

Supporting Information

© Wiley-VCH 2008

69451 Weinheim, Germany

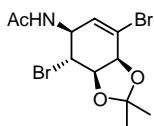
Supporting Information

A Concise and Flexible Synthesis of the Potent Anti-Influenza Agents – Tamiflu and Tamiphosphor

Jiun-Jie Shie,¹ Jim-Min Fang* and Chi-Huey Wong

The Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan, and
Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
Fax: (886-2)-23637812; E-mail: jmfang@ntu.edu.tw

Contents	Page number
General part of experimental section	S2
Synthetic procedures and product characterization	S2–S16
ORTEP drawing and crystal data of compound 6	S17–S23
¹ H and ¹³ C NMR spectra	S24–S40

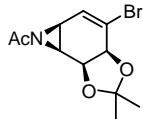

General Part of Experimental Section

All the reagents were commercially available and used without further purification unless indicated otherwise. All solvents were anhydrous grade unless indicated otherwise. Diisopropyl azodicarboxylate (DIAD) was purified by distillation on Na_2SO_4 under reduced pressure. All non-aqueous reactions were carried out in oven-dried glassware under a slight positive pressure of argon unless otherwise noted. Reactions were magnetically stirred and monitored by thin-layer chromatography on silica gel. Flash chromatography was performed on silica gel of 60–200 μm particle size. Yields are reported for spectroscopically pure compounds. Melting points were recorded on an Electrothermal MEL-TEMP[®] 1101D melting point apparatus and are not corrected. NMR spectra were recorded on Bruker AVANCE 600 and 400 spectrometers. Chemical shifts are given in δ values relative to tetramethylsilane (TMS); coupling constants J are given in Hz. Internal standards were CDCl_3 ($\delta_{\text{H}} = 7.24$), CD_3OD ($\delta_{\text{H}} = 3.31$) or D_2O ($\delta_{\text{H}} = 4.79$) for ^1H -NMR spectra, CDCl_3 ($\delta_{\text{c}} = 77.0$) or CD_3OD ($\delta_{\text{c}} = 49.15$) for ^{13}C -NMR spectra, and H_3PO_4 in D_2O ($\delta_{\text{P}} = 0.00$) for ^{31}P -NMR spectra. The splitting patterns are reported as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad) and dd (double of doublets). IR spectra were recorded on a Thermo Nicolet 380 FT-IR spectrometer. Optical rotations were recorded on a Perkin-Elmer Model 341 polarimeter. $[\alpha]_D$ Values are given in units of 10^{-1} deg cm^2 g^{-1} . High resolution ESI mass spectra were recorded on a Bruker Daltonics spectrometer.

Synthetic Procedures and Product Characterization.

N-[(1*S*,4*S*,5*R*,6*R*)-3,6-dibromo-4,5-(isopropylidenedioxy)cyclohex-2-en-1-yl]

acetamide (6).

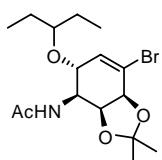

To a cold (0 °C) solution of *cis*-dihydrodiol **5** (8.0 g, 42.1 mmol) in a mixture of acetone (20 mL) and 2,2-dimethoxypropane (40 mL) was treated with *p*-toluenesulfonic acid monohydrate (100 mg, 0.52 mmol). The reaction mixture was stirred at room temperature for 30 min, after which time it was quenched by the addition of a saturated aqueous solution of NaHCO₃ (60 mL). The organic solvents were removed under reduced pressure, and the residual aqueous phase was extracted with Et₂O (3 × 100 mL). The combined organic extracts were washed with brine (100 mL), dried over MgSO₄, filtered and concentrated in vacuo (do not heat) to provide the crude acetonide as a light yellow oil (8.92 g).

To a solution of *N*-bromoacetamide (NBA, 6.49 g, 47 mmol) in dry acetonitrile (250 mL) was added SnBr₄ (4.7 mL of 1 M solution in CH₂Cl₂, 4.7 mmol) and water (0.72 mL, 40 mmol) at 0 °C in the dark. The above-prepared acetamide (8.92 g, 38.8 mmol) in acetonitrile (150 mL) was added dropwise over a period of 1 h to the NBA-SnBr₄ mixture at the same temperature. The reaction was vigorously stirred for 8 h at 0 °C and then quenched with saturated aqueous NaHCO₃ (100 mL) and Na₂SO₃ (100 mL). The resulting mixture was allowed to warm up to room temperature for 30 min. After separation of organic phase, the aqueous phase was extracted with CH₂Cl₂ (3 × 300 mL). The combined organic layers were washed with water (3 × 200 mL) and brine (300 mL), dried over MgSO₄, filtered and concentrated in vacuo. The crude product was recrystallized from Et₂O/CH₂Cl₂ to give bromoacetamide **6** (11.66 g, 75% from *cis*-dihydrodiol **5**) as colorless crystalline solids; m.p. 150–152 °C (dec.); TLC (EtOAc/hexane, 1:1) *R*_f = 0.40; [α]_D²⁰ = +176.6 (*c* = 1.63, CHCl₃); IR (film)

3209, 2988, 1655, 1225 cm^{-1} ; ^1H NMR (600 MHz, CDCl_3) δ 6.19 (1 H, d, J = 9.1 Hz), 6.15 (1 H, d, J = 5.0 Hz), 4.93–4.90 (1 H, m), 4.66 (1 H, d, J = 5.0 Hz), 4.58 (1 H, dd, J = 5.2, 2.6 Hz), 4.19 (1 H, dd, J = 3.9; 2.0 Hz), 1.95 (3 H, s), 1.49 (3 H, s), 1.40 (3 H, s); ^{13}C NMR (150 MHz, CDCl_3) δ 168.9, 127.9, 124.7, 112.0, 77.9, 75.8, 50.2, 44.3, 27.8, 26.5, 23.3; HRMS calcd for $\text{C}_{11}\text{H}_{16}\text{Br}_2\text{NO}_3$ ($\text{M}^+ + \text{H}$): 367.9497, found: m/z 367.9499.

(1*S*,4*S*,5*S*,6*S*)-7-Acetyl-3-bromo-4,5-isopropylidenedioxy-7-azabicyclo

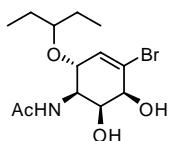
[4.1.0]hept-2-ene (7).



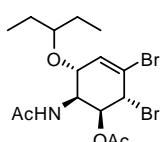
Lithium *bis*(trimethylsilyl)amide (35 mL of 1.0 M solution in THF, 35 mmol) was added dropwise to a stirred solution of bromoacetamide **6** (11.66 g, 31.8 mmol) in THF (150 mL) at $-10\text{ }^\circ\text{C}$ under an atmosphere of nitrogen. The resulting solution was warmed to $0\text{ }^\circ\text{C}$ and stirred for 30 min to give a brown suspension. After addition of buffer solution (100 mL, pH 7), the mixture was extracted with Et_2O (4×150 mL). The combined organic extracts were washed with brine, dried over MgSO_4 , filtered and concentrated. The crude aziridine **7** (8.32 g) was used in the next step without further purification.

A pure sample **7** for analysis was prepared by flash column chromatography of the crude product on silica gel (EtOAc/hexane , 2:3). Colorless solid; m.p. $110\text{--}112\text{ }^\circ\text{C}$; TLC (EtOAc/hexane , 1:1) $R_f = 0.42$; $[\alpha]_D^{20} = -77.6$ ($c = 0.47$, CHCl_3); IR (film) 2967, 1980, 1706, 1233, 1072 cm^{-1} ; ^1H NMR (600 MHz, CDCl_3) δ 6.69 (1 H, d, J = 4.7 Hz), 4.72 (1 H, dd, J = 7.0, 1.1 Hz), 4.45 (1 H, dd, J = 7.0, 4.2 Hz), 3.19 (1 H, dd, J = 5.9, 5.0 Hz), 3.10 (1 H, dd, J = 5.6, 2.8 Hz), 2.16 (3 H, s), 1.55 (3 H, s), 1.41 (3 H, s); ^{13}C

NMR (150 MHz, CDCl_3) δ 181.7, 129.9, 122.7, 108.5, 76.5, 71.9, 39.5, 36.7, 27.0, 24.8, 23.2; HRMS calcd for $\text{C}_{11}\text{H}_{14}\text{BrNNaO}_3$ ($\text{M}^+ + \text{Na}$): 310.0055, found: m/z 310.0058.


N-[(1*S*,2*R*,5*S*,6*S*)-4-bromo-2-(1-ethylpropoxy)-5,6-(isopropylidenedioxy)cyclohex-3-en-1-yl]acetamide (8).

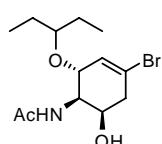
To a solution of crude aziridine **7** (8.32 g, 28.8 mmol) in 3-pentanol (50 mL) was added dropwise boron trifluoride etherate (4.68 mL, 36 mmol) at -10°C . The reaction mixture was warmed to 0°C , and stirred for 6 h, and concentrated under reduced pressure. The residue was dissolved in EtOAc (200 mL), and the organic layer was washed with saturated aqueous NaHCO_3 (50 mL). The aqueous layer was extracted with EtOAc (3×100 mL), and the combined organic layers were washed with water (200 mL) and brine (200 mL). The organic extract was dried over MgSO_4 , filtered and concentrated. The residual oil was purified by flash column chromatography on silica gel ($\text{EtOAc}/\text{hexane}$, 3:7) to afford the ether product **8** (8.82 g, 73 % from **6**) as a colorless foam. TLC ($\text{EtOAc}/\text{hexane}$, 1:1) $R_f = 0.35$; $[\alpha]_D^{20} = -123$ ($c = 1.42$, CHCl_3); IR (film) 3221, 2988, 1921, 1711, 1199, 1075 cm^{-1} ; ^1H NMR (600 MHz, CDCl_3) δ 6.15 (1 H, d, $J = 2.1$ Hz), 5.70 (1 H, d, $J = 9.0$ Hz), 4.59 (1 H, dd, $J = 5.2, 1.7$ Hz), 4.42 (1 H, dd, $J = 5.2, 2.6$ Hz), 4.31 (1 H, ddd, $J = 11.5, 8.8, 2.6$ Hz), 3.90–3.88 (1 H, m), 3.27–3.23 (1 H, m), 2.01 (3 H, s), 1.50–1.45 (4 H, m), 1.40 (3 H, s), 1.36 (3 H, s), 0.89–0.85 (6 H, m); ^{13}C NMR (150 MHz, CDCl_3) δ 169.9, 132.6, 122.7, 110.0, 82.3, 76.9, 76.1, 73.5, 51.3, 27.3, 26.3, 26.0, 25.6, 23.2, 9.5, 9.2; HRMS calcd for


$C_{16}H_{27}BrNO_4$ ($M^+ + H$): 376.1123, found: m/z 376.1129.

N-[(1*R*,2*R*,5*S*,6*S*)-4-bromo-2-(1-ethylpropoxy)-5,6-dihydroxycyclohex-3-en-1-yl]acetamide (9).

To a solution of acetonide **8** (8.82 g, 23.4 mmol) in methanol (100 mL), a conc. HCl solution (2 mL) was added. The reaction mixture was stirred at 50 °C for about 6 h until completion of the deprotection as shown by the TLC analysis. The mixture was cooled to room temperature, the solvent was evaporated under reduced pressure and the residual solid was recrystallized from Et₂O/THF to give dihydroxy acetamide **9** (7.42 g, 94%) as a colorless crystalline solid; m.p. 131–133 °C (dec.); TLC (EtOAc) R_f = 0.35; $[\alpha]_D^{20} = -101.2$ ($c = 0.67$, MeOH); IR (film) 3678, 3206, 2972, 1971, 1698, 1208, 1072 cm⁻¹; ¹H NMR (600 MHz, CD₃OD) δ 6.04 (1 H, d, J = 3.1 Hz), 4.13 (1 H, dd, J = 1.7, 0.9 Hz), 3.95 (1 H, dd, J = 4.3, 2.2 Hz), 3.92–3.89 (2 H, m), 3.32–3.29 (1 H, m), 1.86 (3 H, s), 1.44–1.33 (4 H, m), 0.85–0.79 (6 H, m); ¹³C NMR (150 MHz, CD₃OD) δ 173.3, 132.0, 128.1, 83.4, 75.9, 72.7, 70.8, 55.1, 27.5, 27.3, 23.0, 10.1, 9.9; HRMS calcd for $C_{13}H_{23}BrNO_4$ ($M^+ + H$): 336.0810, found: m/z 336.0818

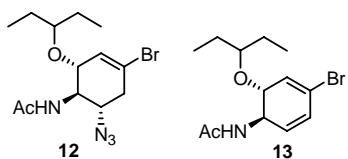
(1*S*,2*R*,5*R*,6*S*)-6-acetamido-2,3-dibromo-5-(1-ethylpropoxy)-cyclohex-3-en-1-yl acetate (10).



To a stirred solution of diol **9** (7.42 g, 22.1 mmol) in THF (150 mL) at 0 °C under

nitrogen atmosphere, α -acetoxyisobutyryl bromide (4.1 mL, 27.8 mmol) was added dropwise over a period of 10 min. The reaction mixture was stirred at same temperature for 30 min, and warmed to room temperature with stirring for 3.5 h. The solvent was evaporated, and the residual oil was partitioned between EtOAc (200 mL) and 5% aqueous NaHCO₃ (50 mL). The organic layer was washed with water (100 mL), dried over MgSO₄, filtered and concentrated to afford the crude bromoacetate **10** (9.05 g). The crude product was used in the next step without further purification.

A pure sample **10** for analysis was prepared by flash column chromatography of the crude product on silica gel (EtOAc/hexane, 2:1). Light yellow foam; TLC (EtOAc/hexane, 2:1) R_f = 0.33; $[\alpha]_D^{20}$ = -43.2 (c = 1.28, CHCl₃); IR (film) 3279, 2981, 1927, 1702, 1687, 1221, 1093 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 6.17 (1 H, d, J = 2.3 Hz), 5.85 (1 H, br s), 5.29 (1 H, s), 4.78–4.75 (1 H, m), 4.54 (1 H, d, J = 2.8 Hz), 4.03 (1 H, d, J = 8.6 Hz), 3.26 (1 H, dd, J = 11.3, 5.6 Hz), 2.09 (3 H, s), 1.96 (3 H, s), 1.49–1.43 (4 H, m), 0.89–0.81 (6 H, m); ¹³C NMR (150 MHz, CDCl₃) δ 170.0, 169.9, 133.9, 121.1, 82.4, 75.4, 74.5, 48.8, 47.3, 26.2, 25.8, 23.4, 20.9, 9.4, 9.3; HRMS calcd for C₁₅H₂₄Br₂NO₄ (M⁺ + H): 440.0072, found: *m/z* 440.0076.

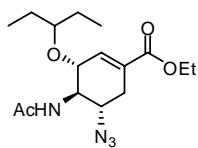

N-[(1*R*,2*R*,6*R*)-4-bromo-2-(1-ethylpropoxy)-6-hydroxycyclohex-3-en-1-yl] acetamide (11).

