

Supporting Information

© Wiley-VCH 2008

69451 Weinheim, Germany

Highly Stereoselective Ring Expansion Reactions Mediated by Attractive, Non-bonded Cation-*n* Interactions

Timothy Ribelin, Christopher E. Katz, Donna G. English, Sherriel Smith, Anna K. Manukyan, Victor W. Day, Benjamin Neuenswander, Jennifer L. Poutsma,* and Jeffrey Aubé*

Supporting Information

Computational section

Azide synthesis

Experimental section

^1H and ^{13}C NMR spectra

Corresponding author:

Professor Jeffrey Aubé
Department of Medicinal Chemistry
1251 Wescoe Hall Drive, Room 4040b
Malott Hall
University of Kansas
Lawrence, Kansas 66045-2506

Tel 785.864.4496
Fax 785.864.5326
E-mail: jaube@ku.edu

Table of Contents

	Page
Computational Table of Contents	SI-3
Computation Data	SI-4
List of known compounds	SI-10
Experimental section	
substituted hydroxyalkyl azides	SI-10
Ring expansion reactions	SI-19
References	SI-28
¹H and ¹³C NMR spectra	SI-29

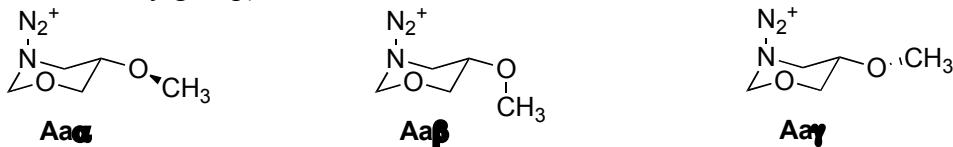
A Note about Compound Designations.

All compounds that are discussed in the main body of the text are identified by bold numbers **1**-**12** in the Supporting Information. Virtual compounds created in silico for ab initio studies are designated by capitol bold letters **A** – **F** in both the text and the Supporting Information. Throughout, lower case bold letters are added to indicate stereoisomers; for a few in silico compounds additional Greek bold letters are used to indicate rotational conformers. Synthetic intermediates or other compounds that are only discussed in the Supporting Information are designated as **SI1**, **SI2**, etc.

Crystallographic Data

The stereostructures of compounds *ent*-**3c**, *ent*-**3d**, **SI-10** (analogue of compound **5**), **SI-11** (analogue of compound **11**) were verified by X-ray crystallography. The details of these analyses can be accessed through CCDC entries 647651 (*ent*-**3c**), 647652 (**SI-10**), 647654 (**SI-11**), and 683831 (*ent*-**3d**) contain the supplementary crystallographic data for this paper. Note that the X-ray structures for racemic compounds **3c** and **3d** were solved in forms enantiomeric to those depicted in the paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Computational Data Contents


Methodology	Page SI-4
Table 1S. Total Energies (HF) and Relative Energies (kcal/mol) of the Heteroatom-Substituted Cyclohexane Intermediate Model System, A , for R = Methoxy	Page SI-5
Table 2S. Total Energies (HF) and Relative Energies (kcal/mol) of the Heteroatom-Substituted Cyclopentane Intermediate Model System, C	Page SI-5
Table 3S. Total Energies (HF) and Relative Energies (kcal/mol) of the Heteroatom-Substituted Cyclopentane Intermediate Model System, E	Page SI-6
Table 4S. Corrections (HF) Based on MP2/6-31G* Frequencies Used to Convert Energies to Free Energies	Page SI-6
Table 5S. MP2/6-31G* Cartesian Coordinates for Aa	Page SI-6
Table 6S. MP2/6-31G* Cartesian Coordinates for Ab	Page SI-7
Table 7S. MP2/6-31G* Cartesian Coordinates for Ca1	Page SI-7
Table 8S. MP2/6-31G* Cartesian Coordinates for Cb4	Page SI-8
Table 9S. MP2/6-31G* Cartesian Coordinates for Ea1	Page SI-8
Table 10S. MP2/6-31G* Cartesian Coordinates for Eb4	Page SI-9

Computational Methodology

The Gaussian98¹ and Gaussian03 programs were used to perform optimization, single point, and frequency calculations. Only the Gaussian03 program was used for the solvent calculations. The levels of theory and basis sets utilized were MP2/6-31G*, and MP2/6-311+G**//MP2/6-31G*. Frequency calculations were performed to confirm the identity of minima. The MP2/6-31G* frequencies were then scaled based on the recommendations of Scott and Radom² and used to convert the electronic energies to free energies. All of the solvent calculations were single points at the MP2/6-311+G**//MP2/6-31G* level of theory and used the CPCM method with a dielectric of 8.93, which is that of dichloromethane, the experimental solvent.

In calculations for the (methoxymethyl)hydroxyethyl azides, the initial conformational searches used a model system in which the *tert*-butylcyclohexane ring was substituted with hydrogens. The hydrogens were then replaced with methyl groups in all located minima and reoptimized. Not surprisingly, some conformers were no longer minima on the potential energy surface due to new steric interactions. All located minima along with their energies are listed below.

Table 1S. Total Energies (HF) and Relative Energies (kcal/mol) of the Heteroatom-Substituted Cyclohexane Intermediate Model System, **A**, for R = Methoxy (**α**, **β** and **γ** are different rotational conformers of the methoxy group)

	MP2/6-31G(d)		MP2/6-311+G(d,p)// MP2/6-31G(d)		MP2/6-311+G(d,p)// MP2/6-31G(d) CPCM	
Conformer	Total Energy	Rel. E	Total Energy	Rel. E	Total Energy	Rel. E
Aaα	-509.3607392	6.7	-509.6502942	6.5	-509.7284358	4.4
Aaβ	-509.3537409	11.0	-509.6434077	10.8	-509.7234012	7.6
Aaγ	-509.3600171	7.1	-509.6493108	7.1	-509.7277374	4.9
Abα	-509.3713410	0.0	-509.6605836	0.0	-509.7354688	0.0
Abγ	-509.3694586	1.2	-509.6577753	1.8	-509.7341690	0.8
Acα	-509.3560575	9.6	-509.6456783	9.4	-509.7246449	6.8
Acβ	-509.3485749	14.3	-509.6383574	13.9	-509.7196747	9.9
Ad	CNL	—	CNL	—	CNL	—

Table 2S. Total Energies (HF) and Relative Energies (kcal/mol) of the Heteroatom-Substituted Cyclopentane Intermediate Model System, **C**, for R = CH₂OCH₃ (**1**, **2**, **3**, **4**, **5**, and **6** are different conformers of the five-membered ring)

	MP2/6-31G(d)		MP2/6-311+G(d,p)// MP2/6-31G(d)		MP2/6-311+G(d,p)// MP2/6-31G(d) CPCM	
Conformer	Total Energy	Rel. E	Total Energy	Rel. E	Total Energy	Rel. E
Ca1	-587.724808	0.0	-588.072203	0.0	-588.139453	0.0
Ca2	-587.711118	8.6	-588.060392	7.4	-588.132327	4.5
Ca3	-587.715968	5.5	-588.064355	4.9	-588.132812	4.2
Cb4	-587.716059	5.5	-588.064108	5.1	-588.132618	4.3
Cb5	-587.705800	11.9	-588.054558	11.1	-588.126999	7.8
Cb6	-587.710967	8.7	-588.059338	8.1	-588.128691	6.8
Cb7	-587.711884	8.1	-588.060850	7.1	-588.130136	5.8

Table 3S. Total Energies (HF) and Relative Energies (kcal/mol) of the Heteroatom-Substituted Cyclopentane Intermediate Model System, **E**, for R = CH₂OCH₃ (**1**, **2**, **3**, **4**, **5**, **6**, and **7** are different conformers of the five-membered ring)

Conformer	MP2/6-31G(d)		MP2/6-311+G(d,p)// MP2/6-31G(d)		MP2/6-311+G(d,p)// MP2/6-31G(d) CPCM	
	Total Energy	Rel. E	Total Energy	Rel. E	Total Energy	Rel. E
Ea1	-587.722221	0.0	-588.071031	0.0	-588.137952	0.0
Ea2	-587.721498	0.5	-588.070231	0.5	-588.136688	0.8
Ea3	-587.719873	1.5	-588.068568	1.5	-588.136437	1.0
Eb4	-587.720915	0.8	-588.069906	0.7	-588.136496	0.9
Eb5	-587.713206	5.7	-588.062282	5.5	-588.131721	3.9
Eb6	-587.712890	5.9	-588.062160	5.6	-588.132392	3.5

Table 4S. Corrections (HF) Based on MP2/6-31G* Frequencies Used to Convert Energies to Free Energies for N₂⁺ Axial Conformers

Compound	a, R equat.	b, R axial
A (a)	0.155696	0.156735
C (1, 4)	0.209666	0.208964
E (1, 4)	0.209467	0.209030

Table 5S. MP2/6-31G* Cartesian Coordinates for **Aa****a**

Atom	X	Y	Z
O	-0.6308	-1.5957	0.6501
C	0.7476	-1.3352	0.2868
C	0.9409	0.1654	0.0613
C	-0.0386	0.6743	-0.9985
N	-1.4367	0.1933	-0.6961
C	-1.4860	-1.3115	-0.3826
H	1.0090	-1.8854	-0.6266
H	1.3475	-1.7076	1.1169
H	0.1937	0.2426	-1.9759
H	-0.0441	1.7631	-1.0861
H	-1.2093	-1.7558	-1.3466
H	-2.5090	-1.5640	-0.1004
N	-2.0457	0.9002	0.1992
N	-2.6796	1.5450	0.9053
O	2.2011	0.4508	-0.4899
H	0.7741	0.7029	1.0094
C	3.2450	0.6209	0.4873
H	4.1396	0.8652	-0.0820
H	3.4145	-0.2974	1.0570
H	3.0018	1.4427	1.1688

Table 6S. MP2/6-31G* Cartesian Coordinates for **Ab**

Atom	X	Y	Z
O	-1.8064	-0.5450	1.4017
C	-1.7379	0.8688	1.0968
C	-0.8248	1.1513	-0.1017
C	-1.3779	0.3428	-1.2854
N	-1.4931	-1.1086	-0.8981
C	-2.3351	-1.2764	0.3666
H	-2.7533	1.2395	0.8945
H	-1.3699	1.3469	2.0056
H	-2.4077	0.6136	-1.5442
H	-0.7659	0.4059	-2.1874
H	-3.3233	-0.9398	0.0269
H	-2.3466	-2.3338	0.6352
N	-0.3476	-1.7233	-0.8107
N	0.5648	-2.4180	-0.8497
C	0.6151	0.7043	0.1234
C	1.5323	0.8385	-0.9360
C	2.8414	0.3739	-0.8168
C	3.2639	-0.2288	0.3710
C	2.3747	-0.3354	1.4419
C	1.0615	0.1250	1.3228
H	1.2384	1.3245	-1.8649
H	3.5327	0.4899	-1.6475
H	4.2827	-0.5945	0.4667
H	2.7015	-0.7809	2.3779
H	0.3936	0.0036	2.1687
C	-0.9139	2.6464	-0.4332
H	-1.9517	2.9546	-0.6009
H	-0.5063	3.2301	0.3967
H	-0.3354	2.8889	-1.3277

Table 7S. MP2/6-31G* Cartesian Coordinates for **Ca1**

Atom	X	Y	Z
N	0.8158	0.5051	-0.8692
C	1.4423	-0.0376	0.4544
C	0.2279	-0.6714	-1.5912
O	0.8405	-1.3096	0.5836
C	-0.1256	-1.6120	-0.4371
H	1.0300	-1.0547	-2.2241
H	-0.6183	-0.3563	-2.2042
N	0.0376	1.5225	-0.7442
N	-0.5292	2.5158	-0.6966
H	0.0295	-2.6579	-0.7225
C	-1.5385	-1.4187	0.0707
H	-2.2518	-1.8659	-0.6393
H	-1.6462	-1.9240	1.0398
O	-1.7591	-0.0195	0.1885
C	-3.0701	0.2784	0.6968

H	-3.1468	1.3647	0.7404
H	-3.8405	-0.1201	0.0285
H	-3.1975	-0.1427	1.6990
C	1.1014	0.8450	1.6329
H	0.0197	0.8925	1.7688
H	1.5401	0.3789	2.5182
H	1.5320	1.8455	1.5311
C	2.9233	-0.1875	0.1842
H	3.4018	0.7877	0.0689
H	3.3687	-0.7082	1.0358
H	3.0934	-0.7884	-0.7117

Table 8S. MP2/6-31G* Cartesian Coordinates for **Cb4**

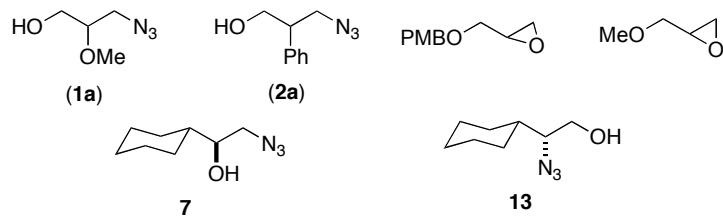
Atom	X	Y	Z
N	1.2417	-0.3618	-0.7230
C	0.8716	0.9407	0.0936
O	0.1233	0.4028	1.1472
C	-0.5205	-0.8491	0.8135
C	0.0569	-1.2717	-0.5513
H	0.3716	-2.3163	-0.6042
H	-0.6174	-1.0408	-1.3753
C	-2.0338	-0.7413	0.7982
H	-2.4625	-1.7568	0.8196
H	-2.3521	-0.2197	1.7118
O	-2.4281	-0.0482	-0.3666
C	-3.8461	0.1638	-0.4099
H	-4.3807	-0.7924	-0.3978
H	-4.1710	0.7764	0.4378
H	-4.0488	0.6869	-1.3431
N	2.3669	-0.8948	-0.3907
N	3.4239	-1.3158	-0.2279
H	-0.2237	-1.5492	1.6028
C	2.1039	1.6122	0.6492
H	2.7693	1.9498	-0.1496
H	1.7703	2.4894	1.2082
H	2.6332	0.9603	1.3481
C	0.0803	1.7969	-0.8707
H	-0.8153	1.2825	-1.2166
H	-0.2396	2.6850	-0.3184
H	0.7047	2.1063	-1.7118

Table 9S. MP2/6-31G* Cartesian Coordinates for **Ea1**

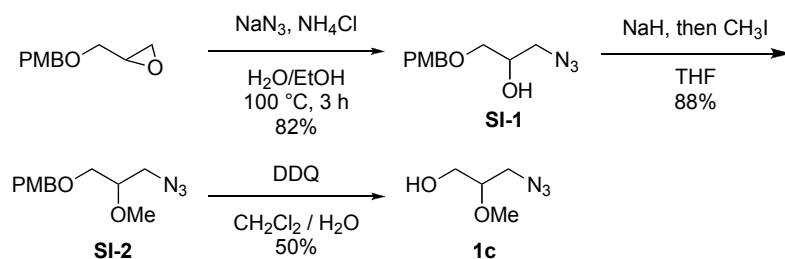
Atom	X	Y	Z
O	1.6901	1.3889	-0.1217
C	1.6673	0.0108	-0.2997
C	0.3522	1.8798	0.0112
N	0.5106	-0.3235	0.7547
C	-0.3066	0.9247	1.0187
H	0.4239	2.8971	0.3977
H	-0.1853	1.8736	-0.9406

N	-0.1029	-1.4317	0.6252
N	-0.5681	-2.4805	0.5772
C	-1.7902	0.6980	0.7966
H	-2.2151	0.0450	1.5760
H	-2.2998	1.6711	0.8716
O	-1.9172	0.1218	-0.4866
C	-3.2910	-0.1130	-0.8451
H	-3.7633	-0.7995	-0.1340
H	-3.2728	-0.5604	-1.8372
H	-3.8459	0.8300	-0.8722
H	-0.0918	1.2154	2.0511
C	2.9595	-0.5824	0.1953
H	3.7615	-0.2556	-0.4723
H	2.9228	-1.6747	0.1806
H	3.1703	-0.2266	1.2045
C	1.2275	-0.4470	-1.6749
H	0.2315	-0.0829	-1.9302
H	1.2395	-1.5384	-1.7473
H	1.9520	-0.0544	-2.3935

Table 10S. MP2/6-31G* Cartesian Coordinates for **Eb4**

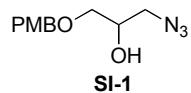

Atom	X	Y	Z
O	1.8786	-1.1704	-0.5758
C	0.6690	-1.9153	-0.3899
C	-0.4251	-0.8681	-0.5955
N	0.2533	0.2830	0.0976
C	1.8175	0.0155	0.1623
H	0.6155	-2.3683	0.6067
H	0.6492	-2.6948	-1.1519
H	-0.5294	-0.6185	-1.6571
C	-1.7778	-1.0931	0.0394
N	-0.1541	1.4633	-0.1595
N	-0.4901	2.5526	-0.2989
C	-2.3016	-1.9053	-0.4875
C	-1.6673	-1.3744	1.0976
O	-2.4377	0.1479	-0.1032
C	-3.7781	0.1224	0.4134
H	-3.7754	-0.1173	1.4821
H	-4.1826	1.1211	0.2580
H	-4.3835	-0.6106	-0.1292
C	2.5966	1.0864	-0.5593
H	2.2590	1.1787	-1.5941
H	2.5338	2.0493	-0.0454
H	3.6450	0.7778	-0.5698
C	2.1597	-0.1463	1.6274
H	1.9980	0.7897	2.1679
H	1.5616	-0.9304	2.0945
H	3.2164	-0.4179	1.7001

General Information. All commercial materials were used as supplied unless otherwise noted. ¹H and ¹³C NMR spectra were recorded on Bruker instruments in CDCl₃ at 400 MHz for ¹H and 125 MHz for ¹³C. IR spectrum was taken on a FT/IR-8000S. Dry flasks (noted) were flame dried under vacuum. Solvents were dried using an Innovative Technologies Pure-Solv solvent system.

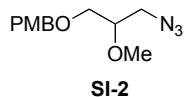

List of Known Compounds

The following azides and intermediates are known: 3-azido-2-methoxypropan-1-ol (**1a**)³, 3-azido-2-phenylpropan-1-ol (**2a**)³, 2-azido-1-cyclohexylethanol (**7**), 2-azido-2-cyclohexylethanol (**13**), 2-(4'-methoxybenzyloxy)methyl oxirane⁴, 3-methoxypropane-1,2-diol (**SI-4**).⁵

Figure S1: Known intermediates and compounds.

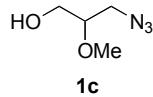


Scheme S1. Synthesis of **1c.**

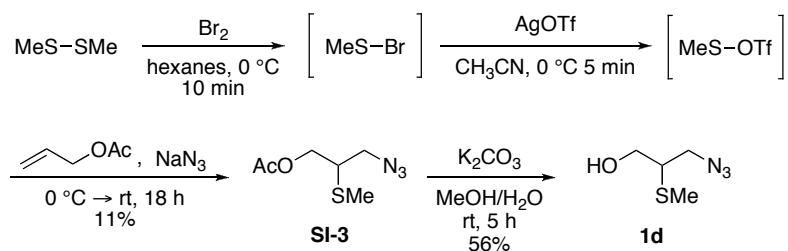


3-Azido-2-methoxypropan-1-ol (\pm)-**1c** was prepared in three steps from commercially available starting materials (Scheme S1). Taking into consideration that (\pm)-**1c** is a low molecular weight azide and therefore volatile, the synthesis entailed a protection/deprotection strategy to increase the molecular weight and subsequent ability to handle the intermediates during the synthesis. Hence, 2-

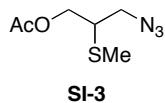
(4'-methoxybenzyloxy)methyl oxirane⁴ underwent nucleophilic ring opening with sodium azide in water/ethanol (1:1) to afford the PMB-protected alcohol (\pm)-**SI-1** as a single regioisomer. Deprotonation of the secondary alcohol by sodium hydride followed by O-alkylation with iodomethane then gave the desired PMB-protected azide (\pm)-**SI-2**. Deprotection of the PMB protecting group by DDQ in water/dichloromethane (1:18) gave (\pm)-**1c** in 37% overall yield over three steps.



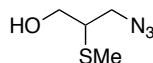
(\pm)-1-Azido-3-(4'-methoxybenzyloxy)propan-2-ol (SI-1). To a stirred solution of 2-(4'-methoxybenzyloxy)methyl oxirane⁴ (2.0 g, 10.3 mmol) in 10.3 mL EtOH and 2.5 mL H₂O at room temperature, NaN₃ (0.80 g, 12.4 mmol) and NH₄Cl (0.72 g, 13.4 mmol) were added. After 10 min, the mixture was heated to reflux for 1 h and then allowed to cool to room temperature, diluted with H₂O, and extracted with Et₂O (4 \times 20 mL). The combined organic layers were washed with water, brine, dried (Na₂SO₄), and concentrated to an oil that was purified by column chromatography (5-33% EtOAc/hexane) to provide a **SI-1** as a colorless oil (2.0 g, 82%); R_f = 0.40 (33% EtOAc/hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.23 (m, 2H), 6.87 (m, 2H), 4.46 (s, 2H), 3.91 (m, 1H), 3.78 (s, 3H), 3.45 (m, 2H), 3.33 (m, 2H), 2.77 (br s, 1H). ¹³C NMR (100.6 MHz, CDCl₃) δ 159.4, 129.7, 129.5, 113.9, 73.2, 71.0, 69.7, 55.3, 53.5. IR (neat) 3450, 2100 cm⁻¹. MS (ES+) *m/z* 260 [M]⁺; HRMS (ES+) calcd for C₁₁H₁₅N₃O₃Na [M+1]⁺ 260.1011, found 260.1025.



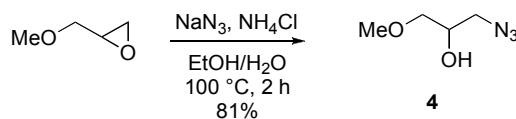
(\pm)-1-(3'-Azido-2'-methoxypropoxy)methyl-4-methoxybenzene (SI-2). A solution of compound **SI-1** (1.00 g, 4.2 mmol) in anhydrous THF (10 ml) was added to a suspension of NaH (60%, 0.19 g, 4.8 mmol) via a cannula, and the resulting solution stirred for 1 h. Iodomethane (0.53


mL, 8.4 mmol) was added dropwise and the reaction mixture was stirred for 45 min, cooled to 0 °C in an ice bath, quenched slowly with H₂O, and extracted with Et₂O (4 × 10 mL). The combined organic layers were washed with water, brine, dried (Na₂SO₄), and concentrated to a yellow oil that was purified by column chromatography (25% EtOAc/hexane) to provide **SI7** as a colorless oil (0.94 g 88%); R_f = 0.73 (33% EtOAc/hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.27 (m, 2H), 6.90 (m, 2H), 4.49 (s, 2H), 3.82 (s, 3H), 3.52 (m, 3H), 3.48 (s, 3H), 3.40 (m, 2H). ¹³C NMR (100.6 MHz, CDCl₃) δ 159.3, 130.0, 129.3, 113.8, 79.3, 73.1, 68.7, 57.8, 55.2, 51.6. IR (neat) 2960, 2110 cm⁻¹. MS (ES+) *m/z* 251 [M]⁺; HRMS (ES+) calcd for C₁₂H₁₇N₃O₃ [M+1]⁺ 251.1270, found 251.1272.

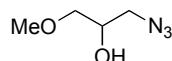
(±)-3-Azido-2-methoxypropan-1-ol (1c). DDQ (1.00 g, 4.6 mmol) was added to a stirred mixture of **SI-2** (0.66 g, 3.5 mmol) in CH₂Cl₂ (66.7 mL) and H₂O (3.70 mL) at room temperature. After 3 h the reaction was quenched slowly with saturated NaHCO₃ (20 mL) followed by of H₂O (40 mL) and then extracted with CH₂Cl₂ (5 × 20 mL). The combined organic layers were washed with saturated NaHCO₃, water, brine, dried (Na₂SO₄), and then concentrated to a yellow oil that was purified by column chromatography (20-80% Et₂O/pentane) to provide a colorless oil (0.35 g 75%). R_f = 0.19 (33% EtOAc/hexanes). ¹H NMR (400 MHz, CDCl₃) δ 3.68 (dd, *J* = 4.2, 3.9 Hz, 1H), 3.58 (dd, *J* = 4.8, 4.5 Hz, 1H), 3.45 (s, 3H), 3.39 (m, 3H), 2.74 (br s, 1H). ¹³C NMR (100.6 MHz, CDCl₃) δ 80.5, 61.6, 57.8, 50.8. IR (neat) 3440, 2960, 2110 cm⁻¹. MS (FAB) *m/z* 131 [M+1]⁺; HRMS calcd for C₄H₁₀N₃O₃ [M+1]⁺ 131.0695, found 131.0681.


