2944.326).

Thread, S15

To a solution of **L5** (0.0554 g, 0.086 mmol), **2** (0.0096 g, 0.043 mmol), benzylic amide Pd-macrocycle^[5] (0.0296 g, 0.043 mmol) in CH₂Cl₂(0.4 ml) was added DIPEA (7.5 μl, 0.043 mmol). The solution was heated at 40 °C for 7 d, the crude residue was concentrated under reduced pressure and purified by column chromatography (CH₂Cl₂) to yield the title compound as a colorless solid (0.048 g, 74%). ¹H NMR (400 MHz, CDCl₃, 300 K): δ = 1.26 (br, 8H, H_{i+j}), 1.30 (s, 54H, H_k), 1.54 (m, 4H, H_h), 1.60 (s, 6H, H_d), 2.07 (m, 2H, H_e), 2.17 (m, 4H, H_b), 2.24 (m, 2H, H_e·), 2.39 (t, J = 7.4 Hz, 4H, H_g), 2.61 (m, 4H, H_f), 4.05 (t, J = 5.9 Hz, 4H, H_a), 4.40 (m, 4H, H_c), 6.76 (d, J = 8.9 Hz, 4H, H_o), 7.09 (m, 16H, H_{m+n}), 7.23 (d, J = 8.6 Hz, 12H, H_f); ¹³C NMR (100 MHz, CDCl₃, 300 K): δ = 23.6, 23.7, 28.5, 29.1, 29.6, 31.2, 31.6, 34.3, 38.2, 42.9, 43.2, 63.0, 63.6, 63.9, 112.9, 119.5, 124.1, 130.7, 132.3, 139.9, 144.1, 148.3, 156.4, 168.9, 208.2. LRFAB-MS (3-NOBA matrix): m/z = 1510 [MH]⁺; HRFAB-MS (3-NOBA matrix): m/z = 1509.971 (calcd. for C₁₀₂H₁₂₉O₈N₂ 1509.975).

Variable Temperature ¹H NMR investigation of Degenerate Shuttling Process in [L4Pd]

Variable temperature ¹H NMR experiments allow the estimation of the activation energy for the shuttling process in rotaxane [L4Pd]. Using a Bruker AVA 600 MHz spectrometer, ¹H NMR spectra were taken at 2 K increments from 298 K to 360 K, a stacked plot of ¹H NMR obtained at every 10 K from 300 K to 360 K is shown in Figure S2. Upon heating the spectra simplified as many of the peaks coalesced, although only a few resonances were usable for interpretation.

Figure S2: 1 H NMR (600 MHz, [D₇]DMF) of [L4Pd] at 10 K intervals from 300 K to 360 K:

Three proton resonances, H_o , H_c and H_g , are useful for interpretation. The coalescence temperature, T_c , for those protons along with the maximum peak separation, Δv_o , and an estimation of both the observed, k_{obs} , and bimolecular, k_{bi} , rates and activation free

energy, ΔG^{\ddagger} , at the coalescence temperature are listed in Table S1. ΔG^{\ddagger} was estimated using a modified Eyring equation:

$$k_{obs} = \frac{\pi \Delta v_o}{\sqrt{2}}$$

$$k_{bi} = \frac{k_{obs}}{[Nu]}$$

$$\Delta G^{\ddagger} = -RT \ln \frac{k_{bi}h}{k_BT}$$

$$(R = 1.9872 \ cal \ K^{-1} \ mol^{-1}, k_B = 3.30 \ x \ 10^{-24} \ cal \ K^{-1}, h = 1.58 \ x \ 10^{-34} \ cal \ s)$$

	<i>T</i> _c (K)	Δv_o (Hz)	<i>k</i> _{obs} (s ⁻¹)	<i>k_{bi}</i> (M ⁻¹ s ⁻¹)	ΔG^{\pm} (kcal mol ⁻¹)
Н₀	338	55.38	123	9.54	18.4
H_g	353	112.69	250	19.4	18.7
H _c	357	123.42	274	21.3	18.9

Table S1: Estimation of kinetic parameters of [L4Pd] from VT ¹H NMR.