Super-Hydride[®] (LiBH₂Et₃, 61.5 mL of 1 M solution in THF, 61.5 mmol) was added dropwise to a stirred solution of bromoacetate **10** (9.05 g, 20.5 mmol) in THF (100 mL) at 0 °C under nitrogen atmosphere. The resulting solution was allowed to warmed to room temperature, stirred for 2 h, and treated with saturated aqueous

NH_4Cl (50 mL). The aqueous layer was separated, and extracted with EtOAc (6×100 mL). The combined organic layers were washed with water (2×200 mL) and brine (200 mL). The organic phase was dried over MgSO_4 , filtered and concentrated to afford a residue of light yellow foam. The crude product was purified by recrystallization from Et_2O to afford hydroxyacetamide **11** (5.78 g, 82% from diol **9**) as white crystalline solids; m.p. 102–104 °C; TLC (EtOAc) $R_f = 0.35$; $[\alpha]_D^{20} = -107.7$ ($c = 1.1$, CHCl_3); IR (film) 3595, 3217, 2923, 1984, 1707, 1286, 1021 cm^{-1} ; ^1H NMR (600 MHz, CDCl_3) δ 6.03 (1 H, d, $J = 3.1$ Hz), 5.89 (1 H, d, $J = 6.7$ Hz), 4.23 (1 H, br s), 4.07 (1 H, br s), 3.98 (1 H, br s), 3.93 (1 H, dd, $J = 7.5, 2.1$ Hz), 3.29–3.26 (1 H, m), 2.82 (1 H, dd, $J = 18.2, 4.7$ Hz), 2.50 (1 H, dd, $J = 18.2, 5.8$ Hz), 2.01 (3 H, s), 1.51–1.42 (4 H, m), 0.89–0.85 (6 H, m); ^{13}C NMR (150 MHz, CDCl_3) δ 172.0, 127.9, 122.5, 81.7, 74.0, 67.7, 54.2, 41.7, 26.3, 26.0, 23.4, 9.7, 9.5; HRMS calcd for $\text{C}_{13}\text{H}_{22}\text{BrNNaO}_3$ ($\text{M}^+ + \text{Na}$): 342.0681, found: m/z 342.0688.

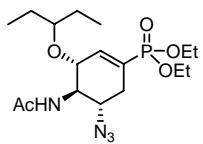
N-[(1*R*,2*R*,6*S*)-4-bromo-2-(1-ethylpropoxy)-6-azidocyclohex-3-en-1-yl] acetamide (12) and
N-[(1*R*,6*R*)-4-bromo-6-(1-ethylpropoxy)cyclohexa-2,4-dien-1-yl]acetamide (13).

A solution of **11** (5.78 g, 18.1 mmol), triphenylphosphine (9.96 g, 38.0 mmol), freshly distilled diisopropyl azodicarboxylate (7.68 g, 38.0 mmol) and diphenylphosphorylazide (10.51 g, 38.0 mmol) in THF (120 mL) was stirred at 40 °C for 24 h. The solvent was removed by rotary evaporation under reduced pressure, and the residue was purified by flash column chromatography (EtOAc/hexane, 1:2) to


afford the corresponding azide product **12** with 6*S* configuration (5.23 g, 84% yield), along with 2% of a side product of diene **13** (108 mg, 0.36 mmol).

Azide 12: White solid, m.p. 138–140 °C; TLC (EtOAc/hexane, 1:1) R_f = 0.45; $[\alpha]_D^{20} = -33.4$ ($c = 0.7$, CHCl₃); IR (film) 3119, 2927, 2178, 1902, 1698, 1277, 1054 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 6.33 (1 H, d, J = 7.8 Hz), 5.98 (1 H, d, J = 2.2 Hz), 4.27 (1 H, d, J = 8.2 Hz), 4.22–4.17 (1 H, m), 3.44–3.40 (1 H, m), 3.23–3.20 (1 H, m), 2.77 (1 H, dd, J = 17.4, 5.8 Hz), 2.52–2.46 (1 H, m), 1.99 (3 H, s), 1.47–1.42 (4 H, m), 0.86–0.82 (6 H, m); ¹³C NMR (150 MHz, CDCl₃) δ 171.2, 130.3, 119.0, 82.0, 74.7, 57.5, 56.9, 40.4, 26.2, 25.6, 23.5, 9.6, 9.2; HRMS calcd for C₁₃H₂₂BrN₄O₂ (M⁺ + H): 345.0926, found: *m/z* 345.0931.

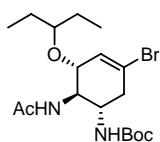
Diene 13: Colorless solid, m.p. 68–70 °C; TLC (EtOAc/hexane, 2:1) R_f = 0.60; $[\alpha]_D^{20} = -215.6$ ($c = 0.98$, CHCl₃); IR (film) 3331, 1721, 1607, 1088 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 6.16 (1 H, d, J = 5.2 Hz), 6.09 (1 H, dd, J = 9.8, 1.3 Hz), 5.81 (1 H, dd, J = 9.8, 5.2 Hz), 5.52 (1 H, d, J = 7.7 Hz), 4.60 (1 H, ddd, J = 8.9, 4.8, 2.4 Hz), 3.91 (1 H, dd, J = 4.8, 2.4 Hz), 3.43–3.39 (1 H, m), 1.94 (3 H, s), 1.49–1.41 (4 H, m), 0.88–0.82 (6 H, m); ¹³C NMR (150 MHz, CDCl₃) δ 169.9, 129.9, 128.0, 126.7, 120.0, 80.8, 74.8, 47.0, 26.6, 26.5, 23.3, 9.9, 9.5; HRMS calcd for C₁₃H₂₁BrNO₂ (M⁺ + H): 302.0756, found: *m/z* 302.0761.


Ethyl

(3*R*,4*R*,5*S*)-4-acetylamino-5-azido-3-(1-ethylpropoxy)-1-cyclohexene-1-carboxylate (14a).^{S1,S2}

A solution of **12** (349 mg, 1 mmol), *N,N*-diisopropylethylamine (2.5 mL, 15.2 mmol) and bis(triphenylphosphine)dicarbonylnickel(0) (960 mg, 1.5 mmol) in ethanol (3 mL) and THF (15 mL) was stirred for 24 h at 80 °C under nitrogen atmosphere. The reaction mixture was cooled to room temperature, and the solvent was evaporated. The residual oil was diluted with EtOAc (20 mL), and the mixture was filtered through a pad of Celite. The filtrate was evaporated to give a light yellow oil, which was purified by flash column chromatography (EtOAc/hexane, 3:7) to afford ester **14a** (274 mg, 81%) as colorless solids; m.p. 115–117 °C; TLC (EtOAc/hexane, 1:1) R_f = 0.4; $[\alpha]_D^{20} = -48.9$ ($c = 1.1$, CHCl₃); IR (film) 3401, 2101, 1712, 1655, 1273 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 6.75 (1 H, s), 5.98 (1 H, d, $J = 7.4$ Hz), 4.53 (1 H, d, $J = 5.0$ Hz), 4.51–4.16 (3 H, m), 3.33–3.28 (2 H, m), 2.82 (1 H, dd, $J = 17.6, 5.6$ Hz), 2.22–2.16 (1 H, m), 2.00 (3 H, s), 1.49–1.45 (4 H, m), 1.25 (3 H, t, $J = 7.1$ Hz), 0.95–0.80 (6 H, m); ¹³C NMR (150 MHz, CDCl₃) δ 171.1, 165.8, 137.9, 128.1, 82.0, 73.4, 61.0, 58.0, 57.2, 30.5, 26.2, 25.6, 23.5, 14.1, 9.5, 9.3; HRMS calcd for C₁₆H₂₇N₄O₄ (M⁺ + H): 339.2032, found: *m/z* 339.2039.

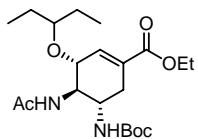
Diethyl (3*R*,4*R*,5*S*)-4-acetamido-5-azido-3-(1-ethylpropoxy)-1-cyclohexene phosphonate (14b).^{S2}



A mixture of **12** (1.72 g, 10 mmol), diethyl phosphite (2.07 g, 15 mmol) and 1,4-diazabicyclo[2.2.2]octane (3.37 g, 30 mmol) in anhydrous toluene (50 mL) was deoxygenated by bubbling with nitrogen for 10 min, and then added to tetrakis(triphenylphosphine)palladium(0) (867 mg, 0.75 mmol) that was placed in a

round bottomed flask under nitrogen atmosphere. The resulting solution was gradually heated to 90 °C and maintained at this temperature for 12 h. The reaction mixture was filtered through Celite, and the filtrate was evaporated under reduced pressure to give colorless foam (3.91 g), which was purified by flash column chromatography (EtOAc/hexane, 1:1 to 2:1) to afford phosphonate **14b** (3.33 g, 83%) as a colorless oil. TLC (EtOAc/hexane, 1:1) R_f = 0.2; $[\alpha]_D^{20} = -62.4$ ($c = 1.2$, CHCl_3); IR (film) 3357, 2108, 1754, 1651, 1247 cm^{-1} ; ^1H NMR (600 MHz, CDCl_3) δ 6.56 (1 H, d, $J_{\text{P}-2} = 21.6$ Hz), 5.71 (1 H, d, $J = 6.9$ Hz), 4.52 (1 H, d, $J = 7.8$ Hz), 4.34–4.30 (1 H, m), 4.11–4.01 (4 H, m), 3.31–3.23 (2 H, m), 2.69–2.64 (1 H, m), 2.12–2.08 (1 H, m), 2.01 (3 H, s), 1.51–1.43 (4 H, m), 1.39–1.31 (6 H, m), 0.90–0.81 (6 H, m); ^{13}C NMR (150 MHz, CDCl_3) δ 171.0, 141.7, 126.3 (C-1, d, $J_{\text{P}-1} = 182$ Hz), 81.9, 73.7, 62.14, 62.10, 54.3, 57.1, 31.0, 26.2, 25.4, 23.6, 16.4, 16.3, 9.6, 9.2; ^{31}P NMR (162 MHz, CDCl_3) δ 16.99; HRMS calcd for $\text{C}_{17}\text{H}_{32}\text{N}_4\text{O}_5\text{P}$ ($\text{M}^+ + \text{H}$): 403.2110, found: m/z 403.2117.

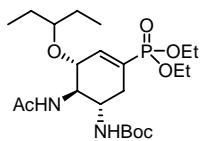
Tert-Butyl


(1*S*,5*R*,6*R*)-6-acetamido-3-bromo-5-(1-ethylpropoxy)cyclohex-3-en-1-yl carbamate (15).

To a mixture of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (1.37 g, 6 mmol) and triphenylphosphine (1.57 g, 6 mmol) in anhydrous acetonitrile (30 mL) at room temperature was added tetrabutylammonium cyanate (1.71 g, 6 mmol) followed by addition of alcohol **11** (1.58 g, 5 mmol). The mixture was stirred for 18 h at room temperature until the reaction was completed. The solvent was evaporated and the

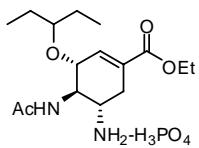
black residue was dissolved in *tert*-butanol (20 mL). The resulting solution was heated at reflux for 24 h. The solvent was evaporated under reduced pressure, and the residue was purified by flash column chromatography (EtOAc/hexane, 3:7) to afford carbamate **15** (1.63 g, 78%) as white solids; m.p. 153–155 °C; TLC (EtOAc/hexane, 1:1) R_f = 0.5; $[\alpha]_D^{20} = -49.7$ ($c = 1.35$, CHCl₃); IR (film) 3327, 2919, 1708, 1682, 1523, 1244 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 6.24 (1 H, d, J = 9.1 Hz), 6.00 (1 H, s), 5.48 (1 H, d, J = 9.1 Hz), 4.01 (1 H, dd, J = 17.0, 9.3 Hz), 3.85–3.81 (2 H, m), 3.28–3.24 (1 H, m), 2.71 (1 H, dd, J = 17.6, 4.8 Hz), 2.57 (1 H, dd, J = 17.6, 8.6 Hz), 1.93 (3 H, s), 1.46–1.39 (4 H, m), 1.36 (9 H, s), 0.85–0.80 (6 H, m); ¹³C NMR (150 MHz, CDCl₃) δ 170.8, 156.0, 129.5, 121.2, 81.9, 79.6, 76.4, 53.1, 49.8, 40.6, 28.3 (3 \times), 26.0, 25.7, 23.2, 9.5, 9.2; HRMS calcd for C₁₈H₃₁BrN₂NaO₄ (M⁺ + Na): 441.1365, found: *m/z* 441.1368.

Ethyl (3*R*,4*R*,5*S*)-4-acetamido-5-*tert*-butoxycarbonylamino-3-(1-ethylpropoxy)-1-cyclohexene carboxylate (17a).⁵³

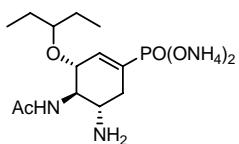

A mixture of vinyl bromide **15** (2.11 g, 5 mmol), potassium iodide (1.66 g, 10 mmol) and copper(I) iodide (477 mg, 2.5 mmol) in *n*-butanol (35 mL) was deoxygenated by bubbling with nitrogen for 10 min, and then added to *N,N'*-dimethylethylenediamine (54 μ L, 0.5 mmol) that was placed in a round bottomed flask under nitrogen atmosphere. The reaction mixture was stirred for 24 h at 120 °C. After cooling to room temperature, the solvent was evaporated under reduced pressure. The residue was partitioned between EtOAc (50 mL) and dilute aqueous ammonia

solution (50 mL). The organic phase was washed with water (3×30 mL), dried over MgSO_4 , and concentrated. The residue was filtered through a short column of silica gel (EtOAc/hexane, 1:1) to afford a colorless solid sample of crude vinyl iodide, which **16** (2.29 g) was used in the next step without further purification.

Palladium(II) acetate (90 mg, 0.4 mmol) was added to a solution of the above-prepared vinyl iodide **16** (2.29 g, 4.9 mmol) and sodium acetate (1.64 g, 20 mmol) in anhydrous ethanol (50 mL). The reaction mixture was stirred for 24 h at room temperature under an atmosphere of carbon monoxide. The solvent was evaporated, and the residue was purified by flash column chromatography (EtOAc/hexane, 3:7) to afford **17a** (1.69 g, 82 % from **15**) as white solids; m.p. 142–144 °C [lit.^{S3} m.p. 138–139 °C]; TLC (EtOAc/hexane, 1:1) $R_f = 0.35$; $[\alpha]_D^{20} = -76.3$ ($c = 1.67$, CHCl_3) [lit.^{S3} $[\alpha]_D^{25} = -68.9$ ($c = 1.0$, CDCl_3)]; IR (film) 3312, 2951, 1713, 1688, 1651, 1244 cm^{-1} ; ^1H NMR (600 MHz, CDCl_3) δ 6.70 (1 H, s), 6.24 (1 H, d, $J = 9.2$ Hz), 5.26 (1 H, d, $J = 9.3$ Hz), 4.18–4.12 (2 H, m), 4.03–3.98 (1 H, m), 3.95–3.94 (1 H, m), 3.75–3.72 (1 H, m), 3.30 (1 H, t, $J = 5.6$ Hz), 2.67 (1 H, dd, $J = 17.8$, 5.1 Hz), 2.27–2.23 (1 H, m), 1.93 (3 H, s), 1.48–1.42 (4 H, m), 1.37 (9 H, s), 1.24 (3 H, t, $J = 7.2$ Hz), 0.86–0.81 (6 H, m); ^{13}C NMR (150 MHz, CDCl_3) δ 170.9, 165.9, 156.3, 137.7, 129.2, 82.2, 79.5, 75.8, 60.9, 54.4, 49.2, 30.8, 28.3 (3 \times), 26.1, 25.6, 23.3, 14.1, 9.5, 9.2; HRMS calcd for $\text{C}_{21}\text{H}_{36}\text{N}_2\text{NaO}_6$ ($\text{M}^+ + \text{Na}$): 435.2471, found: m/z 435.2477.


