

SUPPORTING INFORMATION

Title: A Simple and Efficient Synthetic Route to Enantiopure Scorpionate Ligands

Author(s): Antonio Otero,* Juan Fernández-Baeza,* Antonio Antiñolo, Juan Tejeda, Agustín Lara-Sánchez, Luis Sánchez-Barba, Margarita Sánchez-Molina, Sonia Franco, Isabel López-Solera, Ana M. Rodríguez

Ref. No.: I200501054

Experimental procedures and characterization data for compounds 1-6.

The compounds *tert*-butyl isocyanate, (*S*)-(-)- α -methyl isocyanate, *tert*-butyl isothiocyanate and (*S*)-(-)-1-phenylpropyl isothiocyanate were purchased from Aldrich or Lancaster. The compound bdmpzm [bdmpzm = bis(3,5-dimethylpyrazol-1-yl)methane] was prepared as reported previously.

Synthesis of [Li(tbpam)]₂ (1). Bdmpzm [bdmpzm = bis(3,5-dimethylpyrazol-1-yl)methane] (1.00 g, 4.89 mmol) was dissolved in dry THF (70 cm³) in a 250 cm³ Schlenk tube and the solution was cooled to -70 °C. A 1.6 M solution of BuⁿLi (3.06 cm³, 4.89 mmol) in hexane was added and the solution was stirred for 1 h. The reaction mixture was warmed to 0 °C and the resulting yellow solution was treated with *tert*-butyl isocyanate (0.56 cm³, 4.89 mmol), after which the solution was colourless. The solvent was removed and hexane (70 cm³) was added. A white solid was obtained and this was crystallised from a mixture of THF-hexane. Yield 86%. (Found: C, 62.01; H, 7.45; N, 22.23. C₃₂H₄₈Li₂N₁₀O₂ requires C, 62.12; H, 7.81; N, 22.64). ¹H NMR (DMSO, 297 K), δ 6.30 (s, 1 H, CH), 5.81 (s, 2 H, H⁴), 2.07 (s, 6 H, Me³), 2.27 (s, 6 H, Me⁵), 1.10 [s, 9 H, C(CH₃)₃]. ¹³C-<{¹H}-NMR (DMSO, 297 K), δ 72.3 (CH), 146.9, 140.0 (C³ or ⁵), 106.3 (C⁴), 13.6 (Me³), 10.9 (Me⁵), 30.9 [C(CH₃)₃], 28.8 [C(CH₃)₃], 162.3 (N=C–O). Mass spectrum: (*m/z* assignment, % intensity): 316 [M – tbpam], 100.

Synthesis of [Li(S-mbbpam)]₂ (2). Bdmpzm [bdmpzm = bis(3,5-dimethylpyrazol-1-yl)methane] (1.00 g, 4.89 mmol) was dissolved in dry THF (70 cm³) in a 250 cm³ Schlenk tube and the solution was cooled to -70 °C. A 1.6 M solution of BuⁿLi (3.06 cm³, 4.89 mmol) in hexane was added and the solution was stirred for 1 h. The reaction mixture was warmed to 0 °C and the resulting yellow solution was treated with (*S*)-(-)- α -methylbenzyl isocyanate (0.70 cm³, 4.89 mmol), after which the solution was yellow in colour. The solvent was removed and hexane (70 cm³) was added to give a pale yellow

solid. The solid was crystallised from a mixture of THF-hexane. Yield 85%. $[\alpha]_D^{25}$ -39.6 (*c* 1.00, MeOH). (Found: C, 67.92; H, 6.93; N, 19.51. $C_{40}H_{48}Li_2N_{10}O_2$ requires C, 67.87; H, 6.83; N, 19.78). 1H NMR (DMSO, 297 K), δ 6.49 (s, 1 H, CH), 5.83 (s, 1 H, H^4), 5.80 (s, 1 H, H^4), 2.00 (s, 3 H, $Me^{3'}$), 1.98 (s, 3 H, $Me^{3'}$), 2.31 (s, 3 H, $Me^{5'}$), 2.28 (s, 3 H, Me^5), 7.31–7.04 (m, 5 H, PhCHMeN), 4.82 (q, 1 H, $^3J_{HH} = 7.2$ Hz, PhCHMeN), 1.13 (d, 3 H, $^3J_{HH} = 7.2$ Hz, PhCHMeN). ^{13}C -{ 1H }-NMR (DMSO, 297 K), δ 72.1 (CH), 147.2, 147.1, 140.3, 140.2, ($C^{3,3'} \text{ or } 5,5'$), 106.0 (C^4), 105.8 (C^4), 13.9 ($Me^{3,3'}$), 11.6, 11.5 ($Me^{5,5'}$), 163.0 (N=C–O), 128.0–125.1 (PhCHMeN), 52.2 (PhCHMeN), 26.0 (PhCHMeN). Mass spectrum: (*m/z* assignment, % intensity): 358 [M – mbbpam], 100.