Scheme S3. Synthesis of methylthio-substituted hydroxyalkyl azide **1d**.

Preparation of Methyl trifluoromethanesulfono(thioperoxoate).⁶ A flame dried 1000 mL RBF equipped with a magnetic stirring bar and distilled hexanes (200 mL) was cooled to 0 °C under argon and bromine (42.4 mmol, 2.2 mL) was added. Methyl disulfide (42.4 mmol, 3.8 mL) was added to the cooled reaction mixture drop wise with an addition funnel slowly over a period of 5 minutes. After an additional stirring of 10 minutes, the cooled reaction mixture is diluted with 500 mL of dry acetonitrile and silver trifluoromethanesulfonate (84.92 mmol, 22.6 g) was added in one portion to the solution and then the flask was covered in aluminum foil.⁶ The crude reaction mixture containing methyl trifluoromethanesulfono(thioperoxoate) was taken forward without purification or isolation.

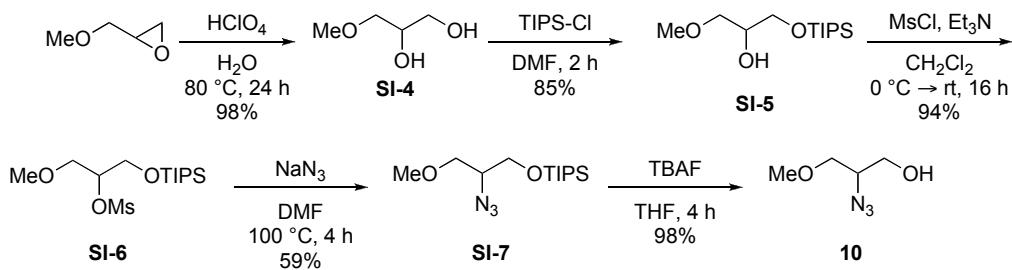

(±)-3-Azido-2-(methylthio)propyl ethanoate (SI-3). Allyl acetate (77.2 mmol, 8.3 mL) was added to the cooled flask in which methyl trifluoromethanesulfono(thioperoxoate) (84.93 mmol, 16.7 g) was prepared in situ, followed by addition of sodium azide (308.2 mmol, 20.07 g) in one portion. The reaction mixture was covered in aluminum foil and allowed to heat to room temperature over a period of 18-24 hours, after which time the reaction was filtered through a fritted funnel containing potassium carbonate. The mother liquor was concentrated under reduced pressure and directly adsorbed onto silica gel, which could be purified by column chromatography (3-25 Et₂O/pentane) to provide **SI-3** as tan tinted oil (1.90 g, 11%). R_f = 0.34 (25% EtOAc/hexanes). ¹H NMR (400 MHz,

CDCl₃) δ 4.35-4.30 (dd, *J* = 16.0, 4.4 Hz, 1H), 4.18-4.13 (dd, *J* = 11.6, 4.0 Hz, 1H), 3.55 (d, *J* = 6.0 Hz, 2H), 2.97-2.93 (m, 1H), 2.19 (s, 3H), 2.09 (s, 3H). ¹³C NMR (100.6 MHz, CDCl₃) δ 170.5, 63.6, 52.2, 45.4, 20.8, 14.4. IR (neat) 2100, 1741, 1232 cm⁻¹. Attempts to detect a molecular ion in the MS of this compound were unsuccessful (FAB and ESI).

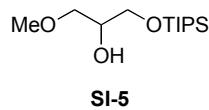

1d

(±)-3-Azido-2-(methylthio)propan-1-ol (1d). To a 100 mL round bottom flask containing **SI-3** (5.2 mmol, 0.99 g) and a magnetic stirring bar was added deionized water (25 mL) and methanol (mL) at room temperature, followed by the addition of anhydrous K₂CO₃ (20.9 mmol, 2.9 g) in one portion. The resulting solution was allowed to stir at room temperature for a duration of 4 hours at which time the solution was diluted with water (50 mL) and extracted with Et₂O (4x's @ 50 mL each time). The combined organic layers were washed with water (1x @ 20 mL) and brine (1X @ 35 mL), and concentrated to give a yellow oil which could then be purified by column chromatography (40%-80% Et₂O/pentane) to give **1d** as a colorless oil (0.43 g, 56%). R_f = 0.26 (25% EtOAc/hexanes). ¹H NMR (400 MHz, CDCl₃) δ 3.84-3.78 (m, 1H), 3.74-3.68 (m, 1H), 3.62-3.51 (m, 2H), 2.91-2.84 (m, 1H), 2.18 (s, 3H). ¹³C NMR (100.6 MHz, CDCl₃) δ 61.7, 52.2, 49.4, 13.9. IR (neat) 3404, 2920, 2100 cm⁻¹. Attempts to detect a molecular ion in the MS of this compound were unsuccessful (FAB and ESI).

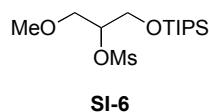
Scheme S4. Synthesis of 4.


Azide (\pm)-**4** was synthesized in 81% yield by treatment of glycidyl methyl ether (TCI America) with sodium azide in EtOH/H₂O (Scheme S4).

4

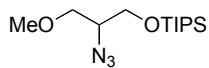

(\pm)-1-Azido-3-methoxypropan-2-ol (4). NH₄Cl (1.20 g, 22.1 mmol) and NaN₃ (1.30 g, 20.4 mmol) were added sequentially to a solution of racemic glycidyl methyl ether (TCI America, 1.53 mL, 5.7 mmol) in EtOH (23 mL) and H₂O (23 mL), which was then heated to reflux. After 2 h the reaction was allowed to cool to room temperature, diluted with H₂O (20 mL), and extracted with Et₂O (5 \times 30 mL). The combined organic layers were washed with water, brine, dried (Na₂SO₄), and concentrated to a yellow oil that was purified by column chromatography (20-50% Et₂O/pentane) to provide a colorless oil (0.61 g, 81%). R_f = 0.65 (50% EtOAc/hexanes). ¹H NMR (400 MHz, CDCl₃) δ 3.89 (m, 1H), 3.38 (m, 2H), 3.35 (s, 3H), 3.31 (m, 2H), 3.20 (br s, 1H). ¹³C NMR (100.6 MHz, CDCl₃) δ 73.9, 69.4, 59.1, 53.4. IR (neat) 3420, 2950, 2110 cm⁻¹. Attempts to detect a molecular ion in the MS of this compound were unsuccessful (FAB and ESI).

Scheme S8. Synthesis of **10.**

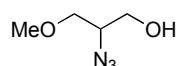


The synthesis of azide (\pm)-**10** was accomplished in five steps in 45% overall yield. Glycidyl methyl ether (TCI America) was treated with perchloric acid in water to give the known 1,2-diol **SI-4**.⁵

The primary alcohol was then protected with triisopropylsilyl chloride to give alcohol **SI-5**, and subsequent mesylation of the secondary alcohol gave intermediate **SI-6**. Displacement of the mesylated alcohol with sodium azide gave the TIPS-protected azide **SI-7**. Deprotection by tetrabutylammonium fluoride gave azide **10** in 46% overall yield from the 1,2-diol.



(±)-1-Methoxy-3-triisopropylsilyloxypropan-2-ol (SI-5). Imidazole (5.10 g, 75.4 mmol) was added to a stirred solution of glycidyl methyl ether (TCI America, 4.00 g, 37.7 mmol) in DMF (75 mL), which was then allowed to stir for 10 min at room temperature, TIPS-Cl (8.90 mL, 41.5 mmol) was then added over 5 min. After 2 h the reaction was diluted with H₂O (40 mL) and extracted with CH₂Cl₂ (3 × 50 mL). The combined organic layers were washed with water, brine, dried (Na₂SO₄), and concentrated to a colorless oil that was purified by column chromatography (20-30% EtOAc/hexanes) to provide **SI-5** as colorless oil (8.4 g, 85%). R_f = 0.81 (50% EtOAc/hexanes). ¹H NMR (400 MHz, CDCl₃) δ 3.83 (m, 1H), 3.73 (m, 2H), 3.46 (m, 2H), 3.38 (s, 3H), 1.07 (m, 21H). ¹³C NMR (100.6 MHz, CDCl₃) δ 73.5, 70.6, 64.3, 59.1, 17.7, 11.9. IR (neat) 2950, 2880 cm⁻¹. MS (ES+) *m/z* 285 [M+1]⁺; HRMS (ES+) calcd for C₁₃H₃₀O₃SiNa [M+1]⁺ 285.1862, found 285.1889.



(±)-1-Methoxy-3-triisopropylsilyloxypropan-2-yl methanesulfonate (SI-6). Triethylamine (8.6 mL, 61.9 mmol) and methanesulfonyl chloride (4.8 mL, 61.9 mmol) were added sequentially to a mixture of **SI-5** (8.10 g, 30.9 mmol) in anhydrous CH₂Cl₂ (77 mL) at 0 °C. The reaction was allowed to slowly warm to room temperature and stirred for 16 h. Saturated NH₄Cl (50 mL) and H₂O (55 mL)

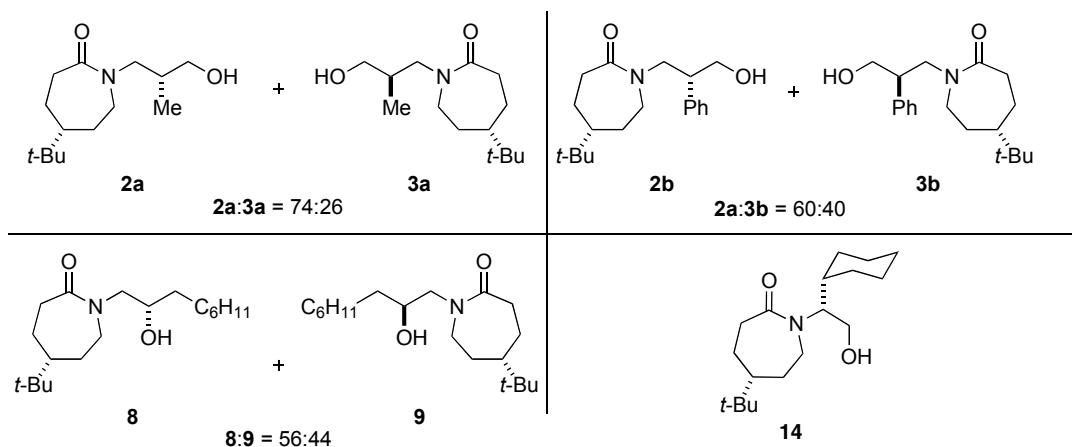
were added and the solution was extracted with CH_2Cl_2 (4×45 mL). The combined organic layers were washed with water, brine, dried (Na_2SO_4), concentrated, and purified by column chromatography (10-15% Et_2O /pentane) to provide **SI-6** as a colorless oil (9.94 g, 94%). $R_f = 0.60$ (25% EtOAc /hexanes). ^1H NMR (400 MHz, CDCl_3) δ 4.75 (m, 1H), 3.90 (m, 2H), 3.66 (m, 2H), 3.40 (s, 3H), 3.10 (s, 3H), 1.07 (m, 2H). ^{13}C NMR (100.6 MHz, CDCl_3) δ 81.7, 71.7, 62.9, 59.2, 38.3, 17.8, 11.6. IR (neat) 2960, 2890, 1340 cm^{-1} . MS (ES+) m/z 341 [M+1] $^+$; HRMS (ES+) calcd for $\text{C}_{13}\text{H}_{33}\text{O}_5\text{SSi}$ [M+1] $^+$ 341.1818, found 341.1810.

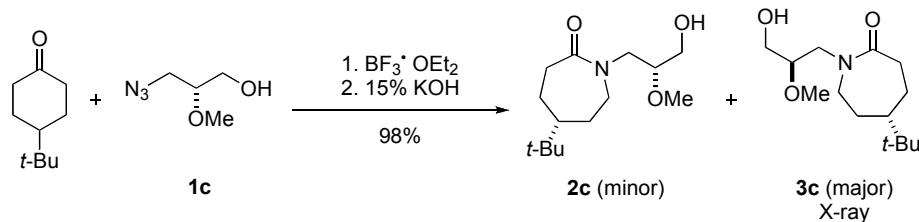
SI-7

(\pm)-2-Azido-3-methoxypropoxytriisopropylsilane (SI-7). NaN_3 (6.78 g, 104 mmol) was added to a stirred solution of **SI-6** (7.10 g 20.9 mmol) in DMF (42 mL). The solution was heated to 100 °C for 7 h after which it was allowed to cool to room temperature, diluted with H_2O (50 mL), and extracted with Et_2O (4×20 mL). The combined organic layers were washed with water, brine, dried (Na_2SO_4), and concentrated to a colorless oil that was purified by column chromatography (5% Et_2O /pentane) to provide **SI-7** a colorless oil (3.56 g, 59%). $R_f = 0.90$ (25% EtOAc /hexanes). ^1H NMR (400 MHz, CDCl_3) δ 3.87 (dd, $J = 10.2, 4.8$ Hz, 1H), 3.81 (dd, $J = 10.2, 5.8$ Hz, 1H), 3.55 (m, 3H), 3.40 (s, 3H), 1.10 (m, 2H). ^{13}C NMR (100.6 MHz, CDCl_3) δ 71.6, 63.7, 62.4, 59.2, 17.9, 11.9. IR (neat) 2960, 2880, 2100, 1120 cm^{-1} . MS (ES+) m/z 288 [M+1] $^+$; HRMS (ES+) calcd for $\text{C}_{13}\text{H}_{30}\text{N}_3\text{O}_2\text{Si}$ [M+1] $^+$ 288.2115, found 288.2107.

10

(±)-2-Azido-3-methoxypropan-1-ol (10). Tetrabutylammonium fluoride (1 M in THF, 4.20 mL, 16.1 mmol) was added dropwise to a stirred solution of **SI-7** (3.60 g, 12.4 mmol) in anhydrous THF (250 mL). After 5 h of stirring at room temperature the solution was diluted with H₂O (60 mL) and extracted with Et₂O (4 × 20 mL). The combined organic layers were washed with water, brine, dried (Na₂SO₄), and concentrated to a yellow oil that was purified by column chromatography (20-80% Et₂O/pentane) to provide **10** as a colorless oil (1.59 g, 98%). R_f = 0.30 (20% EtOAc/hexanes). ¹H NMR (400 MHz, CDCl₃) δ 3.69 (m, 1H), 3.61 (m, 2H), 3.51 (m, 2H), 3.36 (s, 3H), 3.18 (br s, 1H). ¹³C NMR (100.6 MHz, CDCl₃) δ 72.3, 62.4, 62.3, 59.2. IR (neat) 3410, 2950, 2100 cm⁻¹. Attempts to detect a molecular ion in the MS of this compound were unsuccessful (FAB and ESI).

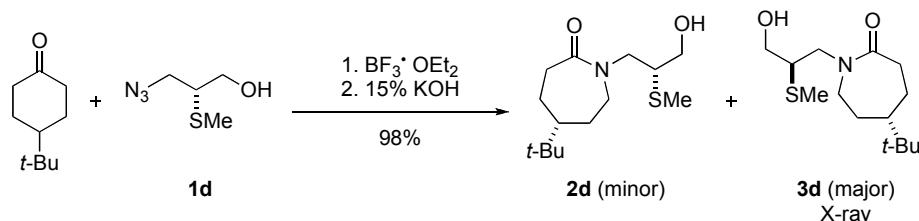

Ring Expansion Reactions


General procedure for the synthesis of *N*-alkylated caprolactams. A solution of 4-*tert*-butylcyclohexanone in anhydrous CH₂Cl₂ (0.04 M) was cooled to -78 °C and BF₃•OEt₂ (5.0 equiv) was added. After 30 min a solution of hydroxyalkyl azide (1.2 equiv) in anhydrous CH₂Cl₂ (0.04 M) was added to the cooled solution drop wise via a cannula. The reaction mixture was allowed to warm to room temperature slowly over 18–24 h at which time it was concentrated under reduced pressure and 15% KOH was added slowly to the residual oil. The reaction mixture was stirred vigorously at room temperature for 30 min and then partitioned between CH₂Cl₂ and H₂O. The organic layer was washed with water, brine, dried (Na₂SO₄) and concentrated to an oil.

Diastereoselectivities were determined from crude reaction mixtures by HPLC or GC. Diastereomers were separated by column chromatography, preparative TLC, or crystallization; see individual examples for details. Once crystals were obtained they were identified as a particular isomer by HPLC, GC or LCMS comparison with the crude reaction mixture.

Lactams **1a**, **1b**, **2a**, **2b** in Sahasrabudhe et al.³ and **8**, **9**, and **14** in Katz et al.⁷ have been previously reported. The full experimental information regarding these compounds is provided in the Supporting Information of these respective publications.

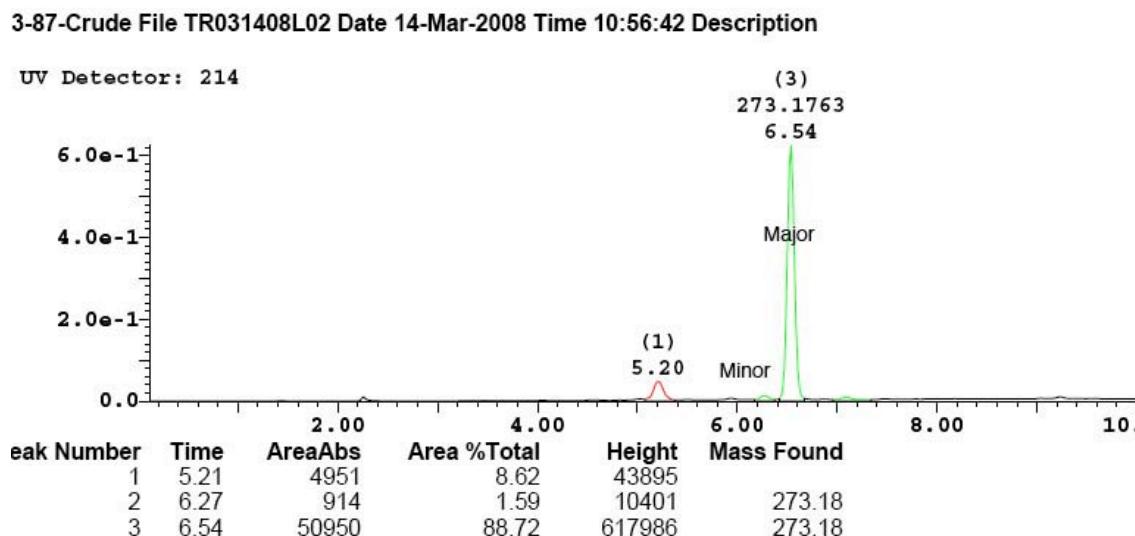
Figure S2. Lactams and diastereomeric ratios that have been previously reported.



- Ratio (\pm) -**2c**: (\pm) -**3c** = 4:96
- Diastereomeric ratio determined by ^1H and ^{13}C NMR, and GC (t_{R} major: 27.7, t_{R} minor: 27.1; Carbowax; 80 – 250 °C at 5 °C/min).
- *ent*-**3c** was recrystallized from Et_2O .

5-*tert*-Butyl-1-(3'-hydroxy-2'-methoxypropyl)azepan-2-one. Compound (\pm) -3c**:** white solid (0.54 g, 98%). Mp 114.2–116.8 °C. R_f = 0.38 (100% EtOAc). ^1H NMR (400 MHz, CDCl_3) δ 4.13 (m, 1H), 3.73 (m, 1H), 3.43 (m, 9H), 2.50 (m, 2H), 1.92 (m, 2H), 1.17 (m, 3H), 0.82 (s, 9H). ^{13}C NMR (100.6 MHz, CDCl_3) δ 177.6, 80.3, 59.5, 57.4, 51.5, 51.1, 47.7, 35.9, 33.0, 28.9, 27.5, 24.1. IR (neat) 3400, 2985, 1630 cm^{-1} . MS (ES+) m/z 280 [$\text{M}+\text{Na}$] $^+$; HRMS (ES+) calcd for $\text{C}_{14}\text{H}_{27}\text{NO}_3\text{Na}$ [$\text{M}+\text{Na}$] $^+$ 280.1889, found 280.1905. The X-ray for this compound can be obtained from the CCDC (647651); the structure of this racemic compound was arbitrarily solved as the enantiomer of **3c** depicted above.

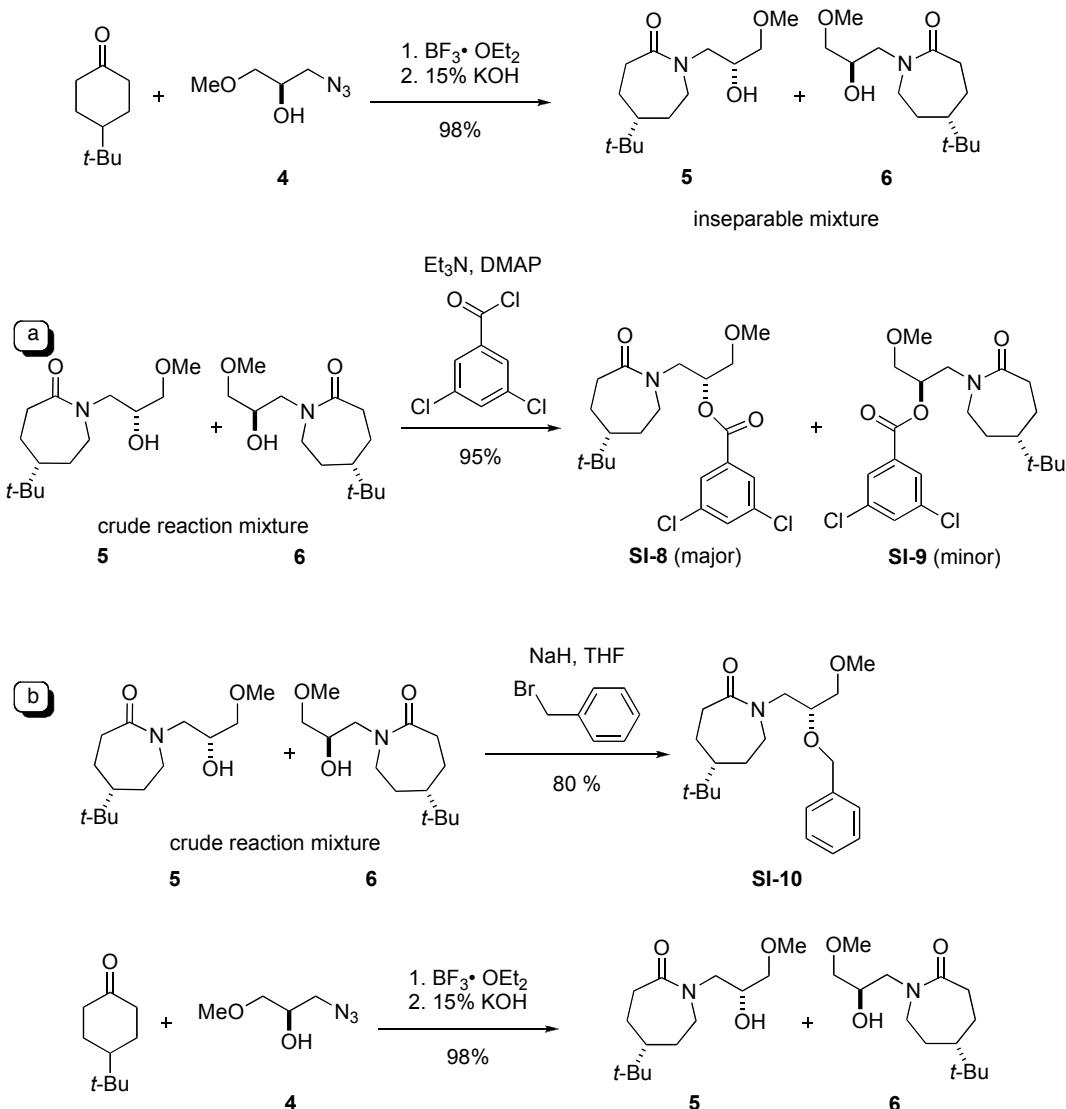
Compound (\pm) -2c**:** ^{13}C NMR (100.6 MHz, CDCl_3 , diagnostic peaks only) δ 80.2, 59.6, 57.3, 51.4, 47.9, 36.1, 28.6, 24.2.