Diethyl

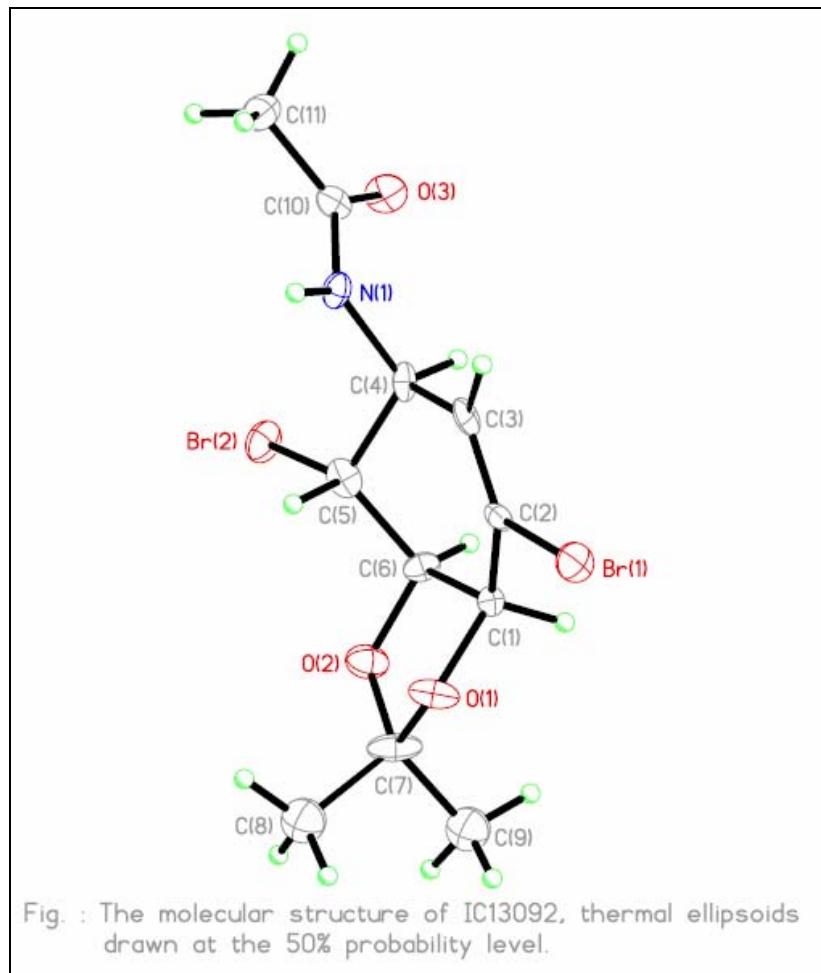
(3*R*,4*R*,5*S*)-4-acetamido-5-*tert*-butoxycarbonylamino-3-(1-ethylpropoxy)-1-cyclohexene phosphonate (17b).


By a procedure similar to that for **14b**, a mixture of vinyl bromide **15** (4.21 g, 10 mmol), diethyl phosphite (2.12 g, 15 mmol), 1,4-diazabicyclo[2.2.2]octane (3.43 g, 30 mmol) in anhydrous toluene (50 mL) and tetrakis(triphenylphosphine)palladium(0) (872 mg, 0.75 mmol) was heated at 90 °C for 12 h. The reaction mixture was filtered through a pad of Celite, and the filtrate was partitioned between EtOAc (50 mL) and water (30 mL). The organic phase was washed again with water (30 mL) and brine (30 mL), dried over MgSO₄ and concentrated to give a crude product which was purified by recrystallization from Et₂O/CH₂Cl₂ to afford phosphonate **17b** (4.05 g, 85%) as white crystalline solids; m.p. 167–169 °C; TLC (EtOAc) R_f = 0.31; $[\alpha]_D^{20}$ = −88.8 (c = 1.14, CHCl₃); IR (film) 3378, 2901, 1733, 1626, 1262, 1159 cm^{−1}; ¹H NMR (600 MHz, CDCl₃) δ 6.57 (1 H, d, J_{P-2} = 21.6 Hz), 5.81 (1 H, d, J = 9.0 Hz), 5.06 (1 H, d, J = 8.9 Hz), 4.06–4.01 (5 H, m), 3.88 (1 H, br s), 3.79–3.75 (1 H, m), 3.30 (1 H, t, J = 5.3 Hz), 2.60–2.57 (1 H, m), 2.20–2.16 (1 H, m), 1.95 (3 H, s), 1.48–1.44 (4 H, m), 1.39 (9 H, s), 1.30–1.27 (6 H, m), 0.87–0.82 (6 H, m); ¹³C NMR (150 MHz, CDCl₃) δ 170.9, 156.2, 141.5, 126.8 (C-1, d, J_{P-1} = 181 Hz), 82.1, 79.6, 76.0, 62.0, 61.9, 54.2, 49.1, 31.0, 28.3 (3 \times), 26.0, 25.5, 23.3, 16.37, 16.33, 9.5, 9.1; ³¹P NMR (202 MHz, CDCl₃) δ 17.25; HRMS calcd for C₂₂H₄₂N₂O₇P (M⁺ + H): 477.2730, found: *m/z* 477.2732.

Ethyl (3*R*,4*R*,5*S*)-4-acetamido-5-amino-3-(1-ethylpropoxy)-1-cyclohexene carboxylate phosphate (1·H₃PO₄, TamifluTM).^{S1,S3,S4}

Compound **17a** (1.24 g, 3 mmol) was dissolved in ethanol (20 mL) and added slowly in portions to a hot (50 °C) solution of phosphoric acid (10 mL of 1 M solution in ethanol, 10 mmol). The solution was stirred for 6 h at 50 °C. After cooling to 0 °C, the precipitates were collected by filtration and rinsed with cold acetone (3 × 5 mL) to afford **Tamiflu** (998 mg, 81%) as white crystals; m.p. 187–190 °C [lit.^{S4} m.p. 184–186 °C]; $[\alpha]_D^{20} = -36.7$ ($c = 1$, H₂O) [lit.^{S1} $[\alpha]_D = -39.9$ ($c = 1$, H₂O); or lit.^{S4} $[\alpha]_D^{22} = -30.5$ ($c = 0.480$, H₂O)]; IR (film) 3501, 1734, 1612, 1150 cm⁻¹; ¹H NMR (600 MHz, D₂O) δ 6.91 (1 H, s), 4.39 (1 H, d, $J = 8.0$ Hz), 4.32–4.30 (2 H, m), 4.11 (1 H, dd, $J = 10.5$, 5.7 Hz), 3.67–3.59 (2 H, m), 3.01 (1 H, dd, $J = 17.4$, 5.4 Hz), 2.60–2.56 (1 H, m), 2.14 (3 H, s), 1.61–1.50 (4 H, m), 1.34 (3 H, t, $J = 7.1$ Hz), 0.94 (3 H, t, $J = 7.3$ Hz), 0.89 (3 H, t, $J = 7.3$ Hz); ¹³C NMR (150 MHz, D₂O) δ 178.1, 170.3, 140.7, 130.4, 87.2, 77.9, 65.2, 55.4, 52.0, 30.9, 28.3, 27.9, 25.2, 16.1, 11.36, 11.30; ³¹P NMR (162 MHz, D₂O) δ 0.43; HRMS calcd for C₁₆H₂₉N₂O₄ (M⁺ – H₃PO₄ + H): 313.2127, found: m/z 313.2132. Anal. Calcd for C₁₆H₃₁N₂O₈P: C, 46.83; H, 7.61; N, 6.83. Found: C, 46.72; H, 7.68; N, 6.75.

Ammonium (3*R*,4*R*,5*S*)-4-acetamido-5-amino-3-(1-ethylpropoxy)-1-cyclohexene phosphonate (3, Tamiphosphor).^{S2}


Diethyl phosphonate **17b** (2.38 g, 5 mmol) was dissolved in CH₂Cl₂ (50 mL) and treated with bromotrimethylsilane (6.67 mL, 50 mmol) at 0 °C. The reaction mixture

was warmed to room temperature, stirred for 18 h, and concentrated under reduced pressure. The residue was taken up in water (10 mL), stirred for 2 h at room temperature, and subject to lyophilization. The residual pale yellow solid residue was washed with Et₂O (3 × 20 mL) to give white solids, which was dissolved in aqueous NH₄HCO₃ (0.1 M solution, 20 mL), stirred for 1 h at room temperature, and then lyophilization to afford Tamiphosphor **3** (1.56 g, 88% yield) as white solids; m.p. 238–240 °C (dec.); [α]_D²⁰ = −56.7 (c = 1.2, H₂O); IR (film) 3521, 3212, 2987, 1712, 1686, 1121 cm^{−1}; ¹H NMR (600 MHz, D₂O) δ 6.15 (1 H, d, *J*_{P-2} = 18.8 Hz), 4.12 (1 H, d, *J* = 8.1 Hz), 3.94 (1 H, dd, *J* = 11.6, 9.2 Hz), 3.45–3.40 (2 H, m), 2.73–2.68 (1 H, m), 2.39–2.34 (1 H, m), 1.97 (3 H, s), 1.46–1.40 (3 H, m), 1.38–1.29 (1 H, m), 0.77 (3 H, t, *J* = 7.3 Hz), 0.73 (3 H, t, *J* = 7.3 Hz); ¹³C NMR (150 MHz, D₂O) δ 175.0, 133.1, 132.9 (C-1, d, *J*_{P-1} = 170 Hz), 84.3, 76.0, 52.9, 49.7, 29.3, 25.3, 25.0, 22.2, 8.5, 8.3; ³¹P NMR (162 MHz, D₂O) δ 10.35; HRMS calcd for C₁₃H₂₄N₂O₅P [M + H − 2 NH₄]⁺: 319.1423, found: *m/z* 319.1429. Anal. Calcd for C₁₃H₃₁N₄O₅P · H₂O: C, 41.93; H, 8.93; N, 15.04. Found: C, 41.89; H, 8.99; N, 15.07.

References:

- [1] J. C. Rohloff, K. M. Kent, M. J. Postich, M. W. Becker, H. H. Chapman, D. E. Kelly, W. Lew, M. S. Louie, L. R. McGee, E. J. Prisbe, L. M. Schultze, R. H. Yu, L. Zhang, *J. Org. Chem.* **1998**, *63*, 4545–4550.
- [2] J.-J. Shie, J.-M. Fang, S.-Y. Wang, K.-L. Tsai, Y.-S. E. Cheng, A.-S. Yang, S.-C. Hsiao, C.-Y. Su, C.-H. Wong, *J. Am. Chem. Soc.* **2007**, *129*, 11892–11893.
- [3] Y.-Y. Yeung, S. Hong, E. J. Corey, *J. Am. Chem. Soc.* **2006**, *128*, 6310–6311.
- [4] Y. Fukuta, T. Mita, N. Fukuda, M. Kanai, M. Shibasaki, *J. Am. Chem. Soc.* **2006**, *128*, 6312–6313.

The following crystal structure has been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition number CCDC 684619.

ORTEP drawing of the crystal structure of compound **6** (ic13092).

Table 1. Crystal data and structure refinement for ic13092.

Identification code	ic13092		
Empirical formula	C11 H15 Br2 N O3		
Formula weight	369.06		
Temperature	150(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P2(1)		
Unit cell dimensions	$a = 5.0183(3)$ Å	$\alpha = 90^\circ$.	
	$b = 17.7632(12)$ Å	$\beta = 94.054(1)^\circ$.	
	$c = 7.6826(5)$ Å	$\gamma = 90^\circ$.	
Volume	683.12(8) Å ³		
Z	2		
Density (calculated)	1.794 Mg/m ³		
Absorption coefficient	5.930 mm ⁻¹		
F(000)	364		
Crystal size	0.70 x 0.18 x 0.14 mm ³		
Theta range for data collection	2.29 to 27.50°.		
Index ranges	-6<=h<=6, -23<=k<=23, -9<=l<=9		
Reflections collected	5154		
Independent reflections	3098 [R(int) = 0.0447]		
Completeness to theta = 27.50°	99.6 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.4907 and 0.1035		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	3098 / 5 / 157		
Goodness-of-fit on F ²	1.024		
Final R indices [I>2sigma(I)]	R1 = 0.0551, wR2 = 0.1297		
R indices (all data)	R1 = 0.0619, wR2 = 0.1330		
Absolute structure parameter	0.02(2)		
Largest diff. peak and hole	1.456 and -1.949 e.Å ⁻³		

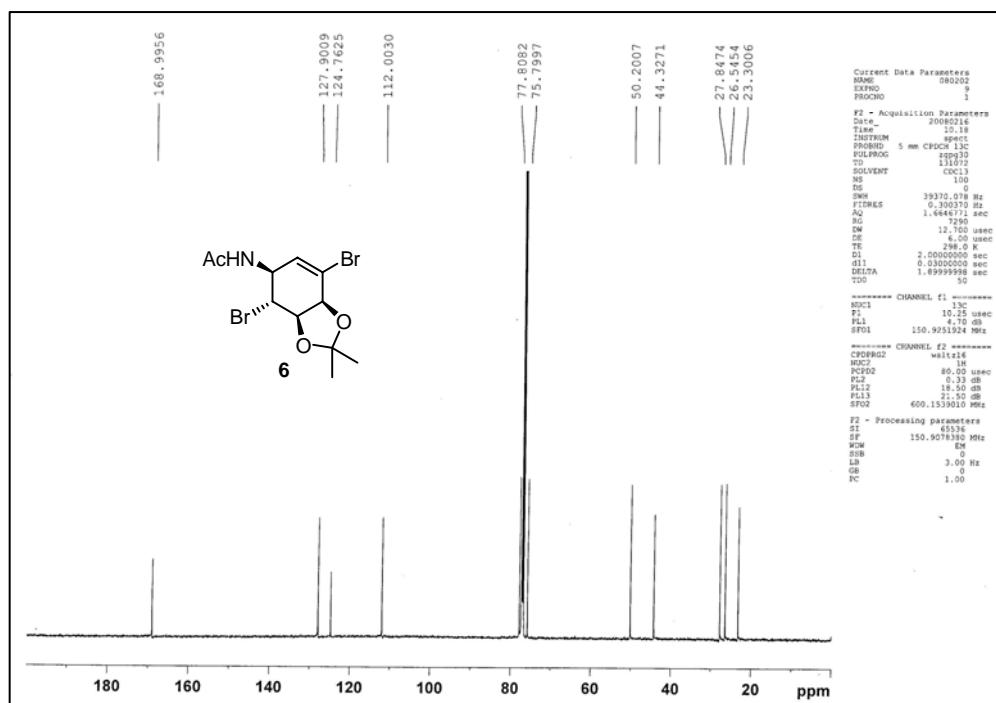
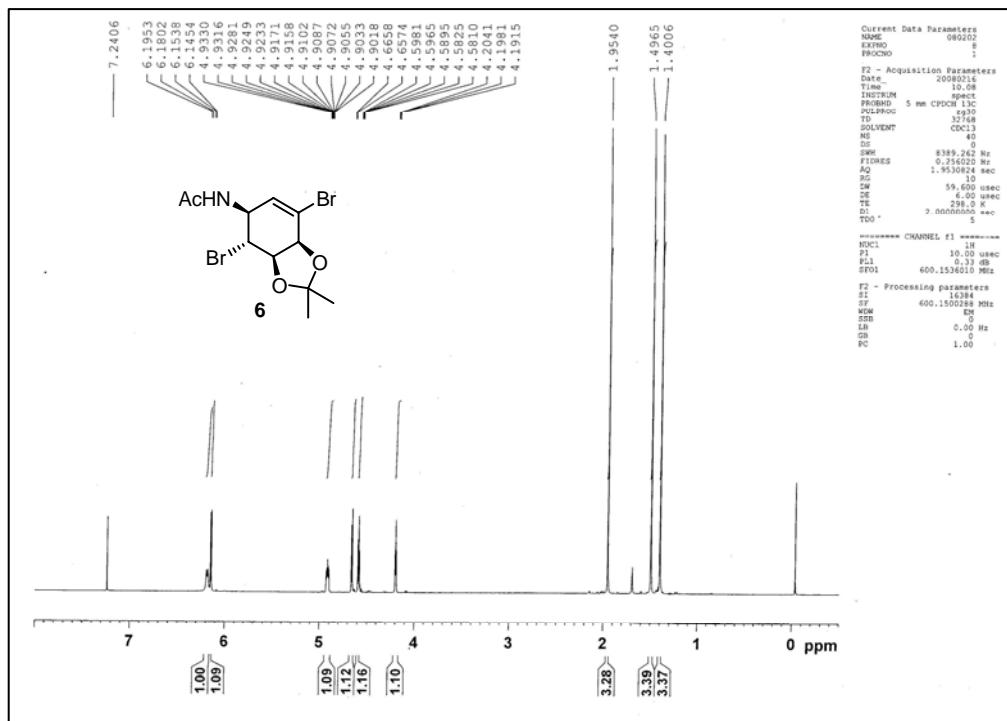
Table 2. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters ($\text{\AA}^2 \times 10^3$) for ic13092. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

