

SUPPORTING INFORMATION

Title: Sulfonamide Ligands Attained Through Opening of Saccharin Derivatives

Author(s): Richard I. Robinson, Ross Fryatt, Claire Wilson, Simon Woodward*

Ref. No.: O200600508

General procedure for the preparation of oxazoline sulfonamides (3):

To a stirred solution of 5% ethanolic KOH (20 mL) was added **13** (4.8 mmol). The reaction mixture was stirred at room temperature for the stated amount of time, followed by the addition of CH₂Cl₂ (50 mL). The reaction mixture was then acidified by the addition of an aqueous 2.0 M HCl solution, the organic was extracted, washed with H₂O (40 mL), brine (30 mL), dried (Na₂SO₄) and concentrated *in vacuo* to give a pale yellow oil. Purification by flash chromatography (CH₂Cl₂) gave **3** as a colourless oil.

***N*-benzyl-2-(4,5-dihydro-1,3-oxazol-2-yl)benzenesulfonamide (3ab):**

Prepared from **13ab** (1.70 g, 4.8 mmol), stirring for 3h. Purification by flash chromatography (CH₂Cl₂) gave **3ab** (1.23 g, 81 %) as a colourless oil. R_f 0.21 (CH₂Cl₂). ¹H (400 MHz, CDCl₃): δ = 8.41 (t, *J* = 6.2 Hz, 1H, SO₂NH), 8.06 (dd, *J* = 7.8, 1.0 Hz, 1H, Ar), 7.84 (dd, *J* = 7.8, 1.0 Hz, 1H, Ar), 7.59-7.51 (m, 2H, Ar), 7.23-7.17 (m, 5H, Ar), 4.46 (t, *J* = 9.5 Hz, 2H, CH₂Ph), 4.15-4.09 (m, 4H, CH₂CH₂) ppm. ¹³C (100 MHz, CDCl₃): δ = 163.6, 139.7, 136.8, 132.0, 131.1, 131.0, 129.9, 128.5, 128.0, 127.5, 126.0, 67.7, 55.3, 47.6 ppm. IR (solid state): ν = 1659, 1497, 1452, 1431, 1365, 1330, 1256, 1168, 1132, 1102, 1051, 1030, 940, 791, 757, 722 cm⁻¹. MS (CI+): *m/z* Found [M+H]⁺ 317.0964, C₁₆H₁₇N₂O₃S requires 317.0960.

***N*-benzhydryl-2-(4,5-dihydro-1,3-oxazol-2-yl)benzenesulfonamide (3ad):**

Prepared from **13ad** (0.35 g, 0.8 mmol), stirring for 16 h. Purification by flash chromatography (CH₂Cl₂) gave **3ad** (0.29 g, 86 %) as a white solid. R_f 0.15 (CH₂Cl₂). Mp. 115 – 118 °C. ¹H (400 MHz, CDCl₃): δ = 9.00 (d, *J* = 9.0 Hz, 1H, SO₂NH), 7.75 (dd, *J* = 7.3, 1.2 Hz, 1H, Ar), 7.69 (dd, *J* = 7.3, 1.2 Hz, 1H, Ar), 7.43 (dt, *J* = 7.5, 1.2 Hz, 1H, Ar), 7.32 (dt, *J* = 7.5, 1.2 Hz, 1H, Ar), 7.16-7.12 (m, 10H, Ar), 5.67 (d, *J* = 8.8 Hz, 1H, NHCH(Ph)₂), 4.44 (t, *J* = 9.3 Hz, 2H, NCH₂), 4.11 (t, *J* = 9.3 Hz, 2H, OCH₂) ppm. ¹³C (100 MHz, CDCl₃): δ = 163.5, 140.7, 140.6, 131.4, 130.7, 130.6, 129.2, 128.2, 127.6, 127.3, 125.3, 67.5, 62.4, 55.2 ppm. IR (solid state): ν = 1655, 1599, 1494,

1456, 1362, 1328, 1265, 1252, 1165, 1097, 1047, 1029, 937, 832, 749, 737, 700, 692 cm^{-1} . MS (FAB+): m/z Found $[\text{M}+\text{H}]^+$ 393.1270, $\text{C}_{22}\text{H}_{21}\text{N}_2\text{O}_3\text{S}$ requires 393.1273.

***N*-benzyl-2-[(4*S*)-4-methyl-4,5-dihydro-1,3-oxazol-2-yl]benzenesulfonamide (3bb):**

Prepared from **13bb** (2.50 g, 6.8 mmol), stirring for 3 h. Purification by flash chromatography (CH_2Cl_2) gave **3bb** (2.06 g, 92 %) as a white solid. R_f 0.37 (CH_2Cl_2). Mp. 134 – 136 $^\circ\text{C}$. $[\alpha]_D = -20.0$ [c 0.5, CHCl_3]. ^1H (500 MHz, CDCl_3): $\delta = 8.46$ (br s, 1H, SO_2NH), 8.06 (dd, $J = 7.5, 1.0$ Hz, 1H, Ar), 7.82 (dd, $J = 7.5, 1.0$ Hz, 1H, Ar), 7.57-7.54 (m, 2H, Ar), 7.22-7.20 (m, 5H, Ar), 4.54-4.44 (m, 2H, $\text{OCH}_{2\alpha}$ and CHN), 4.14 (br s, 2H, NHCH_2Ph), 4.00 (dd, $J = 7.8, 3.5$ Hz, 1H, $\text{OCH}_{2\beta}$), 1.33 (d, $J = 7.0$ Hz, 3H, *Me*) ppm. ^{13}C (100 MHz, CDCl_3): $\delta = 162.3, 139.5, 136.7, 132.0, 131.1, 130.9, 130.2, 128.4, 128.0, 127.5, 126.8, 74.1, 62.5, 47.6, 20.8$ ppm. IR (solid state): $\nu = 1648, 1455, 1438, 1333, 1252, 1164, 1134, 1114, 1088, 1043, 959, 825, 779, 752, 697$ cm^{-1} . MS (EI+): m/z Found $[\text{M}]^+$ 330.1045, $\text{C}_{17}\text{H}_{18}\text{N}_2\text{O}_3\text{S}$ requires 330.1038.

***N*-benzyl-2-[(4*S*)-4-isopropyl-4,5-dihydro-1,3-oxazol-2-yl]benzenesulfonamide (3cb):**

Prepared from **13cb** (0.60 g, 1.50 mmol), stirring for 12 h. Purification by flash chromatography (CH_2Cl_2) gave **3cb** (0.40 g, 74 %) as a white solid. R_f 0.30 (CH_2Cl_2). Mp. 76 – 77 $^\circ\text{C}$. $[\alpha]_D = -23.0$ [c 1.0, EtOH]. ^1H (400 MHz, CDCl_3): $\delta = 8.71$ (t, $J = 6.1$ Hz, 1H, SO_2NH), 8.01 (dd, $J = 7.1, 1.5$ Hz, 1H, Ar), 7.86 (dd, $J = 7.1, 1.5$ Hz, 1H, Ar), 7.59-7.56 (m, 2H, Ar), 7.27-7.21 (m, 5H, Ar), 4.49-4.43 (m, 1H, CHN), 4.16-4.08 (m, 4H, OCH_2 and CH_2Ph), 1.79 (octet, $J = 6.7$ Hz, 1H, CHMe_2), 0.91 (d, $J = 6.7$ Hz, 3H, *Me*), 0.88 (d, $J = 6.7$ Hz, 3H, *Me*) ppm. ^{13}C (100 MHz, CDCl_3): $\delta = 162.4, 139.6, 136.7, 132.0, 131.2, 130.9, 130.0, 128.4, 128.1, 127.6, 126.1, 73.5, 70.7, 47.7, 32.8, 18.8, 18.7$ ppm. IR (solid state): $\nu = 1654, 1457, 1359, 1334, 1318, 1254, 1168, 1103, 1053, 1032, 956, 794, 779, 736, 694$. MS (EI+): m/z Found $[\text{M}]^+$ 358.1345, $\text{C}_{19}\text{H}_{22}\text{N}_2\text{O}_3\text{S}$ requires 358.1351.

***N*-isopropyl-2-[(4*S*)-4-isopropyl-4,5-dihydro-1,3-oxazol-2-yl]benzenesulfonamide (3cc):**

Prepared from **13cc** (0.45 g, 1.3 mmol), stirring for 3 h. Purification by flash chromatography (CH_2Cl_2) gave **3cc** (0.39 g, 98 %) as a viscous colourless oil. R_f 0.32 (CH_2Cl_2). $[\alpha]_D = -32.4$ [c 0.45, CHCl_3]. ^1H (500 MHz, CDCl_3): $\delta = 8.27$ (d, $J = 6.4$ Hz, 1H, SO_2NH), 8.16 (apparent dd, $J = 5.6, 3.5$ Hz, 1H, Ar), 7.88 (apparent dd, $J = 5.8, 3.3$ Hz, 1H, Ar), 7.60 (apparent dd, $J = 5.8, 3.3$ Hz, 2H, Ar), 4.50 (dd, $J = 9.1, 8.0$ Hz, 1H, $\text{OCH}_{2\alpha}$), 4.22-4.13 (m, 2H, CHN and $\text{OCH}_{2\beta}$), 3.48 (d septet, $J = 6.6, 6.4$ Hz, 1H, NHCHMe_2), 1.86 (d septet, $J = 6.7, 6.5$ Hz, 1H, CHCHMe_2), 1.11 (d, $J = 6.6$ Hz, 3H, *Me*), 1.07 (d, $J = 6.7$ Hz, 3H, *Me*), 1.04 (d, $J = 6.6$ Hz, 3H, *Me*), 0.98 (d, $J = 6.7$ Hz, 3H, *Me*) ppm. ^{13}C (100 MHz, CDCl_3): $\delta = 162.5, 141.0, 131.8, 131.3, 130.8, 129.4, 126.1, 73.6, 70.7, 46.6$.

33.0, 23.8, 23.4, 19.0, 18.9 ppm. IR (solid state): ν = 2968, 1651, 1468, 1438, 1387, 1335, 1250, 1176, 1144, 1133, 1096, 1050, 990, 961, 895, 855, 774, 749, 696 cm^{-1} . MS (Cl $+$): m/z Found [M+H] $^{+}$ 311.1432, $\text{C}_{15}\text{H}_{23}\text{N}_2\text{O}_3\text{S}$ requires 311.1429.

N-Benzhydryl-2-((4S)-4-isopropyl-4,5-dihydro-oxazol-2-yl)-benzene sulfonamide (3cd):

Prepared from **13cd** (0.30 g, 0.64 mmol), stirring for 3h. Purification by flash chromatography (CH_2Cl_2) gave **3cd** (0.12 g, 44 %) as a colourless oil as an inseparable mixture from the starting material (5.7:1 ratio). Data was collected on the inseparable mixture. R_f 0.27 (CH_2Cl_2). $[\alpha]_D$ = -17.4 [c 1.0, EtOH]. ^1H (400 MHz, CDCl_3): δ = 9.28 (d, J = 8.4 Hz, 1H, SO_2NH), 7.77 (dd, J = 7.6, 0.8 Hz, 1H, Ar), 7.69 (dd, J = 7.6, 1.2 Hz, 1H, Ar), 7.43 (dt, J = 8.0, 1.6 Hz, 1H, Ar), 7.32 (dt, J = 7.6, 1.2 Hz, 1H, Ar), 7.19-7.08 (m, 10H, Ar), 5.66 (d, J = 8.4 Hz, 1H, $\text{NHCH}(\text{Ph})_2$), 4.48-4.40 (m, 1H, NCH), 4.15-4.07 (m, 2H, OCH_2), 1.83-1.74 (m, 1H, CHMe_2), 0.94 (d, J = 6.8 Hz, 3H, Me), 0.89 (d, J = 6.8 Hz, 3H, Me) ppm. ^{13}C (100 MHz, CDCl_3): δ = 162.3, 140.0, 131.3, 130.5, 129.9, 129.0, 128.1, 127.7, 127.2, 125.3, 73.3, 70.5, 62.3, 32.7, 18.8 ppm. IR (solid state): ν = 2960, 1954, 1650, 1591, 1572, 1454, 1334, 1250, 1165, 1097, 1051, 960, 918, 830, 773, 697 cm^{-1} . MS (EI $+$): m/z Found [M+H] $^{+}$ 435.1748, $\text{C}_{25}\text{H}_{27}\text{N}_2\text{O}_3\text{S}$ requires 435.1743.