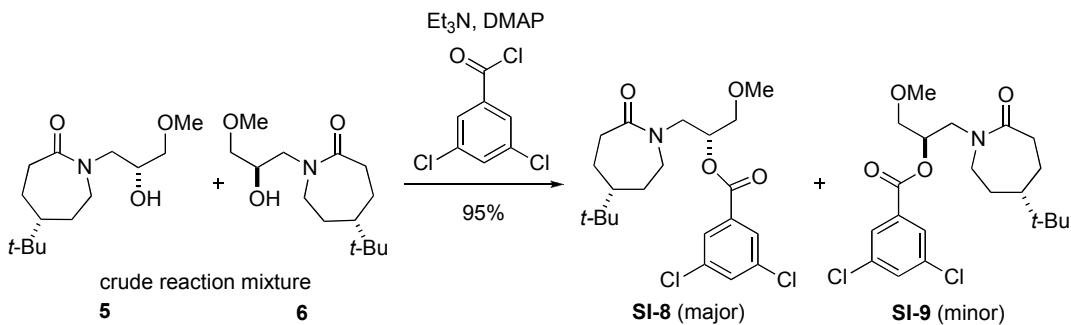
- Ratio (\pm) -**2d**: (\pm) -**3d** = 1.8:98.2
- Diastereomeric ratio determined by ^1H and ^{13}C NMR, and LCMS of crude reaction mixture (t_{R} minor: 6.27 (MS 273.18), t_{R} major: 6.54 (MS 273.18); Xterra MS C-18 column (5 μM , 4.6 × 150 mm) @ 10% CH_3CN to 100% CH_3CN).
- *ent*-**3d** was recrystallized from CH_2Cl_2 /hexanes.

5-*tert*-Butyl-1-(3'-hydroxy-2'-(methylthio)propyl)azepan-2-one. Compound (\pm) -3d**:** white solid (0.82 g, 98%). Mp 86.2–88.4 °C. R_f = 0.5 (100% EtOAc). ^1H NMR (400 MHz, CDCl_3) δ 4.48 (t, J =

14.4, 7.2, 1H), 3.86 (d, J = 14 Hz, 1H), 3.66 (m, 1H), 3.57-3.39 (m, 3 Hz), 2.81 (m, 1H), 2.57 (m, 2 Hz) 2.15 (s, 3H), 1.99 (m, 2 H), 1.29-1.11 (m, 4 H), 0.87 (s, 9H). ^{13}C NMR (100.6 MHz, CDCl_3) δ 177.6, 61.2, 51.5, 51.2, 48.8, 48.4, 36.0, 33.1, 29.4, 27.5, 24.1, 14.6. IR (neat) 3367, 2952, 1625 cm^{-1} . MS (ES+) m/z 273 [M] $^+$; HRMS (ES+) calcd for $\text{C}_{14}\text{H}_{28}\text{NO}_2\text{S}$ [M+H] $^+$ 274.1841, found 278.1852. The X-ray for this compound can be obtained from the CCDC (683831); the structure of this racemic compound was arbitrarily solved as the enantiomer of **3d** depicted above. **Compound (\pm)-2d:** a high resolution MS was obtained from the LCMS separated data. MS (ES+) m/z 273 [M] $^+$; HRMS (ES+) calcd for $\text{C}_{14}\text{H}_{28}\text{NO}_2\text{S}$ [M+H] $^+$ 274.1841, found 278.1849.

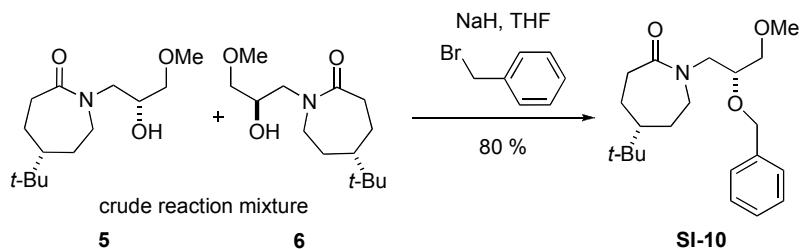

Figure S3. Chromatogram obtained from LCMS of the crude reaction to give **2d** and **3d**, respectively.

The ring expansion reaction of **4** and 4-*tert*-butyl-cyclohexanone gave a 98% yield of an inseparable mixture (by chromatography, HPLC, and GC) of lactams **5** and **6**. Acylation of the secondary alcohol by DMAP, Et_3N , and 3,5-dichlorobenzoic acid gave easily separable lactams **SI-8** and **SI-9** (Scheme S9a), from which a ratio was obtained by HPLC. Unfortunately, all attempts to obtain crystals from either the crude reaction mixture or the acylated products proved unsuccessful. However, it proved possible to benzylate the crude reaction mixture of **5** and **6** to afford a single crystalline product **SI-10** by recrystallization in ca. 80% yield (Scheme S6b; the fact that a single


crystalline product could be obtained in such high yield from the 97:3 mixture of **5** and **6** clearly identifies it as a derivative of the major isomer). The structure of **SI-10** was solved by X-ray crystallography, thus proving the stereostructure of the major isomer **5**.

Scheme S6. Determination of diastereomeric ratio and structure of **5** and **6**.

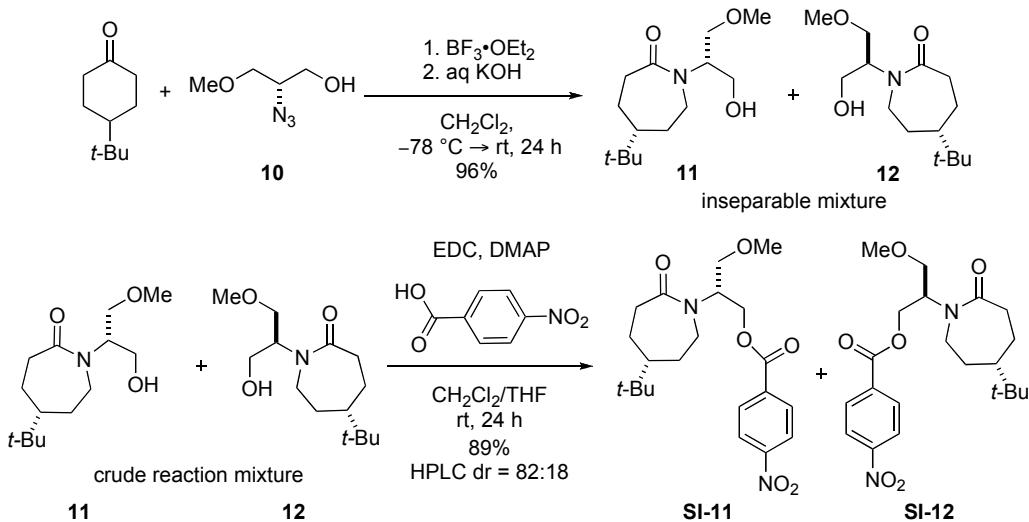
- Ratio (\pm) -**5** : (\pm) -**6** 97:3
- Diastereomeric excess determined by ^1H - and ^{13}C -NMR, and HPLC of **SI-8**/**SI-9** (t_{R} major: 88.7, t_{R} minor: 91.4; Phenomenex C18; 10 to 80% gradient ACN/H₂O over 130 min; flow rate 1.0 mL/min; 40 °C isothermal; UV 254 nm).
- **SI-10** (**5** benzyl derivative) was recrystallized from hexanes

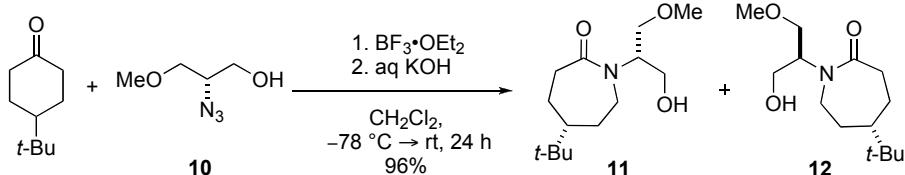

5-*tert*-Butyl-1-(2'-hydroxy-3'-methoxypropyl)azepan-2-one (two isomers **5,6**): colorless oil (0.52 g, 98%). R_f = 0.41 (70% EtOAc/hexanes). **Major Isomer (5)**: ^1H NMR (400 MHz, CDCl_3) δ 4.02 (m, 1H), 3.86 (s, 1H), 3.47 (m, 2H), 3.32 (m, 7H), 2.48 (m, 2H), 1.87 (s, 2H), 0.95 (s, 3H), 0.79 (s, 9H). ^{13}C NMR (100.6 MHz, CDCl_3) δ 177.7, 74.4, 70.2, 59.0, 52.5, 51.2, 50.8, 36.1, 33.1, 29.6, 27.5, 24.0. **Minor Isomer (6)**: ^{13}C NMR (100.6 MHz, CDCl_3 , diagnostic peaks only) δ 177.6, 74.5, 69.9, 52.7, 51.4, 50.8, 29.1. IR (neat) 3405, 2980, 2890, 1630 cm^{-1} . MS (ES+) m/z 280.2 [M+Na] $^+$; HRMS (ES+) calcd for $\text{C}_{14}\text{H}_{27}\text{NO}_3\text{Na}$ [M+Na] $^+$ 280.1889, found 280.1902.

1-(5'-*tert*-Butyl-2'-oxoazepan-1'-yl)-3-methoxypropan-2-yl 3,5-dichlorobenzoate.

Triethylamine (1.58 ml, 11.3 mmol) and 4-di(methylamino)pyridine (0.02 g, 0.2 mmol) were added to a stirred solution of **5** and **6** (0.16 g, 0.60 mmol) in anhydrous CH_2Cl_2 (19 ml, 0.2 M), which was then cooled to 0 °C. After 10 min of stirring at 0 °C, 3,5-dichlorobenzoic acid (1.03 g, 4.97 mmol) was added to the homogenous solution and allowed to slowly warm to room temperature. After 18–24 h of stirring at room temperature, the solution was quenched with saturated NH_4Cl , then diluted with H_2O (20 mL) and extracted with CH_2Cl_2 (4 × 20 mL). The combined organic layers were washed with brine, dried (Na_2SO_4), and concentrated to an orange oil that was purified by column chromatography (20–70% EtOAc/hexanes) to provide pure compounds **SI-8** and **SI-9**. **Compound (±)-SI-8**: colorless oil (1.47 g, 96%). R_f = 0.50 (50% EtOAc/hexanes). ^1H NMR (400 MHz, CDCl_3) δ 7.71 (m, 2H), 7.33 (t, J = 4.0 Hz, 1Hz), 5.21 (m, 1H), 3.54 (m, 2H), 3.44 (d, J = 4.8 Hz, 1H), 3.30 (m, 1H), 3.20 (m, 1H),

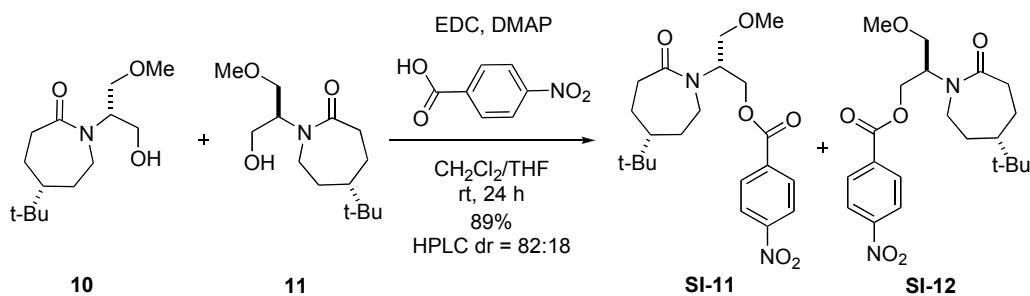
3.17 (s, 3H), 2.34 (dd, J = 14.0, 8.0 Hz, 1H), 2.26 (t, J = 11.6 Hz, 1H), 1.73 (m, 2H), 1.01 (m, 3H), 0.63 (s, 9H), 0.59 (s, 1H). ^{13}C NMR (100.6 MHz, CDCl_3) δ 177.7, 163.4, 135.0, 132.7, 132.6, 127.9, 73.0, 71.8, 59.0, 51.1, 50.0, 48.4, 36.0, 32.8, 30.5, 29.5, 27.3. IR (neat) 2970, 1730, 1650, 1540 cm^{-1} . MS (ES+) m/z 430.2 [M+1] $^+$; HRMS (ES+) calcd for $\text{C}_{21}\text{H}_{30}\text{Cl}_2\text{NO}_4$ [M+1] $^+$ 430.1552, found 430.1532. **Compound (\pm)-SI-9:** ^{13}C NMR (100.6 MHz, CDCl_3 , diagnostic peaks only) δ 177.2, 163.9, 135.3, 132.9, 132.8, 128.1, 72.8, 71.9, 60.2, 51.2, 50.1, 48.7, 36.1, 32.9, 29.6, 27.4, 23.9.




1-(2'-Benzylxy-3'-methoxypropyl)-5-*tert*-butylazepan-2-one. A crude reaction mixture of **5** and **6** (1.0 g, 4.2 mmol) in anhydrous THF (1.5 mL) was added to a flask containing NaH (60%, 0.48 g, 14.0 mmol) via a cannula, and the resulting murky solution was stirred for 30 min. Benzyl bromide (0.66 mL, 5.6 mmol) was added dropwise and the reaction mixture was stirred for an additional 30 min, at which time the reaction was quenched slowly with H_2O (35 mL), and extracted with Et_2O (4 \times 40 mL). The combined organic layers were washed with water, brine, dried (Na_2SO_4), and concentrated to a yellow oil. Excess benzyl bromide was removed in vacuo and the resulting off-white solid was purified by crystallization from hot hexanes to give colorless crystals (1.24 g, 80%). A single diastereomer **SI-10** was isolated in 80% yield, providing sufficient evidence that **5** is indeed the major diastereomer from the ring expansion reaction. The minor diastereomer resulting from alkylation of **6** was not observed or isolated from the mother liquor. **Compound (\pm)-SI-10:** R_f = 0.34 (70% EtOAc/hexane). ^1H NMR (400 MHz, CDCl_3) δ 7.34 (d, J = 4.4 Hz, 2H), 7.29 (m, 3H), 5.21 (m, 1H), 4.72 (d, J = 11.6 Hz, 1H), 4.54 (d, J = 12 Hz, 1H), 3.82 (m, 2H), 3.54 (dd, J = 10.8, 3.6 Hz 1H), 3.46

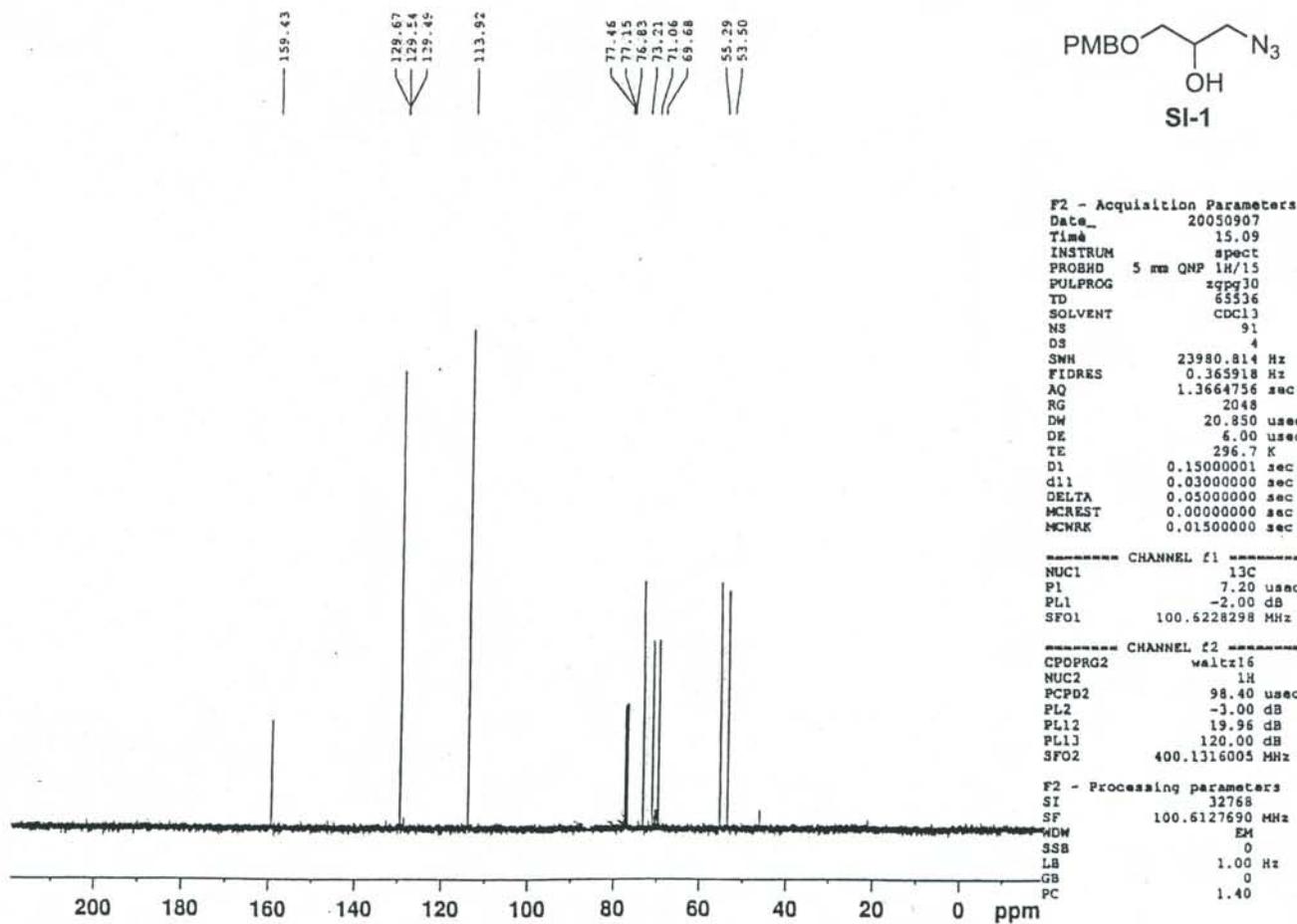
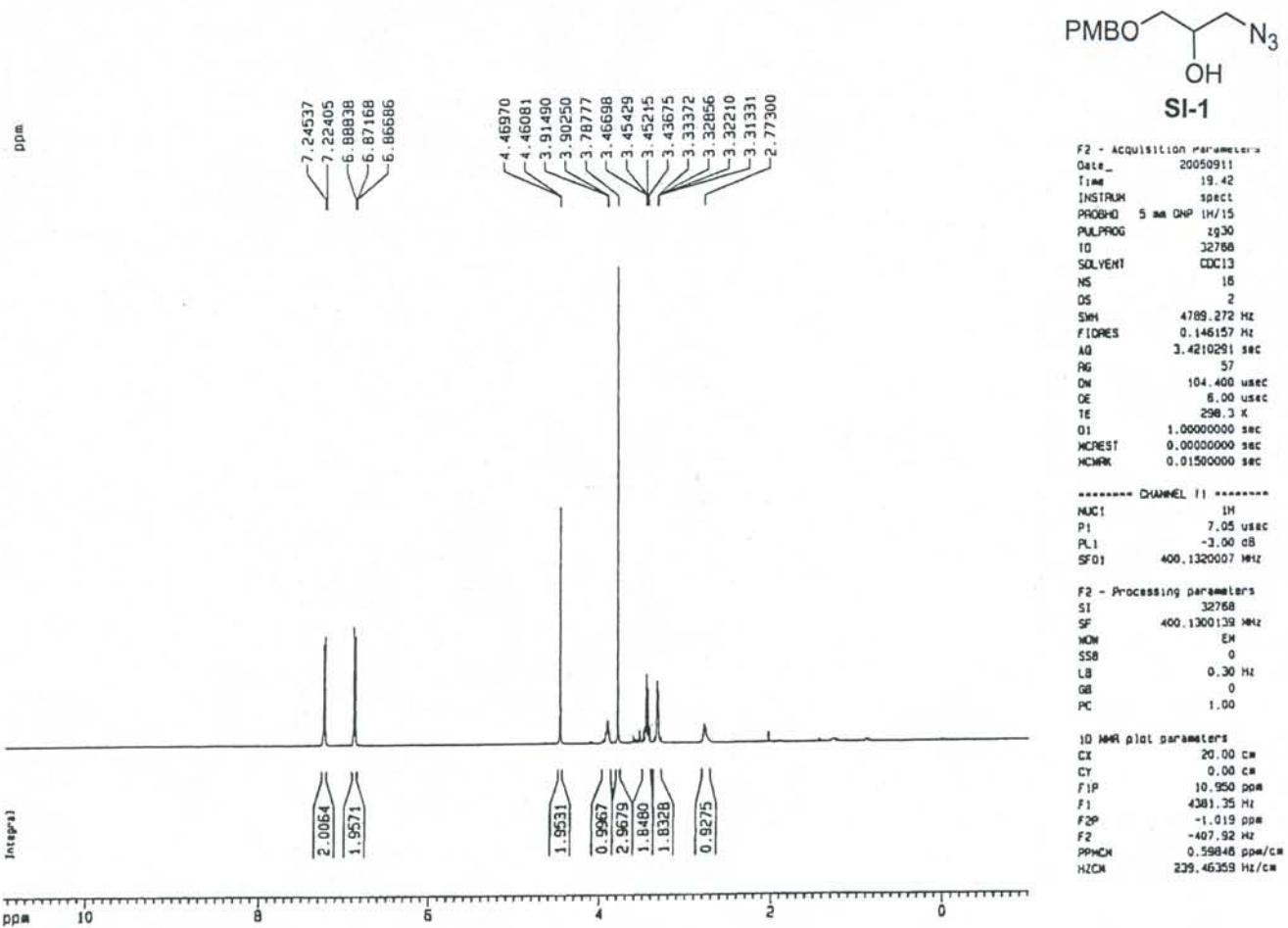
(dd, $J = 10.4, 4.8$ Hz 1H), 3.40 (m, 5H), 3.22 (dd, $J = 13.6, 7.6$ Hz, 1H), 2.51 (dd, $J = 14, 7.2$ Hz, 1H), 2.40 (m, 1H), 1.90 (m, 2H), 1.20 (m, 3H), 0.86 (s, 9H). ^{13}C NMR (100.6 MHz, CDCl_3) δ 176.0, 138.6, 128.3, 127.8, 127.6, 73.3, 72.3, 59.3, 51.6, 51.0, 50.2, 36.4, 33.1, 29.1, 27.6, 24.1. IR (neat) 3000, 1655, 1460 cm^{-1} . MS (ES+) m/z 370.2 [M+1] $^+$; HRMS (ES+) calcd for $\text{C}_{21}\text{H}_{33}\text{NO}_3\text{Na}$ [M+Na] $^+$ 370.2358, found 370.2358. The X-ray for this compound can be obtained from the CCDC (647652).

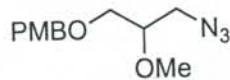
The ring expansion reaction of 10 and 4-*tert*-butyl-cyclohexanone gave a 96% yield of an inseparable mixture (by chromatography, HPLC, and GC) of **11** and **12**. Acylation of the secondary alcohol by 4-nitrobenzoic acid, DMAP, and Et_3N and gave easily separable lactams **SI-11** and **SI-12** (Scheme S10), from which a ratio was obtained by HPLC. This method also provided structure of **SI-11** which could be solved by X-ray crystallography, thus proving the stereostructure of the major isomer **11**.