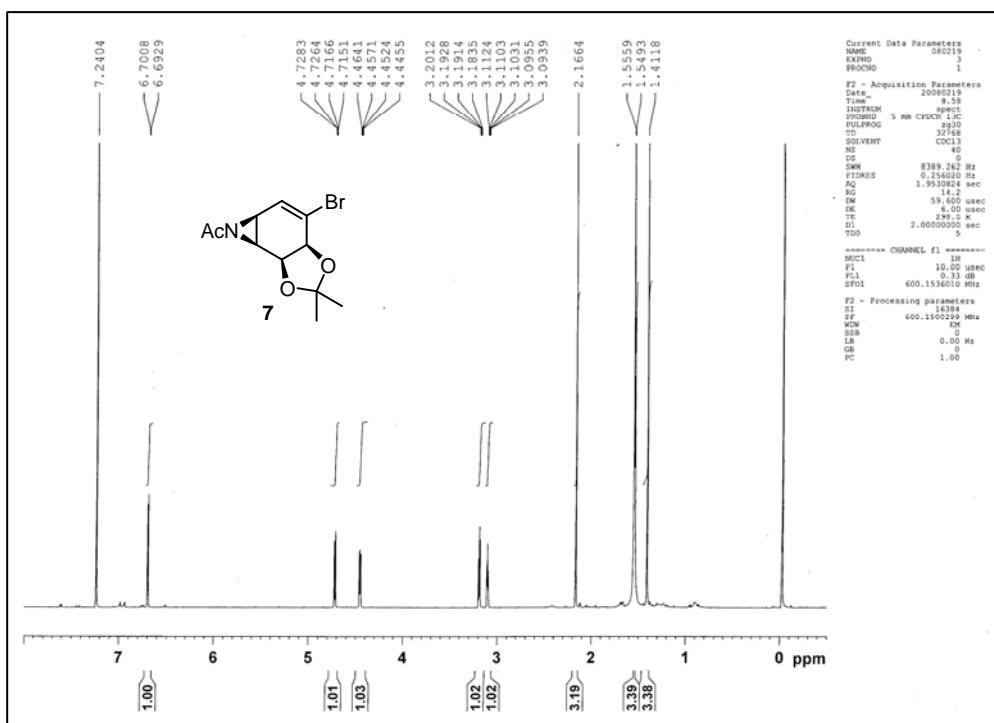
	x	y	z	U(eq)
Br(1)	-358(1)	10532(1)	12262(1)	23(1)
Br(2)	6146(2)	9468(1)	5573(1)	24(1)
O(1)	992(9)	8967(3)	10496(8)	24(1)
O(2)	4097(10)	8534(3)	8754(8)	24(1)
O(3)	8040(9)	11381(3)	5987(7)	23(1)
N(1)	3728(11)	11102(3)	6414(8)	16(1)
C(1)	3065(12)	9519(4)	10605(9)	15(1)
C(2)	1951(13)	10286(4)	10467(10)	14(2)
C(3)	2581(14)	10793(4)	9336(10)	17(2)
C(4)	4348(12)	10601(5)	7876(9)	16(1)
C(5)	3939(13)	9780(4)	7458(10)	18(2)
C(6)	4705(13)	9305(4)	9051(10)	16(2)
C(7)	2179(13)	8289(4)	9952(10)	25(2)
C(8)	130(30)	7756(10)	9190(30)	32(5)
C(9)	3290(40)	7799(11)	11390(20)	32(5)
C(8')	100(30)	7918(11)	8680(20)	23(4)
C(9')	3930(40)	7993(14)	11490(20)	44(6)
C(10)	5612(13)	11461(4)	5597(10)	17(2)
C(11)	4625(16)	11981(5)	4125(11)	27(2)

Table 3. Bond lengths [Å] and angles [°] for ic13092.

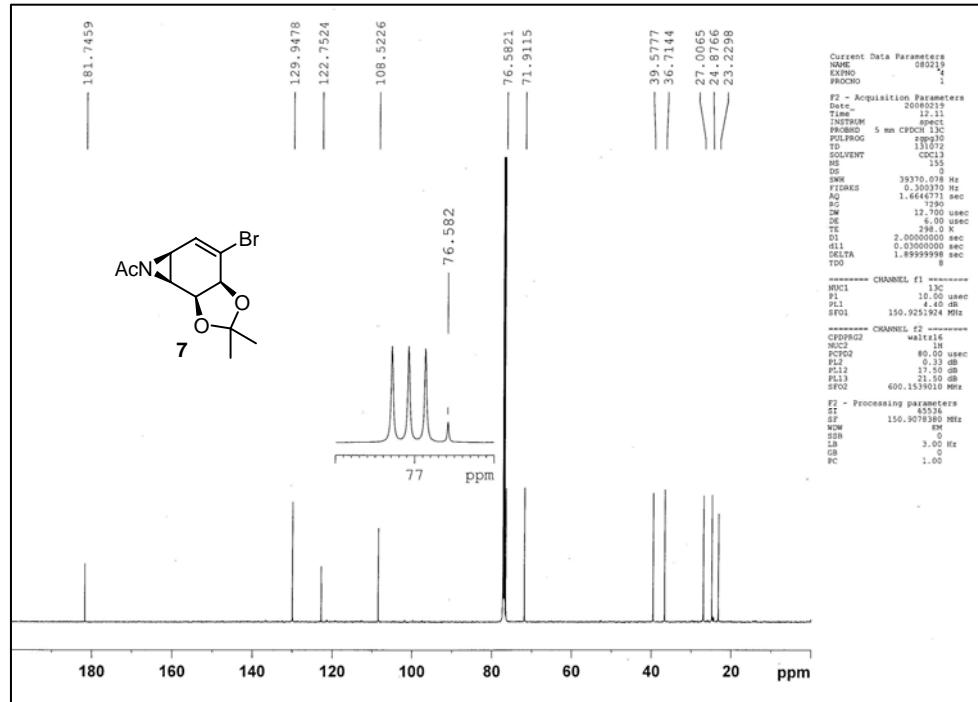
Br(1)-C(2)	1.913(7)
Br(2)-C(5)	1.964(8)
O(1)-C(7)	1.419(9)
O(1)-C(1)	1.428(8)
O(2)-C(6)	1.418(9)
O(2)-C(7)	1.445(9)
O(3)-C(10)	1.242(8)
N(1)-C(10)	1.334(9)
N(1)-C(4)	1.449(9)
C(1)-C(2)	1.474(10)
C(1)-C(6)	1.545(9)
C(2)-C(3)	1.306(10)
C(3)-C(4)	1.517(9)
C(4)-C(5)	1.505(11)
C(5)-C(6)	1.514(10)
C(7)-C(9)	1.485(9)
C(7)-C(8)	1.488(9)
C(7)-C(9')	1.517(9)
C(7)-C(8')	1.529(9)
C(10)-C(11)	1.516(11)
C(7)-O(1)-C(1)	106.3(5)
C(6)-O(2)-C(7)	109.5(5)
C(10)-N(1)-C(4)	122.5(6)
O(1)-C(1)-C(2)	111.1(5)
O(1)-C(1)-C(6)	102.2(6)
C(2)-C(1)-C(6)	113.1(6)
C(3)-C(2)-C(1)	125.3(7)
C(3)-C(2)-Br(1)	120.6(5)
C(1)-C(2)-Br(1)	113.9(5)
C(2)-C(3)-C(4)	121.3(7)
N(1)-C(4)-C(5)	114.3(6)
N(1)-C(4)-C(3)	109.3(6)
C(5)-C(4)-C(3)	107.3(6)
C(4)-C(5)-C(6)	110.1(6)
C(4)-C(5)-Br(2)	110.8(5)

C(6)-C(5)-Br(2)	108.3(4)
O(2)-C(6)-C(5)	111.6(6)
O(2)-C(6)-C(1)	104.0(5)
C(5)-C(6)-C(1)	111.7(5)
O(1)-C(7)-O(2)	104.2(5)
O(1)-C(7)-C(9)	114.9(10)
O(2)-C(7)-C(9)	114.8(10)
O(1)-C(7)-C(8)	111.3(9)
O(2)-C(7)-C(8)	114.4(11)
C(9)-C(7)-C(8)	97.7(14)
O(1)-C(7)-C(9')	107.3(11)
O(2)-C(7)-C(9')	103.0(11)
C(9)-C(7)-C(9')	18.1(12)
C(8)-C(7)-C(9')	115.7(15)
O(1)-C(7)-C(8')	105.8(9)
O(2)-C(7)-C(8')	100.1(9)
C(9)-C(7)-C(8')	115.4(14)
C(8)-C(7)-C(8')	18.5(10)
C(9')-C(7)-C(8')	133.0(15)
O(3)-C(10)-N(1)	123.2(7)
O(3)-C(10)-C(11)	120.9(7)
N(1)-C(10)-C(11)	115.9(6)

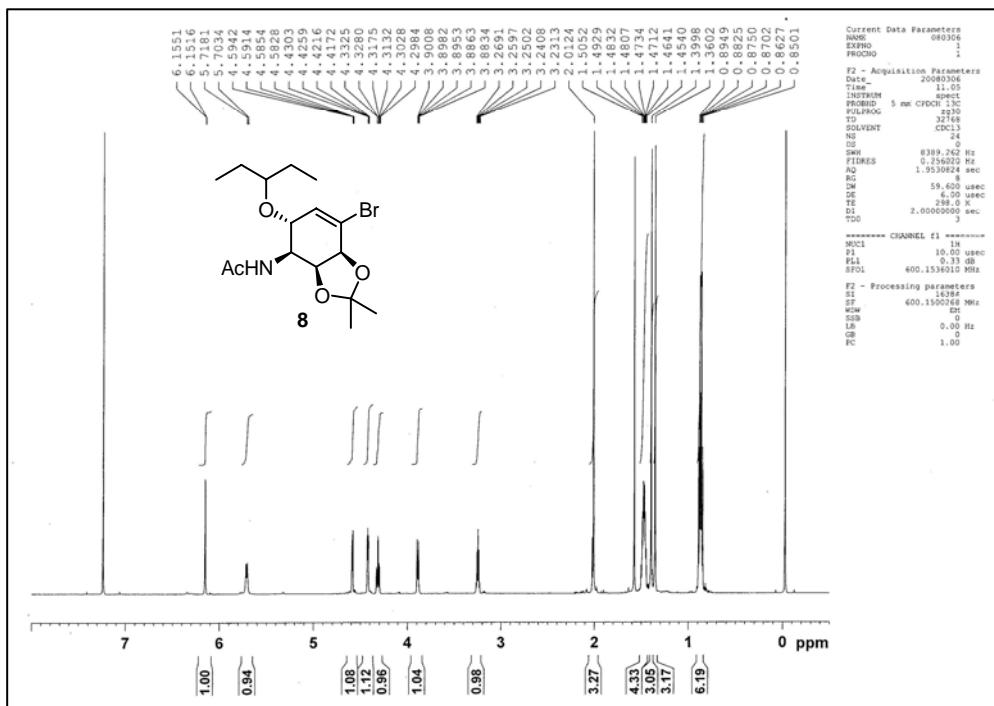


Symmetry transformations used to generate equivalent atoms:

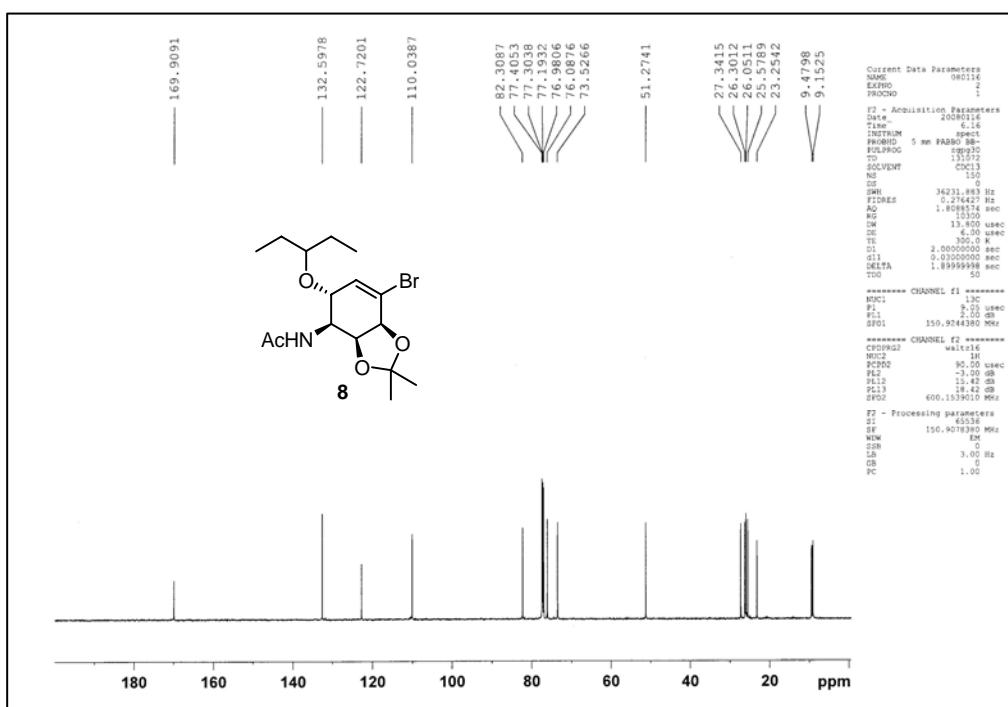

Table 4. Anisotropic displacement parameters ($\text{\AA}^2 \times 10^3$) for ic13092. The anisotropic displacement factor exponent takes the form $-2\pi^2 [h^2 a^{*2} U^{11} + \dots + 2 h k a^* b^* U^{12}]$

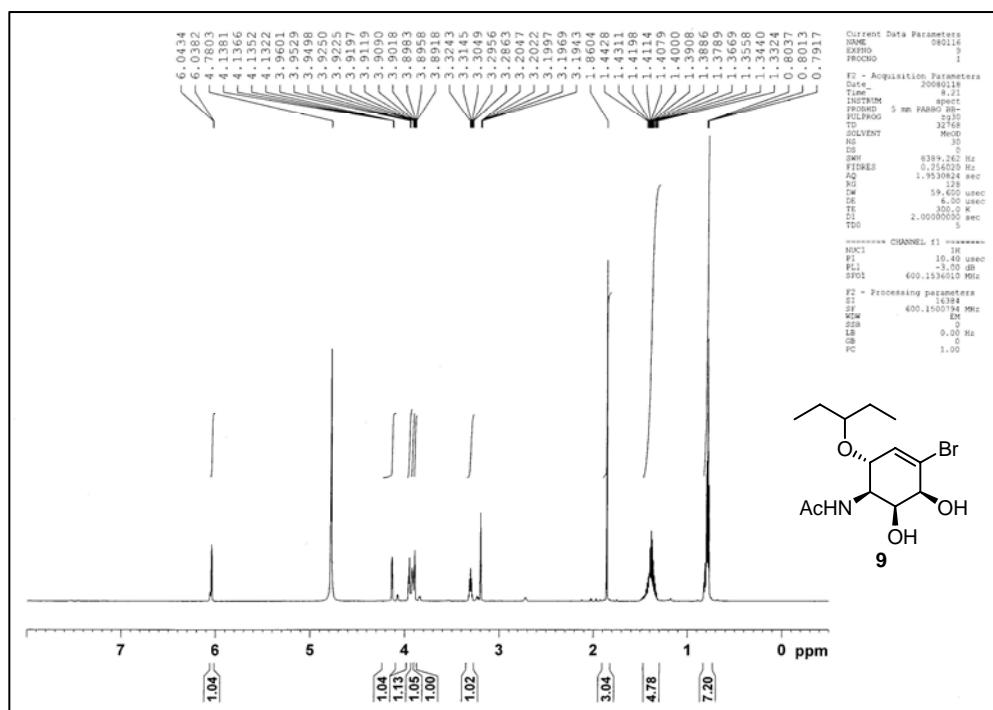
	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Br(1)	25(1)	26(1)	20(1)	-5(1)	9(1)	-2(1)
Br(2)	28(1)	28(1)	16(1)	-2(1)	6(1)	4(1)
O(1)	18(3)	14(3)	40(4)	4(2)	9(2)	0(2)
O(2)	26(3)	17(3)	29(3)	-1(2)	8(2)	1(2)
O(3)	13(2)	29(3)	28(3)	3(2)	6(2)	0(2)
N(1)	12(3)	23(3)	13(3)	0(3)	-1(2)	1(2)
C(1)	15(3)	15(3)	13(3)	0(3)	-1(2)	-2(3)
C(2)	15(3)	12(4)	16(4)	-2(3)	0(3)	-5(3)
C(3)	17(3)	17(4)	16(4)	-11(3)	4(3)	-2(3)
C(4)	12(2)	23(4)	13(3)	-5(3)	-2(2)	3(3)
C(5)	8(3)	24(4)	24(4)	-5(3)	4(3)	1(3)
C(6)	15(3)	17(4)	18(4)	4(3)	6(3)	2(3)
C(7)	21(4)	18(4)	39(5)	9(4)	18(3)	3(3)
C(10)	17(3)	15(4)	19(4)	-6(3)	8(3)	-1(3)
C(11)	28(4)	29(5)	24(5)	7(4)	-2(3)	-4(3)

