Novel annulation reaction for the synthesis of morpholines, thiomorpholines and piperazines from β-heteroatom amino compounds and vinyl sulfonium salts.

Muhammad Yar, Eoghan M. McGarrigle, and Varinder K. Aggarwal
School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS (UK)
v.aggarwal@bristol.ac.uk

Supporting Information

Table of Contents

General Directions 2
2-Bromoethyl trifluoromethanesulfonate 2
(2-Bromoethyl)diphenylsulfonium trifluoromethanesulfonate 7 3
Diphenylvinylsulfonium trifluoromethanesulfonate 1 3
Synthesis of N-sulfonyl β-amino alcohols 2a-2f 5
Synthesis of morpholines 3a-3f 9
Isolation of protonated 5f 13
Synthesis of thiomorpholines 3g-3i 14
Synthesis of piperazines 3j-3m 17
Synthesis of (3S)-4-Fmoc morpholine-3-carboxylic acid 6 21
Use of different vinyl sulfonium salts in the annulation reaction 23
Use of primary amines, carbamates and amides as substrates 25
References 28
NMR Spectrum of sulfonamide 2f 30
NMR Spectra of morpholines 3a-3f 31
NMR Spectra of thiomorpholines 3g, 8, 3i 37
NMR Spectra of piperazines 3j-3m 40
NMR Spectra of morpholines 9, 10, 6 44
NMR Spectrum of vinyl sulfonium salt 11 47
NMR Spectra of D-(+)-norephedrine derivatives 13, 14 and 15 48
General Directions

Chromatography: Flash chromatography was performed on silica gel (Merck Kieselgel 60, 230-400 mesh) unless otherwise stated. TLC was performed on aluminium-backed silica plates (60F254, 0.2 mm). Optical rotations were measured using a Perkin-Elmer 241 MC polarimeter. [α]D values are given in angular degrees per g/cm³. Infrared spectra were recorded on a Perkin-Elmer Spectrum One FT-IR spectrometer. Chemical shifts (δH) are quoted in parts per million (ppm), J values are given in Hz. Chemical shifts (δC) are quoted in parts per million (ppm), referenced to the appropriate residual solvent peak and are assigned as s, d, t, q for C, CH, CH₂, CH₃. COSY, HMBC and HMQC were used where necessary in assigning NMR spectra. Anhydrous THF, CH₂Cl₂, Et₂O and toluene were obtained from a purification column composed of activated alumina (A-2). Other anhydrous solvents were used as obtained from Aldrich.

2-Bromoethyl trifluoromethanesulfonate

![2-Bromoethyl trifluoromethanesulfonate](image)

Trifluoromethanesulfonic anhydride (10.0 g, 35.4 mmol) was added drop-wise to a stirred solution of pyridine (2.98 mL, 36.8 mmol) in anhydrous CH₂Cl₂ (35 mL) at –20 °C under nitrogen and allowed to stir for 10 minutes. 2-Bromoethanol (4.25 g, 34.0 mmol) was added drop-wise to the reaction mixture. The cooling bath was removed and the reaction stirred for a further 10 minutes (do not allow more than this time) while warming. The resulting suspension was filtered, concentrated (using a rotary evaporator, keeping the water bath temp below 20 °C) and petroleum ether (30 mL) was added. The mixture was filtered and concentrated again under reduced pressure and finally dried under high vacuum to give the title product as a clear colorless oil (7.17 g, 82%). It was used immediately in the next step without further purification. δH (400 MHz; CDCl₃) 4.70 (2 H, t, J 6.5, TfO-CH₂), 3.55 (2 H, t, J 6.5, Br-CH₂) δC (100 MHz; CDCl₃) 74.5 (t), 26.1 (t).
A solution of 2-bromoethyl trifluoromethanesulfonate \(2\) (3.24 g, 12.6 mmol) in anhydrous toluene (10 mL) was treated with phenyl sulfide (2.81 g, 15.1 mmol) at RT under nitrogen with stirring. The reaction mixture was then heated at 100 °C under nitrogen for 5 h. The solution was allowed to cool to RT and diethyl ether (20 mL) was added to precipitate the product \(7\) which was isolated by filtration as a white powder (4.51 g, 81%) after washing with Et\(_2\)O and used in the next step without further purification.\(^3\) mp 85–87 °C (precipitated from toluene/Et\(_2\)O) [lit.\(^2\) 86.5–88 °C (precipitated from Et\(_2\)O/CH\(_2\)Cl\(_2\))] \(R_f\) (MeOH-CH\(_2\)Cl\(_2\), 1:9) 0.20; \(\delta_H\) (400 MHz; CDCl\(_3\)) 8.13-8.06 (4 H, m, ArH), 7.78-7.67 (6 H, m, ArH), 4.86 (2 H, t, \(J\) 6.5, S+-CH\(_2\)), 3.67 (2 H, t, \(J\) 6.5, Br-CH\(_2\)); \(\delta_c\) (100.5 MHz; CDCl\(_3\)) 135.3 (s), 131.9 (d), 131.2 (d), 122.9 (d), 48.3 (t), 23.8 (t).

The above reaction can also be performed using trifluorotoluene instead of toluene. On cooling white crystals form. Et\(_2\)O was added to assist mobilization. Filtration and washing with Et\(_2\)O afforded \(7\) as white crystals (80% yield). mp 84–87 °C (trifluorotoluene). NMR spectra were identical to when toluene was used.

Diphenylvinylsulfonium trifluoromethanesulfonate \(1\)

(2-Bromoethyl)diphenylsulfonium trifluoromethanesulfonate \(7\) (5.69 g, 12.8 mmol) was dissolved into THF / H\(_2\)O (2:1) (21 mL). KHCO\(_3\) (1.54 g, 15.4 mmol) was added and the reaction mixture was stirred for 20 min at RT (do not allow more than this time). The solvent was evaporated immediately under reduced pressure (using a rotary evaporator connected to a high vacuum pump and keeping the water bath temperature below 20 °C) and then redissolved in CH\(_2\)Cl\(_2\) (40 mL), dried over MgSO\(_4\), filtered and evaporated. The residue was redissolved in CH\(_2\)Cl\(_2\) (10 mL), loaded on a silica bed (4 cm depth and 2.5 cm diameter), the resulting band was covered with 1 cm sand, eluted
with CH$_2$Cl$_2$ (400 mL), followed by 10% MeOH in CH$_2$Cl$_2$ (200 mL) the product 1 was isolated as a light yellow oil (4.45 g, 96%). R_f 0.31 (20% MeOH in CH$_2$Cl$_2$); δ_H (400 MHz; CDCl$_3$) 7.93-7.82 (4 H, m, ArH), 7.75-7.64 (6 H, m, ArH), 7.51 (1 H, dd, J 16.5, 9.5, CH$_2$=CH), 6.72 (1 H, dd, J 9.5, 2.5, HHC=CH), 6.57 (1 H, dd, J 16.5, 2.5, HHC=CH); δ_C (100.5 MHz; CDCl$_3$) 138.1 (t), 134.6 (d), 131.6 (d), 130.5 (d), 125.0 (s), 123.4 (d).

Compound 1 is stable at RT for at least 6 months (we have never observed decomposition during storage), but it is slightly hydroscopic and should be stored appropriately (under nitrogen/argon in a container sealed with parafilm). Sometimes a dark green/black colored product 1 was obtained (this was observed if a bottle of old triflic anhydride was used in the synthesis of 2-bromoethyl trifluoromethanesulfonate) but it could be used in the chemistry described below without detriment.
Synthesis of \(N\)-sulfonyl \(\beta\)-amino alcohols 2a-2f

General method A\(^4\)

According to the procedure reported by Abiko,\(^4\) the \(\beta\)-amino alcohols (4.80-14.97 mmol) were dissolved in dry CH\(_2\)Cl\(_2\) (15 mL), cooled to 0 °C and triethylamine (1.2 eq) was added under argon and the reaction stirred for 5 min. The reaction mixture was then treated with tosyl chloride (1.0 eq) and stirred for 1 h. After that the reaction mixture was allowed to warm to RT. After stirring for 2 h the reaction was quenched with water (50 mL) and extracted with CH\(_2\)Cl\(_2\) (3 × 100 mL). The combined organic layers were washed with 1 M HCl (50 mL), water (50 mL), sat. NaHCO\(_3\) (50 mL) and brine (50 mL). The organic phase was dried over MgSO\(_4\), filtered, concentrated under vacuum and purified by recrystallization (EtOAc-PE).