2-[(4S)-4-isopropyl-4,5-dihydro-1,3-oxazol-2-yl]-N-[(1R)-1-phenylethyl]benzenesulfonamide (3ce):

Prepared from **13ce** (0.93 g, 2.2 mmol), stirring for 3 h. Purification by flash chromatography (CH_2Cl_2) gave **3ce** (0.63 g, 76 %) as a white solid. R_f 0.34 (CH_2Cl_2). Mp. 104-106 $^{\circ}\text{C}$. $[\alpha]_D$ = -36.3 [c 0.4, CHCl_3]. ^1H (400 MHz, CDCl_3): δ = 8.71 (d, J = 7.9 Hz, 1H, SO_2NH), 7.70-7.64 (m, 2H, Ar), 7.42 (dt, J = 7.5, 1.0 Hz, 1H, Ar), 7.30 (dt, J = 7.5, 1.0 Hz, 1H, Ar), 7.14-7.02 (m, 5H, Ar), 4.53 (apparent q, J = 7.0 Hz, 1H, CHMe), overlapped by 4.49 (dd, J = 9.6, 8.2 Hz, 1H, $\text{OCH}_{2\alpha}\text{CH}$), 4.23 (ddd, J = 9.6, 8.9, 6.8 Hz, 1H, CHN), 4.12 (apparent t, J = 8.2 Hz, 1H, $\text{OCH}_{2\beta}\text{CH}$), 1.83 (octet, J = 6.8 Hz, 1H, CHMe_2), 1.46 (d, J = 7.0 Hz, 3H, ArCHMe), 1.03 (d, J = 6.8 Hz, 3H, Me), 0.95 (d, J = 6.8 Hz, 3H, Me) ppm. ^{13}C (100 MHz, CDCl_3): δ = 162.7, 142.1, 140.7, 133.2, 131.3, 130.6, 130.5, 129.2, 128.1, 126.4, 125.6, 73.5, 70.7, 54.8, 32.9, 23.7, 18.9, 18.8 ppm. IR (solid state): ν = 1654, 1438, 1326, 1185, 1159, 1121, 1098, 1051, 954, 754, 718, 721, 697 cm^{-1} . MS (FAB $+$): m/z Found [M+H] $^{+}$ 373.1583, $\text{C}_{20}\text{H}_{25}\text{N}_2\text{O}_3\text{S}$ requires 373.1586.

2-[(4S)-4-isopropyl-4,5-dihydro-1,3-oxazol-2-yl]-N-propylbenzenesulfonamide (3cg):

Prepared from **13cg** (0.71 g, 2.0 mmol), stirring for 3 h. Purification by flash chromatography (CH_2Cl_2) gave **3cg** (0.58 g, 92 %) as a viscous colourless oil. R_f 0.30 (CH_2Cl_2). $[\alpha]_D$ = -26.9 [c 1.0,

EtOH]. ^1H (400 MHz, CDCl_3): δ = 8.19-8.13 (m, 2H, Ar), 7.89-7.85 (m, 1H, SO_2NH), 7.65-7.58 (m, 2H, Ar), 4.49 (ddd, J = 7.0, 3.5, 3.1 Hz, 1H, CHN), 4.21-4.14 (m, 2H, $\text{OCH}_{2\alpha}$ and $\text{OCH}_{2\beta}$), 2.59 (apparent q, J = 6.8 Hz, 2H, CH_2Et), 1.84 (octet, J = 6.9 Hz, 1H, CHMe_2), 1.50 (dt, J = 6.8 Hz, 2H, CH_2CH_3), 1.07 (d, J = 6.9 Hz, 3H, Me), 1.01 (d, J = 6.9 Hz, 3H, Me), 0.89 (t, J = 6.8 Hz, 3H, $\text{CH}_2\text{CH}_2\text{CH}_3$) ppm. ^{13}C (67.8 MHz, CDCl_3): δ = 163.2, 139.4, 131.9, 131.2, 130.8, 129.9, 125.7, 73.5, 70.7, 45.3, 32.9, 22.9, 19.0, 18.8, 11.4 ppm. IR (solid state): ν = 2962, 1651, 1459, 1334, 1250, 1168, 1136, 1097, 1050, 997, 960, 798, 779, 752, 701 cm^{-1} . MS (CI $^+$): m/z Found [M+H] $^+$ 311.1433, $\text{C}_{15}\text{H}_{23}\text{N}_2\text{O}_3\text{S}$ requires 311.1429.

N-(tert-butyl)-2-[(4S)-4-isopropyl-4,5-dihydro-1,3-oxazol-2-yl]benzenesulfonamide (3ch):

Prepared from **13ch** (0.13 g, 0.35 mmol), stirring for 3h. Purification by flash chromatography (CH_2Cl_2) gave **3ch** (0.08 g, 66 %) as a viscous oil. R_f 0.37 (CH_2Cl_2). $[\alpha]_D$ = -16.6 [c 1.0, EtOH]. ^1H (400 MHz, CDCl_3): δ = 8.39 (s, 1H, SO_2NH), 8.18-8.13 (m, 1H, Ar), 7.85-7.82 (m, 1H, Ar), 7.58-7.51 (m, 2H, Ar), 4.49-4.45 (m, 1H, $\text{OCH}_{2\alpha}$), 4.21-4.15 (m, 1H, CHN), overlapped by 4.16-4.10 (m, 1H, $\text{OCH}_{2\beta}$), 1.91 (m, 1H, CHMe_2), 1.22 (s, 9H, *tBu*), 1.06 (d, J = 6.6 Hz, 3H, Me), 0.97 (d, J = 6.6 Hz, 3H, Me) ppm. ^{13}C (100 MHz, CDCl_3): δ = 162.5, 143.4, 131.3, 130.6, 128.7, 125.5, 73.5, 70.4, 54.5, 32.7, 30.1, 18.9 ppm. IR (CH_2Cl_2 solution): ν = 3171, 2873, 1650, 1481, 1353, 1336, 1096, 1050, 965 cm^{-1} . MS (EI $^+$): m/z Found [M+H] $^+$ 325.1557, $\text{C}_{16}\text{H}_{25}\text{N}_2\text{O}_3\text{S}$ requires 325.1586.

N-benzyl-2-[(4S)-4-benzyl-4,5-dihydro-1,3-oxazol-2-yl]benzenesulfonamide (3db):

Prepared from **13db** (1.30 g, 2.93 mmol), stirring for 3 h. Purification by flash chromatography (CH_2Cl_2) gave **3db** (1.14 g, 95 %) as a white solid. R_f 0.35 (CH_2Cl_2). Mp. 90 – 93 $^{\circ}\text{C}$ (dec. CH_2Cl_2). $[\alpha]_D$ = -25.8 [c 1.2, CHCl_3]. ^1H (400 MHz, CDCl_3): δ = 8.22 (br s, 1H, SO_2NH exchanges with H_2O), 8.04 (dd, J = 7.2, 1.7 Hz, 1H, Ar), 7.77 (dd, J = 7.2, 1.7 Hz, 1H, Ar), 7.54 (m, 2H, Ar), 7.19-7.10 (m, 10H, Ar), 4.68-4.63 (m, 1H, CHN), 4.47 (dd, J = 9.5, 8.5 Hz, 1H, $\text{OCH}_{2\alpha}$), 4.17 (dd, J = 9.5, 8.5 Hz, 1H, $\text{OCH}_{2\beta}$), 4.11 (d, J = 14.0 Hz, 1H, $\text{NHCH}_{2\alpha}\text{Ph}$), 4.04 (d, J = 14.0 Hz, 1H, $\text{NHCH}_{2\beta}\text{Ph}$), 3.06 (dd, J = 14.0, 7.2 Hz, 1H, $\text{CHCH}_{2\alpha}\text{Ph}$), 2.84 (dd, J = 14.0, 7.2 Hz, 1H, $\text{CHCH}_{2\beta}\text{Ph}$) ppm. ^{13}C (100 MHz, CDCl_3): δ = 163.0, 139.7, 137.7, 136.8, 131.9, 131.1, 131.0, 129.8, 129.2, 128.7, 128.4, 127.9, 127.5, 126.7, 126.0, 72.2, 68.6, 47.5, 41.4 ppm. IR (solid state): ν = 1644, 1452, 1438, 1370, 1327, 1310, 1252, 1165, 1137, 1103, 1059, 1026, 963, 781, 770, 732, 699 cm^{-1} . MS (EI $^+$): m/z Found [M] $^+$ 406.1353, $\text{C}_{23}\text{H}_{22}\text{N}_2\text{O}_3\text{S}$ requires 406.1351.

General procedure for the reaction of saccharin **6 with 1,2-aminoalcohols, preparation of (4):**
To a stirred solution of appropriate *N*-alkylsaccharin **6** (40.0 mmol) in dioxane (60 mL) was added

the required 1,2-aminoalcohol (40.0 mmol, see Scheme 3 for range employed). The reaction mixture was refluxed for 8-96 h, until no further saccharin was consumed by TLC analysis. [For the preparation of **4ab** and **4db** the reactions were carried out in THF (b.p. 67 °C). For **4ad**, **4cd**, **4ce** and **4ch** reaction was performed in dioxane or toluene in a sealed tube at 130 °C (6-20 h). The solvent was concentrated *in vacuo* to yield a colourless viscous oil. Purification by gradient chromatography (CH₂Cl₂ followed by CH₂Cl₂/MeOH 5 %) gave **4**, which was isolated as a viscous oil. After several days drying and standing under high vacuum (0.1 mm Hg, 20-40 °C) in most cases the oils solidified to white solids (yields, 52-95%).

2-[(Benzylamino)sulfonyl]-N-(2-hydroxyethyl)benzamide (4ab):

Prepared from ethanolamine (1.55 mL, 25.6 mmol) and **6b** (7.00 g, 25.6 mmol) in THF (20 mL), refluxing for 16 h. Purification by flash chromatography gave **4ab** (7.72 g, 90 %) as a viscous oil. R_f 0.25 (5 % MeOH/CH₂Cl₂). ¹H (400 MHz, CDCl₃): δ = 7.80 (d, *J* = 7.0 Hz, 1H, Ar), 7.61-7.48 (m, 3H, Ar), 7.25-7.19 (m, 5H, Ar), 6.67 (br t, 1H, SO₂NH), *overlapped by* 6.62 (t, *J* = 6.5 Hz, 1H, CONH), 4.13 (d, *J* = 6.5 Hz, CH₂Ph), 3.82 (br s, 2H, NCH₂), 3.56 (*apparent* q, *J* = 5.3 Hz, 2H, CH₂OH), 2.62 (br s, 1H, OH) ppm. ¹³C (100 MHz, CDCl₃): δ = 170.1, 137.7, 136.2, 135.2, 132.7, 130.2, 129.2, 128.6, 128.4, 128.1, 127.7, 60.9, 47.7, 42.9 ppm. IR (solid state): ν = 1644, 1541, 1456, 1425, 1327, 1162, 1130, 1061, 1029, 822, 785, 739, 698 cm⁻¹. MS (FAB+): *m/z* Found [M]⁺ 335.1080, C₁₆H₁₉N₂O₄S requires 335.1066. Anal. Calc. for. C₁₆H₁₈N₂O₄S: C, 57.5; H, 5.4; N, 8.4 %. Found: C, 57.4; H, 5.4; N, 8.0 %.