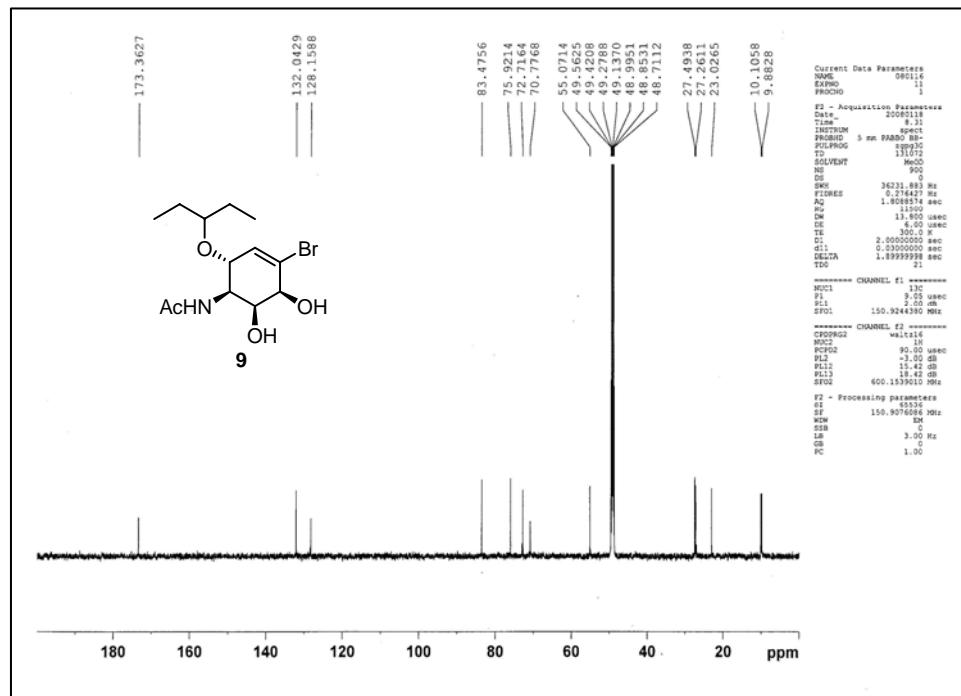

Table 5. Hydrogen coordinates ($\times 10^4$) and isotropic displacement parameters ($\text{\AA}^2 \times 10^3$) for ic13092.

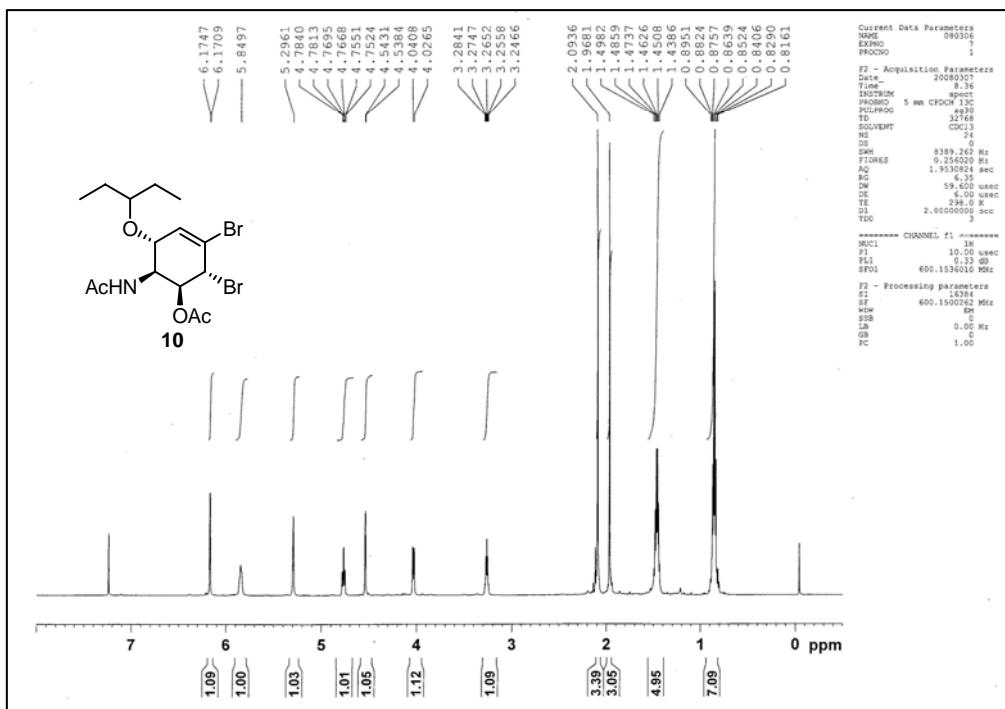
	x	y	z	U(eq)
H(1)	2044	11171	6051	20
H(1A)	4184	9462	11727	18
H(3)	1920	11291	9429	20
H(4)	6255	10680	8307	19
H(5)	2014	9691	7085	22
H(6)	6655	9364	9389	20
H(8A)	-1123	7630	10064	49
H(8B)	1007	7297	8813	49
H(8C)	-844	7992	8179	49
H(9A)	4882	8037	11967	48
H(9B)	3781	7310	10918	48
H(9C)	1948	7726	12242	48
H(8'1)	-1405	7742	9312	34
H(8'2)	913	7490	8108	34
H(8'3)	-539	8286	7791	34
H(9'1)	5291	8369	11844	65
H(9'2)	4804	7527	11155	65
H(9'3)	2828	7891	12468	65
H(11A)	5681	12446	4180	41
H(11B)	2740	12102	4240	41
H(11C)	4815	11731	3003	41

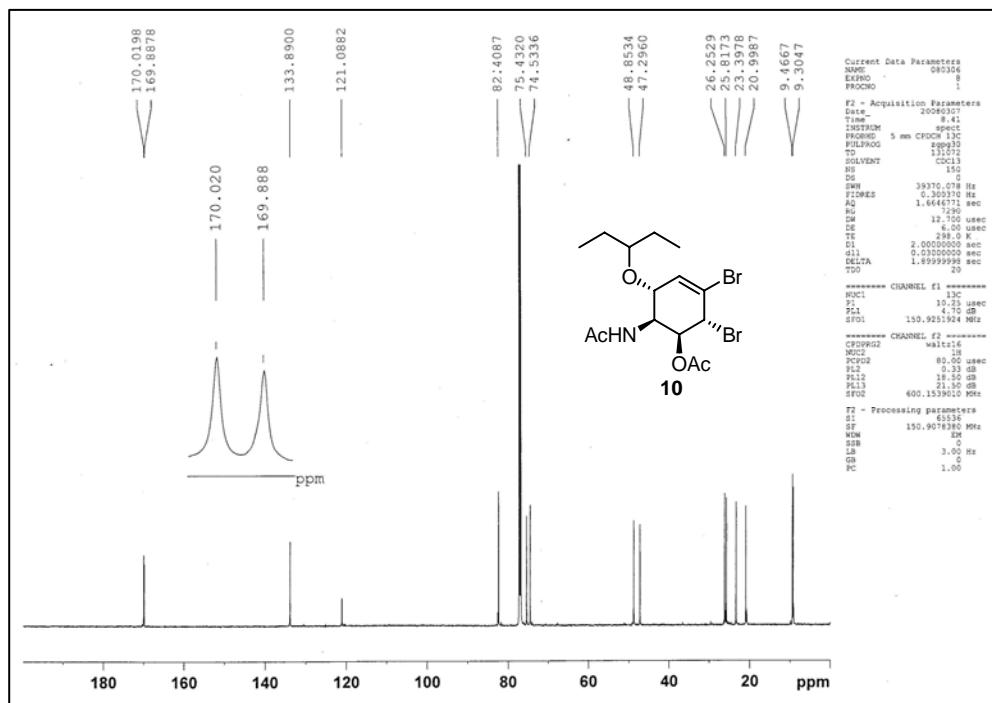


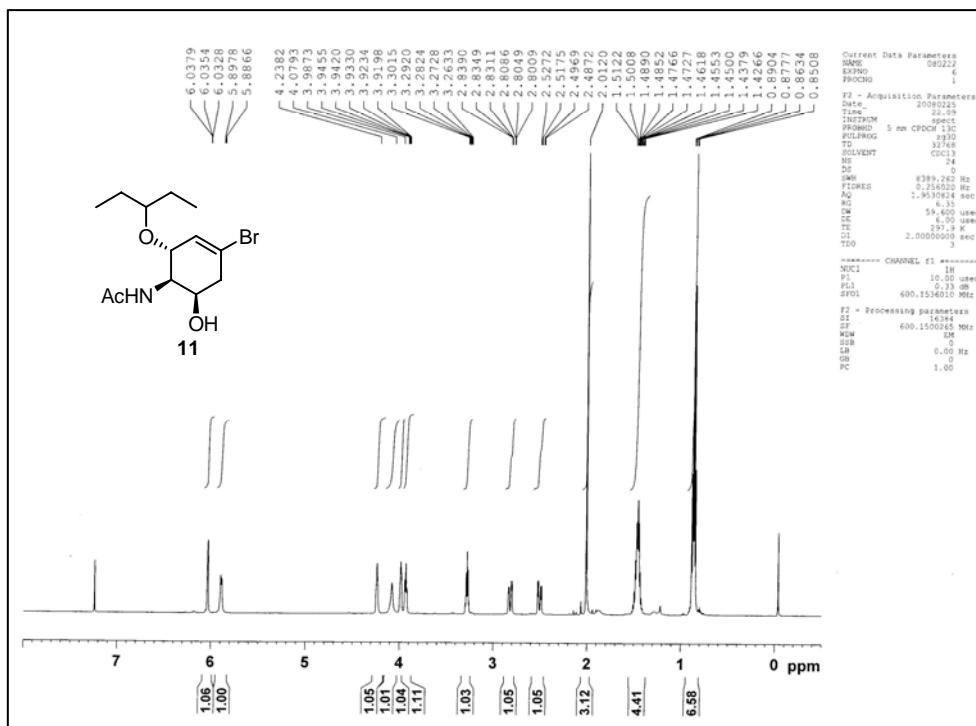

¹H NMR Spectrum (600 MHz, CDCl₃) of Compound 7.

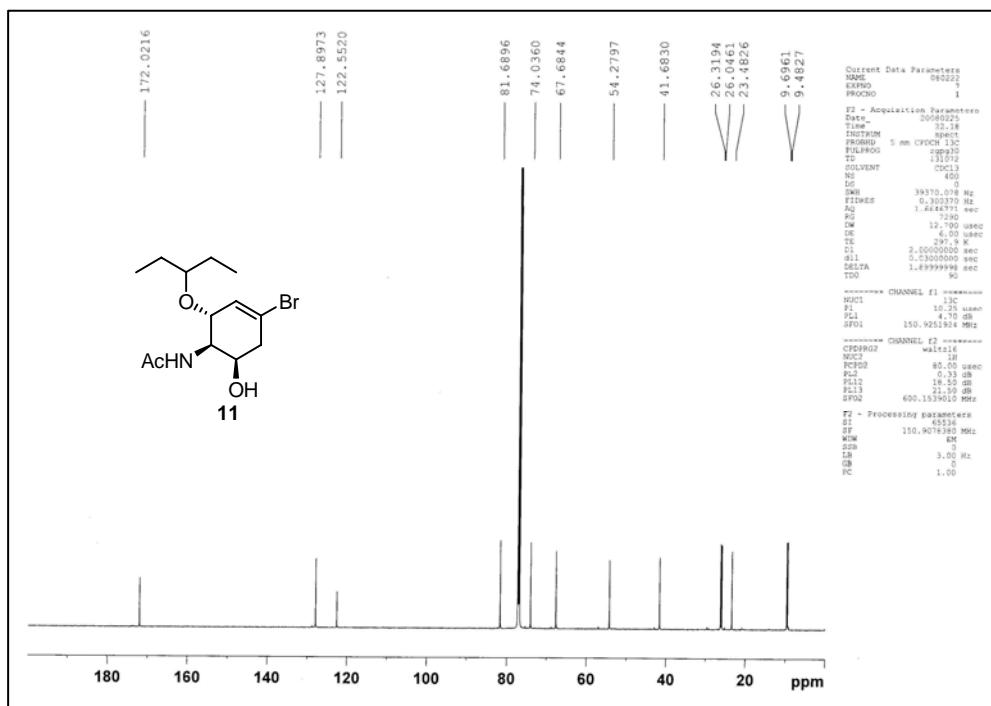

¹³C NMR Spectrum (150 MHz, CDCl₃) of Compound 7.

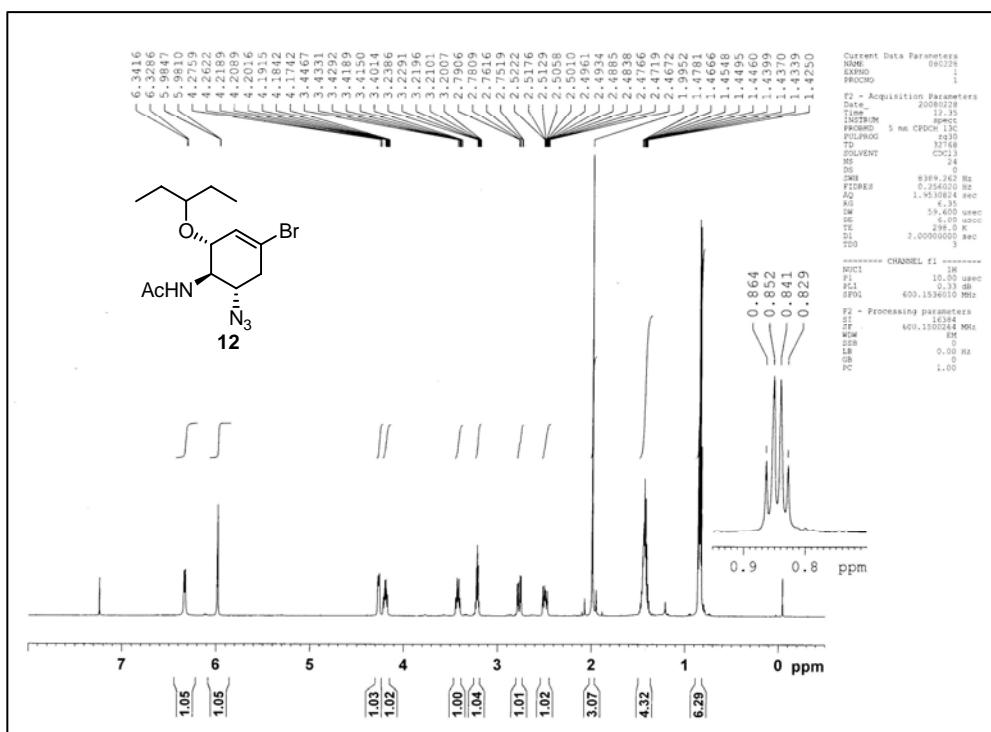

¹H NMR Spectrum (600 MHz, CDCl₃) of Compound 8.