\((\pm)-N-(2-Hydroxy-1-methylethyl)-4-methylbenzenesulfonamide 2a\(^5\))

Following general method A, using (\(\pm\))-2-aminopropan-1-ol (0.500 g, 6.66 mmol), triethylamine (0.79 g, 7.8 mmol) and tosyl chloride (1.27 g, 6.66 mmol), after recrystallization, the title compound 2a was isolated as a colorless crystalline solid (1.42 g, 93%); \(R_f\) 0.27 (EtOAc-PE, 4:6); mp 60-61 °C (EtOAc-PE) [lit.\(^5\) mp 63-64 °C (hexane-EtOAc)]; \(\delta_H\) (400 MHz; CDCl\(_3\)) 7.77 (2 H, d, \(J\) 8.5, ArH), 7.35-7.29 (2 H, d, \(J\) 8.5, ArH), 5.11 (1 H, d, \(J\) 7.0, NH), 3.58 (1 H, ddd, \(J\) 10.5, 7.0, 3.5, CHOH), 3.46-3.33 (2 H, m, CH\(_3\)CH-CHH), 2.41 (1H, m, OH), 2.43 (3 H, s, Ar-CH\(_3\)), 1.02 (3 H, d, \(J\) 6.5, CH\(_3\)); \(\delta_C\) (100 MHz, CDCl\(_3\)) 143.0 (s), 137.6 (s), 129.9 (d), 127.2 (d), 66.3 (t), 51.6 (d), 21.6 (q), 17.7 (q).
N-[(1S)-1-(Hydroxymethyl)-2-methylpropyl]-4-methylbenzenesulfonamide 2b

Following general method A, using (S)-2-amino-3-methylbutan-1-ol (0.50 g, 4.8 mmol), triethylamine (0.58 g, 5.7 mmol) and tosyl chloride (0.92 g, 4.8 mmol), after recrystallization, the title compound 2b was isolated as a colorless crystalline solid (1.14 g, 92%); Rf 0.2 (EtOAc-PE, 3:7); mp 85-87 °C (EtOAc-PE) [lit.5 mp 87-89 °C (EtOAc-PE)]; δH (400 MHz; CDCl3) 7.77 (2 H, d, J 8.5, ArH), 7.29 (2 H, d, J 8.5, ArH), 4.95 (1 H, d, J 8.5, NH), 3.61-3.52 (2 H, m, CH2O), 3.06-2.99 (1 H, m, NCH), 2.43 (3 H, s, Ar-CH3), 2.13 (1 H, br t, J 5.5, OH), 1.81-1.71 (1 H, m, (CH3)2CH), 0.78 (3 H, d, J 6.8, CH3), 0.76 (3 H, d, J 6.8, CH3); δc (75 MHz; CDCl3) 143.4 (s), 137.4 (s), 129.6 (d), 127.1 (d), 63.0 (t), 60.9 (d), 29.4 (d), 21.5 (q), 19.0 (q), 18.3 (q).

Methyl (2S)-3-hydroxy-2-{{[(4-methylphenyl)sulfonyl]amino}propanoate 2c

Using a modified version of the procedure reported by Baldwin et al., L-serine methyl ester hydrochloride (2.33 g, 15.0 mmol) was dissolved in dry CH2Cl2 (25 mL), cooled to 0 °C and triethylamine (3.60 g, 35.6 mmol) was added under argon and the reaction stirred for 5 min. The reaction mixture was then treated with tosyl chloride (3.15 g, 16.5 mmol) and stirred for 2 h. After that the reaction mixture was allowed to warm to RT. After stirring for 12 h the reaction was quenched with water (50 mL) and extracted with CH2Cl2 (3 × 100 mL). The combined organic layers were washed with sat. NaHCO3 (50 mL), 10% citric acid (50 mL), water (50 mL), and brine (50 mL). The organic phase was dried over Na2SO4, filtered, concentrated under vacuum and washed with diethyl ether, the title compound 2c was isolated as a colorless crystalline solid (3.90 g, 95%); Rf 0.4 (EtOAc-PE, 1:1); mp 83-84 °C (EtOAc-PE) [lit.6 mp 84-85 °C (EtOAc-hexane)]; [α]D20 +10 (c. 1.0, CH2Cl2) [lit.6 [α]D20 +12.2 (c. 0.83, CHCl3)]; δH (400 MHz;
CDCl$_3$ 7.73 (2 H, d, J 8.5, ArH), 7.29 (2 H, d, J 8.5, ArH), 5.77 (1 H, d, J 7.5, NH), 3.98 (1 H, dt, J 7.5, 3.5, NCH), 3.89-3.86 (2 H, m, NCH$_2$H$_2$), 3.59 (3 H, s, OCH$_3$), 2.64-2.56 (1 H, m, OH), 2.41 (3 H, s, Ar-CH$_3$); δ_c (100.5 MHz; CDCl$_3$) 170.2 (s), 144.0 (s), 136.4 (s), 129.8 (d), 127.3 (d), 63.7 (t), 57.6 (d), 53.0 (q), 21.6 (q).

N-(2-Hydroxy-1,1-dimethylethyl)-4-methylbenzenesulfonamide 2d

Following general method A, using 2-amino-2-methylpropan-1-ol (0.963 g, 10.8 mmol), triethylamine (1.31 g, 12.9 mmol) and tosyl chloride (2.05 g, 10.8 mmol), after recrystallization, the title compound 2d was isolated as a colorless crystalline solid (2.34 g, 89%); R_f 0.3 (EtOAc-PE, 4:6); mp 94-95 °C (EtOAc-PE) [lit. mp 92-93 °C (hexane)]; δ_H (400 MHz; CDCl$_3$) 7.80 (2 H, d, J 8.5, ArH), 7.30 (2 H, d, J 8.5, ArH), 5.35 (1 H, br s, NH), 3.45 (2 H, s, CH$_2$-OH), 2.85 (1 H, br s, OH), 2.42 (3 H, s, Ar-CH$_3$), 1.12 (6 H, s, (CH$_3$)$_2$C); δ_c (100.5 MHz, CDCl$_3$) 143.3 (s), 140.0 (s), 129.7 (d), 127.1 (d), 70.2 (t), 58.0 (s), 24.5 (q), 21.6 (q).

N-[1(1R,2S)-2-Hydroxy-1-methyl-2-phenylethyl]-4-methylbenzenesulfonamide 2e

Following general method A, using D-(+)-norephedrine (1.00 g, 6.61 mmol), triethylamine (0.79 g, 7.8 mmol) and tosyl chloride (1.25 g, 6.56 mmol), after recrystallization, the title compound 2e was obtained as colorless crystals (1.65 g, 82%); R_f 0.26 (EtOAc-PE, 2:8); mp 86-87 °C (EtOAc-PE) [lit. mp 86-88 °C (hexane-Et$_2$O)]; δ_H (400 MHz; CDCl$_3$) 7.78 (2 H, d, J 8.5, ArH), 7.32-7.21 (7 H, m, ArH), 4.91 (1 H, d, J 9.0, PhCH), 4.78 (1 H, br s, OH), 3.57 (1 H, dqd, J 9.0, 7.0, 4.0, NCH), 2.66 (1 H, d, J 4.0, NH), 2.42 (3H, s, Ar-CH$_3$), 0.84 (3 H, d, J 7.0, CHCH$_3$); δ_c (100 MHz;
CDCl₃) 143.6 (s), 140.2 (s), 137.8 (s), 129.8 (d), 128.4 (d), 127.8 (d), 127.1 (d), 126.1 (d), 75.7 (d), 54.9 (d), 21.6 (q), 14.8 (q).

[(1R,2S)-2-Hydroxy-1-methyl-2-phenylethyl]-4-nitrobenzenesulfonamide 2f

According to the procedure reported by Dioury et al., D-(+)-norephedrine (0.50 g, 3.3 mmol) was dissolved into THF (10 mL) and cooled to 0 °C. Then sodium hydrogen carbonate (0.80 g, 9.5 mmol) and p-nitrophenylsulfonyl chloride (0.80 g, 3.6 mmol) were added and the reaction mixture was allowed to warm to RT and stirred overnight. The crude mixture was concentrated under vacuum and dissolved in CH₂Cl₂ (100 mL) and washed with H₂O (3 × 50 mL), dried over MgSO₄ and concentrated. The target compound 2f was isolated as a white crystalline solid (1.09 g, 98%); Rf 0.36 (EtOAc-PE, 3:7); mp 106-107 °C (EtOAc-PE); [α]D²² +25 (c. 0.6, CH₂Cl₂); νmax(neat)/cm⁻¹ 3509 (OH), 3303 (NH), 1528 (NO₂), 1349 (SO₂), 1162 (SO₂); δH (400 MHz; CDCl₃) 8.32 (2 H, d, J 8.5, ArH), 8.03 (2 H, d, J 8.5, ArH), 7.34-7.21 (5 H, m, ArH), 5.06 (1 H, br d, J 9.5, NH), 4.78 (1 H, dd, J 3.5, 3.5, PhCH), 3.68 (1 H, dqd, J 9.5, 6.5, 3.5, NCH), 2.36 (1 H, m, OH), 0.93 (3 H, d, J 6.5, CH₃); δc (100.5 MHz; CDCl₃) 150.0 (s), 146.9 (s), 139.9 (s), 128.6 (d), 128.2 (2 × d), 126.0 (d), 124.4 (d), 76.1 (d), 55.3 (d), 15.4 (q); m/z (ESI⁺) 359 [M+Na⁺]; HRMS (ESI⁺) C₁₅H₁₆N₂O₅SNa (M+Na⁺) requires: 359.0676; found: 359.0672. Anal. C₁₅H₁₆N₂O₅S requires: C, 53.56; H, 4.79; N, 8.33; found: C, 53.84; H, 4.75; N, 7.89.
Synthesis of morpholines 3a-3f

General method B
A stirred solution of \(N \)-tosyl-\(\beta \)-amino alcohol 2a-2e (0.28-0.68 mmol) or \(N \)-nosyl-\(\beta \)-amino alcohol 2f (0.59 mmol) in \(\text{CH}_2\text{Cl}_2 \) (10 mL) was treated with triethylamine (2 eq) at 0 °C under argon. After 10 min a solution of diphenylvinylsulfonium salt 1 (1.05-1.2 eq) in \(\text{CH}_2\text{Cl}_2 \) (5 mL) was added drop-wise over two min and the reaction was stirred for 3 h at 0 °C, followed by 12 h at RT. The reaction was then quenched with saturated ammonium chloride solution (10 mL), extracted with \(\text{CH}_2\text{Cl}_2 \) (3 × 50 mL), washed with brine (20 mL), dried over \(\text{MgSO}_4 \), filtered and concentrated under vacuum. The product was then purified using flash column chromatography on silica.