2-[(Benzhydrylamino)sulfonyl]-N-(2-hydroxyethyl)benzamide (4ad):

Prepared from ethanolamine (0.17 mL, 2.8 mmol) and **6d** (1.00 g, 2.8 mmol) in dioxane (10 mL), stirring at 130 °C for 6 h. Purification by flash chromatography gave **4ad** (0.75 g, 64 %) as a white low melting foam. R_f 0.40 (5 % MeOH/CH₂Cl₂). Mp. 54 – 55 °C (CH₂Cl₂). ¹H (400 MHz, CDCl₃): δ = 7.46 (dd, *J* = 7.5, 1.0 Hz, 1H, Ar), 7.41-7.36 (m, 2H, Ar), 7.16-7.12 (m, 12H, 11-Ar and SO₂NH), 6.52 (br d, *J* = 5.5 Hz, 1H, CONH), 5.67 (d, *J* = 9.1 Hz, 1H, CHPh₂), 3.80 (t, *J* = 5.5 Hz, 2H, NCH₂), 3.52 (t, *J* = 5.8 Hz, 2H, CH₂OH), 2.63 (t, *J* = 6.0 Hz, 1H, CH₂OH) ppm. ¹³C (100 MHz, CDCl₃): δ = 170.4, 140.0, 138.9, 134.4, 132.1, 129.9, 129.8, 128.5, 128.4, 128.2, 127.6, 127.5, 62.4, 60.9, 43.0 ppm. IR (solid state): ν = 1643, 1541, 1454, 1421, 1327, 1164, 1131, 1051, 1026, 767, 757, 742, 719, 699, 684 cm⁻¹. MS (FAB+): *m/z* Found [M+H]⁺ 411.1380, C₂₂H₂₃N₂O₄S requires 411.1379. Anal. Calc. for C₂₂H₂₂N₂O₄S·½H₂O: C, 63.0; H, 5.5; N, 6.7 %. Found: C, 63.4; H, 5.5; N, 6.6 %.

***N*-(2-Hydroxyethyl)-2-[(1-phenylethyl)amino]sulfonyl]benzamide (±)-(4ae):**

Prepared from ethanolamine (0.02 mL, 0.4 mmol) and (±)-**6e** (0.10 g, 0.4 mmol) in dioxane (5 mL), refluxing for 16 h. Purification by flash chromatography gave (±)-**4ae** (0.12 mg, 95 %) as a colourless viscous oil. R_f 0.31 (5 % MeOH/CH₂Cl₂). ¹H (400 MHz, CD₃OD): δ = 7.51 (d, J = 7.5 Hz, 1H, Ar), 7.44-7.41 (m, 2H, Ar), 7.26-7.22 (m, 1H, Ar), 7.13-7.11 (m, 1H, Ar), 7.07-7.05 (m, 4H, Ar), 6.69 (d, J = 7.3 Hz, 1H, SO₂NH), *overlapped by* 6.65 (br t, 1H, CONH), 4.51 (dt, J = 7.3, 6.9 Hz, 1H, CH(Me)Ph), 3.88-3.84 (m, 1H, CH₂_αOH), 3.82-3.78 (m, 1H, CH₂_βOH), 3.62-3.58 (m, 1H, NHCH₂_α), 3.50-3.46 (m, 1H, NHCH₂_β), 2.74 (br s, 1H, OH), 1.42 (d, J = 6.9 Hz, 3H, Me) ppm. ¹³C (100 MHz, CDCl₃): δ = 170.4, 141.8, 138.8, 134.6, 132.1, 129.9, 128.6, 128.3, 127.9, 127.3, 126.3, 60.9, 54.8, 43.0, 23.7 ppm. IR (solid state): ν = 1645, 1593, 1544, 1458, 1423, 1325, 1267, 1209, 1164, 1118, 1072, 952, 786, 758, 735, 700, 682 cm⁻¹. MS (FAB+): *m/z* Found [M+H]⁺ 349.1221, C₁₇H₂₁N₂O₄S requires 349.1222.

2-[(Benzylamino)sulfonyl]-N-[(1*S*)-2-hydroxy-1-methylethyl]benzamide (4bb):

Prepared from *L*-alaninol (2.00 g, 26.7 mmol) and **6b** (7.28 g, 26.7 mmol) in dioxane (25 mL), refluxing for 24 h. Purification by flash chromatography gave **4bb** (5.90 g, 64 %) as a viscous oil which solidified upon prolonged drying to a white solid. R_f 0.35 (5 % MeOH/CH₂Cl₂). Mp. 115 – 116 °C (CH₂Cl₂). $[\alpha]_D$ = -11.6 [c 1.0, EtOH]. ¹H (400 MHz, CDCl₃): δ = 7.86 (dd, J = 8.0, 1.0 Hz, 1H, Ar), 7.55-7.46 (m, 3H, Ar), 7.22-7.20 (m, 5H, Ar), 6.49 (d, J = 8.0 Hz, 1H, CONH), 4.17-4.13 (m, 1H, NCH), *overlapped by* 4.15 (d, J = 13.9 Hz, 1H, CH₂_αPh), 4.02 (d, J = 13.9 Hz, 1H, CH₂_βPh), 3.80 (dd, J = 11.4, 3.5 Hz, 1H, CH₂_αOH), 3.50 (dd, J = 11.4, 6.0 Hz, 1H, CH₂_βOH), 1.20 (d, J = 6.9 Hz, 3H, Me) ppm. Missing SO₂NH and OH due to exchange with MeOH. ¹³C (100 MHz, CDCl₃): δ = 169.4, 137.7, 136.2, 135.4, 132.6, 130.1, 129.2, 128.5, 128.4, 128.0, 127.7, 65.5, 48.5, 47.6, 16.6 ppm. IR (solid state): ν = 3512, 3236, 1641, 1565, 1458, 1442, 1331, 1216, 1164, 1128, 1065, 1039, 849, 747, 703 cm⁻¹. MS (FAB+): *m/z* Found [M+H]⁺ 349.1214, C₁₇H₂₁N₂O₄S requires 349.1222. Anal. Calc. for C₁₇H₂₀N₂O₄S: C, 58.6; H, 5.8; N, 8.0 %. Found: C, 58.4; H, 5.8; N, 8.1 %.

2-[(Benzylamino)sulfonyl]-N-[(1*S*)-1-hydroxymethyl]-2-methylpropyl]benzamide (4cb):

Prepared from *L*-valinol (3.96 g, 38.4 mmol) and **6b** (10.5 g, 38.4 mmol) in dioxane (60 mL), refluxing for 72 h. Purification by flash chromatography gave **4cb** as a viscous oil. After several days drying and standing under high vacuum the oil solidified to a white solid (10.0 g, 69 %). R_f 0.36 (5 % MeOH/CH₂Cl₂). Mp 136 – 137 °C (CH₂Cl₂). $[\alpha]_D$ = -28.9 [c 1.0, EtOH]. ¹H (400 MHz, CDCl₃): δ = 7.90 (dd, J = 7.9, 1.0 Hz, 1H, Ar), 7.60-7.46 (m, 3H, Ar), 7.22-7.18 (m, 5H, Ar), 6.72

(t, $J = 7.0$ Hz, 1H, SO_2NH), 6.39 (d, $J = 8.9$ Hz, 1H, CONH), 4.18 (dd, $J = 13.8, 7.0$ Hz, 1H, $\text{PhCH}_{2\alpha}$), 4.00 (dd, $J = 13.8, 5.2$ Hz, 1H, $\text{PhCH}_{2\beta}$), 3.88-3.82 (m, 1H, NCH), 3.78 (dd, $J = 12.2, 6.3$ Hz, 1H, $\text{CH}_{2\alpha}\text{OH}$), 3.65 (dd, $J = 12.2, 3.0$ Hz, 1H, $\text{CH}_{2\beta}\text{OH}$), 2.95 (br s, 1H, OH), 1.80 (octet, $J = 6.9$ Hz, 1H, CHMe_2), 1.00 (d, $J = 6.9$ Hz, 3H, Me), 0.99 (d, $J = 6.9$ Hz, 3H, Me) ppm. ^{13}C (100 MHz, CDCl_3): $\delta = 169.8, 137.7, 136.2, 135.6, 132.7, 130.1, 129.3, 128.5, 128.4, 128.1, 127.7, 63.0, 58.1, 47.6, 29.1, 19.7, 19.1$ ppm. IR (solid state): $\nu = 3512, 3232, 1640, 1565, 1431, 1330, 1215, 1166, 1015, 749, 736, 701$ cm^{-1} . MS (FAB+): m/z Found $[\text{M}+\text{H}]^+$ 377.1352, $\text{C}_{19}\text{H}_{24}\text{N}_2\text{O}_4\text{S}$ requires 377.1535. Anal. Calc. for $\text{C}_{19}\text{H}_{24}\text{N}_2\text{O}_4\text{S}$: C, 60.6; H, 6.4; N, 7.4 %. Found: C, 60.7; H, 6.4; N, 7.4 %

N-[(1S)-1-Hydroxymethyl]-2-methylpropyl]-2-[(isopropylamino)sulfonyl]benzamide (4cc): Prepared from *L*-valinol (1.50 g, 14.5 mmol) and **6c** (3.26 g, 14.5 mmol) in dioxane (25 mL), refluxing for 48 h. Purification by flash chromatography gave **4cc** (1.50 g, 82 %) as a white solid. R_f 0.46 (5 % MeOH/CH₂Cl₂). Mp. 171 – 175 °C (dec. MeOH). $[\alpha]_D = -46.7$ [c 1.0, EtOH]. ^1H (400 MHz, CDCl_3): $\delta = 8.05$ (dd, $J = 8.0, 1.0$ Hz, 1H, Ar), 7.64-7.56 (m, 3H, Ar), 6.35 (d, $J = 9.2$ Hz, 1H, CONH), 6.15 (d, $J = 6.5$ Hz, 1H, SO_2NH), 4.00-3.94 (m, 2H, CH_2OH), 3.76-3.70 (m, 1H, NHCH), 3.43 (septet, $J = 6.5$ Hz, 1H, $\text{NHCH}(\text{Me})_2$), 2.50 (t, $J = 6.7$ Hz, 1H, OH), 1.92 (septet, $J = 6.8$ Hz, 1H, CHCHMe_2), 1.80 (d, $J = 6.5$ Hz, 3H, Me), 1.06 (d, $J = 6.8$ Hz, 3H, Me), *overlapped by* 1.05 (d, $J = 6.8$ Hz, 3H, Me), 0.98 (d, $J = 6.5$ Hz, 3H, Me) ppm. ^{13}C (67.8 MHz, CDCl_3): $\delta = 169.5, 138.7, 135.4, 132.5, 130.1, 128.8, 128.6, 63.1, 58.0, 46.6, 29.1, 24.1, 22.8, 19.6, 19.0$ ppm. IR (solid state): $\nu = 3321, 3085, 2963, 1633, 1550, 1462, 1438, 1335, 1317, 1254, 1155, 1142, 1117, 1068, 1016, 982, 906, 887, 793, 761, 736, 676$ cm^{-1} . MS (FAB+): m/z Found $[\text{M}+\text{H}]^+$ 329.1532, $\text{C}_{15}\text{H}_{25}\text{N}_2\text{O}_4\text{S}$ requires 329.1535. Anal. Calc. for $\text{C}_{15}\text{H}_{24}\text{N}_2\text{O}_4\text{S}$: C, 54.9; H, 7.4; N, 8.5 %. Found: C, 54.9; H, 7.4; N, 8.5 %.