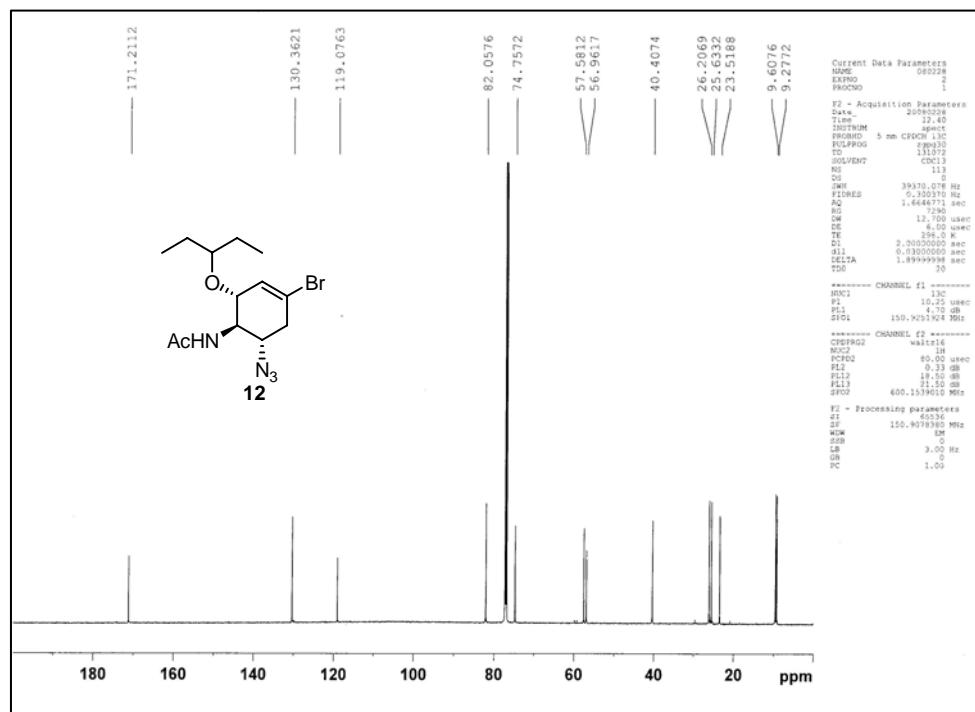

¹³C NMR Spectrum (150 MHz, CDCl₃) of Compound **8**.

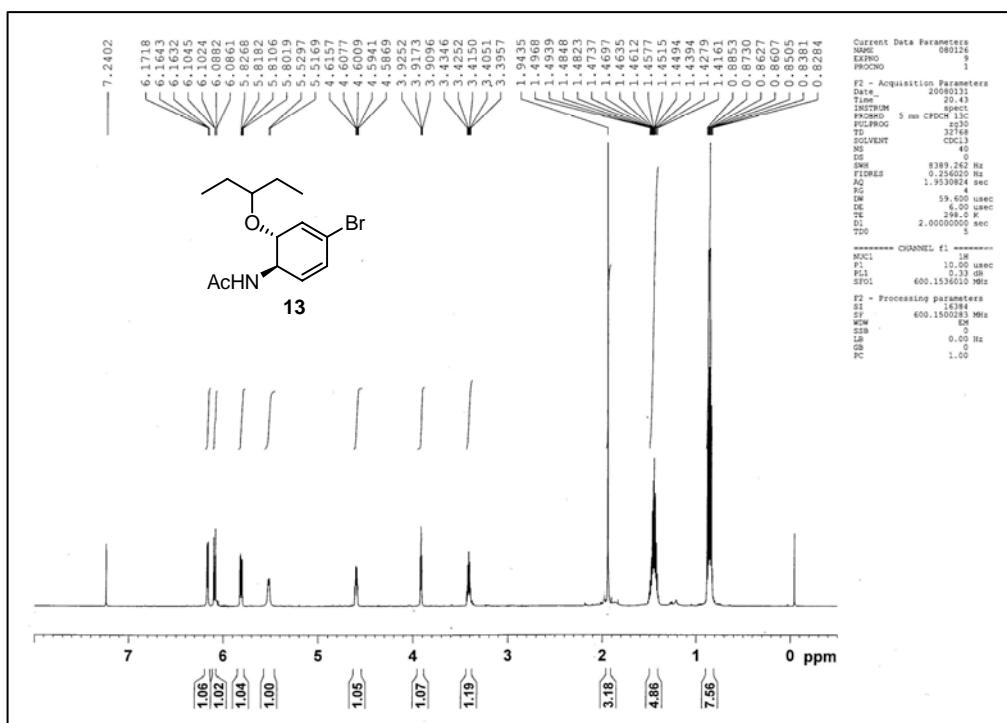

¹H NMR Spectrum (600 MHz, CD₃OD) of Compound **9**.

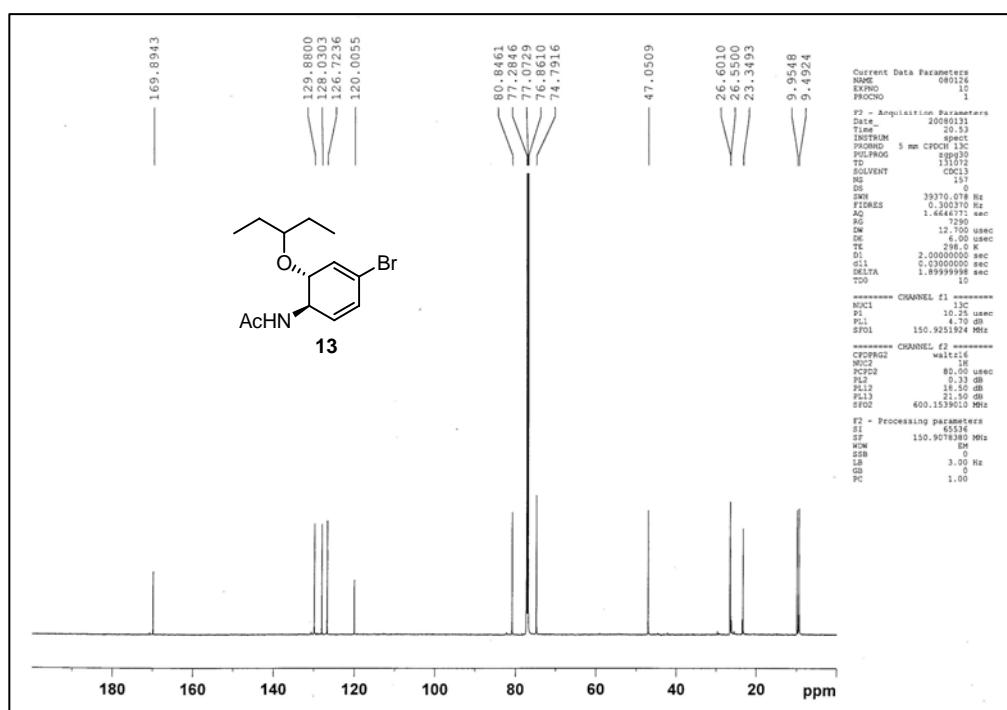

¹³C NMR Spectrum (150 MHz, CD₃OD) of Compound **9**.

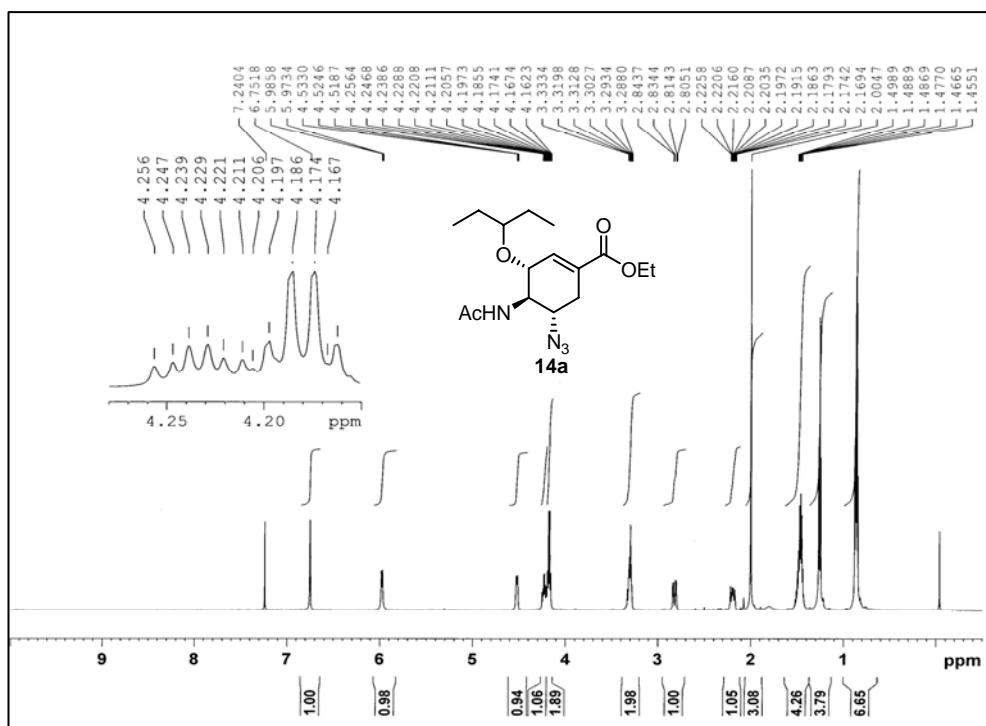

¹H NMR Spectrum (600 MHz, CDCl₃) of Compound **10**.

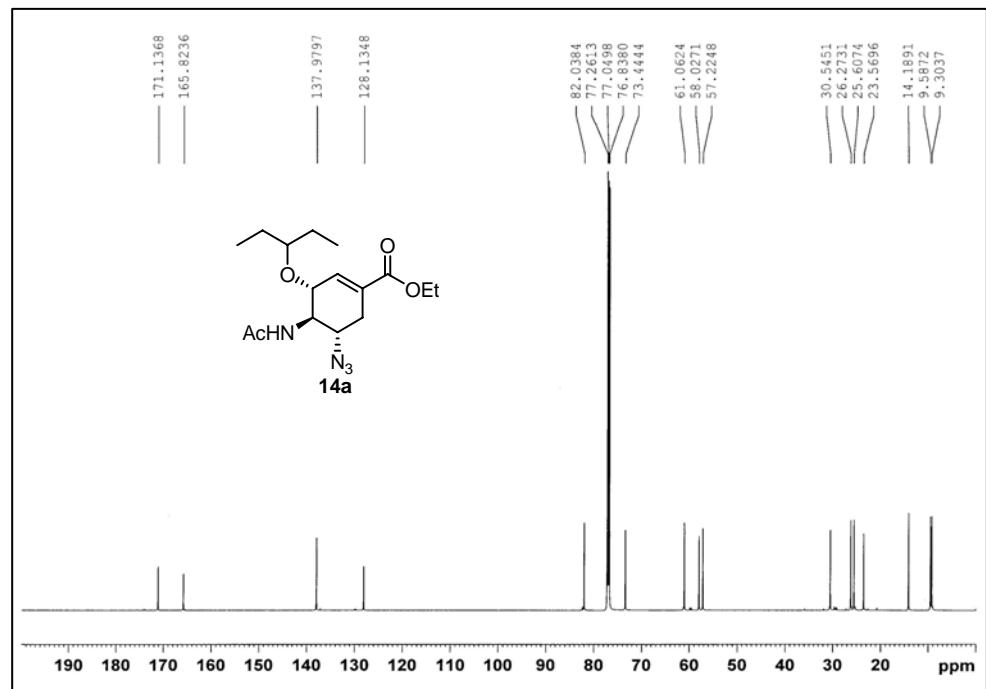

¹³C NMR Spectrum (150 MHz, CDCl₃) of Compound **10**.

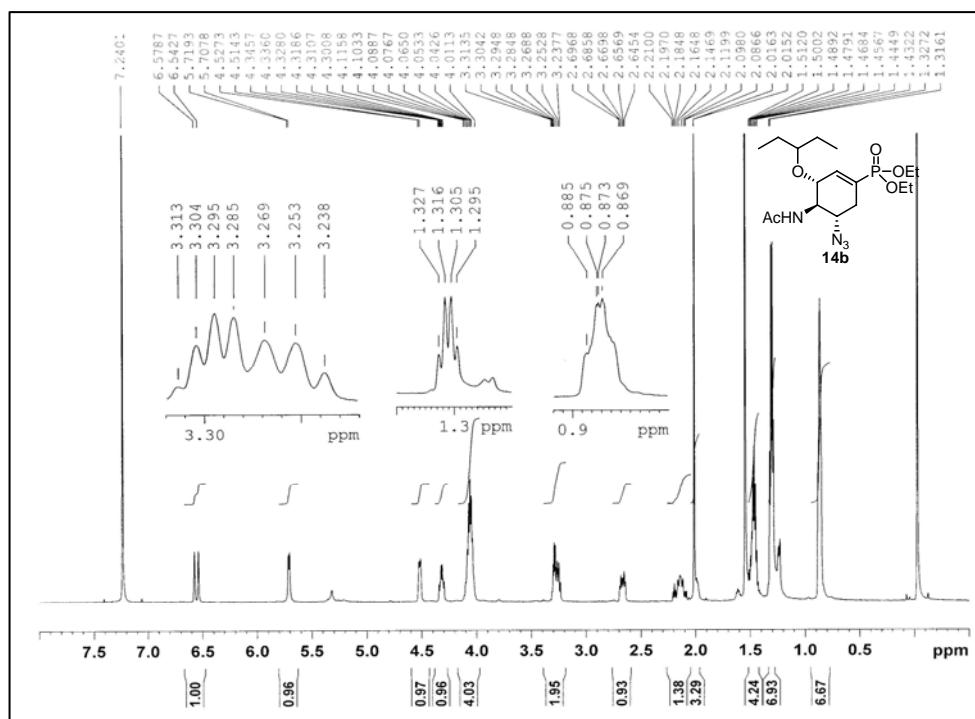

¹H NMR Spectrum (600 MHz, CDCl₃) of Compound **11**.

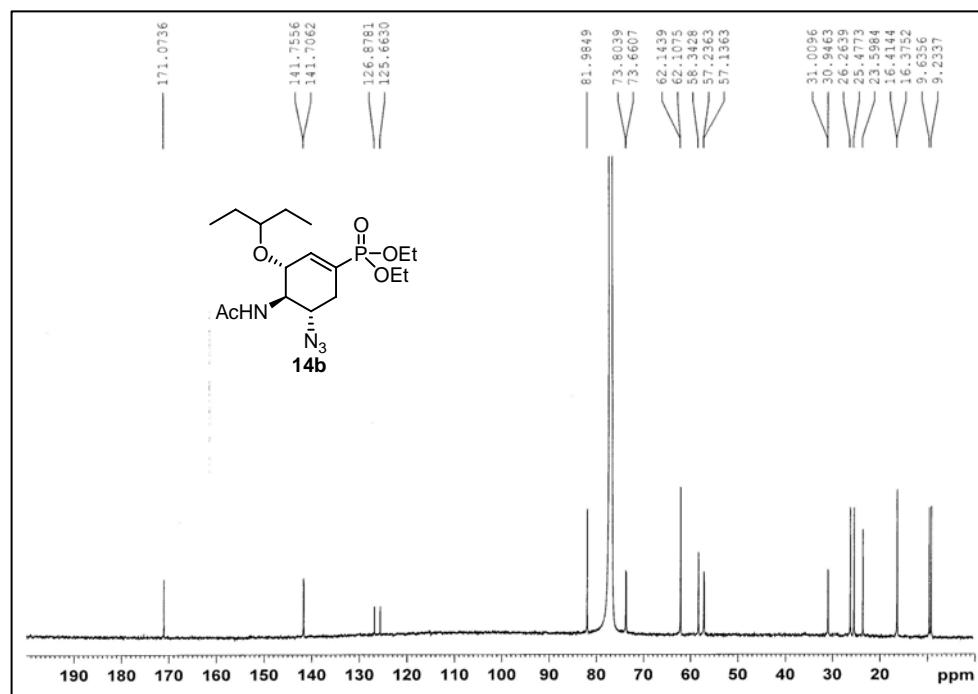

¹³C NMR Spectrum (150 MHz, CDCl₃) of Compound **11**.