Exchange Spectroscopy (2D-EXSY) Investigation of Degenerate Shuttling Process in [L4Pd]. [6]

2D-EXSY allows investigation of the shuttling process in the degenerate molecular shuttle [L4Pd]; all spectra were recorded on a Bruker 400 MHz NMR spectrometer at 300 K and the mixing time, $\tau_{\rm m}$, was 0.3 s. Using the equations shown below, where $I_{\rm AA}$ and $I_{\rm BB}$ are the diagonal peak intensities and $I_{\rm AB}$ and $I_{\rm BA}$ are the cross-peak intensities, we obtain a value for k which is the *sum* of the forward, $k_{\rm 1}$, and backward, $k_{\rm 1}$, pseudo-first order rate constants for the shuttling process. As both stations are identical $k_{\rm 1}$ and $k_{\rm 1}$ are equal and thus the observed pseudo-first order rate constant, $k_{\rm obs}$, can be determined. It is assumed that the shuttling is mediated by a nucleophile which displaces the palladium complex from the nitrile station in an associative fashion and that this is the rate determining step. If this is not an intramolecular process, the shuttling is a bimolecular process and, where the dominant nucleophile could be determined, $k_{\rm obs}$ was converted to $k_{\rm bi}$ which allows the value of ΔG^{\ddagger} to be determined using a modified Eyring equation.

$$A + Nu = \frac{k_I}{k_{-I}} A' + Nu$$

$$r = \frac{(I_{AA} + I_{BB})}{(I_{AB} + I_{AB})}$$

$$k = \frac{1}{\tau_m} \times \ln \frac{r+1}{r-1}$$

$$k = k_1 + k_{-1} \qquad (k_1 = k_{-1} = k_{obs})$$

$$k_{bi} = \frac{k_{obs}}{[Nu]}$$

$$\Delta G^{\ddagger} = -RT \ln \frac{k_{bi}h}{k_BT}$$

$$(R = 1.9872 \ cal \ K^{-I} \ mol^{-I}, k_B = 3.30 \ x \ 10^{-24} \ cal \ K^{-I}, h = 1.58 \ x \ 10^{-34} \ cal \ s)$$

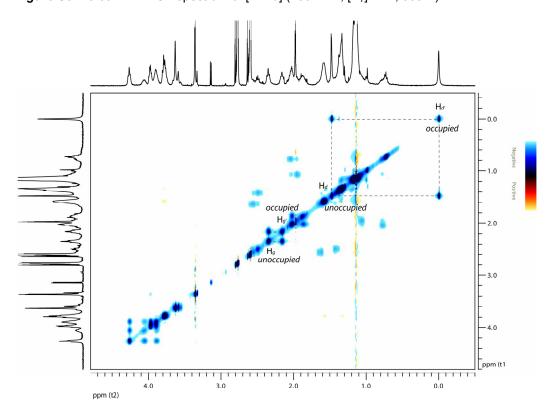


Figure S3: Partial 2D-EXSY spectrum of [L4Pd] (400 MHz, [D₇]DMF, 300 K):

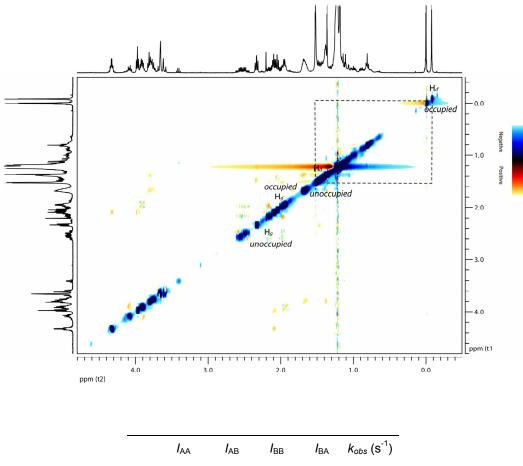
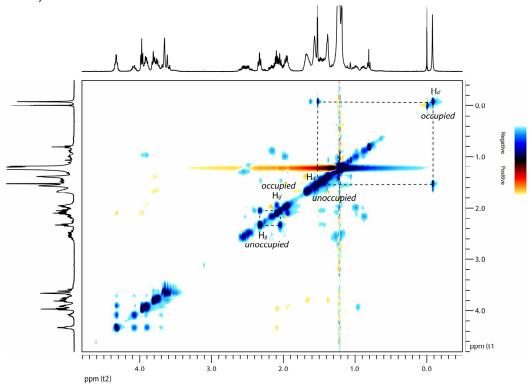

	I _{AA}	I _{AB}	I _{BB}	I _{BA}	<i>k</i> _{obs} (s ⁻¹)	<i>k_{bi}</i> (M ⁻¹ s ⁻¹)	ΔG [‡] (kcal mol ⁻¹)
H _d	1.86	1.00	0.93	1.04	3	0.2	18
H_g	1.80	1.00	1.47	1.04	2	0.2	19

Table S2: Kinetic parameters of [L4Pd] in [D₇]DMF. Concentration of [D₇]DMF in [D₇]DMF is 12.9 mol dm⁻³. Estimated error in $k_{obs} \pm 1$ s⁻¹.