Scheme S10. Determination of diastereomeric ratio and structure of **11,12**.

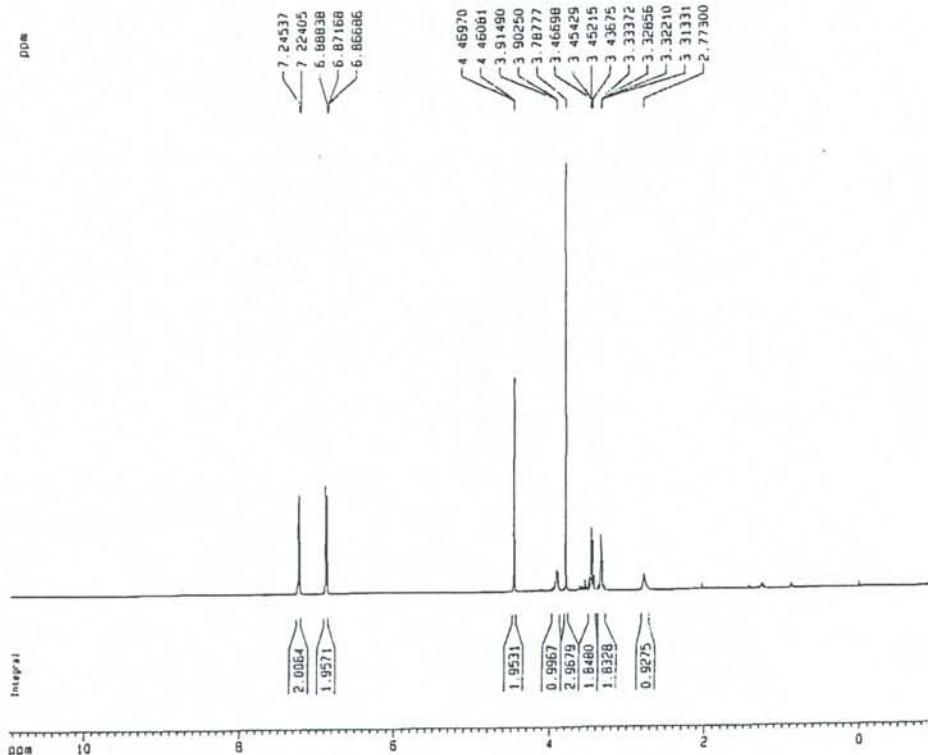
- Ratio (\pm) -**11** : (\pm) -**12** 83:17
- Diastereomeric excess determined by ^1H - and ^{13}C -NMR, and HPLC of **SI-11/SI-12** (t_{R} minor: 56.200, t_{R} minor: 58.377; Phenomenex C18; 5 to 95% gradient ACN/H₂O over 95 min; flow rate 1.0 mL/min; 40 °C isothermal; UV 254 nm).
- **SI-11** (*p*-NO₂-benzoylated **11**) was recrystallized from EtOH/Acetone/H₂O

5-*tert*-Butyl-1-(1'-hydroxy-3'-methoxypropan-2'-yl)azepan-2-one (two isomers **11,12**): colorless oil (0.62 g, 96%). R_f = 0.40 (70% EtOAc/hexanes). **Major isomer (11):** ^1H NMR (400 MHz, CDCl₃) δ 4.49 (m, 1H), 3.7 (m, 1H), 3.57 (m, 5H), 3.28 (m, 4H), 2.50 (t, J = 3.10 Hz, 2H), 1.90 (m, 2H), 1.12 (m, 3H), 0.81 (s, 9H). ^{13}C NMR (100.6 MHz, CDCl₃) δ 177.3, 71.0, 61.6, 58.7, 56.8, 51.3, 45.6, 36.6, 32.9, 29.5, 27.5, 24.1. **Minor isomer (12):** ^{13}C NMR (100.6 MHz, CDCl₃, diagnostic peaks only) δ 177.1, 70.9, 61.9, 58.8, 58.2, 56.8, 51.3, 45.6, 36.6, 32.9, 29.5, 27.5, 24.1. IR (neat) 3405, 2980, 2890, 1630 cm⁻¹. MS (ES+) m/z 280.2 [M+ Na]⁺; HRMS (ES+) calcd for C₁₄H₂₇NO₃Na [M+Na]⁺ 280.1889, found 280.1893.



2-(5'-*tert*-Butyl-2'-oxoazepan-1'-yl)-3-methoxypropyl 4-nitrobenzoate (SI-11, SI-12). 4-Nitrobenzoic acid (0.11 g, 0.7 mmol) and 4-dimethylaminopyridine (0.01 g, 0.10 mmol) were added to a stirred solution of **10** and **11** (0.16 g, 0.6 mmol) in anhydrous THF/CH₂Cl₂ (1:1, 4 mL) and then

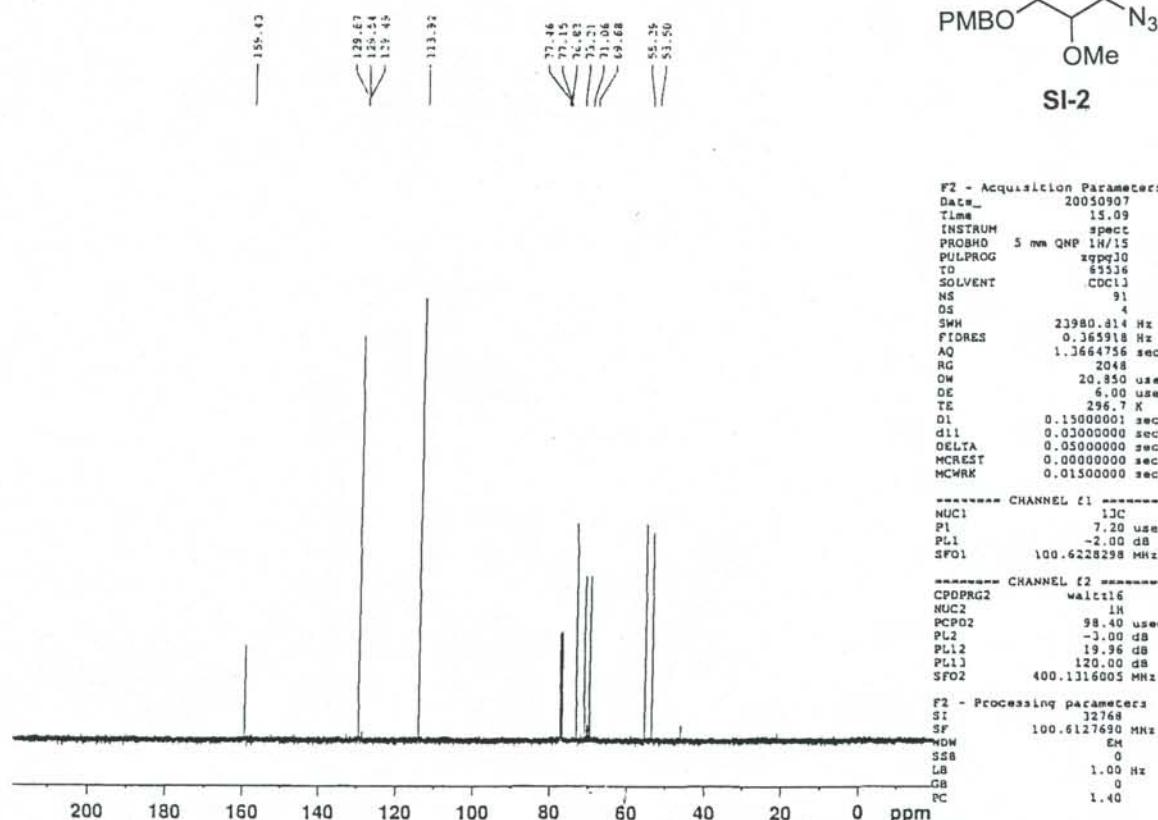

cooled to 0 °C. After 10 min of stirring at 0 °C, N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide, (EDC) (0.13 g, 0.6 mmol) was added to the homogenous solution, which was allowed to warm to room temperature and stirred 18–24 h. The solution was then quenched with 1M aq HCl, diluted with H₂O (20 mL), and extracted with CH₂Cl₂ (4 × 20 mL). The combined organic layers were washed with saturated NaHCO₃ and brine, then dried (Na₂SO₄), and concentrated to a yellow oil. Purification by chromatography (40–100% EtOAc/hexanes) provided pure compounds **SI-11** and **SI-12**. **Compound (±)-SI-11:** white solid (0.27 g, 81%). R_f = 0.68 (50% EtOAc/hexanes). Mp 100.5–101.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, *J* = 8.8 Hz, 2H), 8.19 (d, *J* = 8.8 Hz, 2H), 5.09 (m, 1H), 4.61 (dd, *J* = 11.6, 8.4 Hz, 1H), 4.46 (dd, *J* = 11.6, 5.2 Hz, 1H), 3.66 (dd, *J* = 10.0, 6.4 Hz, 1H), 3.58 (m, 2H), 3.34 (m, 4H), 2.58 (dd, *J* = 14.5, 7.0 Hz, 1H), 2.44 (m, 1H), 1.97 (dd, *J* = 11.2, 8.0 Hz, 2H), 1.24 (m, 3H), 0.86 (s, 9H). ¹³C NMR (100.6 MHz, CDCl₃) δ 176.6, 164.3, 150.6, 135.2, 130.8, 132.6, 127.9, 71.2, 63.4, 52.4, 51.3, 44.8, 36.5, 33.0, 29.9, 27.5, 24.2. IR (neat) 2990, 1740, 1655 cm⁻¹. MS (ES+) *m/z* 407.2 [M+1]⁺; HRMS (ES+) calcd for C₂₁H₃₀N₂O₆Na [M+ Na]⁺: 429.2001, found 429.2010. The X-ray for this compound can be obtained from the CCDC (647654).

Compound (±)-SI-12: white solid (0.06 g, 19%). R_f = 0.31 (50% EtOAc/hexanes). Mp 90.1–91.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, *J* = 8.8 Hz, 2H), 8.21 (d, *J* = 8.8 Hz, 2H), 5.16 (m, 1H), 4.54 (d, *J* = 6.8 Hz, 2H), 3.66 (dd, *J* = 8.8 Hz, 2H), 3.66 (s, 1H), 3.57 (m, 1H), 3.36 (s, 3H), 2.62 (m, 2H), 1.97 (m, 1H), 1.14 (m, 4H), 0.77 (s, 9H). ¹³C NMR (100.6 MHz, CDCl₃) δ 176.7, 164.3, 150.7, 135.1, 130.8, 123.6, 71.6, 63.6, 59.1, 52.1, 51.3, 44.5, 36.5, 33.0, 29.9, 27.4, 24.2. IR (neat), 2990, 1740, 1645, 1545 cm⁻¹. MS (ES+) *m/z* 407.2 [M+Na]⁺; HRMS (ES+) calcd for C₂₁H₃₀N₂O₆Na [M+Na]⁺ 429.2001, found 429.2001.


References:

1. Gaussian 98, F., M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G.; E.; Robb, M. A. C., J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E. B., J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N. S., M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M. C., R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J. P., G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K. R., A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J. O., J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P. K., I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T. A.-L., M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M. G., P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L. H.-G., M.; Replogle, E. S.; Pople, J. A., Gaussian, Inc., P., PA, 1998.
2. (a) Scott, A. P. R., L., *J. Phys. Chem.* **1996**, *100*, 16502-16513; (b) Hehre, W. J. R., L.; Schleyer, P. v. R.; Pople, J. A. *Ab Initio; Molecular Orbital Theory*; John Wiley & Sons: New York.
3. Sahasrabudhe, K.; Gracias, V.; Furness, K.; Smith, B. T.; Katz, C. E.; Reddy, D. S.; Aube, J. *J. Am. Chem. Soc.* **2003**, *125*, 7914-7922.
4. Mouzin, G.; Cousse, H.; Rieu, J. P.; Duflos, A. *Synthesis* **1983**, 117-119.
5. Dishong, D. M.; Diamond, C. J.; Cinoman, M. I.; Gokel, G. W. *J. Am. Chem. Soc.* **1983**, *105*, 586-593.
6. Effenberger, F.; Russ, W. *Chem. Ber.* **1982**, *115*, 3719-3736.
7. Katz, C. E., Ribelin, T., Withrow, D., Basseri, Y., Manukyan, A. K., Bermudez, A., Nuera, C. G., Day, V. W., Powell, D. G., Poutsma, J. L., Aubé, J. *J. Org. Chem.* **2008**, *73*, 3318-3327.

SI-2

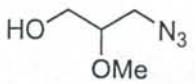


F2 - Acquisition Parameters
 Date_ 20050911
 Time 19:42
 INSTRUM spect
 PROBHD 5 mm QNP 1H/15
 PULPROG zgpg30
 T0 65336
 SOLVENT CDCl3
 NS 16
 DS 2
 SWH 4789.272 Hz
 FIDRES 0.146157 Hz
 AQ 3.4210291 sec
 RG 57
 DW 104.400 usec
 DE 6.00 usec
 TE 296.7 K
 D1 0.0000000 sec
 MC 0.0000000 sec
 NCWRF 0.01500000 sec

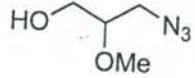
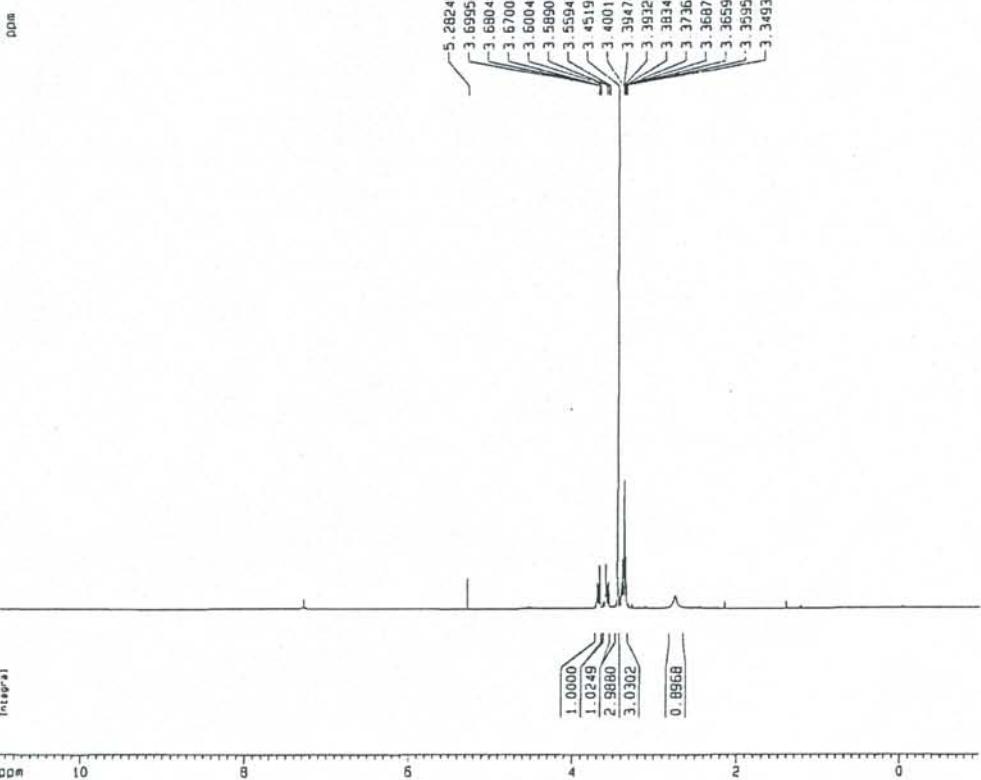
***** CHANNEL 11 *****
 NUC1 1H
 P1 7.05 usec
 PL1 -3.00 dB
 SF01 400.1320007 MHz

F2 - Processing parameters
 SI 32768
 SF 400.1300139 MHz
 MDW EM
 SSB 0
 L3 0.30 Hz
 GB 0
 PC 1.00

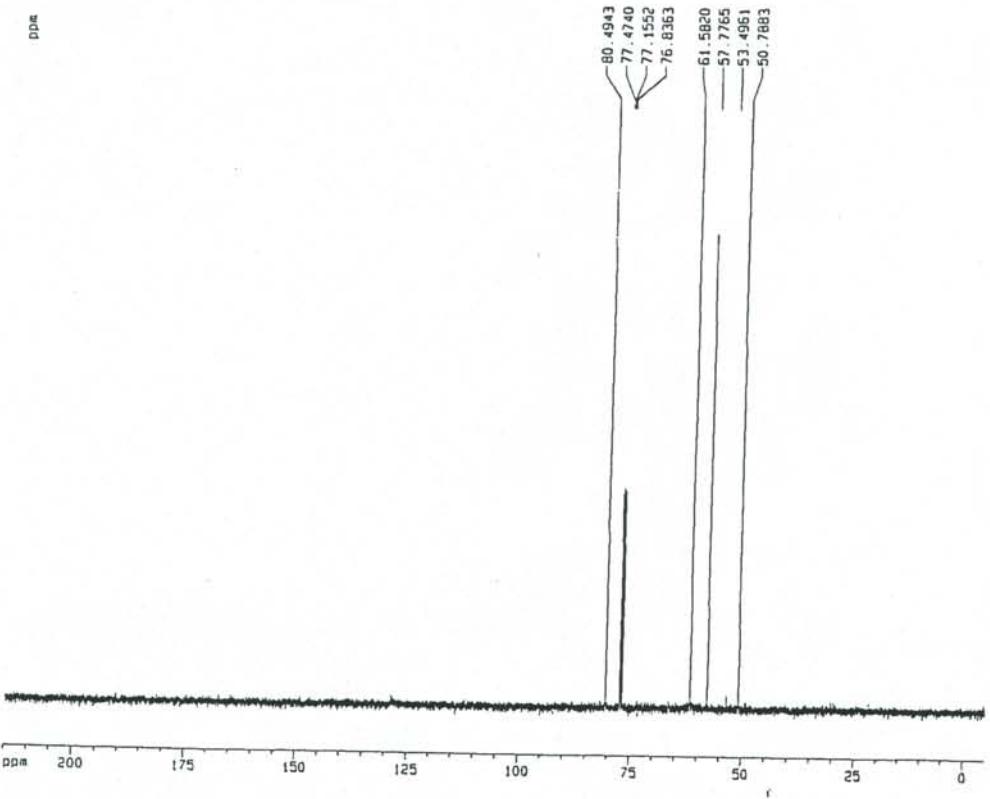
1D NMR plot parameters
 CX 20.00 cm
 CT 0.00 cm
 F1P 10.950 ppm
 F1 4381.75 Hz
 F2P -1.011 ppm
 F2 -407.92 Hz
 PPMH 0.59848 ppm/cm
 HZMH 239.46359 Hz/cm



F2 - Acquisition Parameters
 Date_ 20050907
 Time 15.09
 INSTRUM spect
 PROBHD 5 mm QNP 1H/15
 PULPROG zgpg30
 T0 65336
 SOLVENT CDCl3
 NS 91
 DS 4
 SWH 23980.814 Hz
 FIDRES 0.385918 Hz
 AQ 1.3664756 sec
 RG 2048
 DW 20.850 usec
 DE 6.00 usec
 TE 296.7 K
 D1 0.15000001 sec
 d1 0.03000000 sec
 DELTA 0.05000000 sec
 MC 0.0000000 sec
 NCWRF 0.01500000 sec



***** CHANNEL 11 *****
 NUC1 13C
 P1 7.20 usec
 PL1 -2.00 dB
 SF01 100.6228238 MHz

***** CHANNEL 12 *****
 CPDPG2 walt116
 NUC2 1H
 PCPD2 98.40 usec
 PL2 -3.00 dB
 PLL2 19.96 dB
 PLL3 120.00 dB
 SF02 400.1316005 MHz


F2 - Processing parameters
 SI 32768
 SF 100.6127690 MHz
 MDW EM
 SSB 0
 LB 1.00 Hz
 GB 0
 PC 1.40

1c

1c

1D NMR plot parameters

cx 20.00 cm
cy 0.00 cm
f1p 11.00 ppm
f1 4401.43 Hz
f2p -1.00 ppm
f2 +400.13 Hz
ppmch 0.500000 ppm
hzch 240.07800 Hz/cm

1 - Acquisition parameters

Date_ 20050920
Time 14.40
INSTRUM spect
PROBHD 5 mm QNP 1H/15
PULPROG zq30
TD 32768
SOLVENT CDCl3
NS 16
DS 2
SWH 4789.272 Hz
FIDRES 0.146157 Hz
AQ 3.4210281 sec
RG 50.8
DW 104.400 usec
DE 6.00 usec
TE 286.9 K
D1 1.0000000 sec
INCREST 0.0000000 sec
HARDP 0.01500000 sec

***** CHANNEL 11 *****

NUC1 1H
P1 7.05 usec
PL1 -3.00 dB
SF01 400.1320007 MHz

F2 - Processing parameters

SI 32768
SF 400.1300000 MHz
WDW EM
SSB 0
LB 0.30 Hz
GB 0
PC 1.00

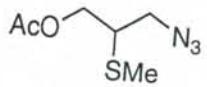
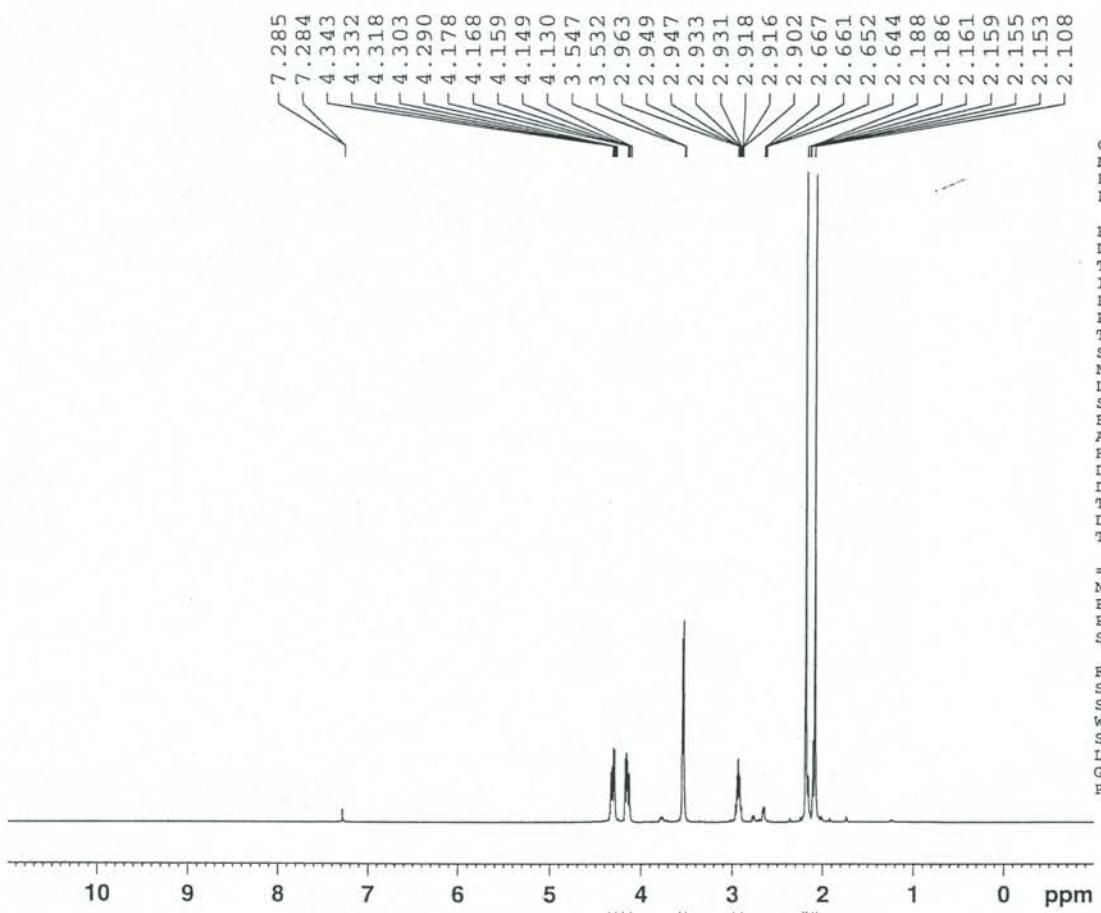
1D NMR plot parameters

cx 20.00 cm
cy 0.00 cm
f1p 11.00 ppm
f1 4401.43 Hz
f2p -1.00 ppm
f2 +400.13 Hz
ppmch 0.500000 ppm
hzch 240.07800 Hz/cm