N-[(1S)-1-(Hydroxymethyl)-2-methylpropyl]-2-[(benzhydrylamino)sulfonyl]benzamide (4cd): Prepared from *L*-valinol (1.00 g, 9.7 mmol) and **6d** (3.38 g, 9.7 mmol) in dioxane (20 mL), stirring at 130 °C for 20 h. Purification by flash chromatography gave **4cd** (3.19 g, 73 %) as a white foam. R_f 0.27 (5 % MeOH/CH₂Cl₂). Mp. 88 – 89 °C (CH₂Cl₂). $[\alpha]_D = -24.0$ [c 1.0, EtOH]. ^1H (400 MHz, CDCl_3): $\delta = 7.51$ (dd, $J = 8.0, 1.0$ Hz, 1H, Ar), 7.45-7.38 (m, 3H, Ar), 7.24-7.19 (m, 6H, 5-Ar and SO_2NH), 7.13-7.05 (m, 5H, Ar), 6.08 (d, $J = 8.7$ Hz, 1H, CONH), 5.70 (d, $J = 9.1$ Hz, 1H, CHPh_2), 3.94-3.88 (m, 2H, CHN and $\text{CH}_{2\alpha}\text{OH}$), 3.73-3.70 (m, 1H, $\text{CH}_{2\beta}\text{OH}$), 2.43 (br t, $J = 5.6$ Hz, 1H, CH_2OH), 1.93 (septet, $J = 6.9$ Hz, 1H, CHMe_2), 1.02 (d, $J = 6.9$ Hz, 3H, Me), 1.01 (d, $J = 6.9$ Hz, 3H, Me) ppm. ^{13}C (100 MHz, CDCl_3): $\delta = 170.2, 140.1, 139.6, 134.9, 132.0, 129.8, 128.5, 128.3, 127.8, 127.5, 127.4, 62.9, 62.4, 58.2, 29.1, 19.7, 19.3$ ppm. IR (solid state): $\nu = 1647, 1556, 1494,$

1458, 1433, 1325, 1165, 1133, 1080, 1024, 1010, 869, 790, 748, 737, 701 cm^{-1} . MS (FAB+): m/z Found $[\text{M}+\text{H}]^+$ 453.1862, $\text{C}_{25}\text{H}_{29}\text{N}_2\text{O}_4\text{S}$ requires 453.1848. Anal. Calc. for $\text{C}_{25}\text{H}_{28}\text{N}_2\text{O}_4\text{S}$: C, 66.4; H, 6.2; N, 6.2 %. Found: C, 66.1; H, 6.2; N, 6.0 %.

N-[(1S)-1-(hydroxymethyl)-2-methylpropyl]-2-[(1R)-1-phenylethyl]amino}sulfonyl]benzamide (4ce):

Prepared from L-valinol (0.20 g, 1.94 mmol) and **11e** (0.45 g, 1.41 mmol) in toluene (2 mL), stirring at reflux in a sealed tube for 24h. Purification by flash chromatography gave **4ch** (0.40 g, 73 %) as a viscous oil, which crystallised on standing. R_f 0.32 (5 % MeOH/CH₂Cl₂). Mp. 98 – 99 °C (CH₂Cl₂). $[\alpha]_D = +5.0$ [c 1.0, EtOH]. ¹H (400 MHz, CDCl₃): δ = 7.36-7.35 (m, 3H, Ar), 7.12-7.04 (m, 3H, Ar), 6.99-6.97 (m, 3H, Ar), 6.71 (d, J = 8.4 Hz, 1H, SO₂NH), 6.34 (br s, 1H, CONH), 4.53 (dq, J = 8.4, 7.0 Hz, 1H, CH(Me)Ph), 3.93-3.83 (m, 2H, NCH and CH₂_αOH), 3.65 (dd, J = 10.7, 6.4 Hz, 1H, CH₂_βOH), 2.87 (br s, 1H, CH₂OH), 1.90 (septet, J = 6.9 Hz, 1H, CHMe₂), 1.46 (d, J = 7.0 Hz, 3H, PhCHMe), 1.01 (d, J = 6.9 Hz, 6H, Me) ppm. ¹³C (67.8 MHz, CDCl₃): δ = 170.1, 141.1, 138.6, 134.7, 131.8, 129.5, 128.2, 128.0, 127.4, 127.1, 126.3, 62.8, 58.0, 55.0, 28.9, 23.9, 19.7, 19.1 ppm. IR (CH₂Cl₂ solution): ν = 3543, 3412, 3253, 2930, 2876, 1658, 1650, 1519, 1337, 1172, 1070, 1030 cm^{-1} . MS (CI+): m/z Found $[\text{M}+\text{H}]^+$ 391.1674, $\text{C}_{20}\text{H}_{27}\text{N}_2\text{O}_4\text{S}$ requires 391.1692.

N-[(1S)-1-Hydroxymethyl-2-methyl-propyl]-2-propylsulfamoyl-benzamide (4cg):

Prepared from L-valinol (0.60 g, 5.8 mmol) and **6g** (1.30 g, 5.8 mmol) in dioxane (5 mL), refluxing for 24 h. Purification by flash chromatography gave **4cg** (0.97 g, 51 %) as a viscous oil. R_f 0.50 (5 % MeOH/CH₂Cl₂). $[\alpha]_D = -28.7$ [c 1.0 EtOH]. ¹H (400 MHz, CDCl₃): δ = 7.91 (dd, J = 7.6, 1.0 Hz, 1H, Ar), 7.59-7.49 (m, 3H, Ar), 6.63 (d, J = 8.8 Hz, 1H, SO₂NH), 6.30-6.27 (m, 1H, CONH), 3.89-3.79 (m, 2H, CHN and CH₂_αOH), 3.68-3.64 (m, 1H, CH₂_βOH), 3.65 (br. s, 1H, CH₂OH), 2.90-2.85 (m, 1H, NCH₂_αCH₂CH₃), 2.77-2.73 (m, 1H, NCH₂_βCH₂CH₃), 1.91-1.86 (m, 1H, CHMe₂), 1.45-1.42 (NCH₂CH₂_αCH₃ and NCH₂CH₂_βCH₃), 0.98 (dd, J = 6.8, 4.0 Hz, 6H, CHMe₂), 0.83 (t, J = 7.4 Hz, 3H, Me) ppm. ¹³C (100 MHz, CDCl₃): δ = 169.6, 137.4, 135.6, 132.6, 129.9, 129.1, 128.5, 62.8, 58.0, 45.2, 29.0, 22.7, 19.6, 19.0, 11.1 ppm. IR (CH₂Cl₂ solution): ν = 3412, 3249, 2932, 2876, 1657, 1520, 1335, 1169, 1126, 1071 cm^{-1} . MS (EI+): m/z Found $[\text{M}+\text{H}]^+$ 329.1536, $\text{C}_{15}\text{H}_{25}\text{N}_2\text{O}_4\text{S}$ requires 329.1541.

N-[(1S)-1-(hydroxymethyl)-2-methylpropyl]-2-[(tert-butylamino)sulfonyl]benzamide (4ch):

Prepared from L-valinol (0.24 g, 2.29 mmol) and **11h** (0.39 g, 1.53 mmol) in toluene (15 mL), stirring under Dean-Stark conditions for 120h. Purification by flash chromatography gave **4ch** (0.23 g, 45 %) as a viscous oil, which crystallised on standing. R_f 0.37 (5 % MeOH / CH₂Cl₂). Mp. 78 –

79 °C (CH₂Cl₂). [α]_D = +2.0 [c 1.0, EtOH]. ¹H (400 MHz, CDCl₃): δ = 8.01 (dd, *J* = 8.0, 1.0 Hz, 1H, Ar), 7.58-7.53 (m, 3H, Ar), 6.55 (d, *J* = 9.1 Hz, 1H, CONH), 6.50 (s, 1H, SO₂NH), 3.96 (ddd, *J* = 12.5, 5.1, 3.3 Hz, 1H, CH_{2α}OH), *overlapped by* 3.91-3.88 (m, 1H, CHN), 3.70 (ddd, *J* = 12.5, 7.2, 5.3 Hz, 1H, CH_{2β}OH), 2.84 (t, *J* = 5.9 Hz, 1H, CH₂OH), 1.88 (septet, *J* = 6.9 Hz, 1H, CHMe₂), 1.20 (s, 9H, ³Bu), 1.00 (d, *J* = 6.9 Hz, 3H, Me), *overlapped by* 0.99 (d, *J* = 6.9 Hz, 3H, Me) ppm. ¹³C (100 MHz, CDCl₃): δ = 169.7, 141.3, 135.4, 132.2, 130.2, 128.9, 128.2, 63.2, 58.0, 55.0, 30.1, 29.3, 19.7, 19.1 ppm. IR (solid state): ν = 3310, 1715, 1466, 1439, 1427, 1393, 1371, 1327, 1287, 1265, 1230, 1194, 1153, 1170, 1138, 1118, 1059, 986, 956, 859, 793, 761, 729, 713 cm⁻¹. MS (EI+): *m/z* Found [M+Na]⁺ 365.1511, C₁₆H₂₆NaN₂O₄S requires 365.1505.

2-[(Benzylamino)sulfonyl]-*N*-(1*S*)-1-benzyl-2-hydroxyethyl]benzamide (4db):

Prepared from *L*-phenylalaninol (2.70 g, 18.3 mmol) and **6b** (5.00 g, 18.3 mmol) in THF (30 mL), refluxing for 96h. Purification by flash chromatography gave **4db** (3.70 g, 48 %) as a white foam. R_f 0.43 (5 % MeOH/CH₂Cl₂). Mp. 125 – 127 °C (CH₂Cl₂). [α]_D = -35.5 [c 1.0, EtOH]. ¹H (400 MHz, CDCl₃): δ = 7.85 (dd, *J* = 8.0, 1.0 Hz, 1H, Ar), 7.49-7.44 (m, 2H, Ar), 7.32-7.30 (m, 2H, Ar), 7.23-7.19 (m, 9H, Ar), 6.55 (t, *J* = 6.3 Hz, 1H, SO₂NH), 6.32 (d, *J* = 8.3 Hz, 1H, CONH), 4.33-4.32 (m, 1H, NCH), 4.18 (dd, *J* = 13.9, 7.1 Hz, 1H, NCH_{2α}), 4.00 (dd, *J* = 13.9, 5.5 Hz, 1H, NCH_{2β}), 3.85 (dd, *J* = 11.5, 3.4 Hz, 1H, CH_{2α}OH), 3.66 (dd, *J* = 11.5, 5.6 Hz, 1H, CH_{2β}OH), 2.93 (d, *J* = 7.6 Hz, 2H, CH₂Ph), 2.73 (br s, 1H, OH) ppm. ¹³C (100 MHz, CDCl₃): δ = 169.5, 137.7, 137.6, 136.2, 135.4, 132.7, 130.1, 129.3, 129.2, 128.8, 128.6, 128.2, 128.1, 127.7, 126.9, 63.2, 53.8, 47.7, 36.7 ppm. IR (solid state): ν = 1655, 1638, 1558, 1524, 1496, 1455, 1440, 1330, 1164, 1130, 1041, 746, 733, 701 cm⁻¹. MS (ES+): *m/z* Found [M+H]⁺ 425.1569, C₂₃H₂₅N₂O₄S requires 425.1535. Anal. Calc. for C₂₃H₂₄N₂O₄S.½H₂O: C, 63.7; H, 5.8; N, 6.5 %. Found: C, 64.0; H, 5.5; N, 6.4 %.