\((\pm)\)-3-Methyl-4-[(4-methylphenyl)sulfonyl]morpholine 3a

Following general method B, (\pm)-\(N \)-tosyl-\(\beta \)-amino alcohol 2a (0.101 g, 0.440 mmol), triethylamine (0.090 g, 0.89 mmol) and diphenylvinylsulfonium salt 1 (0.167 g, 0.461 mmol), after chromatography (EtOAc-PE, 2:8) the title compound 3a was obtained as a colorless crystalline solid (0.106 g, 94%); \(R_f \) 0.4 (EtOAc-PE); mp 92-93 °C (EtOAc-PE); \(\nu_{\max} \) (neat)/cm\(^{-1}\) 1344 (SO\(_2\)), 1154 (SO\(_2\)); \(\delta_H \) (400 MHz; CDCl\(_3\)) 7.68 (2H, d, \(J \) 8.5, ArH), 7.29 (1 H, d, \(J \) 8.5, ArH), 3.90 (1 H, qd, \(J \) 6.5, 4.5, CH\(_3\)), 3.83-3.78 (1 H, m, NCH\(_2\)CH\(_2\)), 3.61-3.53 (2 H, m, NCHCH\(_2\)), 3.50-3.42 (2 H, m, NCH\(_2\)CHH, NCHH), 3.30-3.21 (1 H, m, NCHH), 2.42 (3 H, s, Ar-CH\(_3\)), 1.12 (3 H, d, \(J \) 6.5, CH\(_3\)); \(\delta_C \) (100.5 MHz, CDCl\(_3\)) 143.5 (s), 137.3 (s), 129.8 (d), 127.2 (d), 71.5 (t), 66.6 (t), 49.2 (d), 40.6 (t), 21.6 (q), 13.9 (q); \(m/z \) (Cl\(^+\)) 256 [M+H\(^+\)], 100%; HRMS (Cl\(^+\)) (MH\(^+\)) \(\text{C}_{12}\text{H}_{18}\text{NO}_3\text{S} \) requires: 256.1007; found 256.1005. Anal. \(\text{C}_{12}\text{H}_{17}\text{NO}_3\text{S} \) requires C, 56.45; H, 6.71; N, 5.49; found: C, 56.13; H, 6.86; N, 5.18.
(3S)-3-Isopropyl-4-[(4-methylphenyl)sulfonyl]morpholine 3b

Following general method B, N-tosyl-β-amino alcohol 2b (0.072 g, 0.28 mmol), triethylamine (0.060 g, 0.59 mmol) and diphenylvinylsulfonium salt 1 (0.106 g, 0.292 mmol), after chromatography (EtOAc-PE, 2:8) the title compound 3b was isolated as colorless crystals (0.076 g, 96%); Rf 0.62 (EtOAc-PE, 3:7); mp 99-101 °C (EtOAc-PE); [α]D 20 +32 (c 0.5, CHCl₃); νmax(neat)/cm⁻¹ 1341 (SO₂), 1155 (SO₂); δH (400 MHz; CDCl₃) 7.72 (2 H, d, J 8.5, ArH), 7.31 (2 H, d, J 8.5, ArH), 3.82 (1 H, d, J 11.5, CHCHHO), 3.66-3.59 (2 H, m, NCHH, OCHCH), 3.35-3.10 (4 H, m, NCHHCHHOCHHCH), 2.43 (3 H, s, Ar-CH₃), 2.35-2.20 (1 H, m, Me₂CH), 0.99 (3 H, d, J 6.5, CH₃), 0.97 (3 H, d, J 6.5, CH₃); δc (100.5 MHz; CDCl₃) 143.2 (s), 138.8 (s), 129.8 (d), 126.9 (d), 66.1 (t), 65.5 (t), 59.7 (d), 41.2 (t), 25.3 (d), 21.5 (q), 19.9 (q), 19.8 (q); m/z (CI⁺) 284 [M+H]⁺; HRMS (CI⁺) C₁₄H₂₁NO₃S (MH⁺) requires: 284.1320; found: 284.1317. Anal. C₁₄H₂₁NO₃S requires C, 59.34; H, 7.47; N, 4.94; found: C, 59.71; H, 7.58; N, 5.19.

Methyl (3S)-4-[(4-methylphenyl)sulfonyl]morpholine-3-carboxylate 3c

Following general method B, N-tosyl-β-amino alcohol 2c (1.01 g, 3.70 mmol), triethylamine (0.74 g, 7.3 mmol) and diphenylvinylsulfonium salt 1 (1.40 g, 3.86 mmol), after chromatography (EtOAc-PE, 3:7), the title compound 3c was isolated as a colorless crystals (1.07 g, 97%); Rf 0.63 (EtOAc-PE, 4:6); mp 98-99 °C (EtOAc-PE); [α]D 20 -68 (c 1.0, CH₂Cl₂); νmax(neat)/cm⁻¹ 1750 (CO), 1347 (SO₂), 1140 (SO₂); δH (400 MHz; CDCl₃) 7.69 (2 H, d, J 8.5, ArH), 7.33 (2 H, d, J 8.5, ArH), 4.53 (1 H, d, J 3.0, NCH), 4.30 (1 H, d, J 11.5, NCHCHH), 3.89 (1 H, dd, J 11.5, 3.0, NCH₂CHH), 3.73 (1 H, dd, J 11.5, 3.0, NCHCHH), 3.62-3.45 (6 H, m, OCH₃, NCH₂CHH), 2.45 (3 H, s, Ar-
CH₃; δc (100.5 MHz; CDCl₃) 169.5 (s), 143.7 (s), 136.4 (s), 129.6 (d), 127.4 (d), 68.8 (t), 66.7 (t), 55.4 (d), 52.4 (q), 42.0 (t), 21.6 (q); m/z (Cl⁺) 300 [M+H⁺]; HRMS (Cl⁺) (MH⁺) C₁₃H₁₈NO₅S requires: 300.0906; found: 300.0904. Anal. C₁₃H₁₇NO₅S requires: C, 52.16; H, 5.72; N, 4.68; S 10.71; found: C, 52.60; H, 5.63; N, 4.91; S, 10.75.

3,3-Dimethyl-4-[(4-methylphenyl)sulfonyl]morpholine 3d

Following general method B, N-tosyl-β-amino alcohol 2d (0.151 g, 0.621 mmol), triethylamine (0.125 g, 1.24 mmol) and diphenylvinylsulfonium salt 1 (0.235 g, 0.648 mmol), after chromatography (EtOAc-PE, 2:8) the title compound 3d was obtained as colorless needles (0.161 g, 96%); Rf 0.45 (30:70 EtOAc-PE); mp 105-106 °C (EtOAc-PE); νmax(neat)/cm⁻¹ 1343 (SO₂), 1154 (SO₂); δH (400 MHz; CDCl₃) 7.70 (2 H, d, J 8.5, ArH), 7.30 (2 H, d, J 8.5, ArH), 3.78-3.74 (2 H, m, OCH₂CH₂), 3.50-3.47 (2 H, m, NCH₂), 2.43 (3 H, s, Ar-CH₃) 1.26 (6 H, s, 2 × CH₃); δc (100.5 MHz, CDCl₃) 143.2 (s), 139.2 (s), 129.6 (d), 127.2 (d), 78.1 (t), 67.7 (t), 57.4 (s), 43.1 (t), 22.4 (q), 21.5 (q); m/z (Cl⁺) 270 [M+H⁺]; HRMS (Cl⁺) (MH⁺) C₁₃H₂₀NO₃S requires: 270.1164; found: 270.1156. Anal. C₁₃H₁₉NO₃S requires: C, 57.97; H, 7.11; N, 5.20; found: C, 57.77; H, 7.17; N, 5.41.

