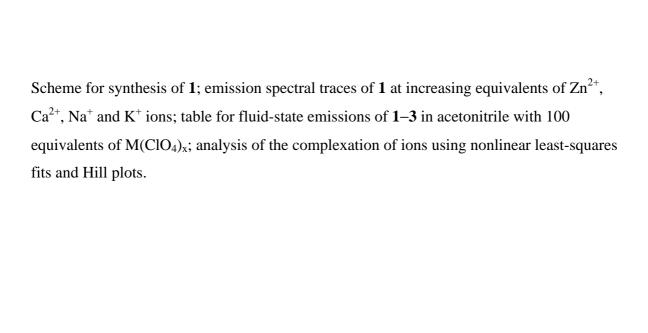
SUPPORTING INFORMATION

<u>Title:</u> A Diiminoplatinum(ii) Complex of 4-Ethynylbenzo-15-crown-5 as a Luminescent Sensor for Divalent Metal Ions <u>Author(s):</u> Phyllis K. M. Siu, Siu-Wai Lai, Wei Lu, Nianyong Zhu, Chi-Ming Che*
<u>Ref. No.:</u> 103214



Scheme S1

Table S1 Fluid emission data of **1–3** in acetonitrile (complex concentration = 3.2×10^{-5} mol dm⁻³; λ_{ex} 405 nm) with 100 equivalents of M(ClO₄)_x.

Complex	$\lambda_{max} / nm; \varphi$	I/I (monitored at λ_{max})
1	635; 1.14×10^{-4}	1
$1 + Mg(ClO_4)_2$	553; 0.075	1035
$\boldsymbol{1} + Zn(ClO_4)_2$	560; 0.052	870
$1 + \mathrm{Zn}(\mathrm{NO}_3)_2$	560; 0.021	250
$1 + ZnCl_2$	$565; 5.96 \times 10^{-3}$	105
$1 + NaClO_4$	$600; 1.59 \times 10^{-3}$	11
$1 + KClO_4$	$610; 4.60 \times 10^{-4}$	4
$1 + Cd(ClO_4)_2$	$613; 4.06 \times 10^{-4}$	3
$1 + \text{Ca}(\text{ClO}_4)_2$	563; 0.022	300
2	$560; 7.87 \times 10^{-4}$	1
$2 + Zn(ClO_4)_2$	$581; 6.39 \times 10^{-3}$	10
3	$610; 1.58 \times 10^{-3}$	1
$3 + \mathrm{Zn}(\mathrm{ClO_4})_2$	$610; 1.53 \times 10^{-3}$	1

Figure S1. Emission spectral traces and (inset) luminescence enhancement factor (\equiv I/I_o; monitored at 560 nm) of **1** at increasing equivalents of Zn(ClO₄)₂ in 0.1 M nBu_4NPF_6 acetonitrile solution at 298 K ($\lambda_{ex} = 405$ nm, [**1**] = 3.2×10^{-5} mol dm⁻³).

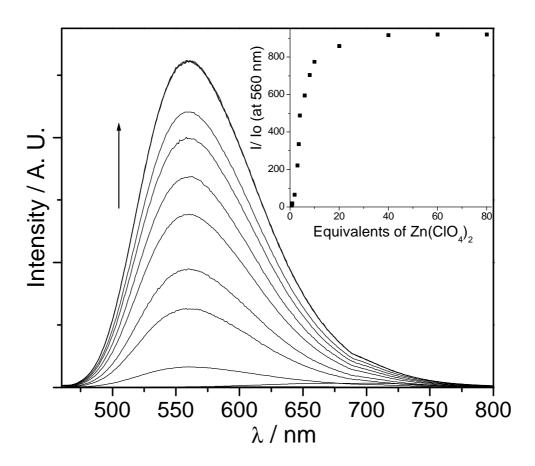


Figure S2. Emission spectral traces and (inset) luminescence enhancement factor (\equiv I/I_o; monitored at 563 nm) of **1** at increasing equivalents of Ca(ClO₄)₂ in 0.1 M nBu_4NPF_6 acetonitrile solution at 298 K ($\lambda_{ex} = 405$ nm, [**1**] = 3.2×10^{-5} mol dm⁻³).