***N*-(1*R*)-1-(Hydroxymethyl)-3-(methylthio)propyl]-2-[(benzylamino)sulfonyl]benzamide (4eb):**

Prepared from *L*-methionol (0.50 g, 3.7 mmol) and **6b** (1.00 g, 3.7 mmol) in dioxane (10 mL), refluxing for 60 h. Purification by flash chromatography gave **4eb** (0.70 g, 52 %) as a viscous oil. R_f 0.31 (5 % MeOH/CH₂Cl₂). [α]_D = -17.0 [c 0.37, EtOH]. ¹H (400 MHz, CDCl₃): δ = 7.91 (dd, *J* = 7.5, 1.0 Hz, 1H, Ar), 7.59-7.55 (m, 3H, Ar), 7.24-7.22 (m, 5H, Ar), 6.60 (t, *J* = 6.5 Hz, 1H, SO₂NH), 6.47 (d, *J* = 8.5 Hz, 1H, CONH), 4.22-4.19 (m, 1H, NCH), *overlapped by* 4.18 (dd, *J* = 14.0, 7.0 Hz, 1H, CH_{2α}Ph), 4.05 (dd, *J* = 14.0, 6.0 Hz, 1H, CH_{2β}Ph), 3.90 (dd, *J* = 11.5, 3.5 Hz, 1H, CH_{2α}OH), 3.66 (dd, *J* = 11.5, 5.5 Hz, 1H, CH_{2β}OH), 2.64 (m, 2H, CH₂CH₂S), 2.13 (s, 3H, SMe), 1.91 (q, *J* = 7.2; 7.1 Hz, 2H, CH₂CH₂S) ppm. ¹³C (100 MHz, CDCl₃): δ = 169.8, 137.8, 136.2, 135.4, 132.7, 130.2, 129.3, 128.6, 128.2, 128.1, 127.7, 63.9, 52.2, 47.7, 30.9, 30.1, 28.3 ppm. IR

(solid state): ν = 2917, 1644, 1537, 1455, 1437, 1329, 1163, 1129, 1062, 786, 738 cm^{-1} . MS (FAB+): m/z Found [M]⁺ 409.1257, C₁₉H₂₄N₂O₄S requires 409.1256

General procedure for the preparation of *N*-alkylated saccharin derivatives (6):

To a stirred solution of sodium saccharin dihydrate (10.0 mmol) in DMF (20 mL) was added the appropriate alkyl halide (10.0 mmol), the reaction mixture was refluxed for 24-48 h at 90 °C, after which time a white precipitate had formed. The reaction mixture was cooled and CH₂Cl₂ (10 mL) and water (10 mL) were added. The reaction mixture was transferred to a separating funnel and 2 M HCl (10 mL) was added. The layers were separated and the aqueous layer washed with more CH₂Cl₂ (2 x 10 mL). The combined organic layers were washed with brine (2 x 10 mL), dried over MgSO₄ and concentrated *in vacuo* to yield a colourless viscous oil. Purification was carried out by either flash silica column chromatography or by recrystallisation as stated respectively for each compound.

2-benzyl-1,2-benzisothiazol-3(2H)-one 1,1-dioxide or *N*-benzyl saccharin (6b):

Prepared from sodium saccharin dihydrate (20.00 g, 90.0 mmol) and benzyl bromide (10.80 mL, 90.0 mmol) in DMF (40 mL). Purification by recrystallisation from cold EtOH gave **6b** (23.60 g, 96 %), as large colourless crystals. R_f 0.35 (25 % EtOAc/Hexane) Mp. 108-110 °C (EtOH; *lit.*¹ 109 °C, EtOH). ¹H (500 MHz, CDCl₃): δ = 8.02 (d, *J* = 7.0 Hz, 1H, Ar), 7.91-7.89 (m, 1H, Ar), 7.83-7.75 (m, 2H, Ar), 7.53-7.51 (m, 2H, Ar), 7.38-7.30 (m, 3H, Ar), 4.91 (s, 2H, CH₂Ph) ppm. ¹³C (100 MHz, CDCl₃): δ = 158.9, 137.7, 134.8, 134.5, 134.4, 128.7, 128.7, 128.3, 127.2, 125.2, 121.0, 42.7 ppm. IR (solid state): ν = 2923, 2853, 1737, 1593, 1458, 1438, 1323, 1296, 1266, 1182, 1050, 959, 860, 756 cm^{-1} . MS (EI+): m/z Found [M+H]⁺ 274.0539, C₁₄H₁₂NO₃S requires 274.0543. Anal. Calc. for C₁₄H₁₁NO₃S: C, 61.5; H, 4.1; N, 5.1 %. Found: C, 61.4; H, 4.0; N, 5.0 %.

2-isopropyl-1,2-benzisothiazol-3(2H)-one 1,1-dioxide or isopropyl saccharin (6c):

Prepared from sodium saccharin dihydrate (12.00 g, 58.5 mmol) and 2-bromopropane (5.50 mL, 58.5 mmol) in DMF (30 mL). Purification by recrystallisation from cold EtOH gave **6c** as colourless crystals (10.00 g, 76 %). R_f 0.13 (50 % CH₂Cl₂/light petroleum). Mp. 63 – 64 °C (EtOH; *lit.*² 62 – 64 °C, MeOH). ¹H (400 MHz, CDCl₃): δ = 8.07 (dd, *J* = 7.3, 1.0 Hz, 1H, Ar), 8.02 (dd, *J* = 7.3, 1.0 Hz, 1H, Ar), 7.97 (dt, *J* = 7.3, 1.0 Hz, 1H, Ar), 7.95 (dt, *J* = 7.3, 1.0 Hz, 1H, Ar), 4.52 (septet, *J* = 7.0 Hz, 1H, CHMe₂), 1.61 (d, *J* = 7.0 Hz, 6H, Me) ppm. ¹³C (100 MHz, CDCl₃): δ = 160.3, 139.4, 136.4, 135.8, 128.5, 125.9, 121.9, 48.2, 20.6 ppm. IR (solid state): ν = 1732, 1455, 1321, 1289, 1250, 1211, 1199, 1178, 1159, 1060, 984, 747 cm^{-1} . MS (ES+): m/z Found [M]⁺

225.0461, $C_{10}H_{11}NO_3S$ requires 225.0460. Anal. Calc. for $C_{10}H_{11}NO_3S$: C, 53.3; H, 4.9; N, 6.2 %. Found: C, 53.2; H, 4.9; N, 6.2 %.

2-benzhydryl-1,2-benzisothiazol-3(2H)-one 1,1-dioxide (6d):

Prepared from sodium saccharin dihydrate (10.00 g, 48.7 mmol) and bromodiphenylmethane (12.00 g, 48.7 mmol) and DMF (40 mL). Purification by recrystallisation from cold EtOH gave **6d** (13.93 g, 82 %) as colourless crystals. R_f 0.38 (33 % CH_2Cl_2 /light petroleum). Mp. 156 – 158 °C. 1H (400 MHz, CD_3OD): δ = 7.98 (dd, J = 7.0, 1.0 Hz, 1H, Ar), 7.81 (dd, J = 7.0, 1.0 Hz, 1H, Ar), 7.84 (dt, J = 7.0, 1.0 Hz, 1H, Ar), 7.79 (dt, J = 7.0, 1.0 Hz, 1H, Ar), 7.45-7.44 (m, 4H, Ar), 7.36-7.34 (m, 6H, Ar), 6.51 (s, 1H, $CHPh_2$) ppm. ^{13}C (100 MHz, $CDCl_3$): δ = 158.5, 137.8, 136.6, 134.9, 134.4, 129.1, 128.5, 128.3, 127.2, 125.4, 121.0, 60.5 ppm. IR (solid state): ν = 1721, 1495, 1456, 1338, 1293, 1250, 1181, 1061, 1010, 820, 780, 752, 702 cm^{-1} . MS (EI+): m/z Found $[M]^+$ 349.0758, $C_{20}H_{16}NO_3S$ requires 349.0773.

(\pm)-2-(1-phenylethyl)-1,2-benzisothiazol-3(2H)-one 1,1-dioxide or α -methyl-benzyl saccharin (6e):

Prepared from sodium saccharin dihydrate (10.00 g, 48.7 mmol) and (1-bromoethyl)benzene (6.70 mL, 48.7 mmol) in DMF (30 mL). Purification by recrystallisation from cold EtOH gave **6e** as a white solid (12.80 g, 92 %). R_f 0.21 (50 % CH_2Cl_2 /light petroleum). Mp. 96 – 97 °C (EtOH; *lit.*³ 83 °C, EtOH). 1H (400 MHz, $CDCl_3$): δ = 7.96 (dd, J = 7.0, 1.0 Hz, 1H, Ar), 7.88 (dd, J = 7.0, 1.0 Hz, 1H, Ar), 7.83 (dt, J = 7.0, 1.0 Hz, 1H, Ar), 7.80 (dt, J = 7.0, 1.0 Hz, 1H, Ar), 7.60 (d, J = 7.5 Hz, 2H, Ar), 7.36-7.34 (m, 2H, Ar), 7.32-7.28 (m, 1H, Ar), 5.44 (q, J = 6.9 Hz, 1H, $CH(Me)Ph$), 2.02 (d, J = 6.9 Hz, 3H, Me) ppm. ^{13}C (100 MHz, $CDCl_3$): δ = 158.6, 138.8, 137.9, 134.7, 134.3, 128.6, 128.3, 127.8, 127.4, 125.1, 120.8, 53.2, 17.7 ppm. IR (solid state): ν = 1723, 1457, 1329, 1294, 1256, 1184, 968, 751, 704 cm^{-1} . MS (EI+): m/z Found $[M+Na]^+$ 310.0514, $C_{15}H_{13}NaNO_3S$ requires 310.0508. Anal. Calc. for $C_{15}H_{13}NO_3S$: C, 62.7; H 4.6; N 4.9 %. Found: C, 62.6; H 4.4; N 4.8 %.

2-(2-bromoethyl)-1,2-benzisothiazol-3(2H)-one 1,1-dioxide (6f):

Prepared from sodium saccharin dihydrate (5.00 g, 20.7 mmol) and 1,2-dibromoethane (1.80 mL, 20.9 mmol) in DMF (20 mL). Purification by flash silica chromatography followed by recrystallisation from *iPrOH* gave **6f** (2.67 g, 44 %) as white crystals. R_f 0.58 (50 % $EtOAc$ /light petroleum). Mp. 96-98 °C (*iPrOH*; *lit.*⁴ 99 °C *aq.* EtOH). 1H (400 MHz, $CDCl_3$): δ = 8.10-8.08 (m, 1H, Ar), 7.96-7.84 (m, 3H, Ar), 4.17 (t, J = 7.6 Hz, 2H, NCH_2), 3.67 (t, J = 7.6 Hz, 2H, CH_2Br) ppm. ^{13}C (100 MHz, $CDCl_3$): δ = 158.5, 137.4, 135.0, 134.4, 126.9, 125.3, 121.0, 39.8, 26.8 ppm.

IR (solid state): ν = 2360, 2340, 1732, 1462, 1446, 1335, 1296, 1257, 1229, 1176, 1162, 1033, 960, 752 cm^{-1} . MS (EI+): m/z Found [M]⁺ 290.9383, $\text{C}_9\text{H}_8\text{BrNO}_3\text{S}$ requires 290.9388 Anal. Calc. for $\text{C}_9\text{H}_8\text{BrNO}_3\text{S}$: C, 37.3; H, 2.8; N 4.8 %. Found: C, 37.4; H, 2.8; N 4.8 %.

2-propyl-1,2-benzisothiazol-3(2H)-one 1,1-dioxide or n-propyl saccharin (6g):

Prepared from sodium saccharin dihydrate (10.00 g, 48.8 mmol) and 1-bromopropane (4.30 mL, 48.0 mmol) in DMF (30 ml). Purification by recrystallisation from cold EtOH gave **6g** as colourless crystals (8.30 g, 71 %). R_f 0.35 (75 % CH_2Cl_2 /light petroleum). Mp. 76 °C (EtOH; *lit.*⁵ 75 °C, EtOH). ¹H (400 MHz, CDCl_3): δ = 8.06 (dd, J = 7.5, 1.0 Hz, 1H, Ar), 7.92 (dd, J = 7.5, 1.0 Hz, 1H, Ar), 7.88-7.81 (m, 2H, Ar), 3.74 (*apparent* dt, J = 8.9, 7.4 Hz, 2H, NCH_2), 1.89 (dq, J = 7.4, 6.7 Hz, 2H, CH_2CH_3), 1.03 (t, 3H, J = 6.7 Hz, 3H, *Me*) ppm. ¹³C (100 MHz, CDCl_3): δ = 159.1, 137.8, 134.7, 134.3, 127.5, 125.2, 121.0, 41.1, 21.9, 11.4 ppm. IR (solid state): ν = 1732, 1468, 1460, 1323, 1310, 1300, 1267, 1181, 1166, 1127, 1062, 994, 793, 757, 750, 693, 677 cm^{-1} . MS (EI+): m/z Found [M]⁺ 225.0465, $\text{C}_{10}\text{H}_{11}\text{NO}_3\text{S}$ requires 225.0460. Anal. Calc. for $\text{C}_{10}\text{H}_{11}\text{NO}_3\text{S}$: C, 53.3; H, 4.9; N, 6.2 %. Found: C, 53.4; H, 4.8; N, 6.0 %.

