Eur. J. Inorg. Chem. 2002 · © WILEY-VCH Verlag GmbH, 69451 Weinheim, 2002 · ISSN 1434–1948

SUPPORTING INFORMATION

<u>*Title:*</u> Spectroscopic Properties, Electrochemistry, and Reactivity of Mo^0 , Mo^I , and Mo^{II} Complexes with the $[Mo(bpa)(CO)_3]$ unit [bpa = bis(2-picolyl)amine] and Their Application for the Labelling of Peptides <u>*Author(s):*</u> Dave R. van Staveren, Eberhard Bothe, Thomas Weyhermüller, Nils Metzler-Nolte* <u>*Ref. No.:*</u> 101310

European Journal of Inorganic Chemistry

Supporting Information

"Spectroscopic Properties, Electrochemistry and Reactivity of Mo(0), Mo(I) and Mo(II) Complexes with the Mo(bpa)(CO)₃ Unit (bpa = di(2-picolyI)amine) and Their Application for the Labelling of Peptides"

Dave R. van Staveren,^{[a], ‡} Eberhard Bothe,^[a] Thomas Weyhermüller,^[a] and Nils Metzler-Nolte*^[b]

Figure S1. Selected regions from the ¹H NMR spectra of **1** (left) and **2** (right) (400 MHz; $[D_6]DMSO$).

Figure S2. Selected parts from both crystallographically independent molecules (left: A; right: B) of the X-ray crystal structure of **1**, visualising the HNCH torsion angles (see Table S1).

Table S3. HNCH torsion angles [°] for both independent molecules of $\mathbf{1}^{[a, b]}$

Figure S1

Figure S2

Molecule A		Molecule B	Molecule B	
H(2)-N(2)-C(6)-H(6A)	-94 ^[c]	H(5)-N(5)-C(26)-H(26A)	+30 ^[d]	
H(2)-N(2)-C(6)-H(6B)	$+33^{[d]}$	H(5)-N(5)-C(26)-H(26B)	-88 ^[c]	
H(2)-N(2)-C(7)-H(7A)	+85 ^[c]	H(5)-N(5)-C(27)-H(27A)	+89 ^[c]	
H(2)-N(2)-C(7)-H(7B)	-32 ^[d]	H(5)-N(5)-C(27)-H(27B)	-32 ^[d]	

Table S3. HNCH torsion angles [°] for both independent molecules of $\mathbf{1}^{[a, b]}$

^[a] Torsion angles are visualized in Figure S2. – ^[b] IUPAC nomenclature used. Angles that increase clockwise and counterclockwise have a positive and negative sign, respectively. – ^[c] The Karplus equation (${}^{3}J_{\rm HH} = 4.22 - 0.5\cos\varphi + 4.5\cos2\varphi$)^[40] yields a value of 0.2-0.3 Hz for these angles. – ^[d] The Karplus equation yields a value of 5.8-6.0 Hz for these angles.