The synthetic procedure of a racemic mixture of **2** was the same as that for an antiopure complex $[Li(S\text{-}mbbpam)]_2$ (**2**), using bdmpzm (1.50 g, 7.33 mmol), Bu^nLi 1.6 M solution (4.58 cm³, 7.33 mmol) and an equimolar mixture of (*R*)/(*S*)-(±)- α -methylbenzyl isocyanate (1.05 cm³, 7.33 mmol). Yield 85%. $[\alpha]_D^{25}$ 0.0 (*c* 1.00, MeOH). 1H NMR (DMSO, 297K), δ 6.49 (s, 1 H, CH), 5.83 (s, 1 H, H^4), 5.80 (s, 1 H, H^4), 2.00 (s, 3 H, $Me^{3'}$), 1.98 (s, 3 H, Me^3), 2.31 (s, 3 H, $Me^{5'}$), 2.28 (s, 3 H, Me^5), 7.31–7.04 (m, 5 H, PhCHMeN), 4.82 (q, 1 H, $^3J_{HH}=6.9$ Hz, PhCHMeN), 1.13 (d, 3 H, $^3J_{HH}=6.9$ Hz, PhCHMeN).

Synthesis of $[Li(tbptam)]_2$ (3**).** Bdmpzm [bdmpzm = bis(3,5-dimethylpyrazol-1-yl)methane] (1.00 g, 4.89 mmol) was dissolved in dry THF (70 cm³) in a 250 cm³ Schlenk tube and the solution was cooled to -70 °C. A 1.6 M solution of Bu^nLi (3.06 cm³, 4.89 mmol) in hexane was added and the solution was stirred for 1 h. The reaction mixture was warmed to 0 °C and the resulting yellow solution was treated with *tert*-butyl isothiocyanate (0.62 cm³, 4.89 mmol), after which the solution was pale yellow. The solvent was removed and hexane (70 cm³) was added to give a yellow solid. This solid was crystallised from a mixture of THF-hexane. Yield 89%. (Found: C, 59.10; H, 7.32; N, 21.10. $C_{32}H_{48}Li_2N_{10}S_2$ requires C, 59.05; H, 7.43; N, 21.52). 1H NMR (DMSO, 297 K), δ 6.64 (s, 1 H, CH), 5.70 (s, 2 H, H^4), 2.03 (s, 6 H, Me^3), 2.25 (s, 6 H, Me^5), 1.24 [s, 9 H, $C(CH_3)_3$]. ^{13}C -{ 1H }-NMR

(DMSO, 297 K), δ 82.1 (CH), 144.8, 140.15 (C³ or ⁵), 104.8 (C⁴), 13.4 (Me³), 11.7 (Me⁵), 31.8 [$\underline{C(CH_3)_3}$], 28.3C($\underline{CH_3}_3$], 172.0 (N=C–S). Mass spectrum: (*m/z* assignment, % intensity): 332 [M – tbptam], 100.