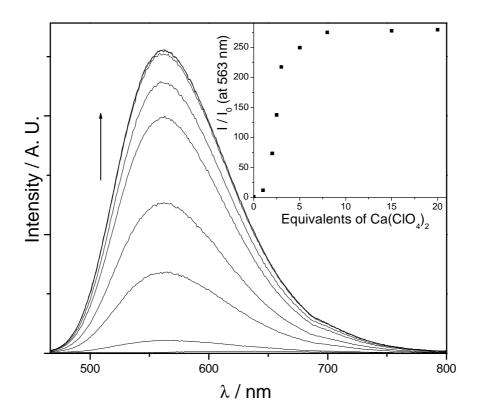


Figure S3. Emission spectral traces and (inset) luminescence enhancement factor (\equiv I/I_o; monitored at 600 nm) of **1** at increasing equivalents of NaClO₄ in 0.1 M nBu_4NPF_6 acetonitrile solution at 298 K ($\lambda_{ex} = 405$ nm, [**1**] = 3.2×10^{-5} mol dm⁻³).

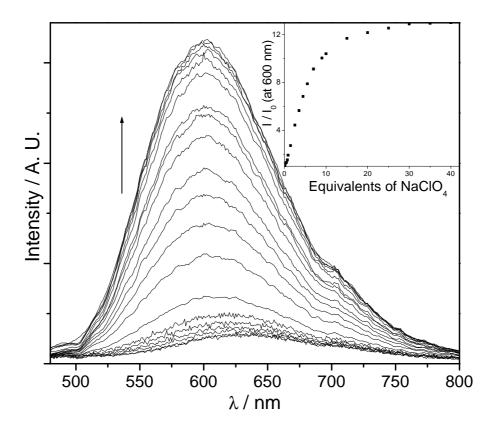
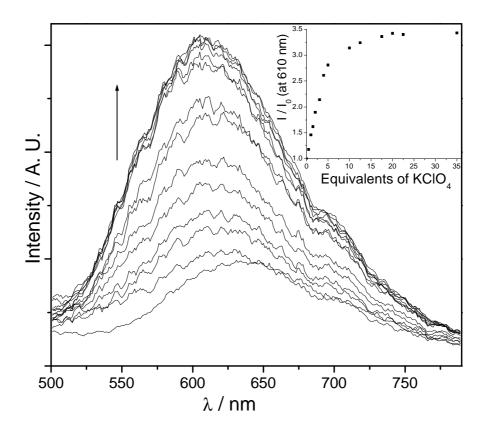


Figure S4. Emission spectral traces and (inset) luminescence enhancement factor (\equiv I/I_o; monitored at 610 nm) of **1** at increasing equivalents of KClO₄ in 0.1 M nBu_4NPF_6 acetonitrile solution at 298 K ($\lambda_{ex} = 405$ nm, [**1**] = 3.2×10^{-5} mol dm⁻³).



Study of Binding of $[Pt(tBu_2bpy)(4-ethynylbenzo-15-crown-5)_2]$ (Pt) with $M(ClO_4)_x$ (M^{x+})

(A) The Binding Model

The binding of a platinum complex (Pt) with ions M^{x+} can be described by the following equilibria:

The following symbols are used:

Pt(t): total concentration of species containing platinum complex, which is constant during the titration.

 $M^{x+}(t)$: total concentration of species containing M^{x+} .

[Pt]: platinum complex concentration at equilibrium.

[M^{x+}]: concentration of M^{x+} at equilibrium.

 $[Pt(M^{x+})_n]$: equilibrium concentration of $Pt(M^{x+})_n$ species, n = 1, 2, 3, ...

 K_{1n} : stepwise equilibrium constants as illustrated in the above reaction scheme, n = 1, 2, 3, ...I: emission intensity during titration.

 I_0 : initial emission intensity, without adding any M^{x+} .

$$I = k_0[Pt] + k_1[PtM^{x+}] + k_2[Pt(M^{x+})_2] + k_3[Pt(M^{x+})_3] + ... + k_n[Pt(M^{x+})_n],$$

where k_n (n = 1, 2, 3, ...) are constant related to the extinction coefficient of the species and the intensity of excitation radiation (D. A. Skoog, J. J. Leary, *Principles of Instrumental Analysis*, 4th ed., Saunders College Publishers, **1992**).