Controlling Shuttling Rates via the Addition and Removal of Pyridine

[L4Pd] (0.023 g, 0.0113 mmol) was dissolved in CDCl₃ (0.75 ml) and a 2D-EXSY spectra was obtained. Pyridine (0.92 μl, 0.0113 mmol) was added to the yellow solution and a 2D-EXSY was obtained. *p*-Toluenesulfonic acid (0.0022 g, 0.0113 mmol) was added to the yellow solution and a 2D-EXSY spectra was obtained which showed that the rates had returned to the background level.



 H_d 1402.72 1.00 436.63 1.10 5×10^{-3}

Table S3: Kinetic parameters of [L4Pd] in CDCl₃. Estimated error in $k_{obs} \pm 1 \times 10^{-3} \text{ s}^{-1}$.

Figure \$5: Partial 2D-EXSY spectrum of [L4Pd] plus 1 equiv. of pyridine (400 MHz, CDCl₃, 300 K):

_		I _{AA}	I _{AB}	I _{BB}	I BA	<i>k</i> _{obs} (s ⁻¹)	$k_{bi} (M^{-1} s^{-1})$	ΔG [‡] (kcal mol ⁻¹)
	H _d	4.16	1.00	1.93	1.00	1	96	15
_	H_g	4.07	1.00	3.01	1.26	1	93	15

Table S4: Kinetic parameters of [L4Pd] in CDCl₃ with 1 equiv. of pyridine. Concentration of pyridine present, 0.0119 mol dm⁻³. Average k_{bi} = 95 M⁻¹ s⁻¹. Estimated error in $k_{obs} \pm 0.1$ s⁻¹.

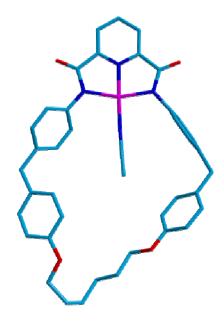


Figure S6: The X-ray crystal structure of [L2Pd(CH₃CN)].

Table S5: Crystal data and structure refinement for [L2Pd(CH₃CN)].

CCDC-670786

Identification code $[L2Pd(CH_3CN)]$ Empirical formula $C_{41}H_{38}N_4O_4Pd$ Formula weight 757.15 93(2) K Temperature Wavelength 0.71073 Å Crystal system Monoclinic Space group P2(1)/cUnit cell dimensions a = 13.774(3) Å $\alpha = 90^{\circ}$. b = 15.345(3) Å $\beta = 94.23(3)^{\circ}$. c = 16.410(3) Å $\gamma = 90^{\circ}$. 3459.3(12) Å³ Volume Z 4

 1.454 Mg/m^3 Density (calculated) 0.586 mm⁻¹ Absorption coefficient

F(000) 1560

 $0.0800 \times 0.0800 \times 0.0800 \text{ mm}^3$ Crystal size

1.48 to 25.44°. Theta range for data collection

-16<=h<=16, -18<=k<=18, -16<=l<=19 Index ranges

Reflections collected 22408 Independent reflections 6336 [R(int) = 0.0500]

Completeness to theta = 25.00° 99.7 %

Absorption correction Multiscan

Max. and min. transmission 1.0000 and 0.7573

Refinement method Full-matrix least-squares on F²

 $Data \ / \ restraints \ / \ parameters \\ 6336 \ / \ 0 \ / \ 453$

Goodness-of-fit on F² 1.069

Final R indices [I>2sigma(I)] R1 = 0.0437, wR2 = 0.0787

R indices (all data) R1 = 0.0630, wR2 = 0.0864

Largest diff. peak and hole 0.966 and -0.866 e.Å-3

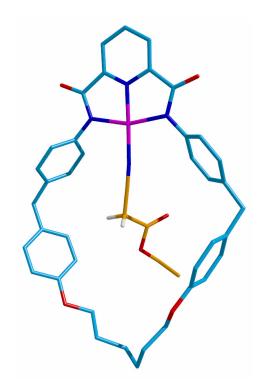


Figure S7: The X-ray crystal structure of [L2PdL1].

Table S6: Crystal data and structure refinement for [L2PdL1].

CCDC-670785

Identification code [L2PdL1]

Empirical formula $C_{45}H_{44}Cl_2N_4O_6Pd$

Formula weight 914.14
Temperature 93(2) K
Wavelength 0.71073 Å

Crystal system Monoclinic

Space group P2(1)

Unit cell dimensions a = 13.658(5) Å $\alpha = 90^{\circ}$.

b = 10.548(4) Å $\beta = 95.009(7)^{\circ}$.

c = 14.508(6) Å $\gamma = 90^{\circ}$.