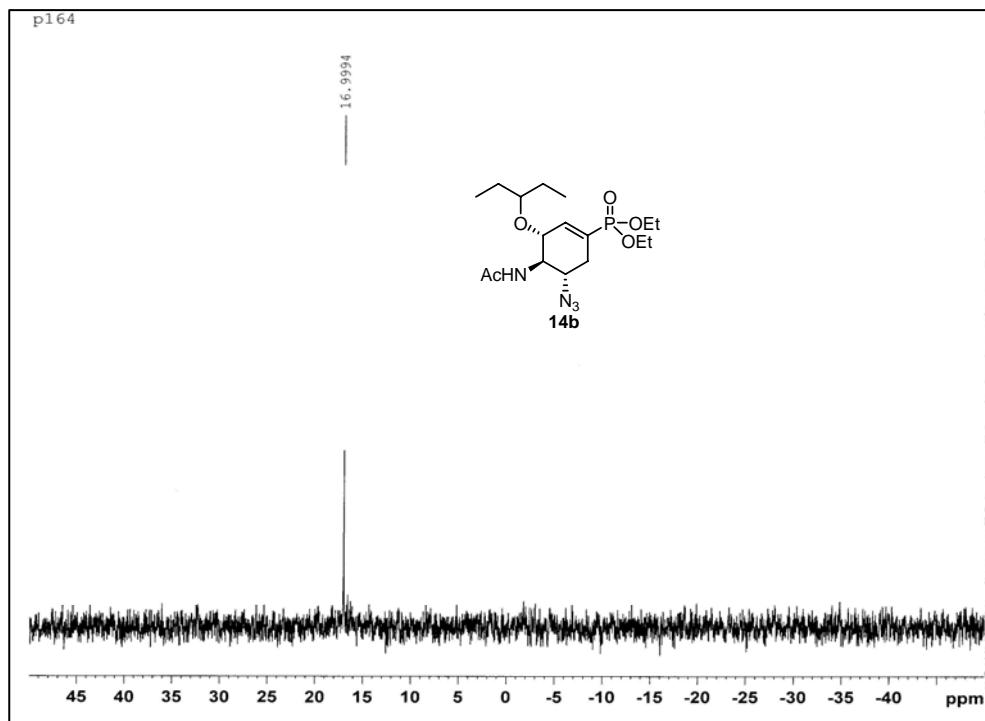

¹H NMR Spectrum (600 MHz, CDCl₃) of Compound **12**.

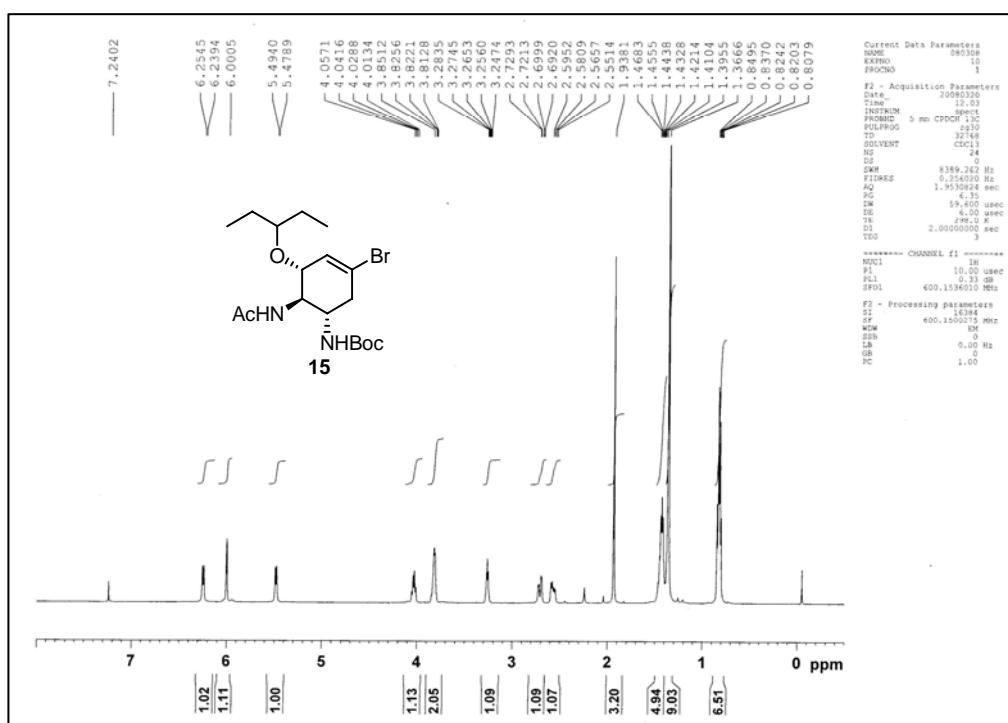

¹³C NMR Spectrum (150 MHz, CDCl₃) of Compound **12**.

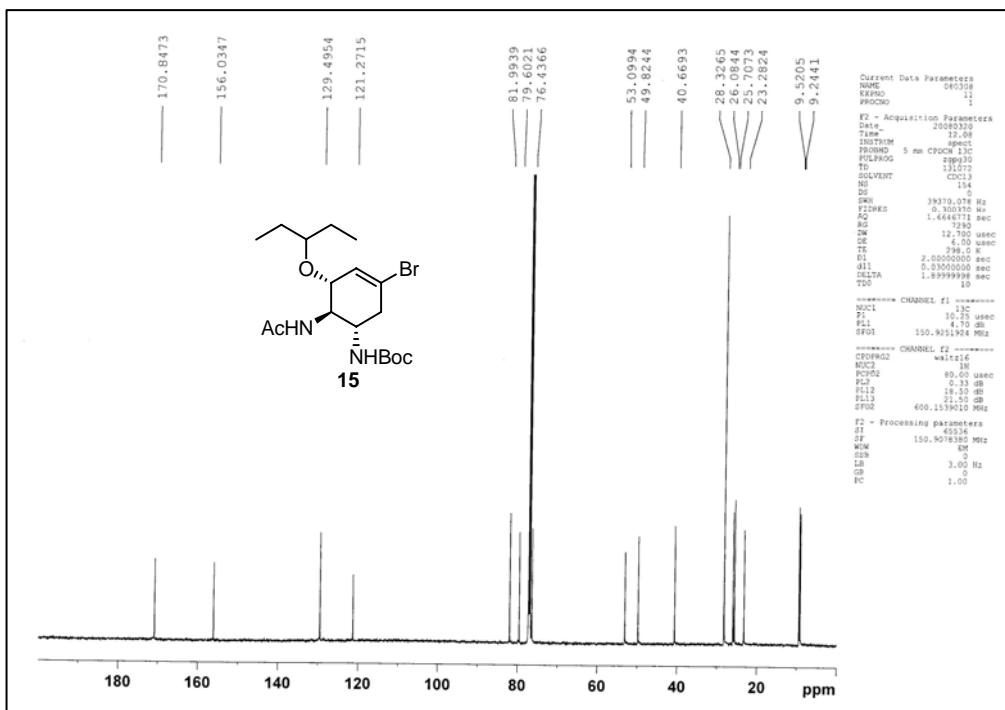

¹H NMR Spectrum (600 MHz, CDCl₃) of Compound **13**.


¹³C NMR Spectrum (150 MHz, CDCl₃) of Compound 13.

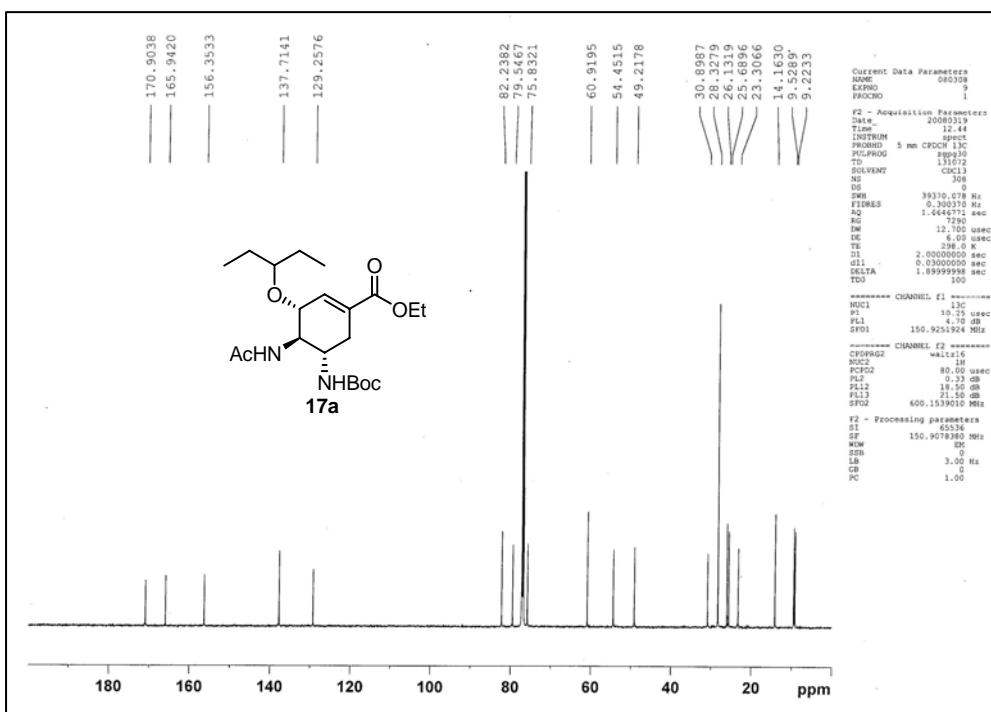

¹H NMR Spectrum (600 MHz, CDCl₃) of Compound **14a**.

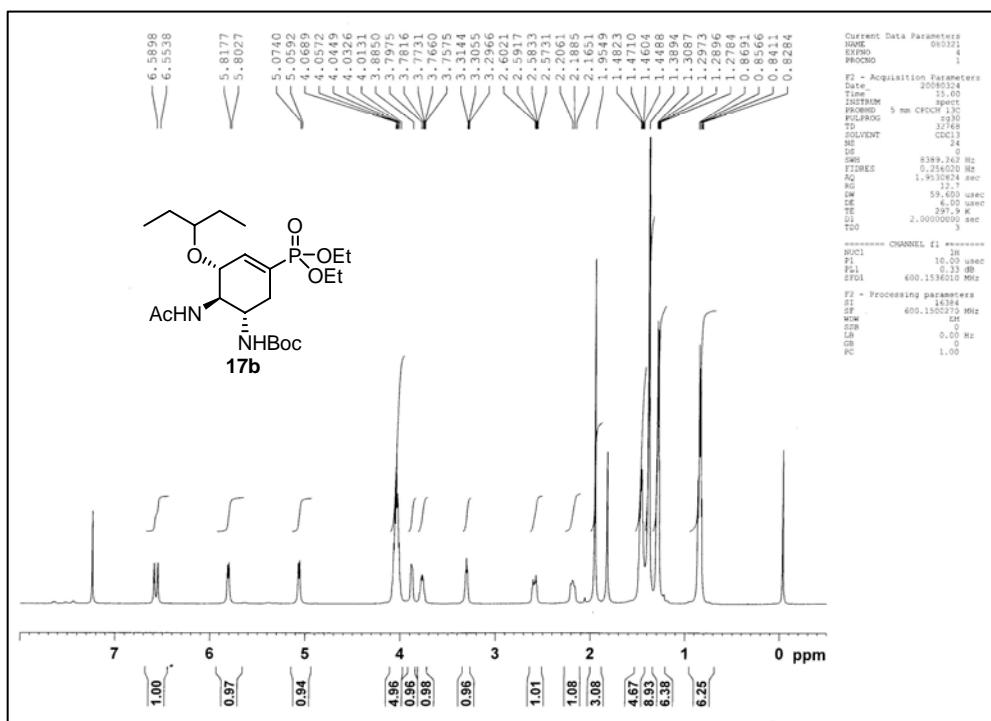

¹³C NMR Spectrum (150 MHz, CDCl₃) of Compound **14a**.

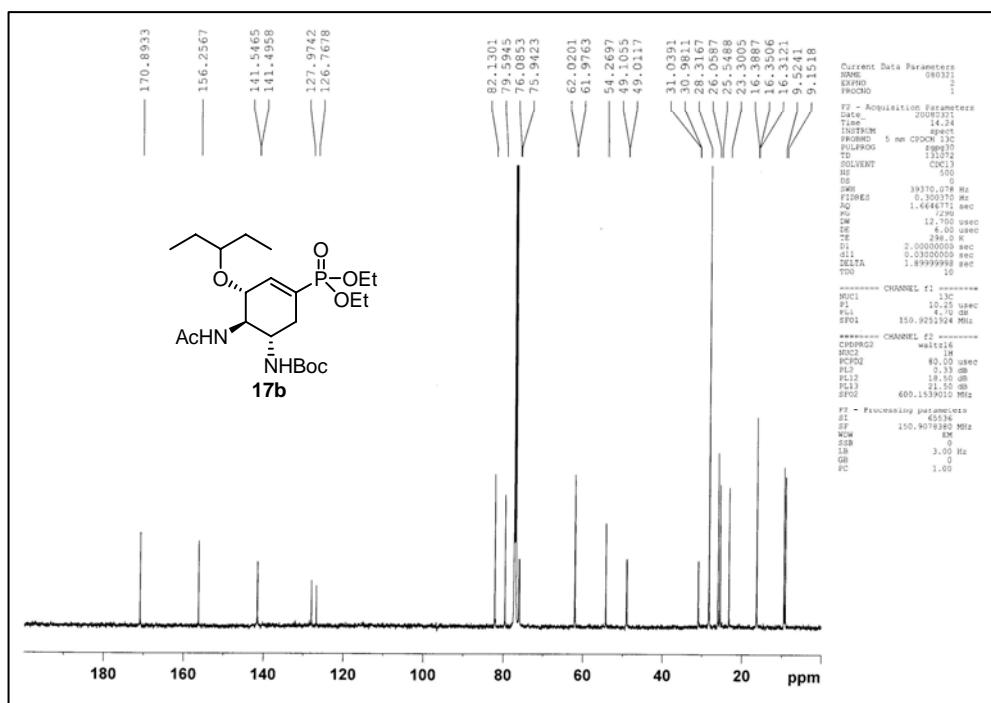

¹H NMR Spectrum (600 MHz, CDCl₃) of Compound **14b**.

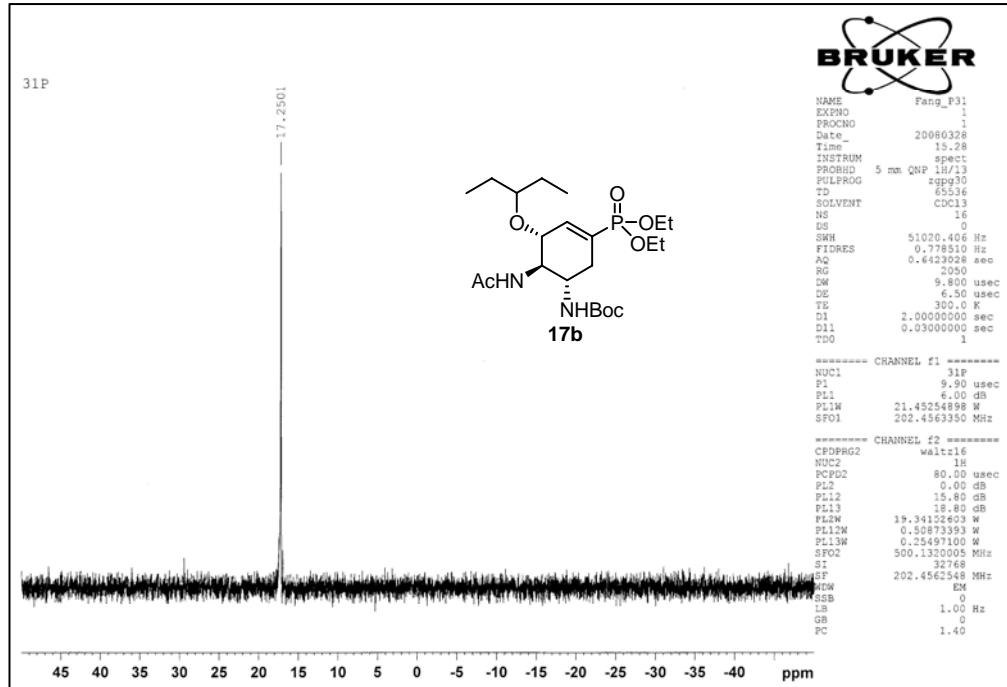

¹³C NMR Spectrum (150 MHz, CDCl₃) of Compound **14b**.