1 - Acquisition parameters

Date_ 20050920
Time 14.43
INSTRUM spect
PROBHD 5 mm QNP 1H/15
PULPROG zq930
TD 65536
SOLVENT CDCl3
NS 104
DS 4
SWH 23980.814 Hz
FIDRES 0.365918 Hz
AQ 1.3664756 sec
RG 20.85 usec
DE 6.00 usec
TE 287.0 K
D1 0.1500001 sec
d11 0.0300000 sec
d12 0.0500000 sec
DELT1A 0.0500000 sec
INCREST 0.0000000 sec
HARDP 0.01500000 sec

***** CHANNEL 11 *****

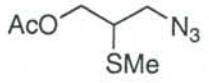
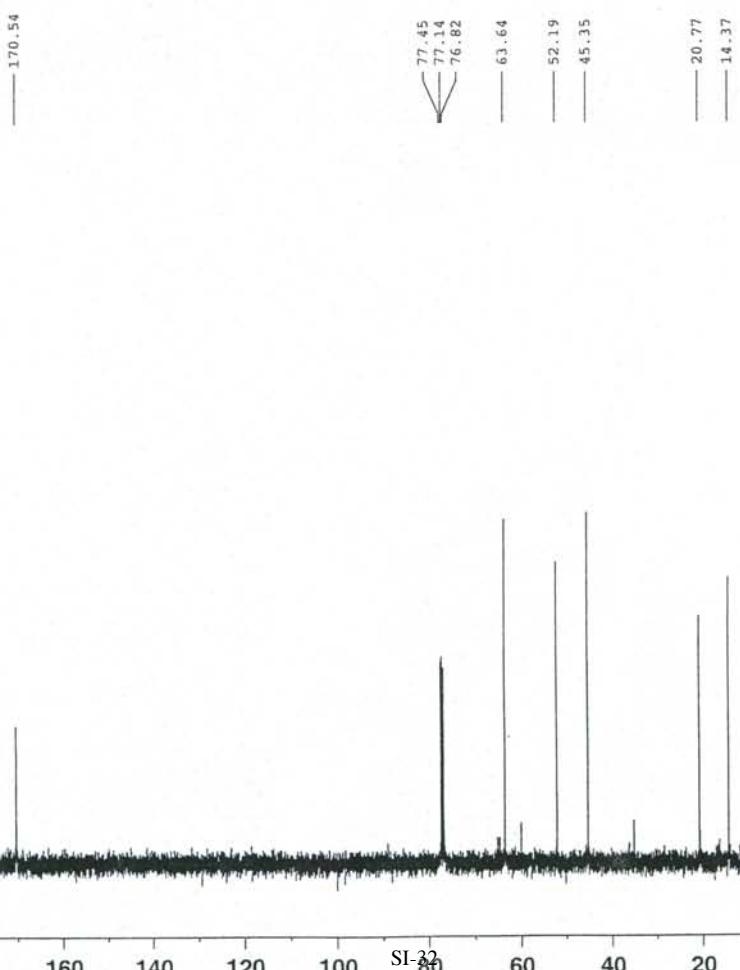


NUC1 13C
P1 7.70 usec
PL1 -2.00 dB
SF01 100.5228295 MHz

***** CHANNEL 12 *****

CPDPRG2 waltz16
NUC2 1H
P0P02 0.80 usec
PL2 -1.00 dB
PL12 19.00 dB
PL13 120.00 dB
SF02 400.1316003 MHz

1D NMR plot parameters

cx 20.00 cm
cy 0.00 cm
f1p 215.000 ppm
f1 21531.75 Hz
f2p -5.00 ppm
f2 -503.06 Hz
ppmch 11.000000 ppm/cm
hzch 1106.74048 Hz/cm

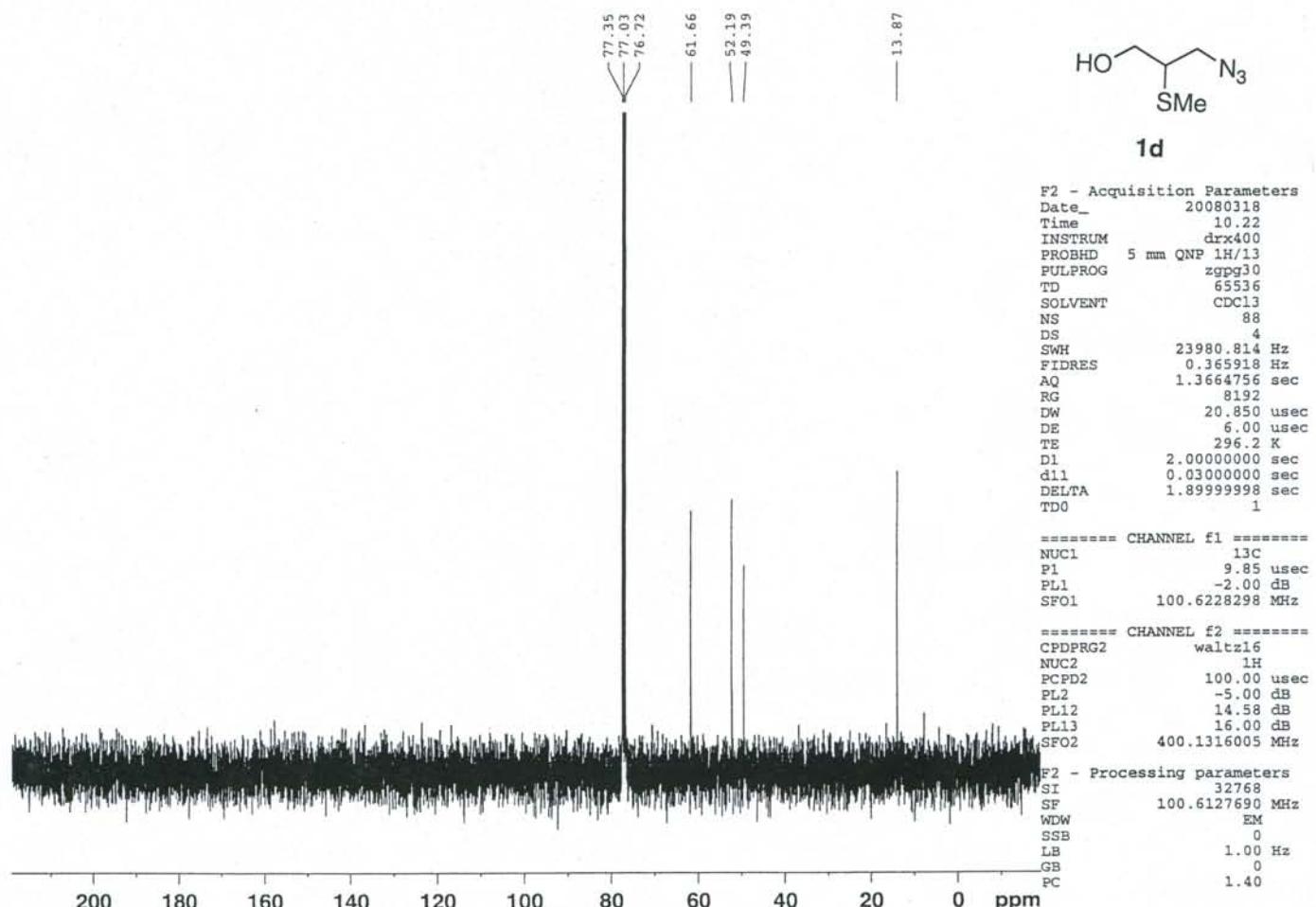
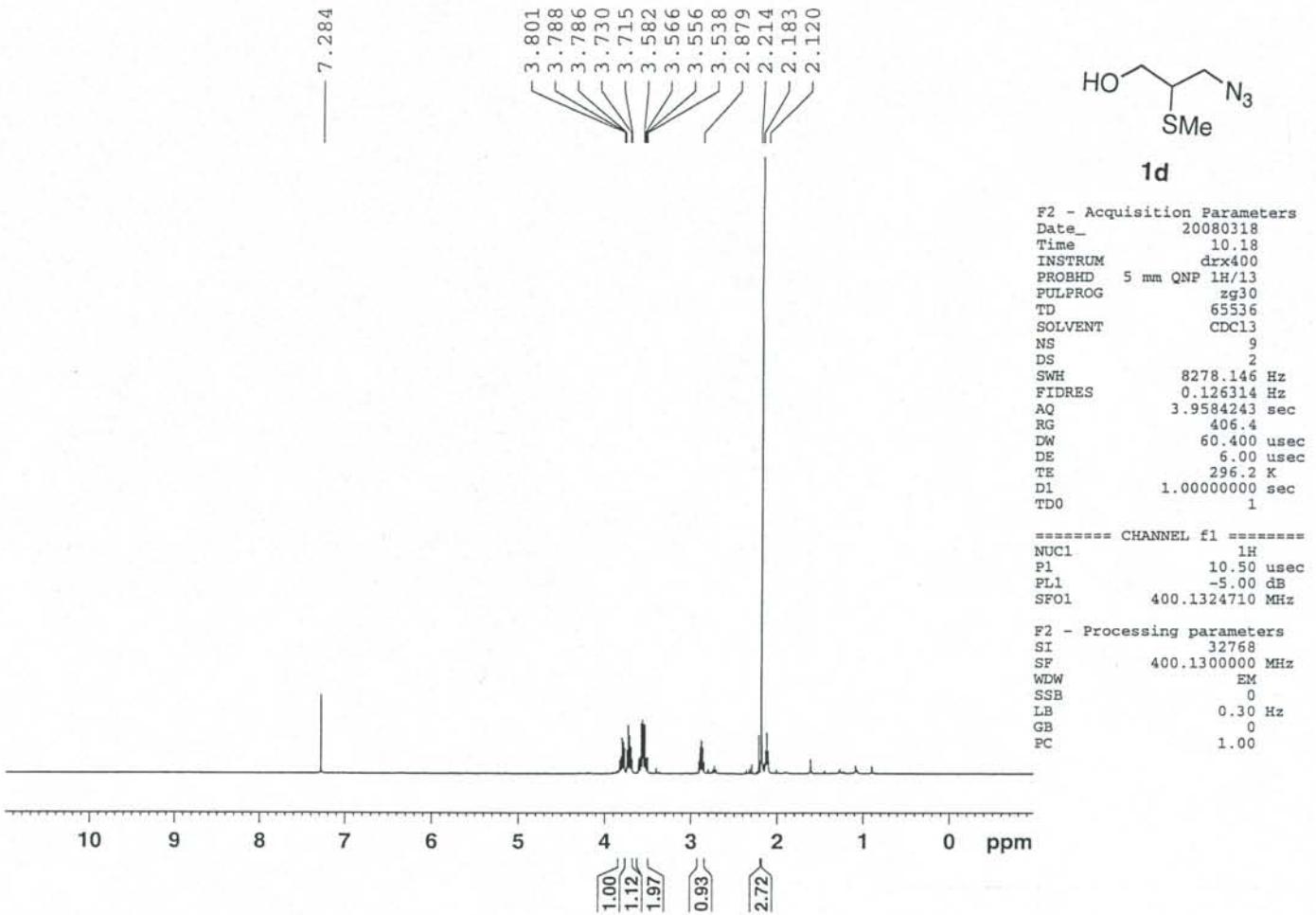



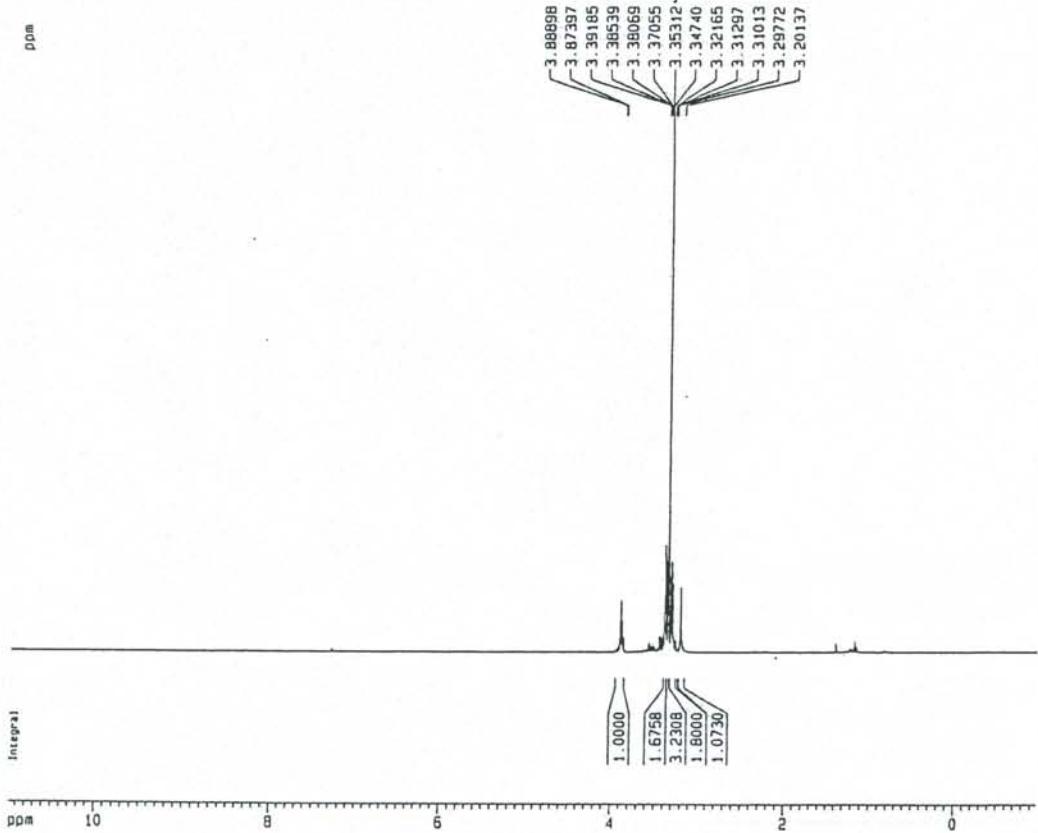
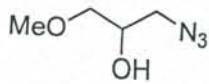
C
N
E
I

F2 - Acquisition Parameters
 Date_ 20080317
 Time 13.44
 INSTRUM drx400
 PROBHD 5 mm QNP 1H/13
 PULPROG zg30
 TD 65536
 SOLVENT CDCl₃
 NS 16
 DS 2
 SWH 8278.146 Hz
 FIDRES 0.126314 Hz
 AQ 3.9584243 sec
 RG 90.5
 DW 60.400 usec
 DE 6.00 usec
 TE 296.2 K
 D1 1.0000000 sec
 TD0 1

===== CHANNEL f1 =====
 NUC1 1H
 P1 10.50 usec
 PL1 -5.00 dB
 SFO1 400.1324710 MHz

F2 - Processing parameters
 SI 32768
 SF 400.1300000 MHz
 WDW EM
 SSB 0
 LB 0.30 Hz
 GB 0
 PC 1.00



Cu:
 NA:
 EX:
 PR:



F2 - Acquisition Parameters
 Date_ 20080317
 Time 12.55
 INSTRUM drx400
 PROBHD 5 mm QNP 1H/13
 PULPROG zgpg30
 TD 65536
 SOLVENT CDCl₃
 NS 28
 DS 4
 SWH 23980.814 Hz
 FIDRES 0.365918 Hz
 AQ 1.13664756 sec
 RG 6502
 DW 20.850 usec
 DE 6.00 usec
 TE 296.2 K
 D1 2.0000000 sec
 d11 0.03000000 sec
 DELTA 1.89999998 sec
 TD0 1

===== CHANNEL f1 =====
 NUC1 13C
 P1 9.85 usec
 PL1 -2.00 dB
 SFO1 100.6228298 MHz

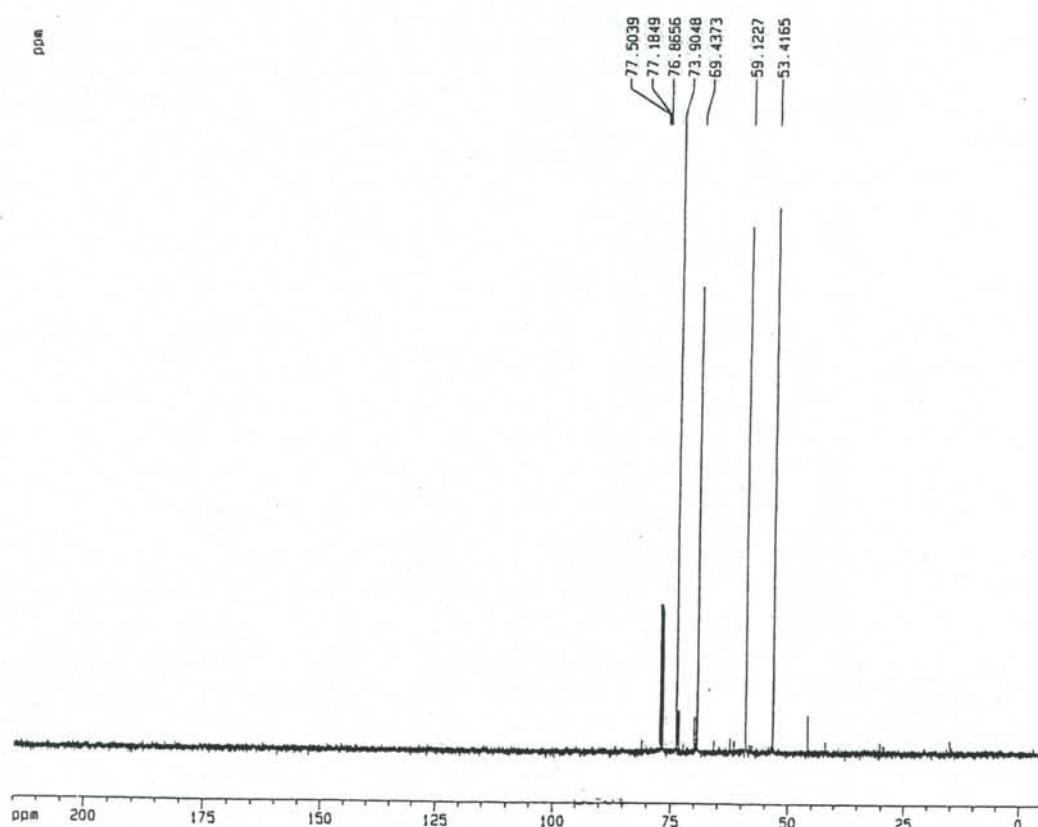
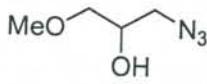
===== CHANNEL f2 =====
 CPDPRG2 waltz16
 NUC2 1H
 PCPD2 100.00 usec
 PL2 -5.00 dB
 PL12 14.58 dB
 PL13 16.00 dB
 SFO2 400.1316005 MHz

F2 - Processing parameters
 SI 32768
 SF 100.6127690 MHz
 WDW EM
 SSB 0
 LB 1.00 Hz
 GB 0
 PC 1.40

F2 - Acquisition Parameters:

DATE 20051229
 TIME 10:16
 INSTRUM spect
 PROBHD 5 mm QNP IN/15
 PULPROG 2930
 TD 32768
 SOLVENT CDCl3
 NS 16
 DS 2
 SWH 4789.272 Hz
 FIDRES 0.146157 Hz
 AQ 3.4210291 sec
 RG 32
 DW 104.400 usec
 DE 8.00 usec
 TE 295.8 K
 D1 1.00000000 sec
 NCEST 0.00000000 sec
 HCWRF 0.01500000 sec

***** CHANNEL II *****



NUC1 1H
 PI 7.05 usec
 PL1 -1.00 dB
 SF01 400.1320007 MHz

F2 - Processing parameters:

SI 32768
 SF 400.1300000 MHz
 WMW EH
 SSB 0
 LB 0.30 Hz
 GB 0
 PC 1.00

1D NMR plot parameters

CI 20.00 cm
 CY 0.00 cm
 F1P 11.000 ppm
 F1 4401.43 Hz
 F2P -1.000 ppm
 F2 -400.13 ppm
 PPHCH 0.50000 ppm/cm
 HZCH 240.07800 Hz/cm

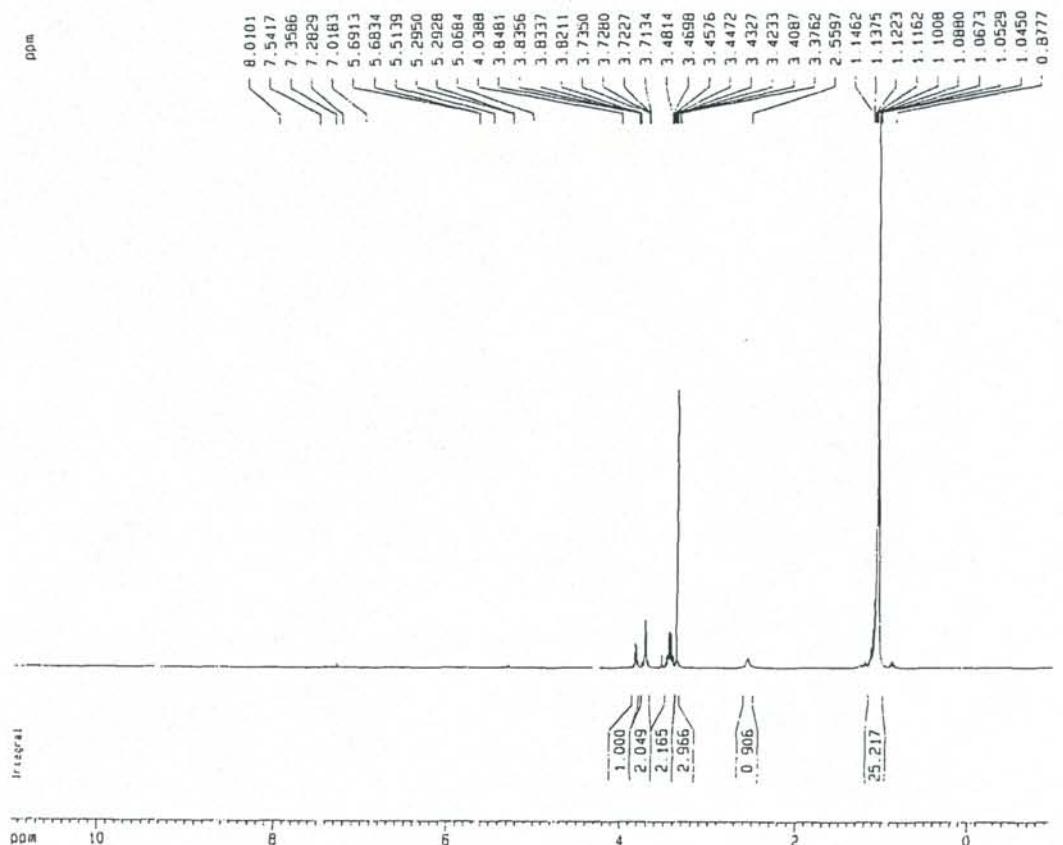
PROBHD 3 mm WIDENING 12
 PULPROG 2930
 TD 55536
 SOLVENT CDCl3
 NS 71
 DS 4
 SWH 23980.814 Hz
 FIDRES 0.365919 Hz
 AQ 1.3664736 sec
 RG 2648
 DW 20.000 usec
 DE 8.00 usec
 TE 295.0 K
 D1 0.15000000 sec
 R11 0.02000000 sec
 DQ,T4 0.05000000 sec
 NCEST 0.00000000 sec
 HCWRF 0.01500000 sec

***** CHANNEL II *****

HUC1 13C
 PI 7.20 usec
 PL1 -1.00 dB
 SF01 100.6226296 MHz

***** CHANNEL 12 *****

CPDPROG2 wait15
 HUC2 1H
 PCPQ2 98.40 usec
 PL2 -1.00 dB
 PL12 19.95 dB
 PL13 120.00 dB
 SF02 400.1315005 MHz