2-tert-butyl-1,2-benzisothiazol-3(2H)-one 1,1-dioxide (6h):

Compound **6h** was isolated as a side product in the preparation of **4ch** from **11h** (0.32 g, 1.3 mmol). Purification by flash chromatography (CH_2Cl_2) gave **6h** (0.10 mg, 32 %) as a white solid. R_f 0.67 (CH_2Cl_2). Mp. 99 – 100 °C (CH_2Cl_2 ; *lit.*⁶ 100 – 101 °C, CH_2Cl_2). ¹H (400 MHz, CDCl_3): δ = 8.00 (dd, J = 7.0, 1.0 Hz, 1H, Ar), 7.85-7.76 (m, 3H, Ar), 1.78 (s, 9H, ³Bu) ppm. ¹³C (67.8 MHz, CDCl_3): δ = 160.0, 137.9, 134.4, 134.0, 127.4, 124.6, 120.1, 61.1, 27.8 ppm. IR (solid state): ν = 1719, 1458, 1371, 1325, 1288, 1251, 1196, 1178, 1162, 1125, 1060, 967, 787, 752, 732 cm^{-1} . MS (CI+): m/z [M+H]⁺ 240.0690, $\text{C}_{11}\text{H}_{14}\text{NO}_3\text{S}$ requires 240.0694. Anal. Calc. for $\text{C}_{11}\text{H}_{13}\text{NO}_3\text{S}$: C, 55.2; H, 5.5; N, 5.9 %. Found: C, 55.1; H, 5.4; N, 5.7 %.

2-phenyl-1,2-benzisothiazol-3(2H)-one 1,1-dioxide (6i):

To a stirred solution of **11i** (0.52 g, 1.79 mmol) in toluene (10 mL) was added DMAP (0.02 g, 0.18 mmol). The reaction was refluxed for 24 h, with no sign of product formation. Pyridine (0.13 mL, 1.79 mmol) was added and the reaction was refluxed for 18 h. The reaction mixture was concentrated *in vacuo* to give a viscous oil. Purification by recrystallisation in EtOH gave **6i** (0.27 mg, 66 %). R_f 0.20 (50 % CH_2Cl_2 /light petroleum). Mp. 190 – 191 °C (EtOH; *lit.*⁷ 189 – 191 °C, EtOH). ¹H (400 MHz, CD_3OD): δ = 8.17 (dd, J = 7.2, 1.0 Hz, 1H, Ar), 7.97-7.82 (m, 3H, Ar), 7.56-7.52 (m, 5H, Ar) ppm. ¹³C (100 MHz, CDCl_3): δ = 158.5, 137.8, 135.2, 134.6, 130.5, 130.0, 129.1,

128.9, 127.6, 126.0, 121.3 ppm. IR (solid state): ν = 1746, 1726, 1590, 1491, 1462, 1339, 1328, 1309, 1271, 1214, 1184, 1160, 1127, 1100, 998, 987, 787, 754, 742, 694 cm^{-1} . MS (EI+): m/z Found [M]⁺ 259.0312, C₁₃H₉NO₃S requires 259.0303. Anal. Calc. for C₁₃H₉NO₃S: C, 60.2; H, 3.5; N, 5.4 %. Found: C, 60.2; H 3.5; N, 5.5 %.

General procedure for the preparation of *O*-alkylated saccharin derivatives (7):

To a stirred solution of saccharin **6a** (5.5 mmol) and triphenylphosphine (6.8 mmol) in dry THF (20 mL) was added anhydrous benzyl alcohol (5.5 mmol) under inert atmosphere. The reaction mixture was cooled to 0 °C and diethyl azodicarboxylate (6.8 mmol) was added dropwise. The reaction mixture was allowed to warm to room temperature and was stirred for 16 h, after which time the solvent was concentrated *in vacuo*. Purification by flash silica chromatography and subsequent recrystallisation from cold EtOH gave the desired O-alkylated product.

3-Benzyl-1,2-benzisothiazole 1,1-dioxide (7b):

Prepared from saccharin **6a** (1.00 g, 5.5 mmol), triphenylphosphine (1.79 g, 6.8 mmol), anhydrous benzyl alcohol (0.59 mL, 5.5 mmol), diethyl azodicarboxylate (1.07 mL, 6.8 mmol) and dry THF (20 mL). Purification by flash silica chromatography and subsequent recrystallisation from cold EtOH gave **7b** (0.88 g, 59 %) as colourless crystals. Also isolated from the reaction mixture was compound **6b** (0.48 g). R_f 0.60 (1:1 Hexane/EtOAc) Mp. 118-120 °C (EtOH, *lit.*⁸ 128-129 °C). ¹H (400 MHz, CDCl₃): δ = 7.88 (dt, *J* = 7.6, 0.8 Hz, 1H, Ar), 7.78-7.66 (m, 3H, Ar), 7.51-7.42 (m, 5H, Ar), 5.59 (s, 2H, OCH₂Ph) ppm. ¹³C (100 MHz, CDCl₃): δ = 169.0, 143.5, 134.1, 133.4, 133.4, 129.4, 129.1, 128.9, 128.6, 126.9, 123.4, 121.9, 73.5 ppm. IR (solid state): ν = 2985, 2919, 2361, 2338, 1712, 1618, 1561, 1470, 1413, 1354, 1319, 1174, 1157, 1055, 973, 771 cm^{-1} . MS (EI+): m/z Found [M]⁺ 290.9405, C₉H₈BrNO₃S requires 290.9418. Anal. Calc. for C₉H₈BrNO₃S: C, 37.3; H, 2.8; N, 4.8%. Found: C, 37.1; H, 2.8; N, 4.8%.

3-(2-Bromo-ethoxy)-benzo[d]isothiazole 1,1-dioxide (7f):

Prepared from saccharin **6a** (2.00 g, 10.9 mmol), triphenylphosphine (3.59 g, 13.7 mmol), anhydrous 2-bromoethanol (0.78 mL, 10.9 mmol), diethyl azodicarboxylate (2.15 mL, 13.7 mmol) and dry THF (20 mL). Purification by flash silica chromatography (25-100 % CH₂Cl₂/light petroleum) and subsequent recrystallisation from cold EtOH gave **7f** (1.23 g, 37 %) as colourless crystals. Also isolated from the reaction mixture was compound **6f** (0.74 g). R_f 0.40 Mp. 172-174 °C. ¹H (400 MHz, CDCl₃): δ = 7.91-7.89 (m, 1H, Ar), 7.82-7.71 (m, 3H, Ar), 4.89 (t, *J* = 6.0 Hz, 2H, OCH₂CH₂Br), 3.74 (t, *J* = 6.0 Hz, 2H, OCH₂CH₂Br) ppm. ¹³C (100 MHz, CDCl₃): δ = 168.9, 143.5, 134.4, 133.6, 126.4, 123.5, 122.0, 70.5, 27.1 ppm. IR (solid state): ν = 2361, 1615, 1556,

1457, 1414, 1357, 1327, 1273, 1175, 1273, 1175, 1166, 957, 819, 788, 771, 752 cm^{-1} . MS (EI+): m/z Found [M]⁺ 290.9405, C₉H₈BrNO₃S requires 290.9418. Anal. Calc. for C₉H₈BrNO₃S: C, 37.3; H, 2.8; N, 4.8%. Found: C, 37.1; H, 2.7; N, 4.8%.

2-{2-[(1,1-dioxido-1,2-benzisothiazol-3-yl)oxy]ethyl}-1,2-benzisothiazol-3(2H)-one 1,1-dioxide (8a):

Prepared following the general procedure for the synthesis of **6**. Prepared from sodium saccharin dihydrate (1.44 g, 7.02 mmol) and 1,2-dibromoethane (0.3 mL, 3.51 mmol) in DMF (25 mL). Purification by recrystallisation from CH₂Cl₂ gave **8a** (0.77 g, 56 %). R_f 0.75 (CH₂Cl₂). Mp. > 260 °C (dec., CH₂Cl₂). ¹H (400 MHz, CDCl₃): δ = 8.10 (dd, J = 6.5, 1.5 Hz, 1H, Ar), 7.94-7.85 (m, 5H, Ar), 7.76 (dt, J = 7.5, 1.0 Hz, 1H, Ar), 7.71 (dt, J = 7.5, 1.0 Hz, 1H, Ar), 4.91 (t, J = 6.2 Hz, 2H, CH₂O), 4.27 (t, J = 6.2 Hz, 2H; NCH₂) ppm. ¹³C (67.8 MHz, CDCl₃): δ = 169.2, 158.9, 143.5, 137.7, 135.2, 134.6, 134.2, 133.6, 127.5, 127.4, 125.5, 124.0, 121.8, 121.2, 67.9, 38.0 ppm. IR (solid state): ν = 1739, 1616, 1556, 1462, 1403, 1322, 1258, 1179, 1159, 1122, 1058, 1040, 953, 930, 788, 755 cm^{-1} . MS (FAB+): m/z Found [M+H]⁺ 393.0206, C₁₆H₁₃N₂O₆S₂ requires 393.0215. Anal. Calc. for C₁₆H₁₂N₂O₆S₂: C, 49.0; H, 3.1; N, 7.2 %. Found: C, 48.8; H, 3.0; N, 7.1 %.

1,3-propyl-bis-(1,2-benzisothiazol-3(2H)-one 1,1-dioxide) (8b):

Prepared following the general procedure for the synthesis of **6**. Prepared from sodium saccharin dihydrate (5.00 g, 24.4 mmol) and 1,3-dibromopropane (1.20 mL, 12.0 mmol) in DMF (10 mL). Purification by trituration of the crude in hot iPrOH gave **8b** (2.37 g, 50 %) as a white insoluble solid. R_f 0.35 Mp. > 185 °C (dec. EtOH; *lit.*⁹ 196 °C, CHCl₃). ¹H (400 MHz, CDCl₃): δ = 8.06 (dd, J = 7.0, 1.0 Hz, 2H, Ar), 7.94-7.84 (m, 6H, Ar), 3.95 (t, J = 7.0 Hz, 4H, NCH₂), 2.43 (quintet, J = 7.0 Hz, 2H, CH₂CH₂CH₂) ppm. ¹³C (100 MHz, CDCl₃): δ = 159.0, 137.7, 134.9, 134.5, 127.4, 125.4, 121.1, 36.8, 27.3 ppm. IR (solid state): ν = 1728, 1710, 1461, 1329, 1296, 1255, 1182, 1173, 1156, 1060, 955, 787, 750 cm^{-1} . MS (EI+): m/z Found [M+H]⁺ 407.0372, C₁₇H₁₅N₂O₆S₂ requires 407.0377. Anal. Calc. for C₁₇H₁₄N₂O₆S₂: C, 50.2; H, 3.5; N 6.9%. Found: C, 50.2; H, 3.4; N, 7.0%.