(2S,3R)-3-Methyl-4-[(4-methylphenyl)sulfonyl]-2-phenylmorpholine 3e

Following general method B, N-tosyl-β-amino alcohol 2e (0.210 g, 0.688 mmol), triethylamine (0.14 g, 1.4 mmol) and diphenylvinylsulfonium salt 1 (0.260 g, 0.717 mmol) after chromatography (EtOAc-PE, 2:8) the title compound 3e was isolated as a white gummy solid (0.224 g, 98%); Rf 0.67 (EtOAc-PE, 2: 8); [α]D³0+12 (c. 1.0,
CHCl₃; ν_max(neat)/cm⁻¹ 1340 (SO₂), 1157 (SO₂); δ_H (400 MHz; CDCl₃) 7.74 (2 H, d, J 8.5, ArH), 7.35-7.22 (7 H, m, ArH), 4.63 (1 H, d, J 3.0, PhCH), 4.20 (1 H, dq, J 7.0, 3.0, NCHMe), 4.05 (1 H, dd, J 12.5, 3.0, OCHeqH), 3.70 (1 H, ddd, J 12.5, 12.5, 3.0, OCHMe), 3.60 (1 H, dd, J 12.5, 3.0, NCHeqH), 3.25 (1 H, ddd, J 12.5, 12.5, 3.0, NCHMe), 2.43 (3 H, s, Ar-CH₃), 0.72 (3 H, d, J 7.0, CH-C₃H₃); δ_c (100.5 MHz; CDCl₃) 143.4 (s), 138.7 (s), 137.9 (s), 129.8 (d), 128.3 (d), 127.4 (d), 127.2 (d), 125.4 (d), 80.4 (d), 67.1 (t), 53.3 (d), 39.5 (t), 21.4 (q), 9.2 (q); m/z (ESI⁺) 332 (M+H⁺); HRMS (ESI⁺) C₁₈H₂₂NO₃S (MH⁺) requires: 332.1326; found: 332.1314. Anal. C₁₈H₂₁NO₃S requires: C, 65.23; H, 6.39; N, 4.23; found: C, 65.09; H, 6.73; N, 4.17.

(2S,3R)-3-Methyl-4-{(4-nitrophenyl)sulfonyl}-2-phenylmorpholine 3f

Following general method B, N-nosyl-β-amino alcohol 2f (0.199 g, 0.592 mmol), triethylamine (0.120 g, 1.19 mmol) and diphenylvinylsulphonium salt 1 (0.226 g, 0.624 mmol), after column chromatography (EtOAc-PE, 3:7) the title compound 3f was isolated as pale yellow crystals (0.211 g, 98%); R_f 0.58 (EtOAc-PE, 3:7); mp 133-134 °C (EtOAc-PE); [α]°D +25 (c. 0.2, CH₂Cl₂); ν_max(neat)/cm⁻¹ 1527 (NO₂), 1348 (SO₂), 1157 (SO₂); δ_H (400 MHz; CDCl₃) 8.40 (2 H, d, J 8.5, ArH), 8.06 (2 H, d, J 8.5, ArH), 7.37-7.23 (5 H, m, ArH), 4.69 (1 H, d, J 2.5, PhCH), 4.26 (1 H, dq, J 6.5, 2.5, NCHMe), 4.14 (1 H, dd, J 12.5, 3.5, OCHeqH), 3.77 (1 H, ddd, J 12.5, 12.5, 3.5, OCHMe), 3.66 (1 H, dd, J 12.5, 3.5, NCHeqH), 3.31 (1 H, ddd, J 12.5, 12.5, 3.5, NCHMe), 0.75 (3 H, d, J 6.5, CH₃); δ_c (100.5 MHz; CDCl₃) 150.1 (s), 146.6 (s), 138.2 (s), 128.5 (d), 128.3 (d), 127.8 (d), 125.4 (d), 124.6 (d), 80.6 (d), 67.2 (t), 53.7 (d), 39.7 (t), 9.4 (q); m/z (CI⁺) 363 [M+H⁺]; HRMS (CI⁺) C₁₇H₁₉N₂O₅S (MH⁺) requires: 363.1015; found: 363.1023.
Isolation of protonated 5f: N-[(1R,2S)-2-Hydroxy-1-methyl-2-phenylethyl]-2-[[4-nitrophenyl]sulfonyl]amino} ethyl) (diphenyl) sulfonium trifluoromethane sulfonate

Following general method B, using N-nosyl-β-amino alcohol 2f (0.199 g, 0.592 mmol), triethylamine (0.120 g, 1.19 mmol) and diphenylvinylsulfonium salt 1 (0.260 g, 0.717 mmol), after 3 h stirring at 0 °C (monitored by TLC) followed by chromatography (EtOAc-PE, 8:2) the title compound (protonated-5f) was isolated as pale yellow crystals (0.272 g, 66%); Rf 0.3 (EtOAc); [NMR data were obtained immediately because with the passage of time protonated-5f cyclized to morpholine 3f] δH (400 MHz; CDCl3) 8.30 (2 H, d, J 8.5, ArH), 8.08-8.03 (4 H, m, ArH), 7.88 (2 H, d, J 8.5, ArH), 7.77-7.67 (6 H, m, ArH), 7.31-7.2 (5 H, m, ArH), 5.05 (1H, br dd, J 5.5, 2.5, PhCH), 4.93 (1 H, dt, J 12.5, 5.5, SCHH), 4.66 (1 H, dt, J 12.5, 7.5, SCHH), 4.24 (1 H, d, J 5.5, OH), 3.94 (1 H, qd, J 7.5, 2.5, NCH), 3.86-3.75 (2 H, m, NCH2), 0.70 (3 H, d, J 7.5, CH3); δC (100.5 MHz; CDCl3) 150.3 (s), 144.3 (s), 141.5 (s), 134.8 (d), 134.6 (d), 131.6 (d), 131.0 (d), 130.6 (d), 128.5 (d), 128.4 (d), 127.6 (d), 125.5 (d), 124.9 (s), 124.7 (d), 123.9 (s), 77.0 (d), 60.0 (d), 46.0 (t), 39.8 (t), 8.8 (q).
Synthesis of thiomorpholines 3g-3i

Methyl (S)-2-amino-3-mercapto-3-methylbutanoate 2i^{10,11}

According to the procedure reported by Chvapil et al.,¹⁰ D-penicillamine (2.50 g, 16.8 mmol) was dissolved in methanol (50 mL), cooled to 0 °C, and thionyl chloride (12.5 mL, 171 mmol) was added from a burette, the reaction mixture was allowed to warm to RT and stirred for 3 d. On the second day additional thionyl chloride (2.5 mL) was added. After 3 d, the reaction mixture was refluxed for 2-3 h, during which time most of the excess thionyl chloride was removed. The reaction mixture was reduced to about 20 mL under vacuum, and after addition of ether the product precipitated and was isolated by filtration. Recrystallization with MeOH and diethyl ether yielded the desired product 2i as colorless crystals (2.40 g, 72%); mp 140-142 °C (MeOH-Et₂O); δ_H (400 MHz; CD₃OD) 4.12 (1 H, s, NCH), 3.86 (3 H, s, OCH₃), 1.56 (3 H, s, CH₃), 1.47 (3 H, s, CH₃); δ_C (100.5 MHz; CD₃OD) 167.5 (s), 62.7 (d), 52.3 (q), 43.5 (s), 29.7 (q), 27.2 (q).

General method C

To a stirred solution of β-amino thiols 2g-2i (0.116-1.29 mmol) in CH₂Cl₂ (5-10 mL) at 0 °C was added dry triethylamine (2-3 eq). After 10 min a solution of diphenylvinylsulfonium salt 1 (1.05-1.1 eq) in CH₂Cl₂ (5 mL) was added drop wise over two min. The reaction mixture was stirred for 3 h at 0 °C and then 12 h at RT. The reaction was quenched with saturated ammonium chloride solution (5 mL) and extracted with CH₂Cl₂ (3 × 20 mL). The aqueous layer was basified with 5% Na₂CO₃ solution (10 mL) and extracted with CH₂Cl₂ (3 × 10 mL). The organic layers were combined and dried over anhydrous K₂CO₃, filtered and evaporated under vacuum.

Thiomorpholine 3g

Following general method C, using cysteamine (0.100 g, 1.30 mmol), triethylamine (0.260 g, 2.57 mmol) and diphenylvinylsulfonium salt 1 (0.492 g, 1.36 mmol), after
chromatography (Et$_2$O-Et$_3$N, 95:5), the title compound 3g was isolated as a colorless oil (0.131 g, 98%); R_f 0.27 (Et$_2$O-Et$_3$N, 95:5); δH (400 MHz; CDCl$_3$) 3.14-3.09 (4 H, m, NCH$_2$), 2.62-2.57 (4 H, m, SCH$_2$), 1.56 (1 H, br s, NH); δC (100 MHz; CDCl$_3$) 49.8 (t), 28.4 (t) [data are the same as for commercially available material].

Thiomorpholine-($3R$)-carboxylic acid methyl ester 3h and thiomorpholine-($3R$)-carboxylic acid methyl ester hydrochloride 8

$$
\begin{array}{c}
\text{MeO}_2\text{C} \\
\text{S} \\
\text{N}
\end{array}
$$

Following general method C, using L-cysteine methyl ester hydrochloride (0.0206 g, 0.120 mmol), triethylamine (0.0340 g, 0.336 mmol) and diphenylvinylsulphonium salt 1 (0.0500 g, 0.138 mmol), after chromatography (Et$_2$O-Et$_3$N, 95:5) the title compound 3h was isolated as a colorless gummy solid (0.0185 g, 96%); R_f 0.7 (Et$_2$O-Et$_3$N, 95:5); $[\alpha]_D^{20}$ -38 (c. 0.6, CHCl$_3$); ν max(neat)/cm$^{-1}$ 3398 (NH), 1744 (CO); δH (400 MHz; CDCl$_3$) 3.79 (4 H, m, NCH, OCH$_3$), 3.46 (1 H, ddd, J 12.5, 5.0, 3.0, NCH$_{eq}$H), 3.10 (1 H, ddd, J 12.5, 10.0, 3.0, NCH$_{ax}$H), 2.95-2.83 (2 H, m, SCH$_2$CH), 2.74 (1 H, ddd, J 13.5, 10.0, 3.0, NCH$_2$CH$_{eq}$H), 2.57-2.51 (1 H, m, NCH$_2$CH$_{eq}$H), 1.26 (1 H, br s, NH); δC (100 MHz; CDCl$_3$) 171.5 (s), 58.3 (d), 52.5 (q), 46.6 (t), 29.2 (t), 27.2 (t); m/z (ESI$^+$) 162 (M+H)$^+$; HRMS (ESI$^+$) C$_6$H$_{12}$NO$_2$S (MH$^+$) requires: 162.0588; found: 162.0583.

