Peptide-activated double-negative T cells can prevent autoimmune type-1 diabetes development

Megan S. Ford, Wenhao Chen, Sophie Wong, Carmen Li, Ramesh Vanama, Alisha R. Elford, Sylvia L. Asa, Pamela S. Ohashi and Li Zhang
Supplementary Figure 1. *DN T cells can suppress syngeneic T cell proliferation in response to gp33.* 

Vα2+DN T cells or T-cell depleted control cells from P14/RIP-gp spleen and lymph node were used as putative suppressor cells and plated in serial dilution either alone (grey or open bars, respectively) or in the presence of 10^3 naïve syngeneic Vα2+CD8+ T cells (black or horizontal striped bars, respectively) per well. Vα2+CD8+ T cells were also cultured alone as a control (diagonal striped bars). Lymphocytes were cultured in the presence of 10^{-7}M gp33, 50 U/mL IL-2 and 30 U/mL IL-4 and proliferation of cells was assessed by pulsing cells with ^3H-TdR for 18hrs on day 3 of co-culture. The experiment was performed in triplicate cultures and the mean cpm values plus standard deviation are shown. The experiment was repeated three times with similar results.
Supplementary Figure 2. *Pancreatic islets are intact in P14/RIP-gp mice treated with DN T cells.* H & E staining of pancreatic sections from DN T cell-treated recipients (top) or untreated control recipients (bottom) at 15 days following disease induction. Sections are shown at 4X (left) and 10X (right) magnification. Islet tissue is readily identified in DN T cell-treated animals but is not detected in the pancreas of control mice.