Methyl 2-({[(1R)-1-phenylethyl]amino}sulfonyl)benzoate (11e):

To a stirred solution of methyl 2-(chlorosulfonyl)benzoate (1.00 g, 4.3 mmol) in dry CH₂Cl₂ (20 mL) under an inert atmosphere was added triethylamine (0.71 mL, 5.1 mmol). The reaction mixture was stirred at room temperature and (R)- α -methylbenzylamine (0.65 mL, 5.1 mmol) was added in one portion. The reaction mixture was stirred for 4 h at room temperature. The reaction was quenched by the addition of 2.0 M HCl (5 mL), the organic was extracted and washed with 2.0 M HCl (2 x 50 mL), brine (50 mL), and then dried (Na₂SO₄) and concentrated *in vacuo*. Purification

by flash chromatography (CH_2Cl_2) gave **11e** (1.05 g, 77%) as a colourless oil. R_f 0.42 (CH_2Cl_2). $[\alpha]_D = +33.1$ [c 1.0, EtOH]. ^1H (400 MHz, CDCl_3): $\delta = 7.74\text{--}7.65$ (m, 2H, Ar), 7.47 (dt, $J = 7.0, 1.0$ Hz, 1H, Ar), 7.37 (dt, $J = 7.0, 1.0$ Hz, 1H, Ar), 7.12–7.05 (m, 5H, Ar), 6.45 (d, $J = 6.5$ Hz, 1H, SO_2NH), 4.58 (quintet, $J = 6.5$ Hz, 1H, CHMe), 4.00 (s, 3H, OMe), 1.44 (d, $J = 6.5$ Hz, 3H, CHMe) ppm. ^{13}C (100 MHz, CDCl_3): $\delta = 168.7, 142.2, 140.7, 132.0, 131.7, 130.6, 130.2, 129.7, 128.6, 127.7, 126.5, 55.0, 53.7, 24.1$ ppm. IR (solid state): $\nu = 1718, 1435, 1334, 1295, 1167, 1167, 1138, 1116, 1084, 1060, 952, 786, 757, 733, 700$ cm^{-1} . MS (EI+): m/z Found $[\text{M-Me}]^+$ 304.0643, $\text{C}_{15}\text{H}_{14}\text{NO}_4\text{S}$ requires 304.0644.

Methyl 2-[(*tert*-butylamino)sulfonyl]benzoate (11h):

To a stirred solution of methyl 2-(chlorosulfonyl)benzoate (0.50 g, 2.1 mmol) in dry CH_2Cl_2 (10 mL) under an inert atmosphere was added triethylamine (0.31 mL, 2.2 mmol). The reaction mixture was cooled to 0 °C and *tert*-butylamine (0.22 mL, 2.1 mmol) was added in one portion. The reaction mixture was stirred at 0 °C for 1 h then was allowed to warm to room temperature for 3 h. The reaction was quenched by the addition of 2.0 M HCl (5 mL), the organic was extracted and washed with 2.0 M HCl (2 x 50 mL), brine (50 mL), and then dried (Na_2SO_4) and concentrated *in vacuo*. Purification by flash chromatography (CH_2Cl_2) gave **11h** (0.73 g, 79 %), as a white solid. R_f 0.5 (CH_2Cl_2). Mp. 80 – 81 °C (CH_2Cl_2). ^1H (400 MHz, CDCl_3): $\delta = 8.13$ (dd, $J = 7.8, 1.7$ Hz, 1H, Ar), 7.82 (dd, $J = 7.8, 1.7$ Hz, 1H, Ar), 7.62 (dt, $J = 7.8, 1.7$ Hz, 1H, Ar), *overlapped by* 7.60 (dt, $J = 7.8, 1.7$ Hz, 1H, Ar), 6.08 (s, 1H, SO_2NH), 3.97 (s, 3H, OMe), 1.26 (s, 9H, ^3Bu) ppm. ^{13}C (67.8 MHz, CDCl_3): $\delta = 168.2, 143.0, 131.7, 130.6, 129.9, 128.9, 54.8, 53.3, 30.2$ ppm. IR (solid state): $\nu = 1710, 1442, 1429, 1390, 1332, 1288, 1265, 1158, 1120, 1062, 980, 955, 750, 733, 714$ cm^{-1} . MS (EI+): m/z Found $[\text{M-Me}]^+$ 256.0650, $\text{C}_{11}\text{H}_{14}\text{NO}_4\text{S}$ requires 256.0644. Anal. Calc. for $\text{C}_{12}\text{H}_{17}\text{NO}_4\text{S}$: C, 53.1; H, 6.3; N, 5.2 %. Found: C, 53.0; H, 6.3; N, 5.1 %.

Methyl 2-(anilinosulfonyl)benzoate (11i):

To a stirred solution of methyl 2-(chlorosulfonyl)benzoate (0.30 g, 1.3 mmol) in dry CH_2Cl_2 (10 mL) under an inert atmosphere was added triethylamine (0.21 mL, 1.5 mmol). The reaction mixture was cooled to 0 °C and aniline (0.14 mL, 1.5 mmol) was added in one portion. The reaction mixture was stirred at 0 °C for 1 h then was allowed to warm to room temperature for 3 h. The reaction was quenched by the addition of 2.0 M HCl (5 mL), the organic was extracted and washed with 2.0 M HCl (2 x 15 mL), brine (15 mL), and then dried (Na_2SO_4) and concentrated *in vacuo* to give an orange oil. Purification by flash chromatography (CH_2Cl_2) gave **11i** (0.23 g, 62 %) as a colourless oil. R_f 0.38 (CH_2Cl_2). ^1H (400 MHz, CDCl_3): $\delta = 8.01$ (s, 1H, SO_2NH), 7.83 (d, $J = 7.0$ Hz, 1H, Ar), *overlapped by* 7.83 (d, $J = 7.0$ Hz, 1H, Ar), 7.57 (dt, $J = 7.0, 1.0$ Hz, 1H, Ar), 7.48 (dt, $J = 7.0, 1.0$

Hz, 1H, Ar), 7.27-7.06 (m, 5H, Ar), 4.03 (s, 3H, OMe) ppm. ^{13}C (100 MHz, CDCl_3): δ = 168.7, 138.4, 137.0, 133.0, 131.9, 131.0, 130.9, 130.8, 129.6, 126.2, 123.3, 53.9 ppm. IR (CH_2Cl_2 solution): ν = 3286, 1728, 1714, 1598, 1574, 1496, 1352, 1114, 1060, 1030, 956 cm^{-1} . MS (EI+): m/z Found $[\text{M}+\text{Na}]^+$ 314.0463, $\text{C}_{14}\text{H}_{13}\text{NaNO}_4\text{S}$ requires 314.0457.

General Procedure for the preparation of chloro sulfonamides (13):

To a stirred solution of **4** (1.30 mmol) in the stated solvent (5 mL), was added triphenylphosphine (1.30 mmol) and carbon tetrachloride (5 mL, 51.7 mmol). The reaction mixture was stirred at room temperature for the stated time, until complete conversion by TLC was noted. The reaction was concentrated *in vacuo*, to give a crude colourless oil. Purification by flash chromatography gave **13** as either a viscous colourless oil or a foamy white solid.

2-[(benzylamino)sulfonyl]-*N*-(2-chloroethyl)benzamide (13ab):

To a stirred solution of **4ab** (2.00 g, 6.0 mmol) in anhydrous CH_2Cl_2 (10 mL) under an inert atmosphere at 0 °C was added dropwise thionyl chloride (3.50 mL, 30.0 mmol), making sure the internal temperature did not rise above 5 °C. The reaction mixture was then allowed to warm to room temperature, and then was refluxed for 2 – 3 h. The reaction mixture was concentrated *in vacuo*, to give a crude viscous oil. Purification by flash chromatography gave **13ab** (1.74 g, 82 %) as a colourless viscous oil. R_f 0.17 (CH_2Cl_2). ^1H (400 MHz, CD_3OD): δ = 7.90 (dd, J = 7.5, 1.0 Hz, 1H, Ar), 7.60-7.56 (m, 1H, Ar), 7.53-7.45 (m, 2H, Ar), 7.24-7.16 (m, 5H, Ar), 6.47 (br, 1H, CONH), 6.41 (t, J = 6.4 Hz, 1H, SO_2NH), 4.14 (d, J = 6.4 Hz, 2H, CH_2Ph), 3.81-3.73 (m, 4H, $\text{CH}_2\text{CH}_2\text{Cl}$) ppm. ^{13}C (100 MHz, CDCl_3): δ = 169.9, 138.3, 136.3, 134.9, 132.6, 130.5, 129.5, 128.6, 128.1, 128.0, 127.7, 47.8, 43.4, 42.0 ppm. MS (EI+): m/z Found $[\text{M}-\text{HCl}]^+$ 316.0885, $\text{C}_{16}\text{H}_{16}\text{N}_2\text{O}_3\text{S}$ requires 316.0882.

2-[(benzhydryl amino)sulfonyl]-*N*-(2-chloroethyl)benzamide (13ad):

Prepared from **4ad** (0.70 g, 1.7 mmol), triphenylphosphine (0.50 g, 1.8 mmol) and carbon tetrachloride (5 mL, 51.7 mmol) in 50% $\text{CH}_2\text{Cl}_2/\text{MeCN}$ (5 mL), stirring for 78 h. Purification by flash chromatography gave **13ad** (0.40 g, 54 %), as a white foamy solid after prolonged drying under high vacuum. R_f 0.20 (CH_2Cl_2). Mp. 68 – 70 °C. ^1H (500 MHz, CDCl_3): δ = 7.49 (dd, J = 7.5, 1.0 Hz, 1H, Ar), 7.42-7.37 (m, 2H, Ar), 7.21-7.10 (m, 11H, Ar), 7.04 (d, J = 9.5 Hz, 1H, SO_2NH), 6.37 (br, 1H, CONH), 5.70 (d, J = 9.5 Hz, 1H, CHPh_2), 3.79-3.74 (m, 4H, $\text{CH}_2\text{CH}_2\text{Cl}$) ppm. ^{13}C (125.8 MHz, CDCl_3): δ = 170.0, 140.1, 139.4, 134.0, 132.0, 130.2, 128.8, 128.4, 127.7, 127.5, 127.4, 62.4, 43.5, 42.0. IR (CH_2Cl_2 solution): ν = 3427, 3236, 1666, 1592, 1573, 1530, 1349, 1174, 1131, 1045, 1027 cm^{-1} . MS (EI+): m/z Found $[\text{M}+\text{Na}]^+$ 451.0859, $\text{C}_{22}\text{H}_{21}\text{ClNaN}_2\text{O}_3\text{S}$ requires

451.0854. Anal. Calc. for $C_{22}H_{21}ClN_2O_3S$: C, 61.6; H, 4.9; N, 6.5 %. Found: C, 61.4; H, 5.0; N, 6.5 %.

N-[(1S)-2-chloro-1-methylethyl]-2-[(benzylamino)sulfonyl]benzamide (13bb):

Prepared from **4bb** (5.80 g, 16.7 mmol), triphenylphosphine (4.40 g, 16.9 mmol) and carbon tetrachloride (8 mL, 83.3 mmol) in MeCN (50 mL), stirring for 2 h. Purification by flash chromatography gave **13bb** (4.60 g, 75 %) as a white solid after prolonged drying under high vacuum. R_f 0.30 (CH_2Cl_2). Mp. 65 – 66 °C (EtOH). $[\alpha]_D = +1.4$ [c 1.0, EtOH]. 1H (400 MHz, $CDCl_3$): $\delta = 7.85$ (dd, $J = 8.0, 1.0$ Hz, 1H, Ar), 7.56-7.47 (m, 3H, Ar), 7.22-7.20 (m, 5H, Ar), 6.44 (t, $J = 6.4$ Hz, 1H, SO_2NH), 6.27 (d, $J = 8.1$ Hz, 1H, CONH), 4.48 (dd, $J = 8.1, 6.7, 4.5, 3.8$ Hz, 1H, NCH), 4.11 (dd, $J = 14.0, 6.6$ Hz, 1H, $CH_{2\alpha}Ph$), 4.09 (dd, $J = 14.0, 6.3$ Hz, 1H, $CH_{2\beta}Ph$), 3.80 (dd, $J = 11.2, 4.5$ Hz, 1H, $CH_{2\alpha}Cl$), 3.65 (dd, $J = 11.2, 3.8$ Hz, 1H, $CH_{2\beta}Cl$), 1.36 (d, $J = 6.7$ Hz, 3H, Me) ppm. ^{13}C (100 MHz, $CDCl_3$): $\delta = 169.1, 138.2, 136.3, 135.0, 132.6, 130.3, 129.4, 128.5, 128.2, 128.0, 127.7, 48.7, 47.8, 46.5, 17.6$ ppm. IR (solid state): $\nu = 1647, 1534, 1455, 1437, 1329, 1294, 1264, 1164, 1128, 1082, 1063, 1028, 785, 738, 697$ cm^{-1} . Anal. Calc. for $C_{17}H_{19}ClN_2O_3S$: C, 55.7; H, 5.2; N, 7.6 %. Found: C: 55.4; H, 5.1; N, 7.7 %.

