Single Crystalline Molecular Flasks: Chemical Transformation with Bulky Reagents in the Pores of Porous Coordination Networks

Takehide Kawamichi, Tomoki Kodama, Masaki Kawano,* and Makoto Fujita*

Contents

Figure S1. Crystal structure for \{[(ZnI_2)_2(1)_2(2b)]\cdot(C_6H_5NO_2)_n\} (3b).

Figure S2. Crystal structure for \{[(ZnI_2)_2(1)_2(4a)]\cdot(C_4H_6O_3)_n\} (5a).

Figure S3. Crystal structure for \{[(ZnI_2)_2(1)_2(4b)]\cdot(C_6H_12)_n\} (5b).

Figure S4. Crystal structure for \{[(ZnI_2)_2(1)_2(4c)]\cdot(H_2O)\cdot(C_4H_8O_2)_n\} (5c).

Figure S5. Crystal structure for \{[(ZnI_2)_2(1)_2(4d)]\cdot(H_2O)\cdot(C_4H_8O_2)_n\} (5d).

Figure S6. Crystal structure for \{[(ZnI_2)_2(1)_2(4e)]\cdot(C_6H_12)_n\cdot(C_7H_5NO)_n\} (5e).

Figure S7. Crystal structure for \{[(ZnI_2)_2(1)_2(6a)]\cdot(C_6H_12)_n\} (7a).

Figure S8. Crystal structure for \{[(ZnI_2)_2(1)_2(6b)]\cdot(H_2O)\cdot(C_4H_8O_2)_n\} (7b).

Figure S9. ORTEP drawing for \{[(ZnI_2)_3(1)_2(2b)]\cdot(C_6H_5NO_2)_n\} (3b).

Figure S10. ORTEP drawing for \{[(ZnI_2)_3(1)_2(4a)]\cdot(C_6H_6O_3)_n\} (5a).

Figure S11. ORTEP drawing for \{[(ZnI_2)_3(1)_2(4b)]\cdot(C_6H_12)_n\} (5b).

Figure S12. ORTEP drawing for \{[(ZnI_2)_3(1)_2(4c)]\cdot(H_2O)\cdot(C_4H_8O_2)_n\} (5c).

Figure S13. ORTEP drawing for \{[(ZnI_2)_3(1)_2(4d)]\cdot(H_2O)\cdot(C_4H_8O_2)_n\} (5d).
Figure S14. ORTEP drawing for \{[(ZnI_2)_3(1)_2(4e)]•(C_6H_{12})•(C_7H_5NO)_x\}_n (5e).

Figure S15. ORTEP drawing for \{[(ZnI_2)_3(1)_2(6a)]•(C_6H_{12})_x\}_n (7a).

Figure S16. ORTEP drawing for \{[(ZnI_2)_3(1)_2(6b)]•(H_2O)•(C_4H_8O_2)_x\}_n (7b).

Figure S17. Diffuse reflectance UV-vis spectra of 3a and 5a before and after reaction.

Figure S18. Single crystal microscopic FT-IR spectra of 3a and 5a before and after reaction.

Figure S19. 1H NMR spectra of amine 2a and amide 4a extracted from the crystal of 5a.
Figure S1. Crystal structure of \{[(\text{ZnI}_2)_3(\text{I})_2(\text{2b})]•(\text{C}_6\text{H}_5\text{NO}_2)_x\}_n (3b). A view along the \textit{b} axis. Hydrogen atoms and guest molecules in the pores were omitted for clarity. The network of \[(\text{ZnI}_2)_3(\text{I})_2\]_n is shown in grey line. Aldehyde \textit{2b} are shown in green stick (oxygen atoms are red).

Figure S2. Crystal structure of \{[(\text{ZnI}_2)_3(\text{1}_2(\text{4a})]•(\text{C}_4\text{H}_6\text{O}_3)_x\}_n (5a). A view along the \textit{b} axis. Hydrogen atoms and guest molecules in the pores were omitted for clarity. The network of \[(\text{ZnI}_2)_3(\text{1})_2\]_n is shown in grey line. Amide \textit{4a} are shown in green stick (nitrogen atoms are blue and oxygen atoms are red).
Figure S3. Crystal structure of $\{(\text{ZnI}_2)_3(\text{I}_2)_2(\text{4b})\} \cdot (\text{C}_6\text{H}_{12})_x$ (5b). A view along the b axis. Hydrogen atoms and guest molecules in the pores were omitted for clarity. The network of $[(\text{ZnI}_2)_3(\text{I}_2)]_n$ is shown in grey line. Amide 4b are shown in green stick (nitrogen atoms are blue and oxygen atoms are red).