3h (0.010 g, 0.062 mmol) was dissolved into dry diethyl ether (1 mL) and treated with 2 M HCl in diethylether (1 mL). The hydrochloride 812 was isolated by filtration as a colorless solid (0.011 g, 90%); mp 172-173 °C (MeOH-Et$_2$O) [lit. 12 mp 172-173 °C (MeOH-Et$_2$O)]; $[\alpha]_D^{20}$ -21 (c. 1.0, CH$_3$OH) [lit.12 $[\alpha]_D^{25}$ -20.4 (c. 1, CH$_3$OH)]; δH (400 MHz; D$_2$O) 4.36 (1 H, dd, J 9.5, 3.5, NCH), 3.83 (3 H, s, OCH$_3$), 3.71 (1 H, ddd, J 13.0, 5.0, 3.5, NCHH), 3.36 (1 H, ddd, 13.0, 8.5, 3.5, NCHH), 3.22-2.72 (4 H, m, CH$_2$SCH$_2$); δC (100 MHz; CDCl$_3$) 168.2 (s), 56.6 (d), 53.9 (q), 45.0 (t), 26.2 (t), 23.5 (t).
Methyl (3S)-2,2-dimethylthiomorpholine-3-carboxylate 3i

Following general method C, using methyl (S)-2-amino-3-mercapto-3-methylbutanoate hydrochloride (0.150 g, 0.751 mmol), triethylamine (0.225 g, 2.22 mmol) and diphenylvinylsulfonium salt 1 (0.310 g, 0.855 mmol), after chromatography (Et₂O-Et₃N, 95:5), the title compound 3i was isolated as a colorless gummy solid (0.134 g, 94%); Rᵣ 0.68 (Et₂O-Et₃N, 95:5); [α]²¹⁺⁰ (c. 0.5, CH₂Cl₂); νmax(neat)/cm⁻¹ 3340 (NH), 2952 (CH), 2928 (CH), 2928 (CH), 1734 (CO); δH (400 MHz; CDCl₃) 3.70 (4 H, s, OCH₃, NCH), 3.36-3.46 (1 H, m, NCH₂), 2.87-2.97 (2 H, m, NCH₂CH₂H), 2.24-2.34 (1 H, m, NCH₂CH₂H), 2.14 (1 H, br s, NH), 1.41 (3 H, s, CH₃), 1.28 (3 H, s, CH₃); δc (100.5 MHz; CDCl₃) 171.0 (s), 69.0 (d), 51.8 (q), 46.7 (t), 39.2 (s), 28.0 (q), 26.3 (t), 22.3 (q); m/z (CI⁺) 190 [M+H]⁺; HRMS (CI⁺) (MH⁺) C₈H₁₆NO₂S requires: 190.0902, found: 190.0905.
Synthesis of piperazines 3j-3m

General method D

The diamines 2j, 2k, or N-tosyl diamines 2l, 2m (0.234-0.47 mmol) were dissolved into anhydrous CH₂Cl₂ (10 mL), stirred at 0 °C under argon and treated with either triethylamine (2 eq) or DBU (2 eq; when N-tosyl diamines were used). After 10 min a solution of diphenylvinylsulfonylum salt 1 (1.05 eq) in CH₂Cl₂ (5 mL) was added drop wise over two min. The reaction mixture was further stirred for 2 h at 0 °C and then allowed to warm to RT overnight.

a) Workup for N-H-piperazines

The reaction was quenched with water and the solution was acidified with dil. HCl and extracted with CH₂Cl₂ (3 × 20 mL). The aqueous layer was basified with sat. K₂CO₃ solution and extracted with CH₂Cl₂ (3 × 10 mL). The combined organic phases were dried over anhydrous K₂CO₃, filtered and evaporated under vacuum. The products were then purified using flash column chromatography on silica.

b) Workup for N-tosyl piperazines

When making N-tosyl piperazines the reaction mixture was quenched with sat. ammonium chloride solution and extracted with CH₂Cl₂ (3 × 10 mL), dried over anhydrous MgSO₄, filtered and evaporated under vacuum. The products were then purified using flash column chromatography on silica.

(±)-1,4-Dibenzoyldecahydroquinoxaline 3j

Following general method D, using (±)-trans-1,2-diaminocyclohexane 2j (0.173 g, 1.52 mmol), triethylamine (0.308 g, 3.04 mmol) and diphenylvinylsulfonylum salt 1 (0.575 g, 1.59 mmol), after overnight stirring, the solvent was removed under vacuum. The residue was dissolved in 1 M NaOH (4.56 mL), stirred, cooled to 0 °C and treated with benzoyl chloride (0.640 g, 4.55 mmol). The reaction mixture was allowed to warm to RT and stirred for 3 h. The reaction mixture was extracted with CH₂Cl₂ (3 × 100 mL), the combined organic phases were washed with dil. HCl, brine, dried over MgSO₄,
filtered and evaporated. The target amide 3j was obtained as a white solid (0.519 g, 98%); R_f 0.44 (EtOAc-PE, 4:6); mp 60-61 °C (EtOAc-PE); ν_{max} (neat)/cm$^{-1}$ 1630 (NCO); δ_H (400 MHz; CDCl$_3$) 7.45-7.34 (10 H, m, ArH), 3.89-3.80 (2 H, m, NCH), 3.71-3.61 (2 H, m, NCHH), 3.56-3.49 (2 H, m, NCHH), 2.41-2.30 (2 H, m), 1.79-1.71 (2 H, m), 1.67-1.53 (2 H, m), 1.46-1.30 (2 H, m); δ_c (100.5 MHz; CDCl$_3$) 173.2 (s), 136.4 (s), 130.4 (d), 128.5 (d), 127.6 (d), 58.6 (d), 46.0 (t), 30.2 (t), 25.4 (t); m/z (EI$^+$) 349 (M+H)$^+$; HRMS (EI$^+$) (M$^+$) C$_{22}$H$_{24}$N$_2$O$_2$ requires: 348.1838; found: 348.1838.

(2R,3R)-Diphenylpiperazine 3k14

Following general method D, using diamine 2k (0.050 g, 0.24 mmol), triethylamine (0.047 g, 0.46 mmol) and diphenylvinylsulfonium salt 1 (0.089 g, 0.25 mmol), after chromatography (Et$_2$O-Et$_3$N, 9:1); the title compound 3k was isolated as a white solid (0.052 g, 91%); mp 96-98 °C (Et$_2$O-PE) [lit.14 mp 94-96 °C]; δ_H (400 MHz; CDCl$_3$) 7.13-7.06 (10 H, m, ArH), 3.70 (2 H, s, NCH), 3.15-3.05 (4 H, m, NCH$_2$), 2.51 (2 H, br s, NH); δ_c (100 MHz; CDCl$_3$) 140.6 (s), 128.2 (d), 128.0 (d), 127.5 (d), 67.9 (d), 46.8 (t).

(±)-N,N-Bistosyl-1,2-trans-cyclohexanediamine 2l13

A stirred solution of (±)-trans-1,2-diaminocyclohexane 2j (0.390 g, 3.42 mmol) in dry CH$_2$Cl$_2$ (10 mL) was cooled to 0 °C and treated with triethylamine (0.692 g, 6.84 mmol) under argon. Tosyl chloride (1.4 g, 7.3 mmol) was added and stirred for 1 h. The reaction mixture was allowed to warm to RT and stirred overnight. The reaction was quenched with water (50 mL), extracted with CH$_2$Cl$_2$ (3 \times 100 mL). The combined organic phases were washed with 1 M HCl (50 mL), water (50 mL), sat. NaHCO$_3$ (50 mL), brine (50 mL) and dried over MgSO$_4$, filtered and concentrated under vacuum and
after chromatography (EtOAc-PE, 3:7) the title compound 2l was isolated as a colorless crystalline solid (1.03 g, 71%); R_f 0.37 (EtOAc-Pet Ether, 4: 6); mp 186-188 °C (EtOAc-PE) [lit.13 180-181 °C]; δ_H (400 MHz; CDCl$_3$) 7.76 (4 H, d, J 8.5, ArH), 7.32 (4 H, d, J 8.5, ArH), 4.85 (2 H, d, J 5.5, NH), 2.74 (2 H, m, NCH), 2.43 (6 H, s, Ar-CH$_3$), 1.85 (2 H, d, J 11.5), 1.56 (2 H, d, J 6.5), 1.11 (4 H, m); δ_c (100.5 MHz; CDCl$_3$) 143.7 (s), 137.0 (s), 129.8 (d), 127.3 (d), 56.7 (d), 33.5 (t), 24.3 (t), 21.6 (q).