F2 - Processing parameters:

SI 32768
 SF 100.6127690 MHz
 WMW EH
 SSB 0
 LB 1.00 Hz
 GB 0
 PC 1.40

1D NMR plot parameters

CI 20.00 cm
 CY 0.00 cm
 F1P 215.000 ppm
 F1 21631.75 Hz
 F2P -5.000 ppm
 F2 -503.08 Hz
 PPHCH 11.000000 ppm/cm
 HZCH 110.746800 usec/cm

ppm

SI-5

F2 - Acquisition Parameters

Date_ 20060105
 Time 17.20
 INSTRUM spect
 PROBHD 5 mm QNP 1H/15
 PULPROG zg30
 TD 32768
 SOLVENT CDCl3
 NS 16
 DS 2
 SWH 4789.272 Hz
 FIDRES 0.146157 Hz
 AQ 3.4210291 sec
 RG 32
 DW 104.400 usec
 JE 6.00 usec
 TE 296.6 K
 D1 1.0000000 sec
 T1 0.0000000 sec
 NCPLST 0.0000000 sec
 NCPLRK 0.01500000 sec

***** CHANNEL 1H *****

NUC1 1H
 P1 7.05 usec
 PL1 -3.00 dB
 SF01 400.1320007 MHz

F2 - Processing parameters

SI 32768
 SF 400.1300000 MHz
 MDW EH
 SSB 0
 LB 0.30 Hz
 GB 0
 PC 1.00

1D NMR plot parameters

CX 20.00 cm
 CY 0.00 cm
 F1P 11.000 ppm
 F1 440.43 Hz
 F2P -1.000 ppm
 F2 -400.13 Hz
 PP1CH 0.50000 ppm/cm
 HZCH 240.07800 Hz/cm

Integral

SI-5

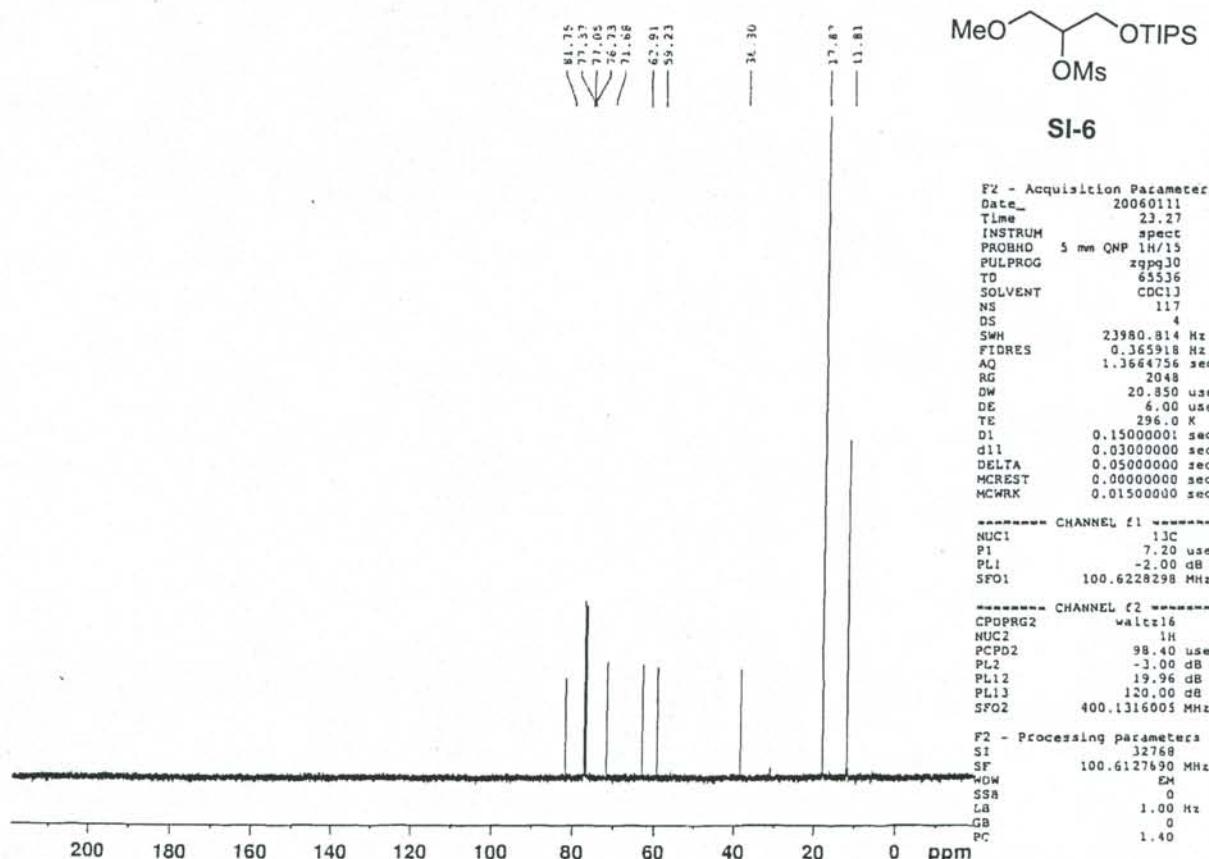
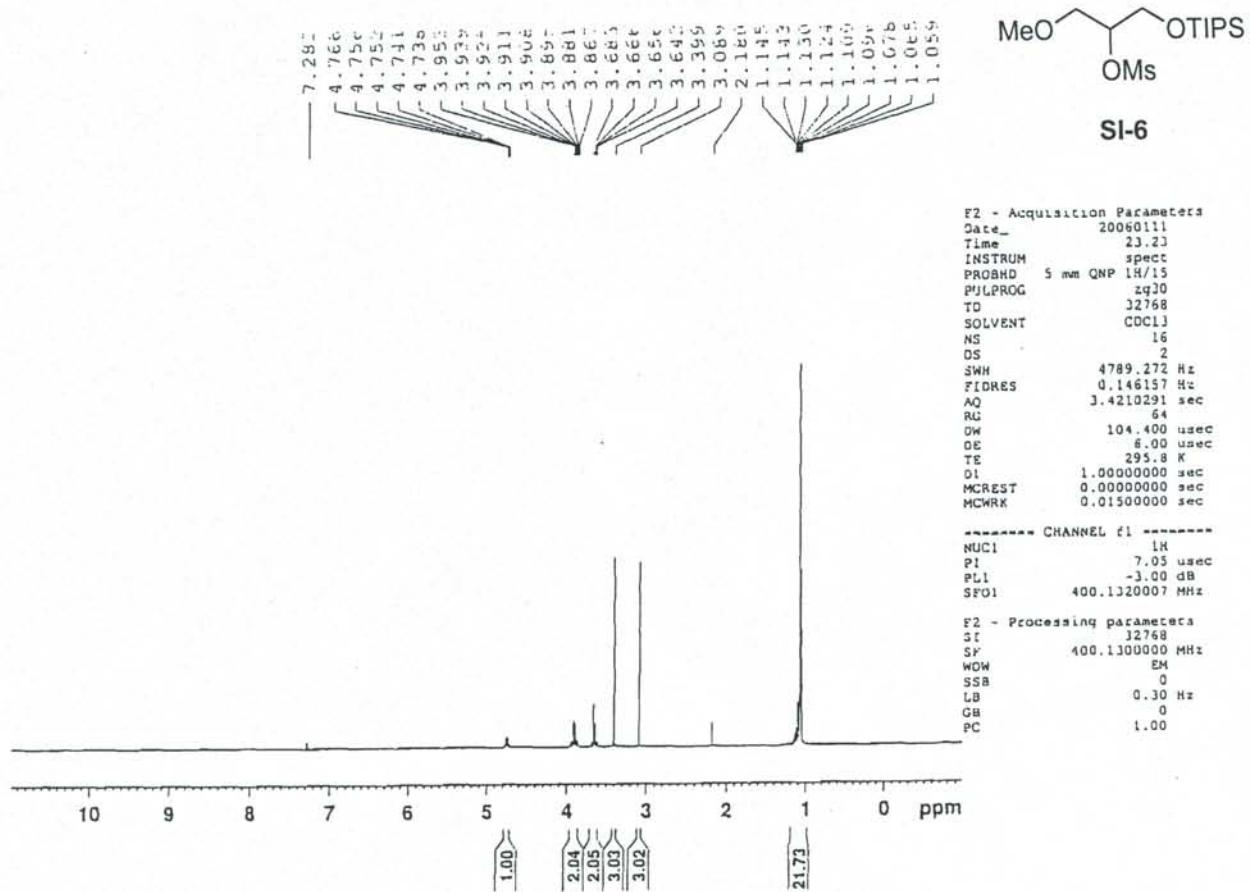
F2 - Acquisition Parameters

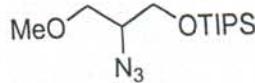
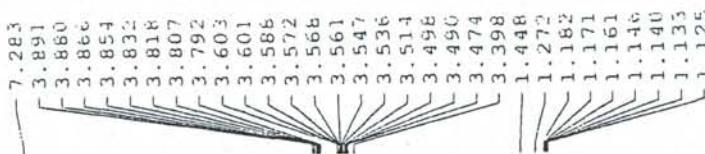
Date_ 20060105
 Time 17.23
 INSTRUM spect
 PROBHD 5 mm QNP 1H/15
 PULPROG zg30
 TD 43536
 SOLVENT CDCl3
 NS 36
 DS 4
 SWH 23990.814 Hz
 FIDRES 0.3654756 Hz
 AQ 1.3654756 sec
 RG 2048
 DW 20.850 usec
 JE 8.00 usec
 TE 296.8 K
 D1 0.1500001 sec
 d11 0.0300000 sec
 DELTA 0.0500000 sec
 NCPLST 0.0000000 sec
 NCPLRK 0.01500000 sec

***** CHANNEL 13C *****

NUC1 13C
 P1 7.20 usec
 PL1 -2.00 dB
 SF01 100.5226298 MHz

***** CHANNEL 12 *****



COPROG2 -waltz16
 NUC2 1H
 PCP02 98.40 usec
 PL2 -3.00 dB
 PL12 19.96 dB
 PL13 120.00 dB
 SF02 400.1316005 MHz

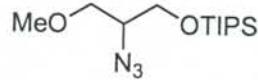


F2 - Processing parameters

SI 32768
 SF 100.8127890 MHz
 MDW EH
 SSB 0
 LB 1.00 Hz
 GB 0
 PC 1.40

1D NMR plot parameters

CX 20.00 cm
 CY 0.00 cm
 F1P 21531.75 Hz
 F1 21531.75 Hz
 F2P -5.000 ppm
 F2 -503.38 Hz
 PP1CH 11.00000 ppm/cm
 HZCH 1106.7048 Hz/cm

F2 - Acquisition Parameters
 Date_ 20060112
 Time 21.41
 INSTRUM spect
 PROBHD 5 mm QNP 1H/15
 PULPROG zg30
 TD 32768
 SOLVENT CDCl3
 NS 16
 DS 2
 SWH 4789.272 Hz
 FIDRES 0.146157 Hz
 AQ 3.4210291 sec
 RG 50.8
 DW 104.400 usec
 DE 6.00 usec
 TE 296.1 K
 D1 1.0000000 sec
 MCREST 0.0000000 sec
 MCWRK 0.0150000 sec


----- CHANNEL F1 -----
 NUC1 1H
 P1 7.05 usec
 PL1 -3.00 dB
 SFO1 400.1320007 MHz

F2 - Processing parameters
 SI 32768
 SF 400.1300000 MHz
 WDW EM
 SSB 0
 LB 0.30 Hz
 GB 0
 PC 1.00

10 9 8 7 6 5 4 3 2 1 0 ppm

2.01 3.00 3.00 21.85

77.25 17.03 16.12 11.64 13.65 12.12 11.81 11.41

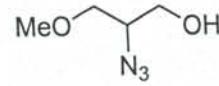
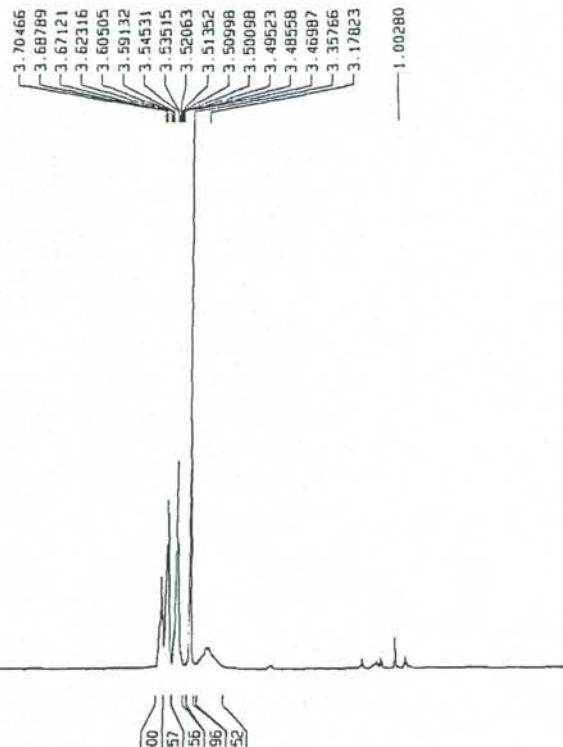
SI-7

F2 - Acquisition Parameters
 Date_ 20060112
 Time 21.44
 INSTRUM spect
 PROBHD 5 mm QNP 1H/15
 PULPROG zgpg30
 TD 65536
 SOLVENT CDCl3
 NS 103
 DS 4
 SWH 23980.814 Hz
 FIDRES 0.365918 Hz
 AQ 1.3664756 sec
 RG 2048
 DW 20.850 usec
 DE 6.00 usec
 TE 296.1 K
 D1 0.1500001 sec
 d11 0.0300000 sec
 DELTA 0.0500000 sec
 MCREST 0.0000000 sec
 MCWRK 0.0150000 sec

----- CHANNEL F1 -----
 NUC1 1H
 P1 7.20 usec
 PL1 -2.00 dB
 SFO1 100.6228298 MHz

----- CHANNEL F2 -----
 CPDPRG2 waltz16
 NUC2 1H
 PCP02 98.40 usec
 PL2 -3.00 dB
 PL12 19.96 dB
 PL13 120.00 dB
 SFO2 400.1316005 MHz

F2 - Processing parameters
 SI 32768
 SF 100.6127690 MHz
 WDW EM
 SSB 0
 LB 1.00 Hz
 GB 0
 PC 1.40



200 180 160 140 120 100 80 60 40 20 0 ppm

ppm

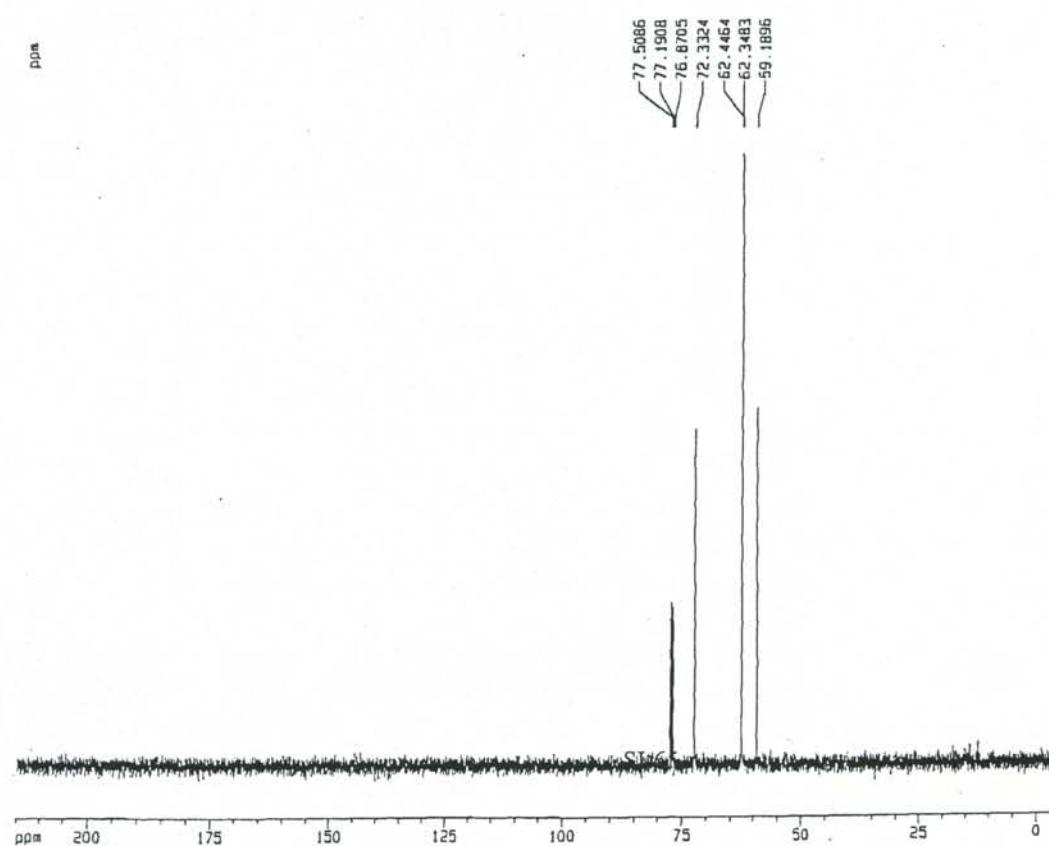
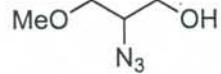
Integral

ppm

ppm

F2 - Acquisition Parameters

Date 20060116
 Time 20:58
 INSTRUM spect
 PROBOD 5 mm QNP 1H/15
 PULPROG zg30
 TD 32768
 SOLVENT CDCl3
 NS 16
 DS 2
 SWH 4789.272 Hz
 FIDRES 0.146157 Hz
 AQ 3.4210291 sec
 RG 32
 DM 104.400 usec
 DE 6.00 usec
 TE 295.7 K
 D1 1.0000000 sec
 MCREST 0.0000000 sec
 NCWRFK 0.01500000 sec

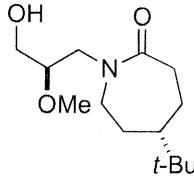


***** CHANNEL f1 *****

NUC1 1H
 PI 7.05 usec
 PL1 -3.00 dB
 SF01 400.1320007 MHz

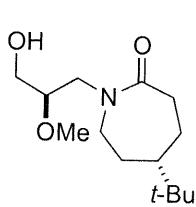
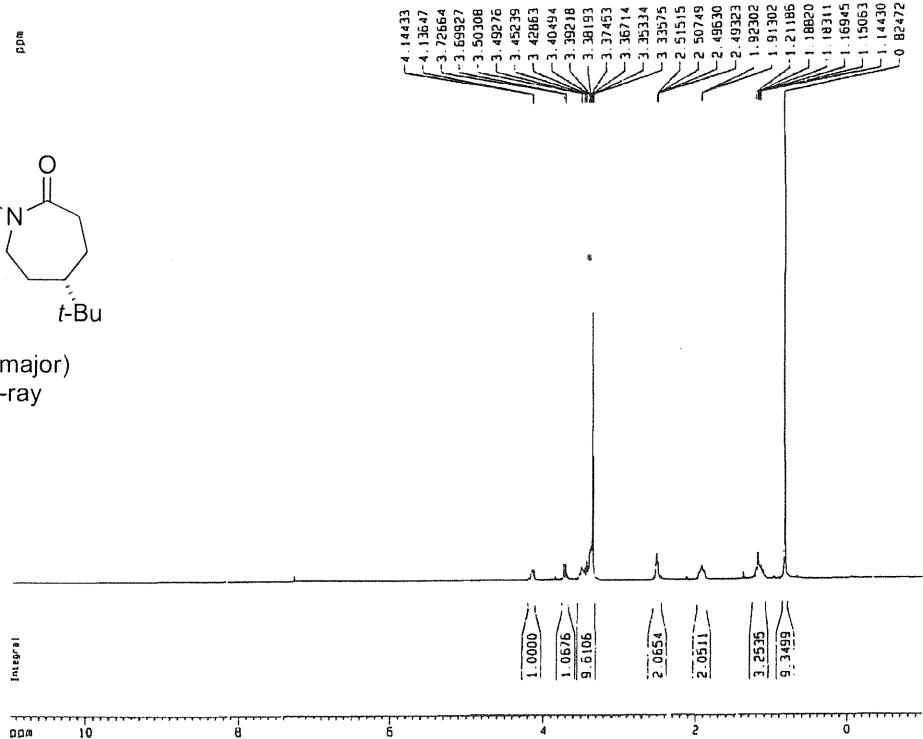
F2 - Processing parameters

SI 32768
 SF 400.1300000 MHz
 DM EM
 SSB 0
 LB 0.30 Hz
 GB 0
 PC 1.00

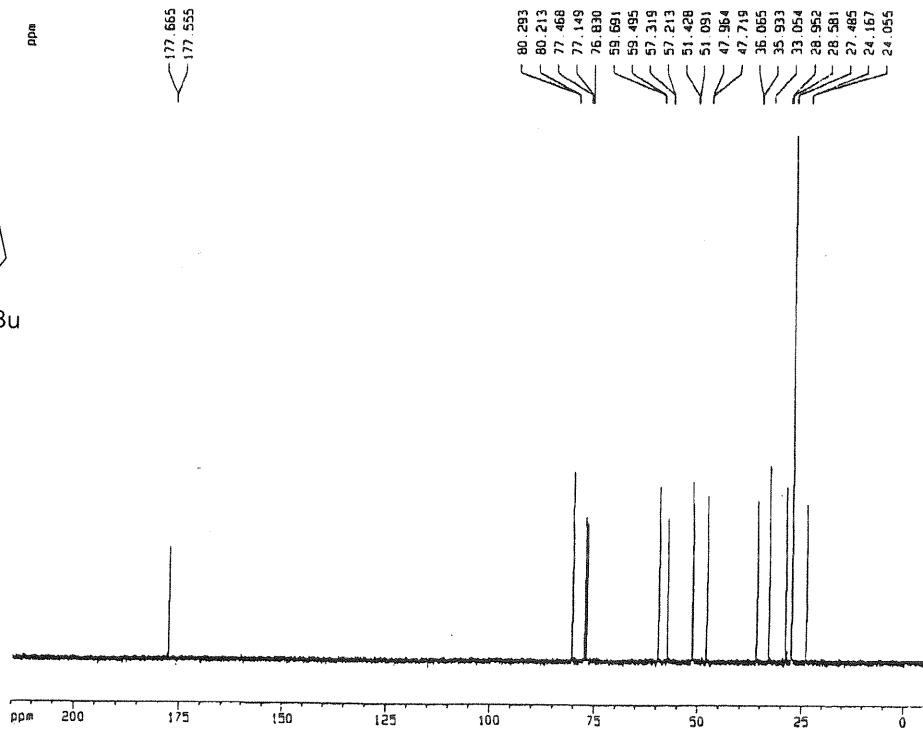
1D NMR plot parameters
 CX 20.00 cm
 CY 0.00 cm
 F1P 11.003 ppm
 F1 4401.43 Hz
 F2P -1.000 ppm
 F2 -400.13 Hz
 PPHCH 0.0000000 ppm/cm
 HZCH 240.07800 Hz/cm