$$\begin{split} I &= k_0[Pt] + k_1 K_{11}[Pt][M^{x+}] + k_2 K_{11} K_{12}[Pt][M^{x+}]^2 + k_3 K_{11} K_{12} K_{13}[Pt][M^{x+}]^3 + ... + \\ &\quad k_n K_{11} K_{12} K_{13} ... K_{1n}[Pt][M^{x+}]^n \\ &= [Pt] \{k_0 + k_1 K_{11}[M^{x+}] + k_2 K_{11} K_{12}[M^{x+}]^2 + k_3 K_{11} K_{12} K_{13}[M^{x+}]^3 + ... + \\ &\quad k_n K_{11} K_{12} K_{13} ... K_{1n}[M^{x+}]^n \} \end{split}$$
 (i)

$$I_0 = k_0[Pt(t)],$$
 by definition (ii)

$$\begin{split} [Pt(t)] &= [Pt] + [PtM^{x+}] + [Pt(M^{x+})_2] + [Pt(M^{x+})_3] + ... + [Pt(M^{x+})_n] \\ &= [Pt] \{1 + K_{11}[M^{x+}] + K_{11}K_{12}[M^{x+}]^2 + K_{11}K_{12}K_{13}[M^{x+}]^3 + \\ &... + K_{11}K_{12}K_{13}...K_{1n}[M^{x+}]^n \} \end{split} \tag{iii}$$

Substitute equation (iii) into (ii), which in turn substitute into (i) and rearrange, the following equation is obtained.

$$\begin{split} I - I_0 &= [Pt] \{ (k_1 - k_0) K_{11} [M^{x+}] + (k_2 - k_0) K_{11} K_{12} [M^{x+}]^2 + (k_3 - k_0) K_{11} K_{12} K_{13} [M^{x+}]^3 + \\ ... + (k_n - k_0) K_{11} K_{12} K_{13} ... K_{1n} [M^{x+}]^n \} \end{split} \tag{iv}$$

Eliminating the [Pt] terms by combining equations (iii) and (iv),

$$\begin{split} I - I_0 &= [Pt(t)] \{ (k_1 - k_0) K_{11}[M^{x+}] + (k_2 - k_0) K_{11} K_{12}[M^{x+}]^2 + (k_3 - k_0) K_{11} K_{12} K_{13}[M^{x+}]^3 \\ &+ ... + (k_n - k_0) K_{11} K_{12} K_{13} ... K_{1n}[M^{x+}]^n \} \ / \ \{ 1 + K_{11}[M^{x+}] + K_{11} K_{12}[M^{x+}]^2 + \\ & K_{11} K_{12} K_{13}[M^{x+}]^3 + ... + K_{11} K_{12} K_{13} ... K_{1n}[M^{x+}]^n \} \end{split} \tag{v}$$

During the whole experiment, the concentration of M^{x+} is in large excess when compared with the concentration of Pt, hence we can use the following approximation,

$$[M^{x+}] \approx [M^{x+}(t)]$$

Therefore, equation (v) becomes,

$$\begin{split} I - I_0 &= [Pt(t)] \{ (k_1 - k_0) K_{11} [M^{x+}(t)] + (k_2 - k_0) K_{11} K_{12} [M^{x+}(t)]^2 + (k_3 \\ &- k_0) K_{11} K_{12} K_{13} [M^{x+}(t)]^3 + ... + (k_n - k_0) K_{11} K_{12} K_{13} ... K_{1n} [M^{x+}(t)]^n \} \ / \ \{ 1 + K_{11} [M^{x+}(t)] + K_{11} K_{12} [M^{x+}(t)]^2 + K_{11} K_{12} K_{13} [M^{x+}(t)]^3 + \\ &... + K_{11} K_{12} K_{13} ... K_{1n} [M^{x+}(t)]^n \} \end{split}$$
 (vi)

Equation (vi) is the general equation used in our study. The cases for n = 1, 2, 3, ... are therefore obtained.

Case 1: n = 1

Using equation (vi) up to the first term, and employing the following symbols to simplify the equation,

$$\theta_1 = K_{11}$$

$$\theta_2 = k_1 - k_0$$

$$I = \theta_1 \theta_2 [Pt(t)][M^{x+}(t)] / (1 + \theta_1 [M^{x+}(t)]) + I_0$$
(1)

Case 2: n = 2

Using equation (vi) up to the second term, and employing the following symbols to simplify the equation,

$$\theta_1 = K_{11}$$

$$\theta_2 = K_{12}$$

$$\theta_3 = k_1 - k_0$$

$$\theta_4\!=k_2-k_0$$

$$I = [Pt(t)][M^{x+}(t)]\theta_1(\theta_3 + \theta_2\theta_4[M^{x+}(t)]) / (1 + \theta_1[M^{x+}(t)] + \theta_1\theta_2[M^{x+}(t)]^2) + I_0$$
(2)