(±)-1,4-Bis(toluene-4-sulfonyl)decahydroquinoxaline 3l

Following general method D, using bis-N-tosyl diamine 2l (0.020 g, 0.047 mmol), DBU (0.015 g, 0.099 mmol) and diphenylvinylsulfonium salt 1 (0.019 g, 0.052 mmol), after chromatography (EtOAc-PE, 4:6) the title compound 3l was isolated as a colorless crystalline solid (0.021 g, 99%); R_f 0.55 (EtOAc-PE, 4:6); mp 127-129 °C (EtOAc-PE); $\nu_{max}{(\text{neat})/ \text{cm}^{-1}}$ 1342 (SO$_2$), 1158 (SO$_2$); δ_H (400 MHz; CDCl$_3$) 7.63 (4 H, d, J 8.0, ArH), 7.32 (4 H, d, J 8.0, ArH), 3.96-3.82 (2 H, m NCH), 3.24-3.10 (2 H, m, NCH), 2.92-2.81 (2 H, m, NCH), 2.36-2.26 (2 H, m), 1.70-1.58 (2 H, m), 1.54-1.38 (2 H, m), 1.20-1.12 (2 H, m); δ_c (100.5 MHz; CDCl$_3$) 143.8 (s), 137.9 (s), 129.9 (d), 127.2 (d), 62.1(d), 46.89 (t), 30.9 (t), 24.7 (t), 21.6 (q); m/z (ESI$^+$) 449 [M+H]$^+$; HRMS (ESI$^+$) C$_{22}$H$_{29}$N$_2$O$_4$S$_2$(MH)$^+$ requires: 449.1561; found: 449.1563;

(±)-N,N-(Propane-1,2-diyl)bis(4-methylbenzenesulfonamide) 2m

A stirred solution of (±)-propan-1,2-diamine (0.50 g, 6.7 mmol) in dry CH$_2$Cl$_2$ (10 mL) was cooled to 0 °C and treated with triethylamine (1.48 g, 14.6 mmol) under argon. Tosyl chloride (2.57 g, 13.5 mmol) was added and the reaction mixture was stirred for
1 h. Then the reaction mixture was allowed to warm to RT and stirred overnight. The reaction was quenched with water (50 mL), and extracted with CH₂Cl₂ (3 × 100 mL). The organic phase was washed with 1 M HCl (50 mL), water (50 mL), sat. NaHCO₃ (50 mL), brine (50 mL) and dried over MgSO₄, filtered and concentrated under vacuum. After chromatography (EtOAc-PE, 2:8) the title compound 2m was isolated as a white solid (2.10 g, 82%); Rᶠ 0.1 (EtOAc-PE, 3:7); mp 107-109 °C (EtOAc-PE); δ_H (400 MHz; CDCl₃) 7.72 (2 H, d, J 8.5, ArH), 7.68 (2 H, d, J 8.5, ArH), 7.30-7.24 (4 H, m, ArH), 5.32 (1 H, br s, NH), 5.18 (1 H, br s, NH), 3.34-3.30 (1 H, m, NCHCH₂), 2.94 (1 H, ddd, J 13.5, 6.5, 4.5, NCHH), 2.87-2.80 (1 H, m, NCHH), 2.40 (3 H, s, Ar-CH₃), 2.39 (3 H, s, Ar-CH₃), 0.96 (3 H, d, J 6.5, CH₃); δ_c (100.5 MHz; CDCl₃) 143.7 (s), 143.5 (s), 137.2 (s), 136.7 (s), 129.9 (2 × d), 129.8 (d), 127.2 (d), 127.1 (d), 49.5 (d), 48.3 (t), 21.7 (q), 21.6 (q), 18.7 (q).

(±)-2-Methyl-1,4-ditosylpiperazine 3m

Following general method D, using bis-N-tosyl diamine 2m (0.115 g, 0.301 mmol), DBU (0.092 g, 0.60 mmol) and diphenylvinylsulfonium salt 1 (0.114 g, 0.315 mmol), after chromatography (EtOAc-PE, 4:6) the title compound 3m was isolated as a white solid (0.120 g, 98%); Rᶠ 0.33 (EtOAc-PE, 3:7); mp 175-177 °C (EtOAc-PE); ν_max(neat)/cm⁻¹ 1341 (SO₂), 1161 (SO₂); δ_H (400 MHz; CDCl₃) 7.62 (2 H, d, J 8.5, ArH), 7.57 (2 H, d, J 8.5, ArH), 7.33 (2 H, d, J 8.0, ArH), 7.26 (2 H, d, J 8.0, ArH), 4.21-4.12 (1 H, m, NCH), 3.72-3.60 (2 H, m, NCHC₆H₅), 3.44 (1 H, ddd, J 12.5, 3.5, 3.5, NCHH_eq), 3.20 (1 H, ddd, 12.5, 12.5, 3.5, NCHH_ax), 2.45 (4 H, m, NCHH, Ar-CH₃), 2.41 (3 H, s, Ar-CH₃), 2.32 (1 H, ddd, J 12.5, 12.5, 3.5, NCHH_ax), 1.09 (3 H, d, J 6.5, CHCH₃); δ_c (100.5 MHz; CDCl₃) 144.1 (s), 143.7 (s), 137.1 (s), 132.3 (s), 129.9 (2 × d), 127.6 (d), 127.0 (d), 51.1 (t), 48.5 (d), 45.9 (t), 39.6 (t), 21.7 (q), 21.6 (q), 14.0 (q); m/z (Cl⁺) 409 (M+H)⁺; HRMS (Cl⁺) C₁₉H₂₅N₂O₄S₂ (MH⁺) requires: 409.1256; found: 409.1252. Anal. C₁₉H₂₄N₂O₄S₂ requires: C, 55.86; H, 5.92; N, 6.86; S, 15.70; found: C, 56.30; H, 5.94; N, 7.18; S, 15.64.
Synthesis of (3S) 4-[(9H-Fluoren-9-ylmethoxy)carbonyl] morpholine-3-carboxylic acid 6

Methyl (3S)-morpholine-3-carboxylate hydrobromide 9

According to the procedure reported by Sannamu et al., a solution of N-tosyl morpholine 3c (0.100 g, 0.334 mmol), phenol (0.062 g, 0.66 mmol) and 45% HBr in acetic acid (0.7 mL) was stirred at RT for 16 h. After this the reaction mixture was poured into anhydrous ether (5 mL) and a precipitate formed. The precipitate was removed by filtration, washed with ether (15 mL) and dried under high vacuum. The target compound 9 was isolated as a light yellow solid (0.070 g, 94%); mp 138-140 °C (decomposed) (MeOH-Et2O); [α]D -7.5 (c. 0.4, CH3OH); νmax(neat)/cm⁻¹ 3383 (NH), 1743 (CO); δH (400 MHz; CDCl₃) 4.36 (1 H, dd, J 8.5, 4.0, NCH), 4.22 (dd, 1 H, J 12.5, 4.0, NCHCHH), 3.98 (1 H, ddd, J 12.5, 4.0, 4.0, NCH₂CHHₑq), 3.90 (1 H, dd, J 12.5, 8.5, NCHCHH), 3.87 (3 H, s, OCH₃), 3.78 (1 H, ddd, J 12.5, 9.5, 3.5, NCH₂CHHₑq), 3.43 (1 H, ddd, J 12.5, 4.5, 3.5, NCHHₑq), 3.27 (1 H, ddd, 12.5, 9.5, 3.5, NCHHₑq); δc (100.5 MHz; CDCl₃) 168.0 (s), 66.6 (t), 64.9 (t), 56.3 (d), 54.3 (q), 43.8 (t); m/z (Cl⁺) 146 (MH⁺-HBr); HRMS (Cl⁺) (M⁺-Br) C₆H₁₂NO₃ requires: 146.0817; found: 146.0812.

4-(9H-Fluoren-9-ylmethyl) 3-methyl (S)-morpholine-3,4-dicarboxylate 10

To a stirred solution of morpholine hydrobromide 9 (0.050 g, 0.22 mmol) in 2:1 water-dioxane (2 mL) was added NaHCO₃ (0.055 g, 0.65 mmol), and the mixture was cooled to 0 °C. A solution of Fmoc-Cl (0.062 g, 0.24 mmol) in dioxane (2 mL) was then added dropwise, the reaction mixture was allowed to warm to RT and after 3 h stirring, ethyl acetate (20 mL) was added. The organic phase was separated and it was washed with 1 M HCl, brine and dried over Na₂SO₄, filtered and concentrated under vacuum. The crude was purified by preparative TLC (EtOAc-PE, 3:7) to afford the target compound
10 as a white foam (0.080 g, 99%); \(R_f \) 0.45 (EtOAc-PE, 3:7); \([\alpha]_D^{22} \) -51.2 (c. 1.0, CH\(_2\)Cl\(_2\)) [lit.\(^{15}\) \([\alpha]_D^{24} \) -51.5 (c. 1, CH\(_2\)Cl\(_2\))]; \(\delta \) (400 MHz; CDCl\(_3\)) mixture of rotamers, 7.76 (2 H, t, \(J = 7.0 \)), 7.59 (1 H, t, \(J = 8.5 \)), 7.50 (1 H, t, \(J = 7.0 \)), 7.43-7.37 (2 H, m) 7.35-7.27 (2 H, m), 4.65 (0.5 H, br d, \(J = 3.5 \)), 4.56-4.20 (4.5 H, m), 3.94-3.80 (1.5 H, m), 3.78 and 3.73 (3 H, s), 3.66 (1 H, ddd, \(J = 12.0, 12.0, 3.5 \)), 3.58 (0.5 H, dd, \(J = 12.0, 3.5 \)), 3.50-3.40 (1.5 H, m), 3.22 (0.5 H, td, \(J = 12.5, 3.5 \)); \(\delta \) (100.5 MHz; CDCl\(_3\)) 169.8 (s), 156.0 (s), 155.4 (s), 143.7 (s), 143.5 (s), 143.4 (s), 143.3 (s), 141.1 (s), 140.0 (s), 127.5 (d), 127.4 (d), 127.3 (d), 127.2 (d), 126.8 (d), 126.7 (d), 124.8 (d), 124.7 (d), 124.4 (d), 124.3 (d), 119.8 (d), 119.7 (d), 67.7 (t), 67.4 (t), 67.3 (t), 67.0 (t), 66.3 (t), 66.0 (t), 54.6 (d), 54.1 (d), 52.3 (q), 46.9 (d), 41.3 (t), 40.8 (t).