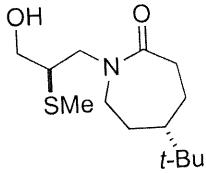
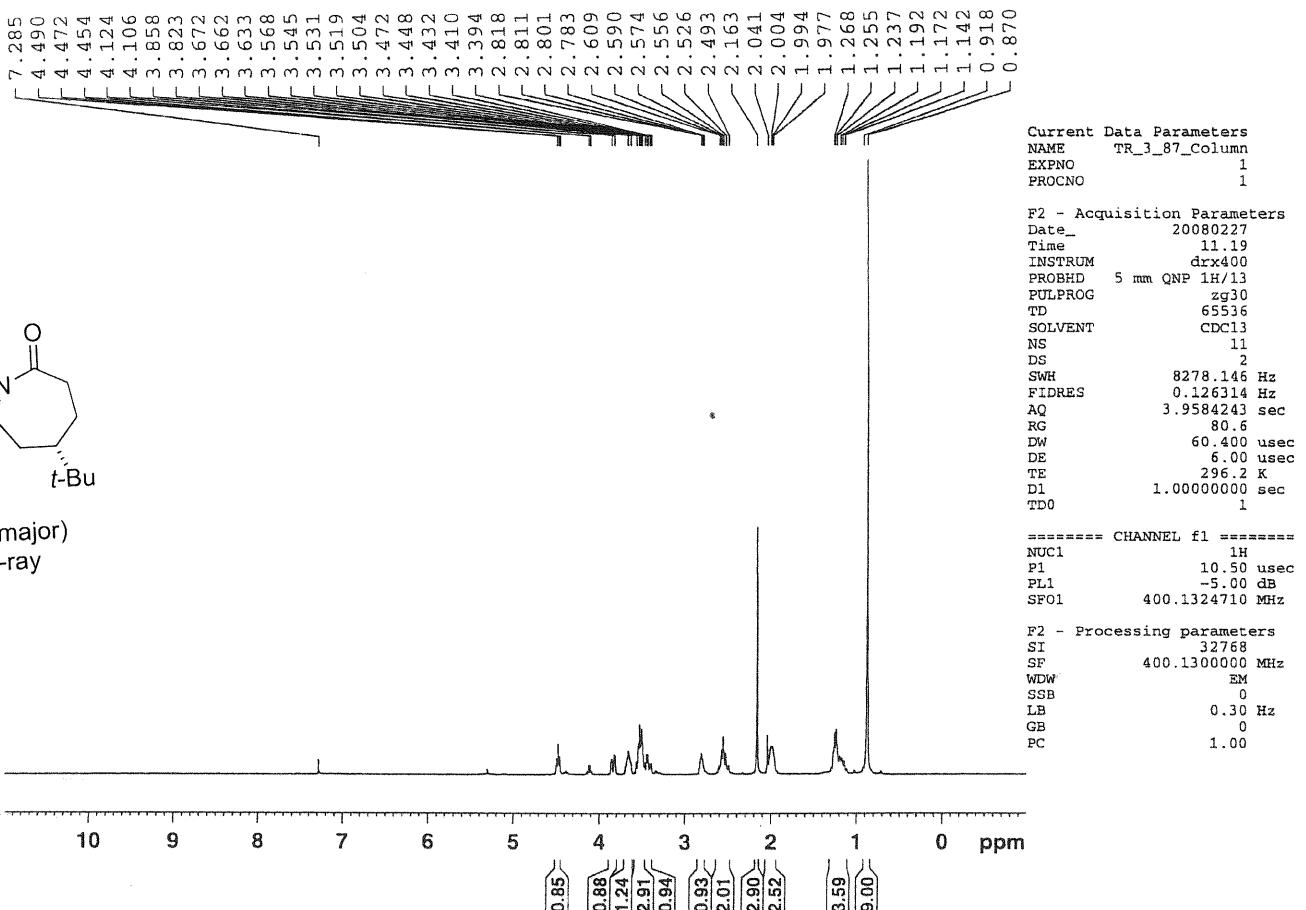


F2 - Acquisition Parameters
 Date 20060116
 Time 21:00
 INSTRUM spect
 PROBOD 5 mm QNP 1H/15
 PULPROG zg30
 TD 65536
 SOLVENT CDCl3
 NS 91
 DS 4
 SWH 23990.814 Hz
 FIDRES 0.365918 Hz
 AQ 1.3664756 sec
 RG 2048
 DM 20.856 usec
 DE 6.00 usec
 TE 295.8 K
 D1 0.1500001 sec
 d11 0.3000000 sec
 DELTA 0.0500000 sec
 MCREST 0.0000000 sec
 NCWRFK 0.0150000 sec

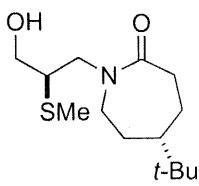


***** CHANNEL f1 *****
 NUC1 13C
 PI 7.20 usec
 PL1 -2.00 dB
 SF01 100.6220294 MHz

***** CHANNEL f2 *****
 CPDPG02 waltz16
 NUC2 1H
 PCPG02 98.40 usec
 PL2 -1.00 dB
 PL12 19.98 dB
 PL13 120.00 dB
 SF02 400.1318009 MHz

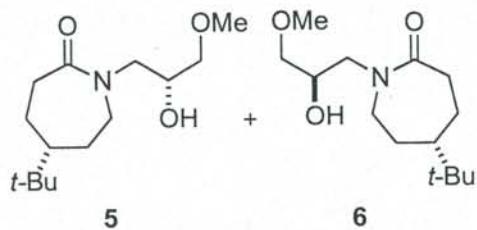

F2 - Processing parameters
 SI 32768
 SF 100.6127590 MHz
 DM EM
 SSB 0
 LB 1.00 Hz
 GB 0
 PC 1.40
 1D NMR plot parameters
 CX 20.00 cm
 CY 0.00 cm
 F1P 215.000 ppm
 F1 21631.75 Hz
 F2P -3.000 ppm
 F2 -501.08 Hz
 PPHCH 11.00000 ppm/cm
 HZCH 1106.74048 Hz/cm

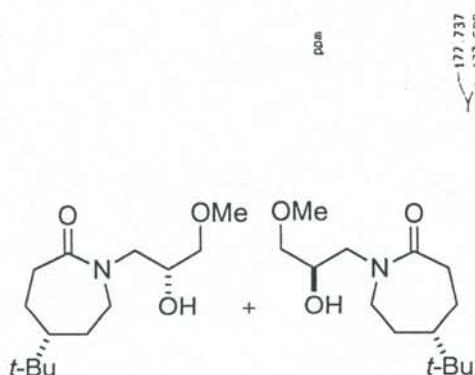
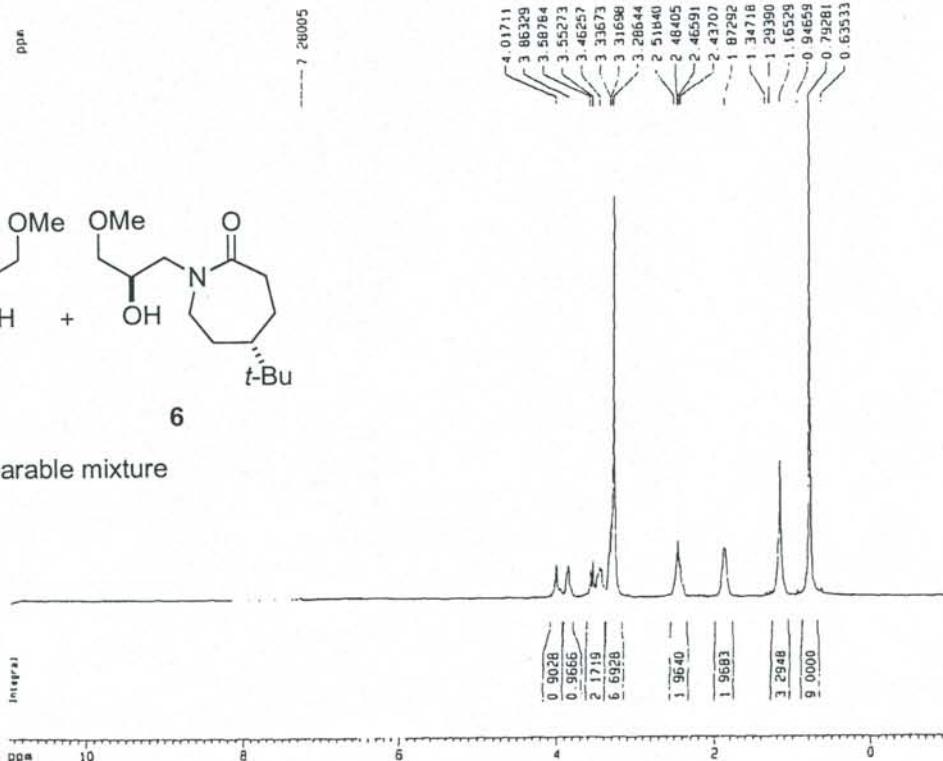
3c (major)
X-ray



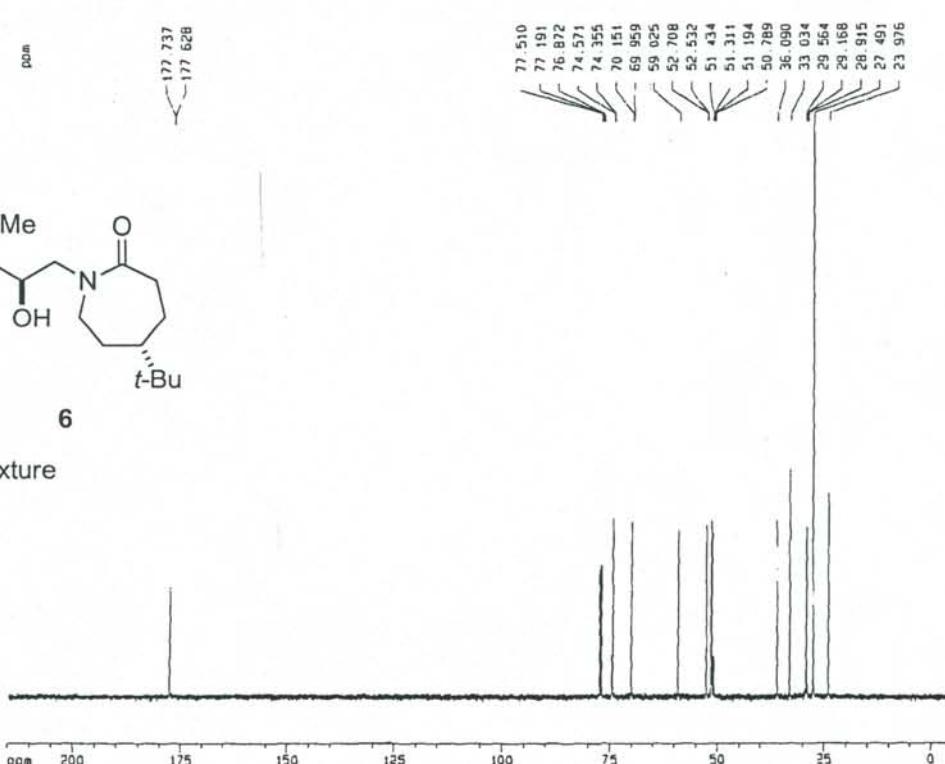
3c (major)
X-ray

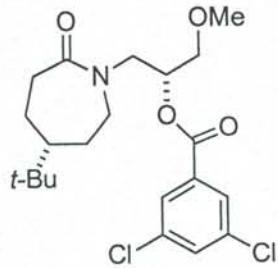


3d (major)
X-ray

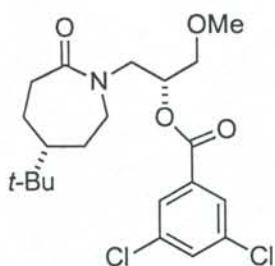
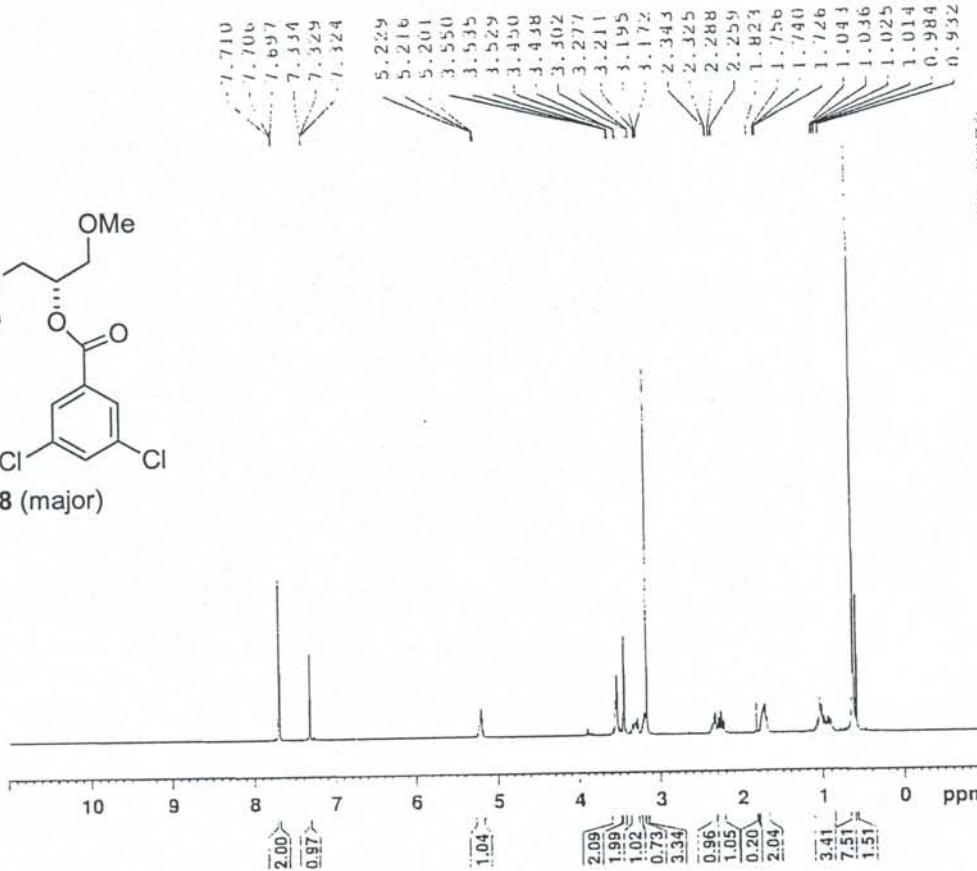



3d (major)
X-ray

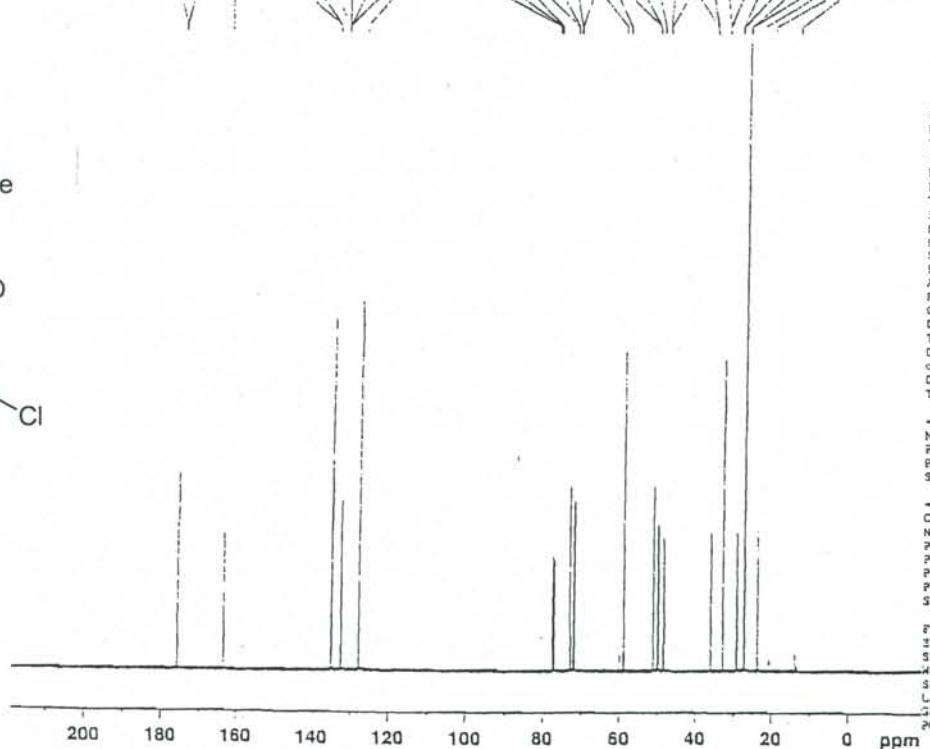




inseparable mixture

inseparable mixture



SI-8 (major)

SI-8 (major)

Current Data Parameters
NAME TPR.1.253_major
EXPNO :
PROCNO : -

```

P2 - Acquisition Parameters
Date_ 10060224
Time 11.49
INSTRUM spect
PROBOD 5 mm QNP 1H/15
PULPROG zg30
TD 65536
SOLVENT CDCl3
NS 16
DS 2
SWH 3278.146 Hz
FORES 0.126314 Hz
AQ 3.9584243 sec
RG 10.1
DW 60.400 usec
DE 9.00 usec
TE 295.7 K
D1 1.0000000 sec
D2 1

```

----- CHANNEL #1 -----
NUC1 1H
P1 3.70 usec
PL1 -4.00 dB
SFO1 400.1224710 MHz

```

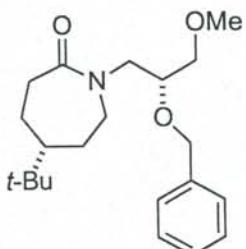
P2 - Processing parameters
GI          12768
SF        400.1300000 MHZ
WDW          EM
SSB          J
LS          0.20 Hz
JB          J
PC          1.00

```

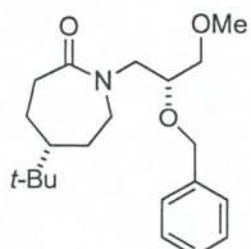
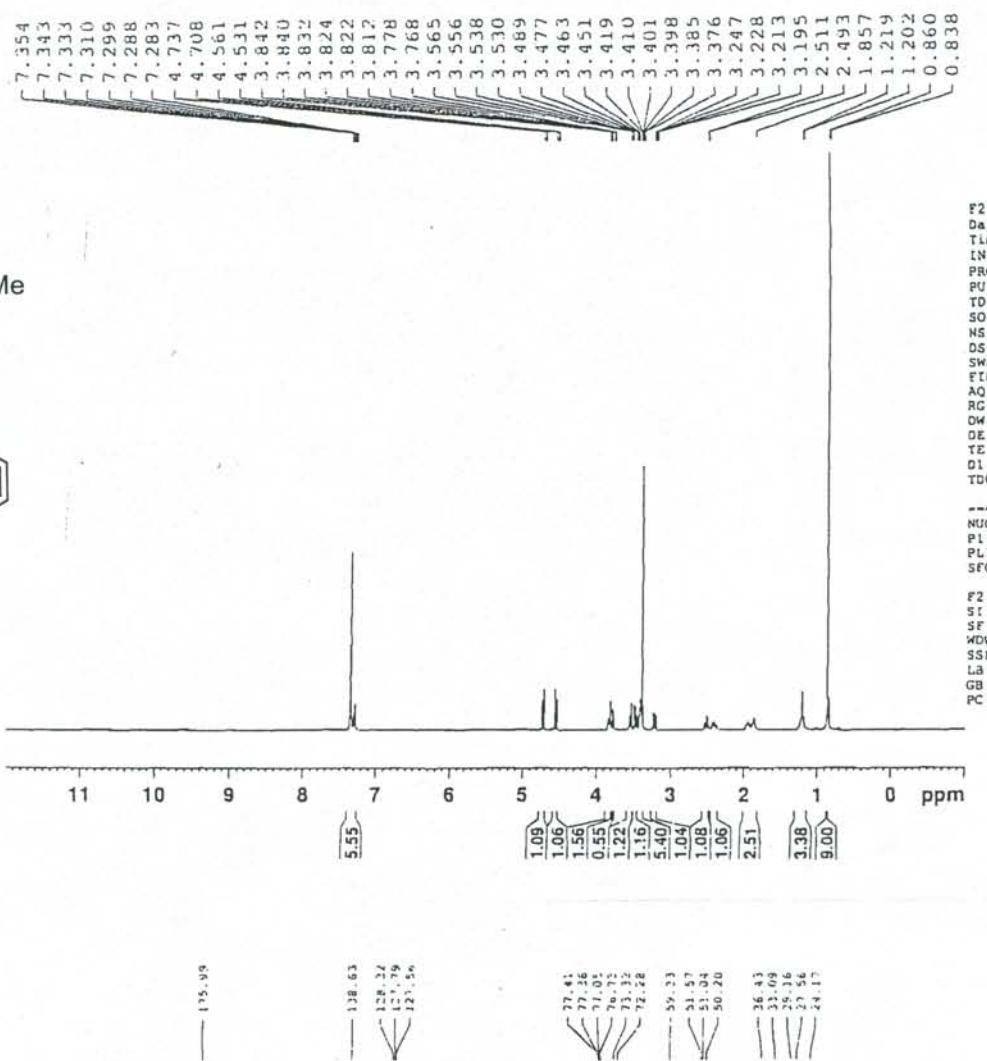
```

P2 - Acquisition Parameters
Time           20060224
Time         11.54
INSTRUM          spect
PROBHD      5 mm QNP 1H/2D
PULPROG        zgpg3d
TD              45536
SOLVENT        CDCl3
NS               34
DS               4
SWH         23980.814 Hz
FIDRES       0.365910 Hz
AQ            1.166475s
RG              1649.1
DW            20.950 usec
DE             3.00 usec
TE              29.82 K
D1        2.00000000 sec
D11        0.33000000 sec
DELT1       1.39999999 sec

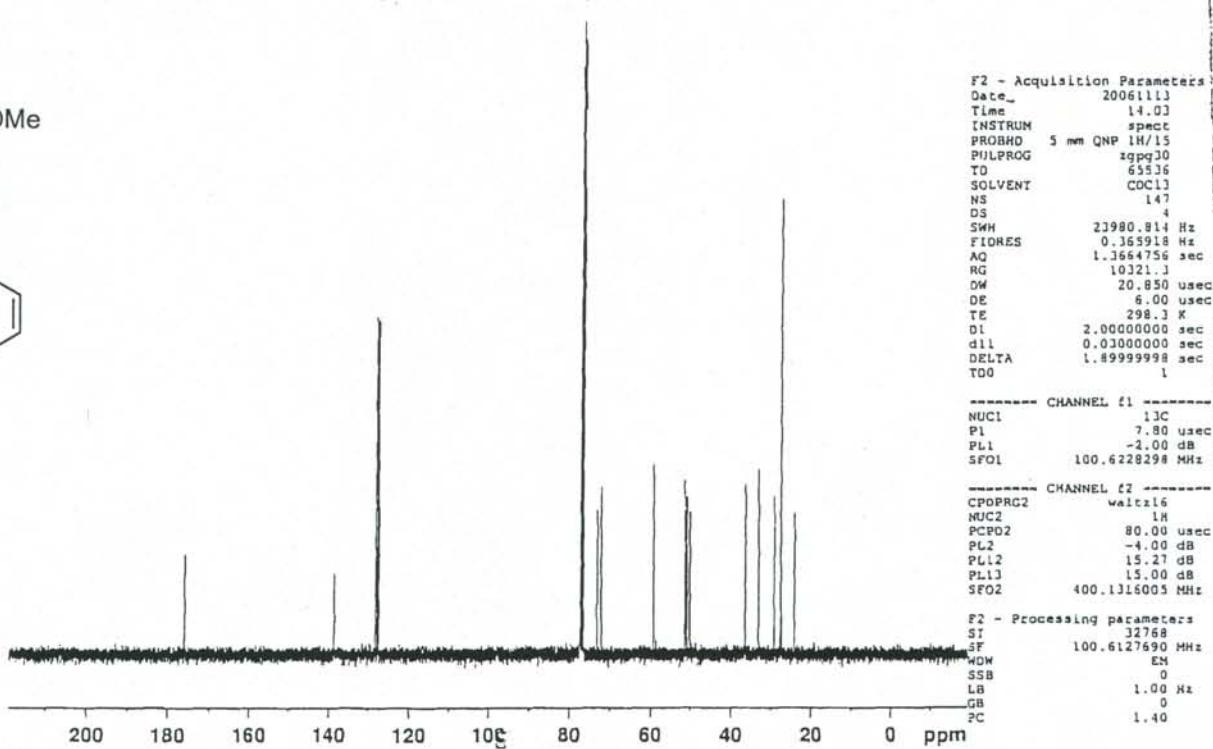
```