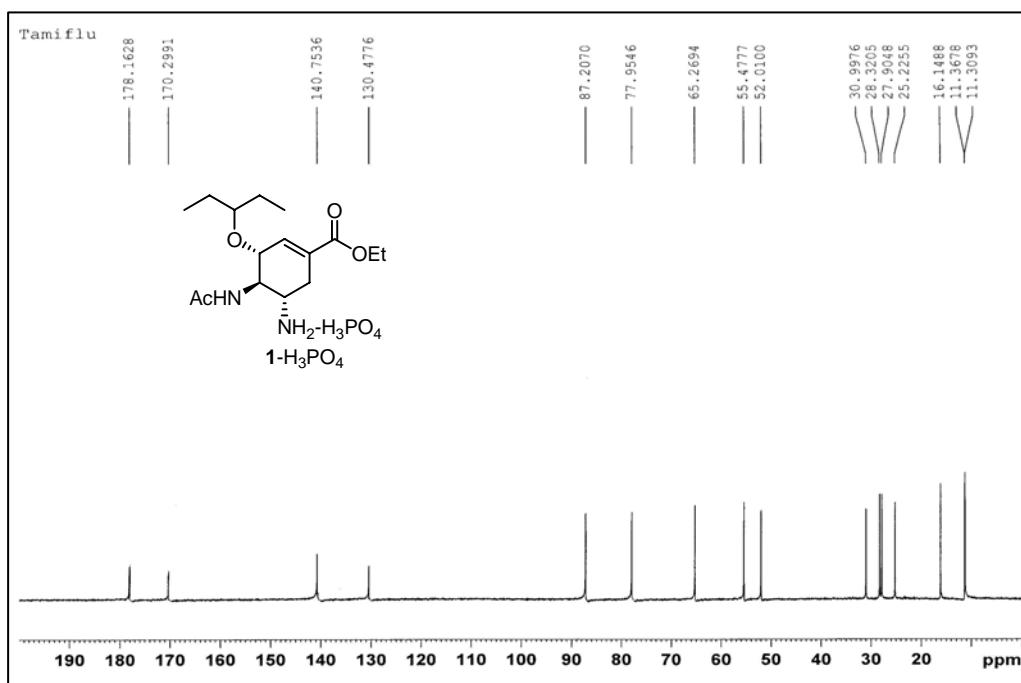
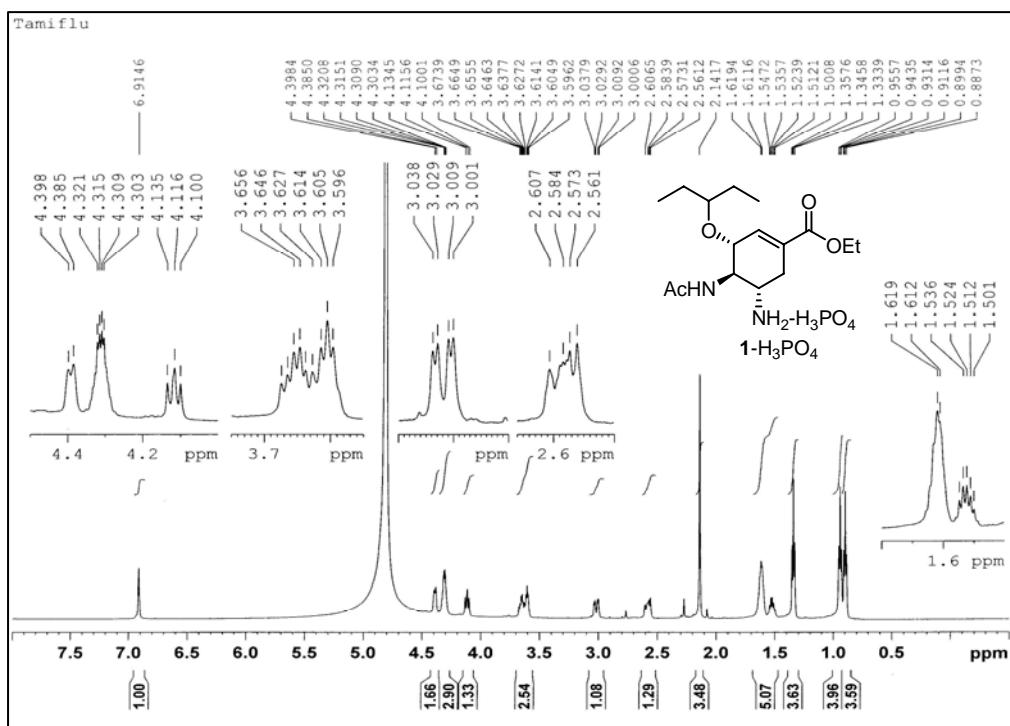

³¹P NMR Spectrum (162 MHz, CDCl₃) of Compound **14b**.

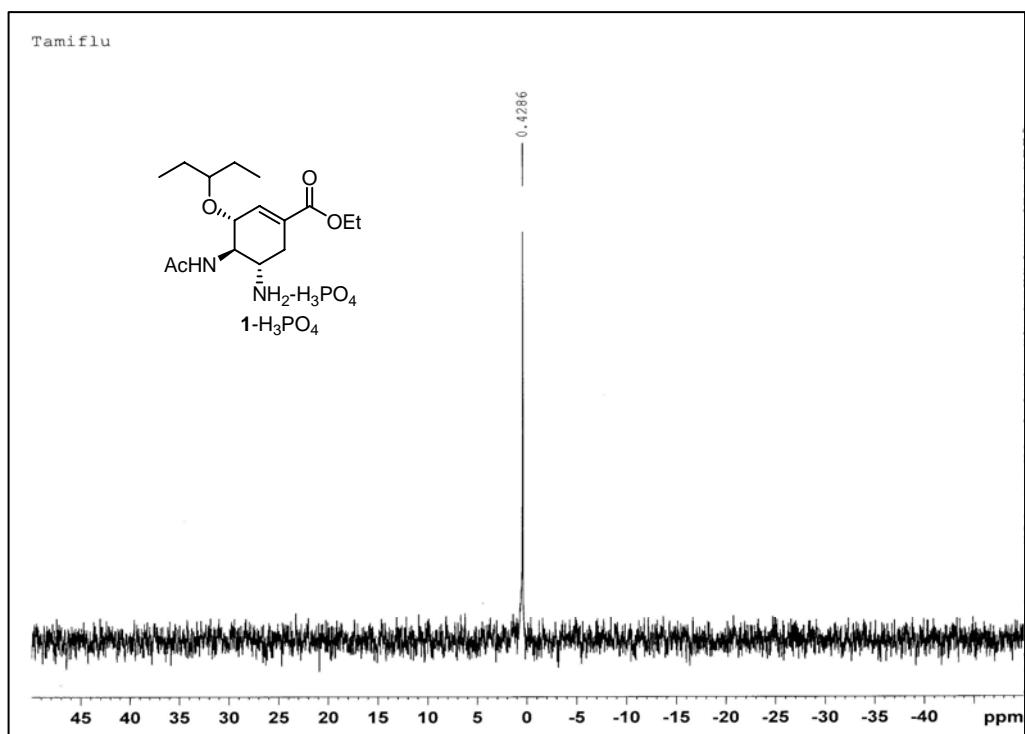

¹H NMR Spectrum (600 MHz, CDCl₃) of Compound **15**.

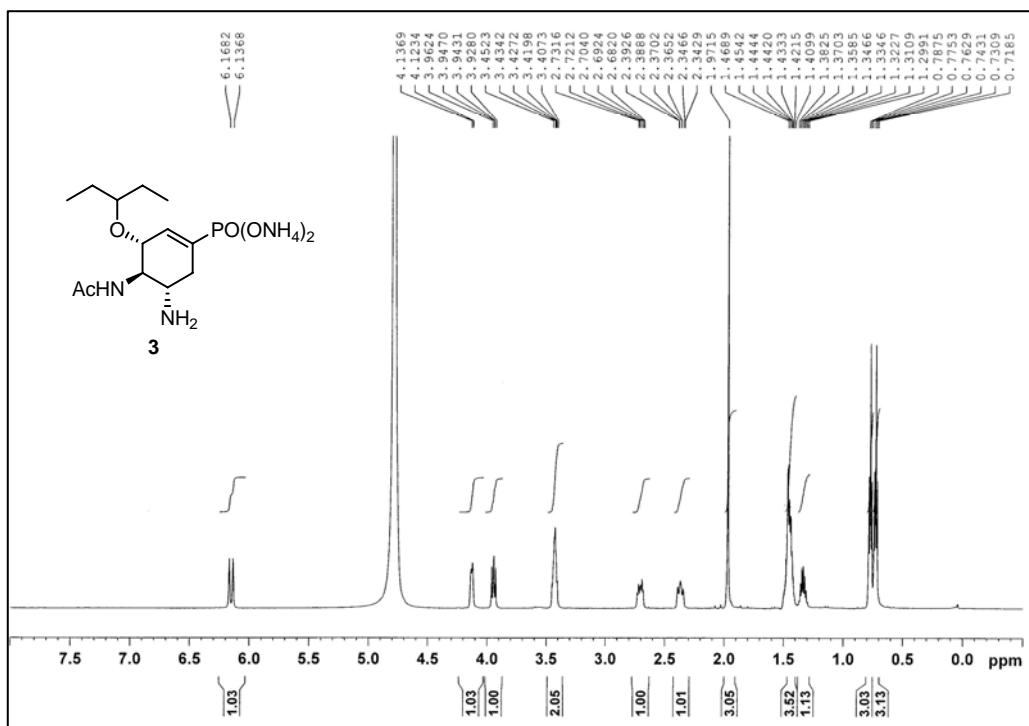

¹³C NMR Spectrum (150 MHz, CDCl₃) of Compound **15**.

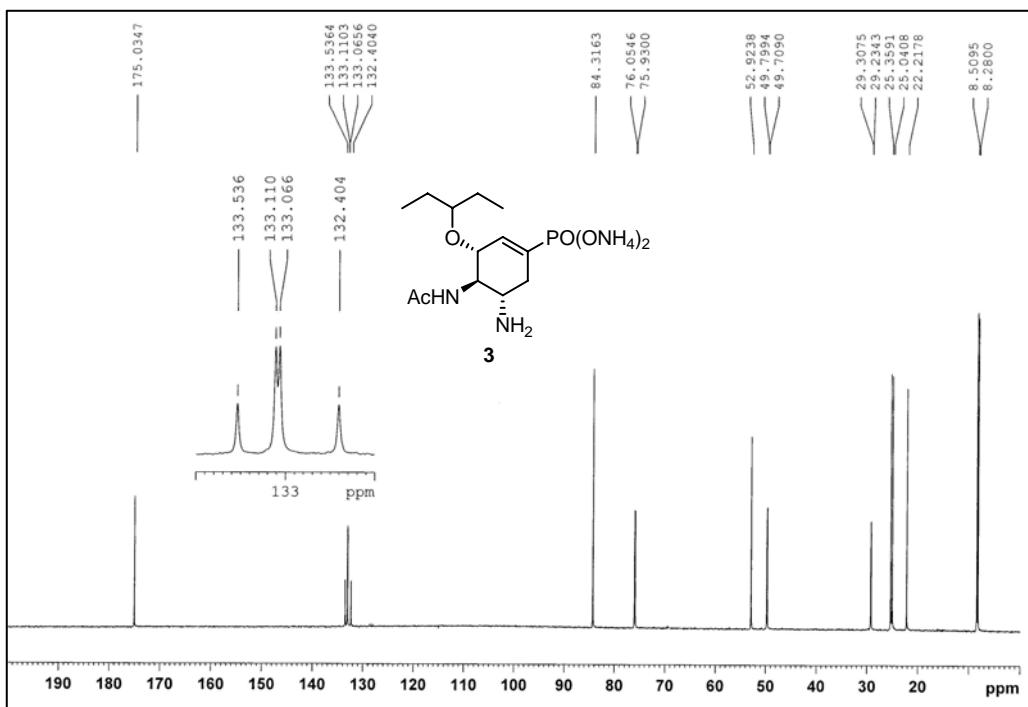

¹H NMR Spectrum (600 MHz, CDCl₃) of Compound **17a**.

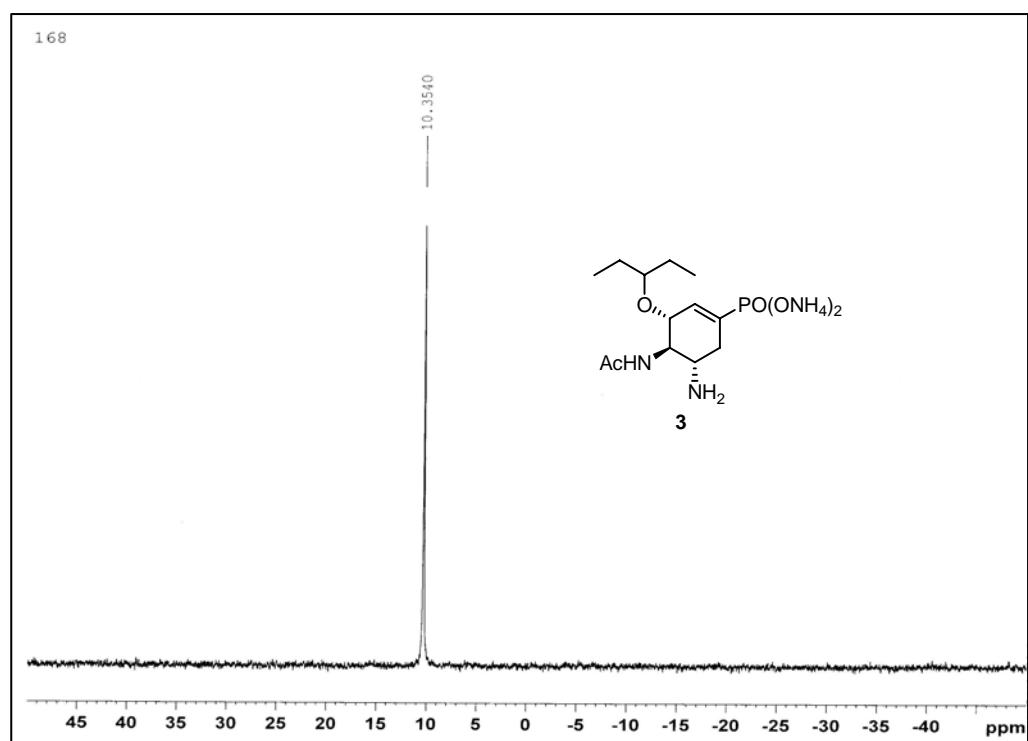

^{13}C NMR Spectrum (150 MHz, CDCl_3) of Compound 17a.



^1H NMR Spectrum (600 MHz, CDCl_3) of Compound 17b.


¹³C NMR Spectrum (150 MHz, CDCl₃) of Compound 17b.


³¹P NMR Spectrum (202 MHz, CDCl₃) of Compound 17b.


^{13}C NMR Spectrum (150 MHz, D_2O) of Tamiflu (**1**· H_3PO_4).


³¹P NMR Spectrum (162 MHz, D₂O) of Tamiflu (**1**·H₃PO₄).

¹H NMR Spectrum (600 MHz, D₂O) of Tamiphosphor (**3**).

¹³C NMR Spectrum (150 MHz, D_2O) of Tamiphosphor (3).

³¹P NMR Spectrum (162 MHz, D_2O) of Tamiphosphor (3).