(3S)-\(\text{4-[(9H-Fluoren-9-ylmethoxy)carbonyl] morpholine-3-carboxylic acid 6} \)

According to the procedure reported by the Guarna and co-workers,\(^{15} \) the ester 10 (0.0260 g, 0.0708 mmol) was dissolved in dioxane (2 mL) and treated with 5 M HCl (0.5 mL). After 16 h reflux, the reaction mixture was diluted with 5% Na\(_2\)CO\(_3\) (5 mL), washed with diethyl ether (3 × 5 mL) and conc. HCl was added to the aqueous layer until the pH was 1. The aqueous layer was extracted with CH\(_2\)Cl\(_2\) (3 × 20 mL), dried over Na\(_2\)SO\(_4\), filtered and concentrated under vacuum to afford the title compound 6 as a white solid (0.0245 g, 98%); mp 128-129 °C [lit.\(^{15}\) mp 128-130 °C]; \([\alpha]_D^{22} \) -56.5 (c. 1, CH\(_2\)Cl\(_2\)) [lit.\(^{15}\) \([\alpha]_D^{24} \) -56.9 (c. 1, CH\(_2\)Cl\(_2\))]; \(\delta \) (400 MHz; CDCl\(_3\)), mixture of rotamers, 7.69 (1 H, d, \(J = 7.5 \), ArH), 7.65 (1 H, t, \(J = 7.5 \), ArH), 7.51 (1 H, dd, \(J = 7.5, 4.5 \), ArH), 7.43 (1 H, dd, \(J = 11.5, 7.5 \), ArH), 7.34-7.18 (4 H, m, ArH), 4.63 (0.5 H, d, \(J = 3.5 \)), 4.52-4.43 (1.5 H, m), 4.41-4.32 (1 H, m), 4.27-4.12 (2 H, m), 3.86-3.81 (1 H, m), 3.75-3.55 (1.5 H, m), 3.49 (0.5 H, dd, \(J = 11.5, 3.5 \)), 3.44-3.32 (1.5 H, m), 3.20 (0.5 H, ddd, \(J = 12.5, 12.5, 3.4 \) Hz); \(\delta \) (100.5 MHz; CDCl\(_3\)) 175.0 (s), 174.8 (s), 156.3 (s), 155.6 (s), 143.7 (s), 143.6 (s), 141.2 (s, 2 C), 127.6 (d, \(J = 2 \times C \)), 127.0 (d, \(J = 2 \times C \)), 124.9 (d), 124.7 (d), 124.5 (d), 119.9 (d, \(J = 2 \times C \)), 67.9 (t), 67.4 (t), 67.4 (t), 67.0 (t), 66.5 (t), 66.2 (t), 54.5 (d), 54.1 (d), 47.0 (d), 41.4 (t), 40.9 (t).
Use of different vinyl sulfonium salts in the annulation reaction

The effectiveness of different vinyl sulfonium salts was assessed using two test substrates 2e and 2h (Table 1 and 2). Diphenyl vinyl sulfonium salt 1 was found to be the most effective.

Table 1: The synthesis of morpholine 3e using diisopropylvinyl and tetrahydrothiophenevinyl sulfonium salts.

<table>
<thead>
<tr>
<th>Entry</th>
<th>R₂S</th>
<th>Base</th>
<th>Temp (°C)</th>
<th>Time (h)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>i-Pr₂S</td>
<td>Et₃N</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>i-Pr₂S</td>
<td>NaH</td>
<td>0</td>
<td>3</td>
<td>37</td>
</tr>
<tr>
<td>3</td>
<td>-(CH₂)₄-S</td>
<td>Et₃N</td>
<td>0</td>
<td>3</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>-(CH₂)₄-S</td>
<td>NaH</td>
<td>0-RT</td>
<td>18</td>
<td>34</td>
</tr>
<tr>
<td>5</td>
<td>Ph₂S</td>
<td>Et₃N</td>
<td>0-RT</td>
<td>15</td>
<td>98</td>
</tr>
</tbody>
</table>

Table 2: The synthesis of thiomorpholine 3h with diisopropylvinyl and tetrahydrothiophenevinyl sulfonium salt.

<table>
<thead>
<tr>
<th>Entry</th>
<th>R₂S</th>
<th>Temp (°C)</th>
<th>Time (h)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ph₂S</td>
<td>0-RT</td>
<td>15</td>
<td>96</td>
</tr>
<tr>
<td>2</td>
<td>i-Pr₂S</td>
<td>0</td>
<td>15</td>
<td>98</td>
</tr>
<tr>
<td>3</td>
<td>-(CH₂)₄-S</td>
<td>0-RT</td>
<td>18</td>
<td>20</td>
</tr>
</tbody>
</table>

Diisopropyl(vinyl)sulfonium trifluoromethanesulfonate was synthesized according to a literature procedure.²
A solution of 2-bromoethyl trifluoromethanesulfonate\(^2\) (3.40 g, 13.2 mmol) in CH\(_2\)Cl\(_2\) (25 mL) was treated with tetrahydrothiophene (1.20 g, 13.6 mmol) drop-wise over 5 min at RT under nitrogen with stirring. The reaction mixture was then refluxed under nitrogen at 45 °C for 1 d. The CH\(_2\)Cl\(_2\) was removed under vacuum and anhydrous diethyl ether (20 mL) was added to the resulting residue and it was stirred for 1 h to precipitate the product 1-(2-bromoethyl)tetrahydro-1H-thiophenium trifluoromethanesulfonate \(12\), which was isolated by filtration as a white solid (3.00 g, 66%) and was used in the next step without further purification.

A suspension of \(12\) (4.70 g, 13.6 mmol) and silver (I) oxide (6.30 g, 27.2 mmol) in deionized water (10 mL) and THF (10 mL) was stirred for 20 h at RT. Then the reaction mixture was filtered through Celite and the filtrate was concentrated under reduced pressure. The residue was dissolved in CH\(_2\)Cl\(_2\) (30 mL), dried over MgSO\(_4\), filtered, evaporated and the residue was again dissolved in CH\(_2\)Cl\(_2\) (10 mL) and passed through silica. The residue was washed with CH\(_2\)Cl\(_2\) (200 mL) and then with 10% MeOH in CH\(_2\)Cl\(_2\). The solvent was removed under vacuum and the desired product \(11\) was isolated as a clear oil (2.00 g, 56%); \(R_t\) 0.16 (MeOH-DCM, 1:10); \(\delta_H\) (400 MHz; CDCl\(_3\)) 6.73 (1 H, dd, \(J_{16.5, 9.0}, CH_2=CH\)), 6.44 (1 H, dd, \(J_{16.5, 2.5}, HHC=CH\)), 6.35 (1 H, dd, \(J_{9.0, 2.5}, HHC=CH\)), 3.94 (2 H, m, SCH\(_2\)), 3.54 (2 H, m, SCH\(_2\)), 2.46 (4 H, m, SCH\(_2\)CH\(_2\)CH\(_2\)); \(\delta_C\) (100 MHz; CDCl\(_3\)) 135.3 (d), 124.3 (t), 47.2 (t), 28.9 (t); \(v_{max}(neat)/cm^{-1}\) 1450, 1426, 1256, 1165, 1030; \(m/z\) (CI\(^+\)) 115 (M–OTf); HRMS (CI\(^+\)) C\(_6\)H\(_{11}\)S requires: 115.0581; found 115.0581.
Use of primary amines, carbamates and amides as substrates

Treatment of norephedrine with vinyl sulfonium salt in the presence of DBU afforded aziridine 13 (Scheme 1). In 2003 Mukaiyama reported similar chemistry, where aziridines were obtained by treating primary amines with vinyl sulfonium salts. When NaH was used a highly polar product resulted which was difficult to isolate (Scheme 1). Use of carbamate and amide substrates did not lead to any cyclization with a range of bases (Scheme 2).