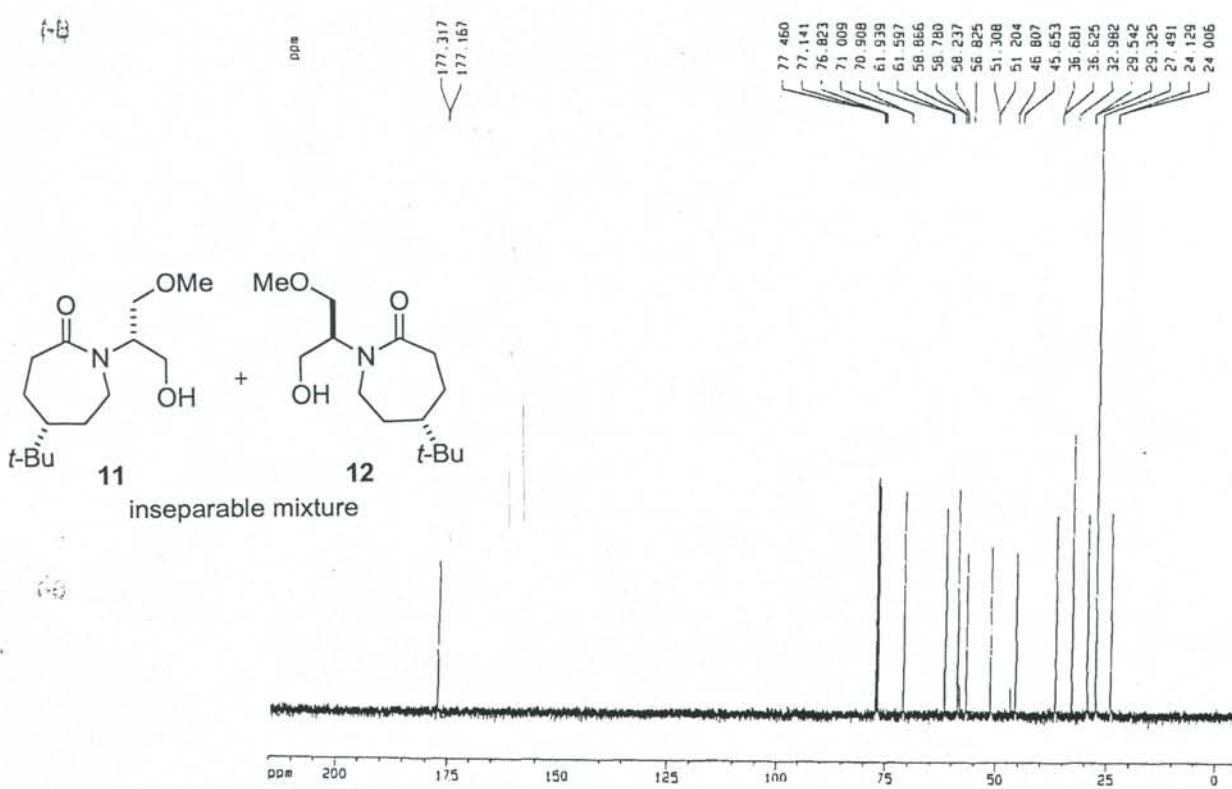
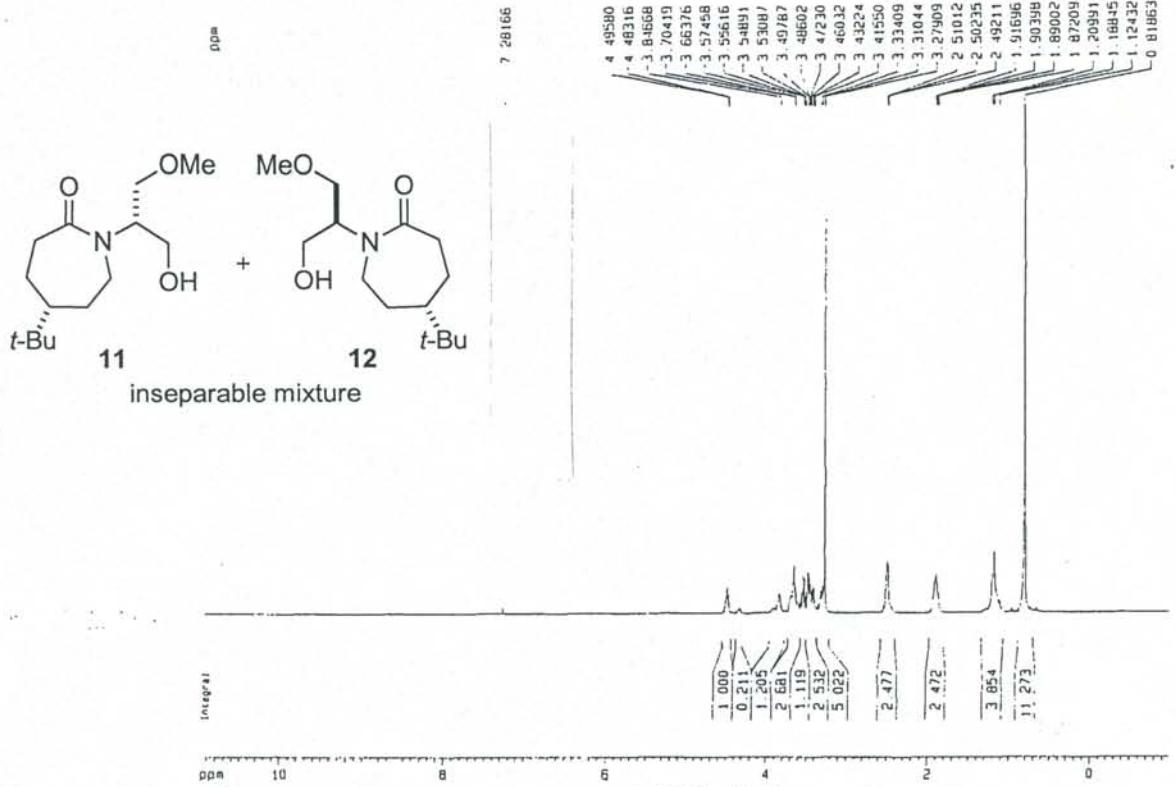

----- CHANNEL 1 -----
NUC1 L1C
P1 1.80 usec
PL -1.00 dB
SF01 100.6218298 MHz

```
----- CHANNEL #2 -----
CPOPRG2      waltz16
NUC2         LH
PCPD2      80.00 usec
PL2         -4.00 dB
PL12        15.27 dB
PL13        15.00 dB
SFO2      400.1316005 MHz
```



```

82 - Processing parameters
31          12768
SF          100.6127690 MHz
MOW          2M
SSB          0
LB          1.00 Hz
GA          0
PC          1.40


```

SI-10

SI-10


```

F2 - Acquisition Parameters
Date_ 20060119
Time 9 25
[INSTRUM] spect
[PROBHD] 5 mm QNP 1H/15
[PULPROG] zg30
[TD] 32768
[SOLVENT] CDCl3
[NS] 16
[DS] 2
[SWH] 4789.272 Hz
[FINES] 0.146157 Hz
[AQ] 3.420291 sec
[RG] 32
[DW] 104.400 usec
[DE] 8.00 usec
[TE] 296.0 K
[DI] 1.0000000 sec
[NOREST] 0.00000000 sec
[NCHAK] 0.01500000 sec

***** CHANNEL 11 *****

[N1] 1H
[P1] 7.05 usec
[PL1] -1.05 dB
[SF01] 400.1320007 MHz

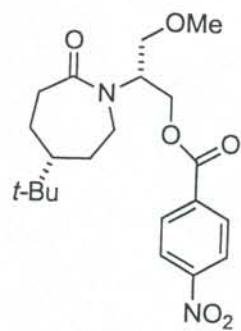
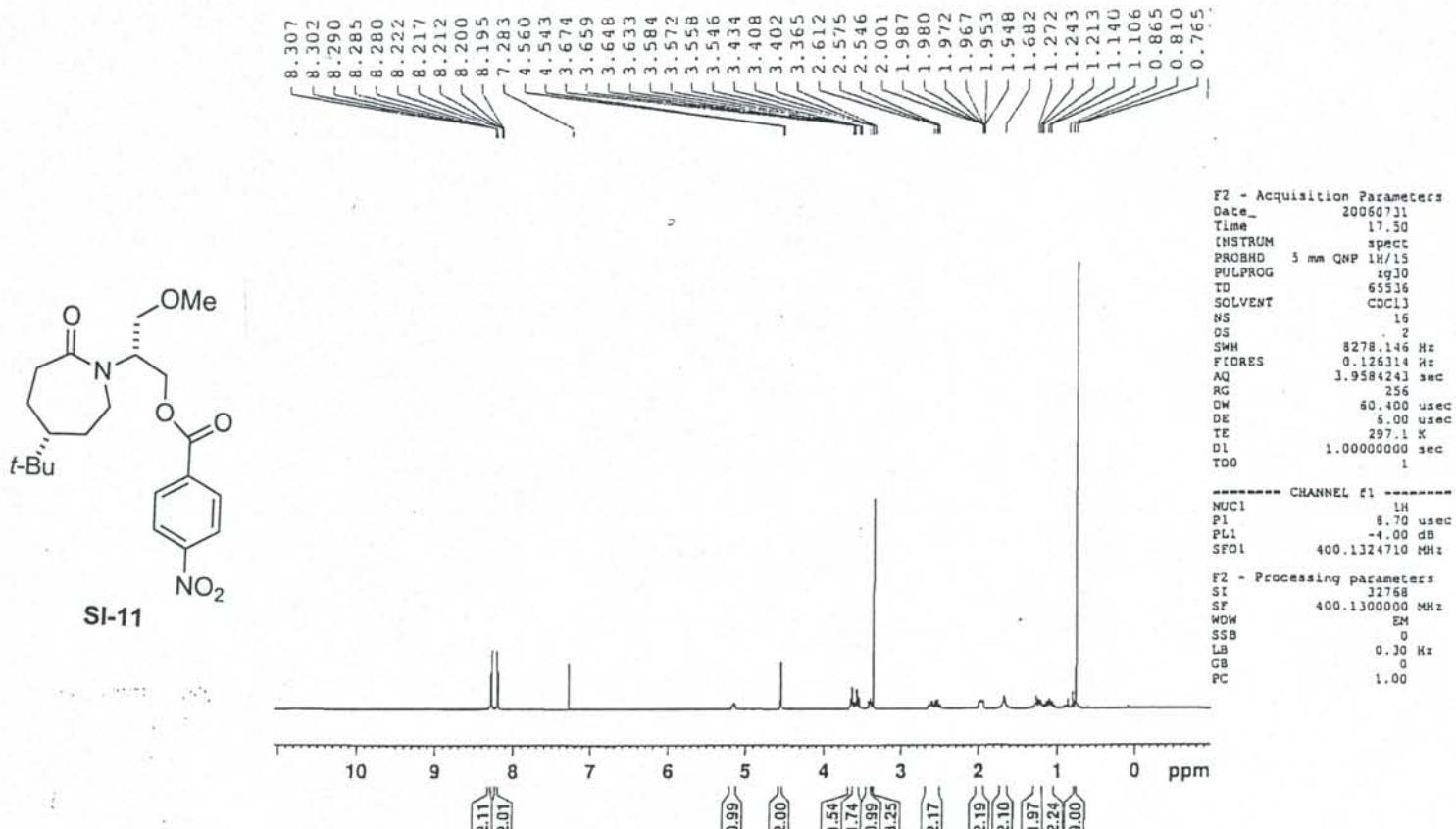
F2 - Processing parameters
[SI] 32768
[SF] 400.13200000 MHz
[DW] 8E-09
[SSB] 0
[L9] 0 30 Hz
[G9] 0
[PC] 1.00

1D NMR slot parameters
[CX] 20.00 cm
[CY] 0.00 cm
[F1P] 11 000 000 Hz
[F1] 4401.43 Hz
[F2] -1 000 ppm
[F2] -400.13 Hz
[PPHCH] 0.50000000 sec
[HCH] 240.37800 Hz/cm

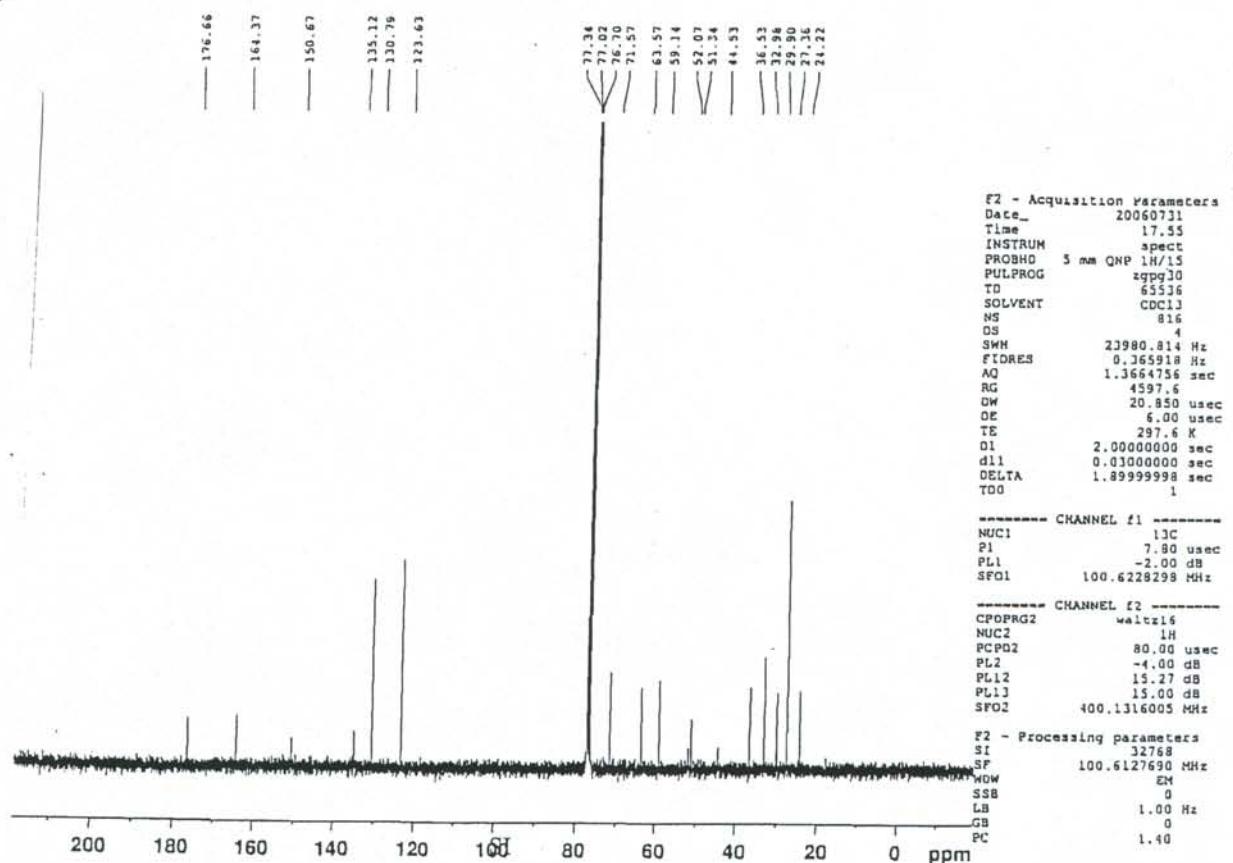
```

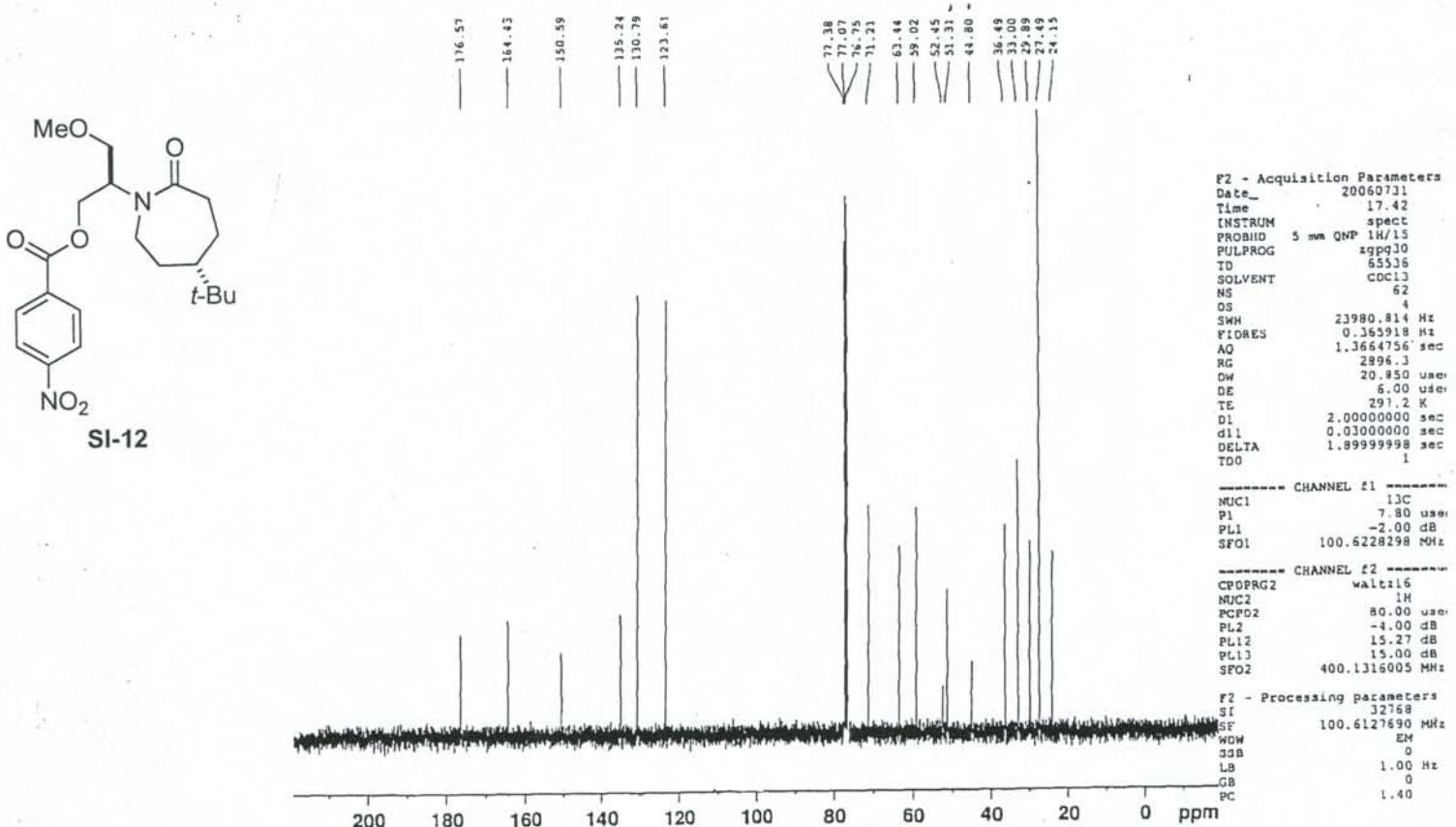
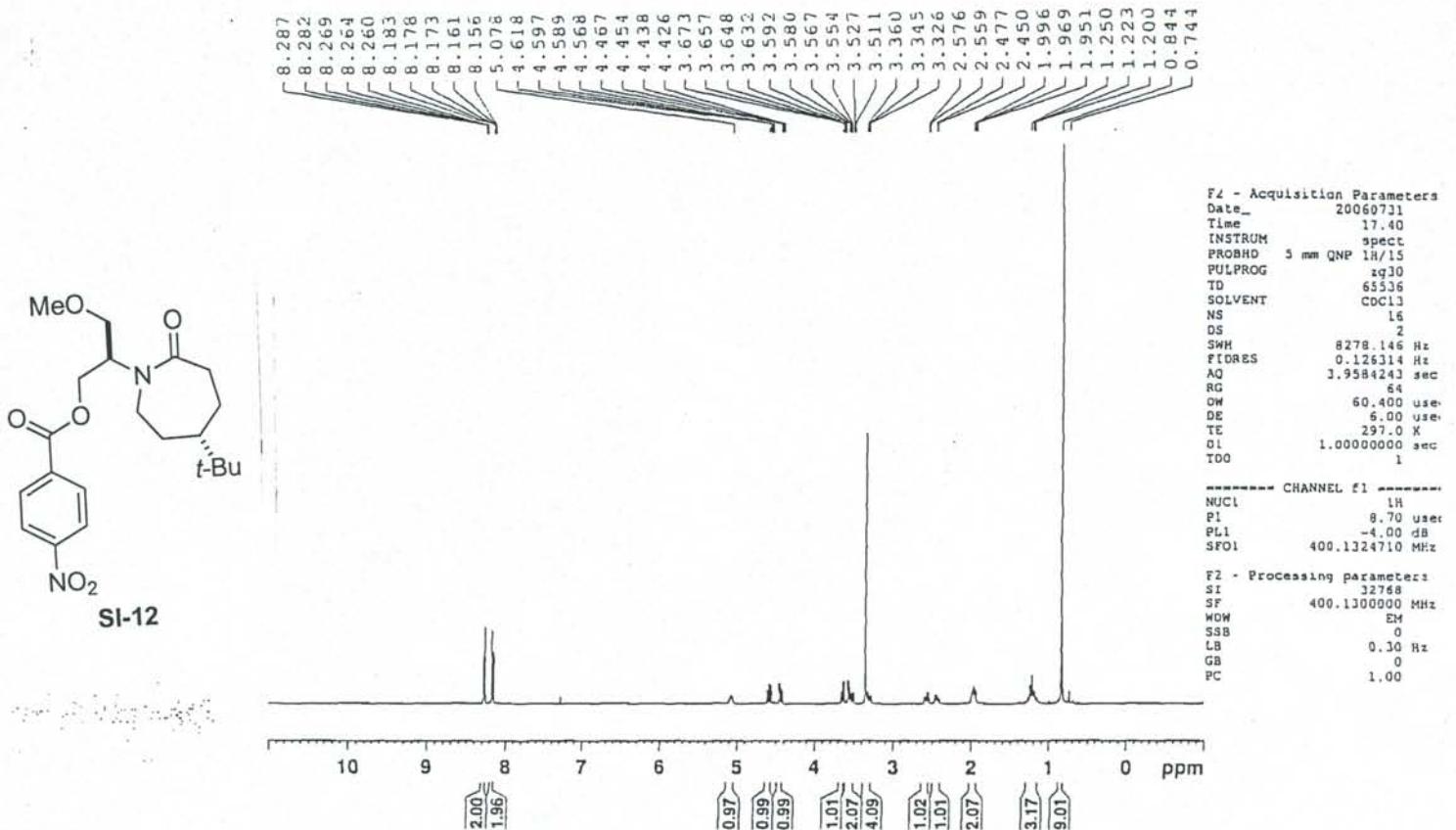
```

F1 - ACQUISITION PARAMETERS
Date- 20061115
Time- 8.30
INSTRUM- 46451
PROBOD- 5 mm QNP UNW15
PULPROG- 100010
TD- 55526
SOLVENT- C6D13
NS- 164
DS- 4
SWH- 235000 Hz/rt
FIDRES- 0.365188 Hz
AQ- 1.3664756 sec
RG- 2048
DW- 20.80 usec
DE- 8.00 usec
TE- 296.4 °K
D1- 0.05000001 sec
T1- 0.05000000 sec
DELTA- 0.05000000 sec
ROEST- 0.05000000 sec
HCWHM- 0.31500000 sec



***** CHANNEL 11 *****
HNU1 1.3C
P1 7.29 usec
PL1 -2.00 dB
SF01 100.5220259 MHz

***** CHANNEL 12 *****
CPDPRG2 -441115
HNU2 1H
PCP02 38.40 usec
PL2 -3.00 dB
PL12 19.98 dB
PL12 10.00 dB
SF02 400 (316005 MHz


F2 - PROCESSING PARAMETERS
SI- 32768
SF- 100.6127590 MHz
DW- 1H
SSB- 0
LB- 1.00 Hz
GB- 0
PC- 1.40



10 MHz plot parameters
CX- 20.00 cm
CY- 0.00 cm
F1P- 215.00000 Hz
F1- 21621.75 Hz
F2P- -3.00 ppm
F2- -503.06 Hz
PRF04- 11.000000 sec/c
HCWHM- 1106.74048 Hz

```


SI-11