Volume 2082.1(14) Å³

Z 2

Density (calculated) 1.458 Mg/m³ Absorption coefficient 0.628 mm⁻¹

F(000) 940

Crystal size $0.2000 \times 0.1000 \times 0.0500 \text{ mm}^3$

Theta range for data collection 2.99 to 25.29°.

Index ranges -16<=h<=16, -12<=k<=12, -17<=l<=17

Reflections collected 19257

Independent reflections 7224 [R(int) = 0.0498]

Completeness to theta = 25.00° 97.1 % Absorption correction Multiscan

Max. and min. transmission 1.0000 and 0.8801

Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 7224 / 1 / 524

Goodness-of-fit on F² 1.045

Final R indices [I>2sigma(I)] R1 = 0.0384, wR2 = 0.0979 R indices (all data) R1 = 0.0387, wR2 = 0.0985

Absolute structure parameter 0.02(2)

Largest diff. peak and hole 0.637 and -0.755 e.Å-3

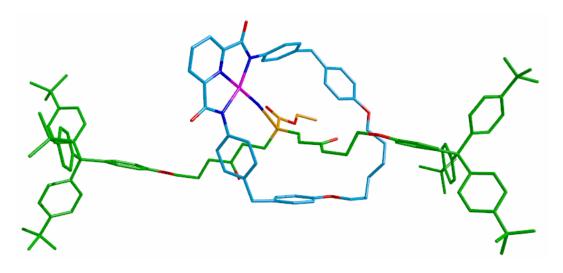


Figure S8: The X-ray crystal structure of [L3Pd].

Table S7: Crystal data and structure refinement for [L3Pd].

CCDC-670784				
Identification code	[L3 Pd]			
Empirical formula	$C_{133.50}H_{155}ClN_4O_{11.50}Pd$			
Formula weight	2141.47			
Temperature	93(2) K			
Wavelength	0.71073 Å			
Crystal system	Triclinic			
Space group	P-1			
Unit cell dimensions	$a = 10.767(2) \text{ Å}$ $\alpha = 82.166(6)^{\circ}$.			
	$b = 21.409(5) \text{ Å}$ $\beta = 79.665(8)^{\circ}$.			
	$c = 27.970(6) \text{ Å}$ $\gamma = 86.688(10)^{\circ}.$			
Volume	$6280(2) \text{ Å}^3$			
Z	2			
Density (calculated)	1.132 Mg/m^3			
Absorption coefficient	0.227 mm ⁻¹			
F(000)	2278			
Crystal size	0.2000 x 0.1000 x 0.0100 mm ³			
Theta range for data collection	2.09 to 25.36°.			
Index ranges	-12<=h<=12, -25<=k<=25, -33<=l<=30			
Reflections collected	63886			
Independent reflections	22787 [R(int) = 0.0988]			
Completeness to theta = 25.00°	99.4 %			

Multiscan

Absorption correction

Max. and min. transmission 1.0000 and 0.9554

Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 22787 / 6 / 1426

Goodness-of-fit on F² 1.180

Final R indices [I>2sigma(I)] R1 = 0.1256, wR2 = 0.3114 R indices (all data) R1 = 0.1606, wR2 = 0.3348

Largest diff. peak and hole 1.011 and -0.656 e.Å-3

References:

[1] H. W. Gibson, S. H. Lee, P. T. Engen, P. Lecavalier, J. Sze, Y. X. Shen, M. Bheda, *J. Org. Chem.* **1993**, *58*, 3748-3756.

- [2] F. Bellamy, D. Horton, J. Millet, F. Picart, S. Samreth, J. B. Chazan, *J. Med. Chem.* **1993**, *36*, 898-903.
- [3] M. Sawamura, H. Hamashima, Y. Ito, *Tetrahedron* **1994**, *50*, 4439-4454.
- [4] J. D. Crowley, K. D. Hanni, A. L. Lee, D. A. Leigh, *J. Am. Chem. Soc.* **2007**, *129*, 12092-12093.
- [5] J. D. Crowley, D. A. Leigh, P. J. Lusby, R. T. McBurney, L.-E. Perret-Aebi, C. Petzold, A. M. Z. Slawin, M. D. Symes, J. Am. Chem. Soc. 2007, 129, 15085-15090.
- [6] C. L. Perrin, T. J. Dwyer, Chem. Rev. 1990, 90, 935-967.