Synthesis of [Li(S-ppbptam)]₂ (4). Bdmpzm [bdmpzm = bis(3,5-dimethylpyrazol-1-yl)methane] (1.15 g, 5.64 mmol) was dissolved in dry THF (70 cm³) in a 250 cm³ Schlenk tube and the solution was cooled to –70 °C. A 1.6 M solution of BuⁿLi (3.53 cm³, 5.64 mmol) in hexane was added and the solution was stirred for 1 h. The reaction mixture was warmed to 0 °C and the resulting yellow solution was treated with (*S*)-(–)-1-phenylpropyl isothiocyanate (1.00 g, 5.64 mmol), after which the solution was yellow in colour. The solvent was removed and hexane (70 cm³) was added to give a pale yellow solid. This solid was crystallised from a mixture of THF-hexane. Yield 90%. $[\alpha]_D^{25}$ -22.8 (*c* 1.00, MeOH) (Found: C, 64.85; H, 7.60; N, 17.50. C₄₂H₅₆Li₂N₁₀S₂ requires C, 64.75; H, 7.24; N, 17.98). ¹H NMR (DMSO, 297 K), δ 6.82 (s, 1 H, CH), 5.76 (s, 1 H, H⁴), 5.73 (s, 1 H, H^{4'}), 2.08 (s, 6 H, Me^{3,3'}), 2.50 (s, 3 H, Me⁵), 2.39 (s, 3 H, Me^{5'}), 7.18–7.04 [m, 5 H, PhCH(CH₂CH₃)N], 5.11 [t, 1 H, ³J_{HH} = 6.3 Hz, PhCH(CH₂CH₃)N], 1.58 [m, 2 H, PhCH(CH₂CH₃)N], 0.63 [t, 3 H, ³J_{HH} = 7.3 Hz PhCH(CH₂CH₃)N]. ¹³C-^{1}H-NMR (DMSO, 297 K), δ 82.1 (CH), 147.7, 147.6, 145.7, 145.5, (C^{3,3'} or ^{5,5'}), 105.6, 105.5 (C^{4,4'}), 14.1, 14.0 (Me^{3,3'}), 12.3 (Me^{5,5'}), 178.2 (N=C–S), 130.0–125.1 [PhCH(CH₂CH₃)N], 65.7 [PhCH(CH₂CH₃)N], 30.8 [PhCH(CH₂CH₃)N], 11.0 [PhCH(CH₂CH₃)N]. Mass spectrum: (*m/z* assignment, % intensity): 366 [M – ppbptam], 100.

Synthesis of [TiCl₃(S-mbbpamH)]Cl (5). To a cold THF (50 mL) solution of TiCl₄·2THF (0.28 g, 0.84 mmol) was added an equimolar quantity of [Li(S-mbbpam)]₂ (**2**) (0.30 g, 0.42 mmol). The mixture of reaction was stirred for 12 h at –70 °C. The solvent was removed under vacuum, and the solid was extracted with CH₂Cl₂. A red solid was obtained after removal of the CH₂Cl₂, which was crystallised from a mixture of THF/hexane. Yield 60 %. $[\alpha]_D^{25}$ -80.0 (*c* 0.5, THF) (Found: C, 44.62; H, 4.91; N, 12.61. C₂₀H₂₅Cl₄N₅OTi requires C, 44.39; H, 4.65; N, 12.94). ¹H NMR (CDCl₃, 297K), δ 6.64

(s, 1 H, CH), 6.10 (s, 1 H, H⁴), 6.01 (s, 1 H, H⁴), 2.85 (s, 3 H, Me³), 1.63 (s, 3 H, Me³), 2.76 (s, 3 H, Me⁵), 2.71 (s, 3 H, Me⁵), 7.53-7.04 (m, 5 H, PhCHMeN), 5.15 (q, 1 H, ³J_{HH}=7.3 Hz, PhCHMeN), 1.75 (d, 3 H, ³J_{HH}=7.3 Hz, PhCHMeN), 9.33 (br s, 1 H, N-H). ¹³C-^{1}H-NMR (CDCl₃, 297K), δ 72.1 (CH), 147.2, 147.1, 140.3, 140.2, (C^{3,3'} or ^{5,5'}), 106.0 (C⁴), 105.8 (C⁴), 13.9 (Me^{3,3'}), 11.6, 11.5 (Me^{5,5'}), 163.0 (N=C-O), 128.0-125.1 (PhCHMeN), 52.2 (PhCHMeN), 26.0 (PhCHMeN).

Synthesis of [TiCl₃(tbptamH)]Cl (6). The synthetic procedure was the same as that for complex **5**, using TiCl₄·2THF (0.49 g, 1.49 mmol) and [Li(tbptam)]₂ (**3**) (0.49 g, 0.74 mmol) to give **6** as a red solid. Yield 59%. (Found: C, 37.90; H, 4.98; N, 13.46. C₁₆H₂₅Cl₄N₅STi requires C, 37.74; H, 4.94; N, 13.75). ¹H NMR (CDCl₃, 297K), δ 9.14 (s, 1 H, CH), 6.13 (s, 2 H, H⁴), 2.79 (s, 6 H, Me³), 2.97 (s, 6 H, Me⁵), 1.22 [s, 9 H, C(CH₃)₃], 14.20 (br s, 1 H, N-H). ¹³C-^{1}H-NMR (CDCl₃, 297K), δ 66.8 (CH), 157.8, 145.9 (C^{3 or 5}), 109.8 (C⁴), 17.6 (Me³), 13.8 (Me⁵), 61.0 [C(CH₃)₃], 27.5 [C(CH₃)₃], 181.9 (N=C-S).