Figure S4. Crystal structure of $\{(\text{ZnI}_2)_3(\text{I}_2)_2(\text{4c})\} \cdot (\text{H}_2\text{O}) \cdot (\text{C}_4\text{H}_8\text{O}_2)_x$ (5c). A view along the a axis. Hydrogen atoms and guest molecules in the pores were omitted for clarity. The network of $[(\text{ZnI}_2)_3(\text{I}_2)]_n$ is shown in grey line. Amide 4c are shown in green stick (nitrogen atoms are blue and oxygen atoms are red).
Figure S5. Crystal structure of \{[(ZnI_{2})_{3}(1)_{2}(4d)]+(H_{2}O)-•(C_{6}H_{12}O_{2})\}_{n} (5d). A view along the \(b\) axis. Hydrogen atoms and guest molecules in the pores were omitted for clarity. The network of \([(ZnI_{2})_{3}(1)_{2}]_{\infty}\) is shown in grey line. Amide 4d are shown in green stick (nitrogen atoms are blue and oxygen atoms are red).

Figure S6. Crystal structure of \{[(ZnI_{2})_{3}(1)_{2}(4e)]+(C_{6}H_{12})-•(C_{7}H_{5}NO)\}_{n} (5e). A view along the \(b\) axis. Hydrogen atoms and guest molecules in the pores were omitted for clarity. The network of \([(ZnI_{2})_{3}(1)_{2}]_{\infty}\) is shown in grey line. Urea 4e are shown in green stick (nitrogen atoms are blue and oxygen atoms are red).
Figure S7. Crystal structure of $\{[(ZnI_2)_3(1)_2(6a)]\cdot(C_6H_{12})_n\}_n$ (7a). A view along the a axis. Hydrogen atoms and guest molecules in the pores were omitted for clarity. The network of $[(ZnI_2)_3(1)_2]_n$ is shown in grey line. Imine 6a are shown in green stick (nitrogen atoms are blue).