Case 3: n = 3

Using equation (vi) up to the third term, and employing the following symbols to simplify the equation,

$$\theta_1 = K_{11}$$

$$\theta_2 = K_{12}$$

$$\theta_3 = K_{13}$$

$$\theta_4 = k_1 - k_0$$

$$\theta_5 = k_2 - k_0$$

$$\theta_6 = k_3 - k_0$$

$$I = [Pt(t)][M^{x+}(t)]\theta_1\{\theta_4 + \theta_2[M^{x+}(t)](\theta_5 + \theta_6\theta_3[M^{x+}(t)])\} / 1 + \theta_1[M^{x+}(t)]\{1 + \theta_2[M^{x+}(t)](1 + \theta_3[M^{x+}(t)])\} + I_0$$
(3)

As equation (3) would involve six fitting parameters, this would require a large number of experimental data for meaningful fitting; some assumptions may be applied to decrease the number of fitting parameters. A possible assumption is $k_1 = k_2 = k_3$. Therefore equation (3) can be simplified into equation (3').

$$\begin{split} I &= [Pt(t)][M^{x+}(t)]\theta_1\theta_4\{1+\theta_2[M^{x+}(t)](1+\theta_3[M^{x+}(t)])\} \ / \ 1+\theta_1[M^{x+}(t)]\{1+\theta_2[M^{x+}(t)](1+\theta_3[M^{x+}(t)])\} \ / \ 1+\theta_1[M^{x+}(t)](1+\theta_3[M^{x+}(t)])\} \end{split} \ (3') \end{split}$$

Where $\theta_4 = k_1 - k_0 = k_2 - k_0 = k_3 - k_0$

Other cases: n 3 4

Similar equations can be derived. When n increases by one, it results in two more fitting parameters. This becomes impractical to collect a large number of experimental data required for a meaningful fitting.

The non linear fits were performed by inputting the experimental data into the specific models using least squares method (K. Levenberg, *Q. Appl. Math.* **1944**, *2*, 164–168; an algorithm for least-squares estimation of nonlinear parameters: D. Marquardt, *J. Soc. Ind. Appl. Math.* **1963**, *11*, 431–441). The DRNLIN subroutine of the IMSL STAT/LIBRARY (IMSL STAT/LIBRARY: Houston, Texas, Visual Numerics, Inc., **1999**) was used. A main Fortran 90 program was employed to perform the input and output of the data and parameters setting for the DRNLIN subroutine. They were compiled and linked by a Digital Visual Fortran 5.0 compiler and the executive was run on a Pentium III type PC under Window 2000 Professional.

(B) Fitting the experimental emission data as a function of $[M(ClO_4)_x]$

Table 2 Result on the fitting of equilibrium expressions for binding Na⁺, Mg²⁺ and Zn²⁺ to 1.

Ion	n	K ₁₁	K ₁₂	K ₁₃	b
Na ⁺	2	7.27×10^3	1.08×10^4		7.9×10^7
	3	3.35×10^3	5.56×10^3	9.97×10^{2}	1.9×10^{10}
Mg ²⁺	2	3.11×10^3	1.69×10^5		5.3×10^{8}
	3	1.43×10^{1}	1.93×10^7	5.94×10^4	1.6×10^{13}
Zn ²⁺	2	2.11×10^3	4.41×10^4		9.3×10^7
	3	3.38×10^4	4.48×10^{3}	2.69×10^4	4.1×10^{12}

 β is the overall equilibrium constant = $\prod^n K_{1n}$

Table 3 Summary of Hill Plot

Ion	n	b
Na ⁺	1.7	6.5×10^6
Mg ²⁺	2.2	3.7×10^9
Zn ²⁺	2.0	5.5×10^{7}

The data of these three ions can both give well fitted curves for the n=2 and n=3 equations. When we compare the overall equilibrium constants (β), obtained in the nonlinear least-squares fits (Table 2) with that from Hill plot (Table 3), all the n=3 cases give unreasonably large values of β in Table 2. The mathematically explanation for this can be: since the equation for n=3 contains more fitting parameters than that for n=2, any set of data fits the n=2 equation well is also expected to fit the n=3 case well. This is called the over-fitted phenomenon. In this case, the β values obtained for n=3 in Table 2 are physically absurd. Therefore, we can rule out all the n=3 cases.

For n=2, in the case of Na^+ , the value of K_{12} is comparable to that of K_{11} . In the case of Zn^{2+} , the K_{12} value is about 20 times larger than that of K_{11} . In the case of Mg^{2+} , the K_{12} value is more than 50 times larger than K_{11} . All β values in the case of n=2 are consistent with those found in Hill plot.

Conclusion

In this present study, the fittings of emission intensity enhanced by Na^+ , Mg^{2+} and Zn^{2+} ions give equilibrium constants that are consistent with those obtained from Hill plots and the stepwise equilibrium constants can also be accurately determined.