![Scheme 1: Reaction of vinyl sulfonium salt 1 with primary amines.](image)

(1S,2R)-2-Aziridin-1-yl-1-phenylpropan-1-ol 13

Following general method B, using D-(+)-norephedrine (0.050 g, 0.33 mmol), DBU (0.100 g, 0.657 mmol) and diphenylvinylsulfonium salt 1 (0.140 g, 0.386 mmol), after chromatography (CH$_2$Cl$_2$-MeOH-NH$_3$, 89:1:10) the title compound 13 was isolated as a colorless gummy solid (0.030 g, 51%); δ_H (400 MHz; CDCl$_3$) 7.30-7.20 (5 H, m, ArH), 4.79 (1 H, d, J 3.5, PhCH), 3.24 (1 H, s, OH), 1.74-1.70 (1 H, m, NCH$_3$), 1.67-1.62 (1 H, m, NCH$_2$), 1.39 (1 H, qd, J 6.5, 3.5, MeCH), 1.17-1.12 (2 H, m, NCH$_2$H), 0.90 (3 H, d, J 6.5, CH$_3$); δ_C (100.5 MHz, CDCl$_3$) 141.4 (s), 128.1 (d), 127.1 (d), 126.1 (d), 75.5 (d), 71.5 (d), 27.7 (t), 26.2 (t), 13.3 (q); ν_{max}(neat)/cm$^{-1}$ 2927, 1451, 1259; HRMS (CI$^+$) C$_{11}$H$_{16}$NO requires: 178.1232; found 178.1230.
The amide was completely consumed. A mixture of polar compounds was obtained.

Base = NaH, DBU, Et$_3$N, KOBu

The carbamate was completely consumed. A mixture of polar compounds was obtained.

Base = NaH, Et$_3$N

Scheme 2: Reaction of vinyl sulfonium salt 1 with carbamate and amide substrates.

N-[(1R,2S)-2-Hydroxy-1-methyl-2-phenylethyl]acetamide 14

![Chemical structure of N-[(1R,2S)-2-Hydroxy-1-methyl-2-phenylethyl]acetamide 14](image)

The D-(+)-norephedrine (1.00 g, 6.61 mmol) was dissolved into 1 M NaOH (7.25 mL) solution, stirred at 0 °C for 5 min and then acetyl chloride (0.617 g, 7.86 mmol) was added dropwise. The reaction mixture was further stirred for 2 h at RT. The required product was precipitated out and it was separated by filtration, washed with water, dried under high vacuum, the target compound 14 was obtained as a colorless solid (1.08 g, 85%); R$_f$ 0.15 (EtOAc-PE, 6:4); δH (400MHz; CDCl$_3$) 7.36-7.23 (5 H, m, ArH), 5.54-5.51 (1 H, m), 4.82 (1 H, d, J 3.0, CHO), 4.38-4.29 (1 H, m, NCH), 3.6 (1 H, br s, OH), 2.01 (3 H, s, COCH$_3$), 0.99 (3 H, d, J 6.5); δC (100 MHz, CDCl$_3$) 171.0 (s), 140.7 (s), 128.2 (d), 127.6 (d), 126.3 (d), 76.5 (d), 51.1 (d), 23.3 (q), 14.5 (q).

tert-Butyl [(1R,2S)-2-hydroxy-1-methyl-2-phenylethyl]carbamate 15

![Chemical structure of tert-Butyl [(1R,2S)-2-hydroxy-1-methyl-2-phenylethyl]carbamate 15](image)

According to the procedure reported by Wieland and co-workers, to a suspension of D-(+)-norephedrine (1.00 g, 6.61 mmol) in dimethylformamide (5 mL) was added triethylamine (1.33 g, 13.1 mmol) and the reaction mixture was stirred under argon for 30 min. Then di-tert-butyl dicarbonate (1.50 g, 6.87 mmol) in DMF (5 mL) was added and the reaction mixture was stirred overnight at RT. The DMF was removed under high vacuum, and the resulting residue was dissolved in ethyl acetate (50 mL) and was
added water (35 mL). The aqueous layer was extracted twice with ethyl acetate (10mL), and the combined organic layers were washed with brine and dried over Na₂SO₄. The solvent was removed under vacuum and the title compound 15 was isolated as white solid (1.30 g, 78%); mp 86-88 °C (Et₂O) [lit.²² mp 88-89 °C (Et₂O-hexane)]; δH (400 MHz; CDCl₃) 7.31 (5 H, m, ArH), 4.86 (1 H, br dd, J 4.0, 3.5, PhCH), 4.62 (1 H, br s), 4.10-3.99 (1 H, m, NCH), 3.25 (1 H, br s), 1.47 (9 H, s, C(CH₃)₃), 0.99 (3 H, d, J 7.0, CH₃CH); δC (100 MHz, CDCl₃) 156.5 (s), 140.8 (s), 128.2 (d), 127.5 (d), 126.4 (d), 79.9 (s), 76.9 (d), 52.0 (d), 28.4 (q), 14.9 (q).
References

NMR Spectrum of sulfonamide 2f
[(1R,2S)-2-Hydroxy-1-methyl-2-phenylethyl]-4-nitrobenzenesulfonamide 2f

1H NMR (400 MHz), CDCl$_3$

13C NMR (100 MHz), CDCl$_3$
NMR Spectra of morpholines 3a-3f

(±)-3-Methyl-4-[(4-methylphenyl)sulfonyl]morpholine 3a

1H NMR (400 MHz), CDCl$_3$

13C NMR (100 MHz), CDCl$_3$
(3S)-3-Isopropyl-4-[(4-methylphenyl)sulfonyl]morpholine 3b

1H NMR (400 MHz), CDCl$_3$

13C NMR (100 MHz), CDCl$_3$
Methyl (3S)-4-[(4-methylphenyl)sulfonyl]morpholine-3-carboxylate 3c

1H NMR (400 MHz), CDCl$_3$

13C NMR (100 MHz), CDCl$_3$
3,3-Dimethyl-4-[(4-methylphenyl)sulfonyl]morpholine 3d
1H NMR (400 MHz), CDCl$_3$

13C NMR (100 MHz), CDCl$_3$
(2S,3R)-3-Methyl-4-[(4-methylphenyl)sulfonyl]-2-phenylmorpholine 3e
1H NMR (400 MHz), CDCl$_3$

13C NMR (100 MHz), CDCl$_3$
(2S,3R)-3-Methyl-4-[(4-nitrophenyl)sulfonyl]-2-phenylmorpholine 3f

1H NMR (400 MHz), CDCl$_3$

13C NMR (100 MHz), CDCl$_3$
NMR Spectra of thiomorpholines 3g, 8, 3i

Thiomorpholine 3g
1H NMR (270 MHz), CDCl$_3$

13C NMR (100 MHz), CDCl$_3$
Thiomorpholine-(3R)-carboxylic acid methyl ester hydrochloride 8

1H NMR (270 MHz), D$_2$O

13C NMR (100 MHz), D$_2$O
Methyl (3S)-2,2-dimethylthiomorpholine-3-carboxylate 3i

1H NMR (400 MHz), CDCl$_3$

13C NMR (100 MHz), CDCl$_3$
NMR Spectra of piperazines 3j-3m

(±)-1,4-Dibenzoyldecahydroquinoxaline 3j
1H NMR (400 MHz), CDCl$_3$

13C NMR (100 MHz), CDCl$_3$
(2R,3R)-Diphenylpiperazine 3k
1H NMR (400 MHz), CDCl$_3$

13C NMR (100 MHz), CDCl$_3$
(±)-1,4-Bis(toluene-4-sulfonyl)decahydroquinoxaline 3l

1H NMR (400 MHz), CDCl$_3$

13C NMR (100 MHz), CDCl$_3$
(±)-2-Methyl-1,4-ditosylpiperazine 3m

1H NMR (400 MHz), CDCl$_3$

13C NMR (100 MHz), CDCl$_3$
NMR Spectra of morpholines 9, 10, 6

Methyl (3S)-morpholine-3-carboxylate hydrobromide 9

1H NMR (400 MHz), CD$_3$OD

![Methyl (3S)-morpholine-3-carboxylate hydrobromide 9 1H NMR](image)

13C NMR (100 MHz), CD$_3$OD

![Methyl (3S)-morpholine-3-carboxylate hydrobromide 9 13C NMR](image)
4-(9H-Fluoren-9-ylmethyl) 3-methyl (S)-morpholine-3,4-dicarboxylate 10

1H NMR (400 MHz), CDCl$_3$

13C NMR (100 MHz), CDCl$_3$
(3S) 4-[(9H-Fluoren-9-ylmethoxy)carbonyl] morpholine-3-carboxylic acid 6

1H NMR (400 MHz), CDCl$_3$

13C NMR (100 MHz), CDCl$_3$
NMR Spectrum of vinyl sulphonium salt 11

1-Vinyltetrahydro-1H-thiophenium trifluoromethanesulfonate 11

1H NMR (400 MHz), CDCl$_3$

13C NMR (100 MHz), CDCl$_3$
NMR Spectra of D-(+)-norephedrine derivatives 13, 14 and 15

(1S,2R)-2-Aziridin-1-yl-1-phenylpropan-1-ol 13
1H NMR (400 MHz), CDCl$_3$

13C NMR (100 MHz), CDCl$_3$
N-$\{1R,2S\}$-2-Hydroxy-1-methyl-2-phenylethyl]acetamide 14

1H-NMR (400 MHz), CDCl$_3$

13C-NMR (100 MHz), CDCl$_3$
tert-Butyl [1\textit{R},2\textit{S}]-2-hydroxy-1-methyl-2-phenylethyl]carbamate 15

1H NMR (400 MHz), CDCl$_3$

13C NMR (100 MHz), CDCl$_3$