Figure S8. Crystal structure of $\{[(ZnI_2)_3(1)_2(6b)]\cdot(C_6H_{12}O_2)_n\}_n$ (7b). A view along the b axis. Hydrogen atoms and guest molecules in the pores were omitted for clarity. The network of $[(ZnI_2)_3(1)_2]_n$ is shown in grey line. Imine 6b are shown in green stick (nitrogen atoms are blue and oxygen atoms are red).
Figure S9. ORTEP drawing (30% probability level) of \{[\text{ZnI}_2]_3(\text{1}_2)\text{(2b)}\} \cdot (\text{C}_6\text{H}_5\text{NO}_2) \text{x} \cdot (\text{3b})$: a) \{[\text{ZnI}_2]_3(\text{1}_2)\text{(2b)}\} \cdot (\text{C}_6\text{H}_5\text{NO}_2) \text{x}, b) the host framework, c) intercalated 2-formyltriphenylene (\text{2b}), d) nitrobenzene in pores A, e) nitrobenzene in pores B. Several restraints were applied to severely disordered molecules on a basis of chemical symmetry of the molecules.
Figure S10. ORTEP drawing (30% probability level) of \{[(ZnI_2)(I_2)(4a)]•(C_4H_6O_3)\}_n (5a): a) \{[(ZnI_2)(I_2)(4a)]•(C_4H_6O_3)\}_2, b) the host framework, c) intercalated 2-(acetylamino)triphenylene (4a), d) acetic anhydride in pores A, e) acetic anhydride in pores B. Several restraints were applied to severely disordered molecules on a basis of chemical symmetry of the molecules.
Figure S11. ORTEP drawing (30% probability level) of \{[(ZnI_2)_3(1)_2(4b)\cdot(C_6H_{12})_x]_n\} (5b): a) \{[(ZnI_2)_3(1)_2(4b)\cdot(C_6H_{12})_2]\}, b) the host framework, c) intercalated 2-(octanoylamino)triphenylene (4b), d) cyclohexane in pores B, e) guest molecules in pores A could not assigned because of severe disorder. Several restraints were applied to severely disordered molecules on a basis of chemical symmetry of the molecules.
Figure S12. ORTEP drawing (30% probability level) of \{([ZnI_2]_3(1)_2(4c)_x(H_2O)(C_4H_8O_2))_n\} (5c): a) \{([ZnI_2]_3(1)_2(4c)_x(H_2O)(C_4H_8O_2))_n\}, b) the host framework, c) intercalated 2-(succinylamino)triphenylene (4c) and hydrogen bonding water, d) guest molecules in pores A could not assigned because of severe disorder, e) ethyl acetate in pores B. Several restraints were applied to severely disordered molecules on a basis of chemical symmetry of the molecules.
Figure S13. ORTEP drawing (30% probability level) of \{[(ZnI_2)_3(I)]_2(H_2O)(C_4H_8O_2)_e\}_n (5d): a) \{[(ZnI_2)_3(I)]_2(H_2O)(C_4H_8O_2)_e\}, b) the host framework, c) intercalated 2-(maleylamino)triphenylene (4d) and hydrogen bonding water, d) guest molecules in pores A could not assigned because of severe disorder, e) ethyl acetate in pores B. Several restraints were applied to severely disordered molecules on a basis of chemical symmetry of the molecules.
Figure S14. ORTEP drawing (30% probability level) of \{[(ZnI_2)(1)_2(4e)]•(C_6H_{12})•(C_7H_5NO)_x\}_n (5e): a) \{[(ZnI_2)(1)_2(4e)]•(C_6H_{12})_1.4•(C_7H_5NO)_2.4\}, b) the host framework, c) intercalated 2-(3-phenylureido)triphenylene (4e), d) cyclohexane and phenyl isocyanate in pores A, e) cyclohexane and phenyl isocyanate in pores B. Several restraints were applied to severely disordered molecules on a basis of chemical symmetry of the molecules.
Figure S15. ORTEP drawing (30% probability level) of \{[(ZnI_2)_3(I)_(2)(6a)](C_6H_{12})_4\}_n (7a): a) \{[(ZnI_2)_3(I)_(2)(6a)](C_6H_{12})_4\}, b) the host framework, c) intercalated 2-((phenylimino)methyl)triphenylene (6a), d) cyclohexane in pores A, e) cyclohexane in pores B. Several restraints were applied to severely disordered molecules on a basis of chemical symmetry of the molecules.
Figure S16. ORTEP drawing (30% probability level) of \{[(ZnI)_2(I)_2(6b)](H_2O)(C_4H_8O_2)_2\}_{n} (7b): a) \{[(ZnI)_2(I)_2(6b)](H_2O)(C_4H_8O_2)_2\}_{n}, b) the host framework, c) intercalated 2-(((3-carboxyphenyl)imino)methyl)triphenylene (6b), d) ethyl acetate and hydrogen bonding water in pores A, e) ethyl acetate in pores B. Several restraints were applied to severely disordered molecules on a basis of chemical symmetry of the molecules.
Figure S17. Diffuse reflectance UV-vis spectra of 3a and 5a before and after reaction. The diffuse reflectance UV-vis spectra were measured with BaSO₄ pellets on a Shimazdu UV-3150 equipped with an integrating sphere at room temperature and were converted from reflectance to absorbance by the Kubelka-Munk method.
Figure S18. Single crystal microscopic FT-IR spectra of 3a and 5a before and after reaction. The Microscopic FT-IR spectra were measured on a DIGILAB Scimitar FTS7000 instrument at room temperature.
Figure S19. 1H NMR spectra (500 MHz, DMSO-d_6, 300 K) of amine 2a and amide 4a extracted from the crystal of 5a: a, b) spectra of 4a extracted from 5a, c) a spectrum of synthesized amine 2a. The conversion ratio of amine 2a to amide 4a was about 100%. The 1H NMR spectra were measured on a Bruker DRX 500 (500 MHz) NMR spectrometer at 300 K.