2-[(benzylamino)sulfonyl]-N-[(1S)-1-(chloromethyl)-2-methylpropyl]benzamide (13cb):

Prepared from **4cb** (0.50 g, 1.30 mmol), triphenylphosphine (0.35 g, 1.30 mmol) and carbon tetrachloride (5 mL, 51.7 mmol) in CH_2Cl_2 (5 mL). Purification by flash chromatography gave **13cb** (0.42 g, 81 %) as a white solid. R_f 0.30 (CH_2Cl_2). Mp. 128 – 129 °C (EtOH). $[\alpha]_D = -11.2$ [c 1.0, EtOH]. 1H (400 MHz, $CDCl_3$): $\delta = 7.89$ (d, $J = 7.2$ Hz, 1H, Ar), 7.59-7.47 (m, 3H, Ar), 7.22-7.16 (m, 5H, Ar), 6.46 (t, $J = 6.4$ Hz, 1H, SO_2NH), 6.22 (d, $J = 8.8$ Hz, 1H, CONH), 4.12 (d, $J = 6.4$ Hz, 2H, CH_2Ph), *overlapped by* 4.13-4.07 (m, 1H, NCH), 3.83 (dd, $J = 11.5, 3.7$ Hz, 1H, $CH_{2\alpha}Cl$), *overlapped by* 3.80 (dd, $J = 11.5, 4.0$ Hz, 1H, $CH_{2\beta}Cl$), 2.08-1.99 (m, 1H, $CHMe_2$), 1.06 (d, $J = 9.6$ Hz, 3H, Me), 1.04 (d, $J = 6.7$ Hz, 3H, Me) ppm. ^{13}C (100 MHz, $CDCl_3$): $\delta = 169.5, 138.4, 136.4, 135.3, 132.6, 130.4, 129.6, 128.5, 128.1, 127.9, 127.7, 56.0, 47.8, 46.4, 29.4, 19.4, 19.0$ ppm. IR (solid state): $\nu = 1620, 1591, 1554, 1456, 1437, 1437, 1338, 1168, 1069, 754, 734, 700$ cm^{-1} . MS (FAB+): m/z Found $[M+H]^+$ 395.1210, $C_{19}H_{24}ClN_2O_3S$ requires 395.1196. Anal. Calc. for $C_{19}H_{23}ClN_2O_3S \cdot \frac{1}{2}H_2O$: C, 56.5; H, 6.0; N, 6.9 %. Found: C, 56.8; H, 6.1; N, 6.8 %.

N-[(1S)-1-(chloromethyl)-2-methylpropyl]-2-[(isopropylamino)sulfonyl]benzamide (13cc):

Prepared from **4cc** (1.29 g, 3.9 mmol), triphenylphosphine (1.05 g, 4.0 mmol) and carbon tetrachloride (6 mL, 62.0 mmol) in MeCN (6 mL), stirring for 48 h. Purification by flash

chromatography gave **13cc** (0.45 g, 60 %) as a white solid. R_f 0.16 (CH_2Cl_2). Mp. > 198 °C (dec. MeOH). $[\alpha]_D = -55.2$ [c 0.5, CHCl_3]. ^1H (400 MHz, CDCl_3): $\delta = 8.05$ (apparent dd, $J = 7.5, 1.0$ Hz, 1H, Ar), 7.62-7.56 (m, 3H, Ar), 6.16 (d, $J = 9.0$ Hz, 1H, CONH), 5.88 (d, $J = 6.7$ Hz, 1H, SO_2NH), 4.17-4.11 (m, 1H, NCH), 3.86 (dd, $J = 11.5, 3.7$ Hz, 1H, $\text{CH}_{2\alpha}\text{Cl}$), 3.82 (dd, $J = 11.5, 4.0$ Hz, 1H, $\text{CH}_{2\beta}\text{Cl}$), 3.48 (octet, $J = 6.7$ Hz, 1H, NHCHMe_2), 2.06 (octet, $J = 6.7$ Hz, 1H, CHMe_2), 1.09-1.05 (m, 12H, Me) ppm. ^{13}C (100 MHz, CDCl_3): $\delta = 169.5, 139.5, 135.2, 132.4, 130.5, 129.1, 128.3, 56.0, 46.8, 46.4, 29.3, 23.6, 19.4, 19.0$ ppm. IR (solid state): $\nu = 2966, 1650, 1592, 1533, 1466, 1426, 1388, 1370, 1332, 1264, 1172, 1122, 1070, 990, 889, 785, 761, 736, 680$ cm^{-1} . MS (Cl $^+$): m/z Found $[\text{M}+\text{H}]^+$ 349.1178, $\text{C}_{15}\text{H}_{24}^{37}\text{ClN}_2\text{O}_3\text{S}$ requires 349.1167. Anal. Calc. for $\text{C}_{15}\text{H}_{23}\text{ClN}_2\text{O}_3\text{S}$: C, 51.9; H, 6.7; N, 8.1 %. Found: C, 52.1; H, 6.7; N, 7.9 %.

***N*-(1*S*)-1-(chloromethyl)-2-methylpropyl]-2-[(benzhydryl amino)sulfonyl]benzamide (13cd):**

Prepared from **4cd** (1.98 g, 4.38 mmol), triphenylphosphine (1.38 g, 5.25 mmol) and carbon tetrachloride (5 mL, 51.7 mmol) in 50 % MeCN/ CH_2Cl_2 (5 mL), stirring for 78 h. Purification by flash chromatography gave **13cd** (1.47 g, 65 %) as a viscous oil. R_f 0.32 (CH_2Cl_2). $[\alpha]_D = -10.4$ [c 1.0, EtOH]. ^1H (400 MHz, CDCl_3): $\delta = 7.47$ (dd, $J = 7.5, 1.0$ Hz, 1H, Ar), 7.42-7.37 (m, 3H, Ar), 7.25-7.09 (m, 10H, Ar), 7.06 (d, $J = 9.3$ Hz, 1H, SO_2NH), 6.05 (d, $J = 9.1$ Hz, 1H, CONH), 5.70 (d, $J = 9.3$ Hz, 1H, CHPh_2), 4.14-4.09 (m, 1H, NCH), 3.85 (dd, $J = 12.0, 3.7$ Hz, 1H, $\text{CH}_{2\alpha}\text{Cl}$), 3.79 (dd, $J = 12.0, 3.8$ Hz, 1H, $\text{CH}_{2\beta}\text{Cl}$), 2.06-2.00 (m, 1H, CHMe_2), 1.06 (d, $J = 6.8$ Hz, 3H, Me), 1.04 (d, $J = 6.7$ Hz, 3H, Me) ppm. ^{13}C (100 MHz, CDCl_3): $\delta = 169.7, 140.1, 139.5, 134.3, 131.9, 130.1, 128.7, 128.3, 127.7, 127.4, 126.6, 62.4, 55.8, 46.4, 29.2, 19.3, 19.1$ ppm. IR (solid state): $\nu = 2968, 1652, 1522, 1496, 1456, 1424, 1329, 1165, 1129, 1047, 1026, 834, 744, 698$ cm^{-1} . MS (FAB $^+$): m/z Found $[\text{M}+\text{H}]^+$ 471.1508, $\text{C}_{25}\text{H}_{28}\text{ClN}_2\text{O}_3\text{S}$ requires 471.1509. Anal. Calc. for $\text{C}_{25}\text{H}_{27}\text{ClN}_2\text{O}_3\text{S}$: C, 63.8; H, 5.8; N, 6.0 %. Found: C, 64.2; H, 5.9; N, 5.9 %.

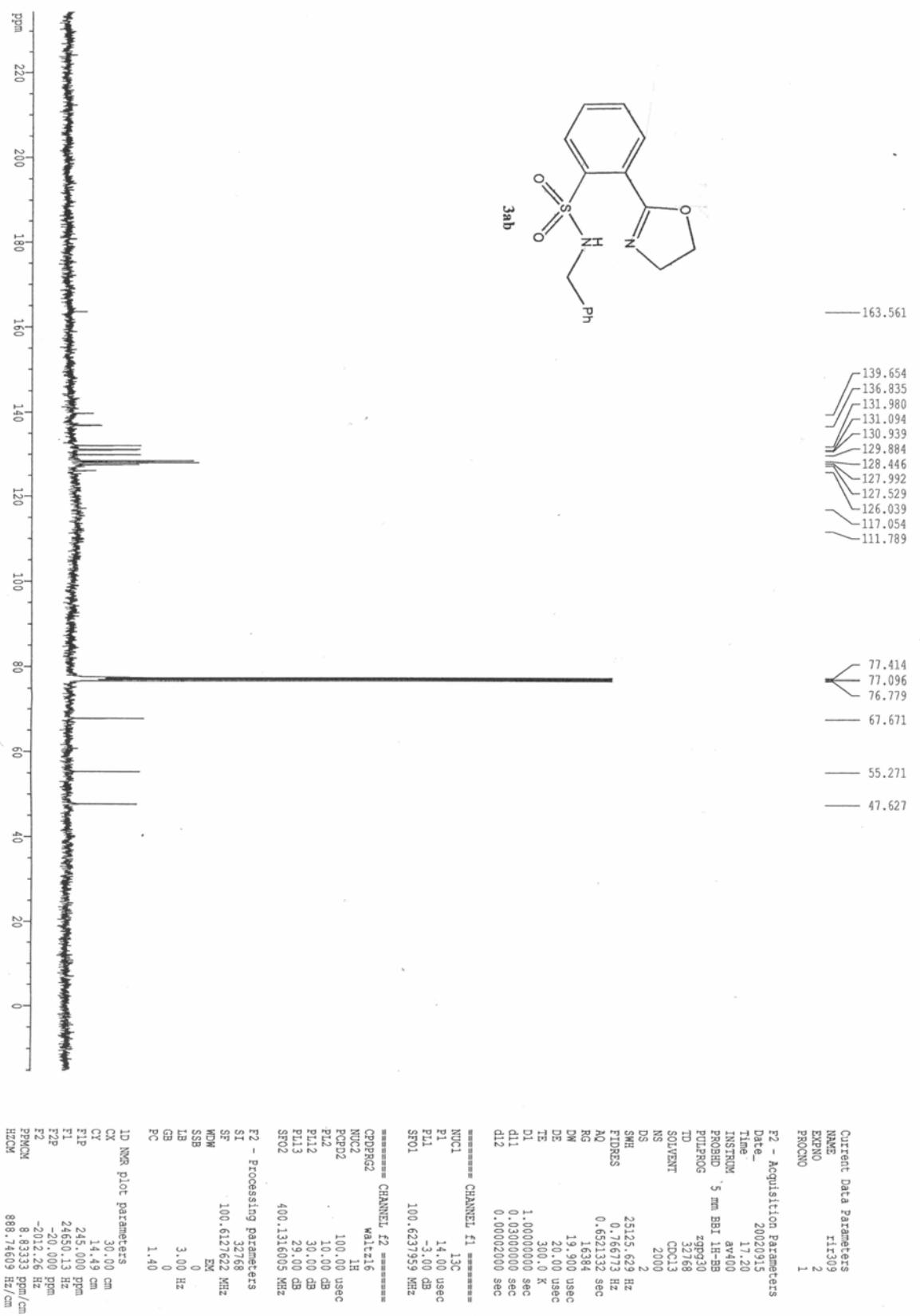
***N*-(1*S*)-1-(chloromethyl)-2-methylpropyl]-2-({[(1*R*)-1-phenylethyl]amino}sulfonyl)benzamide (13ce):**

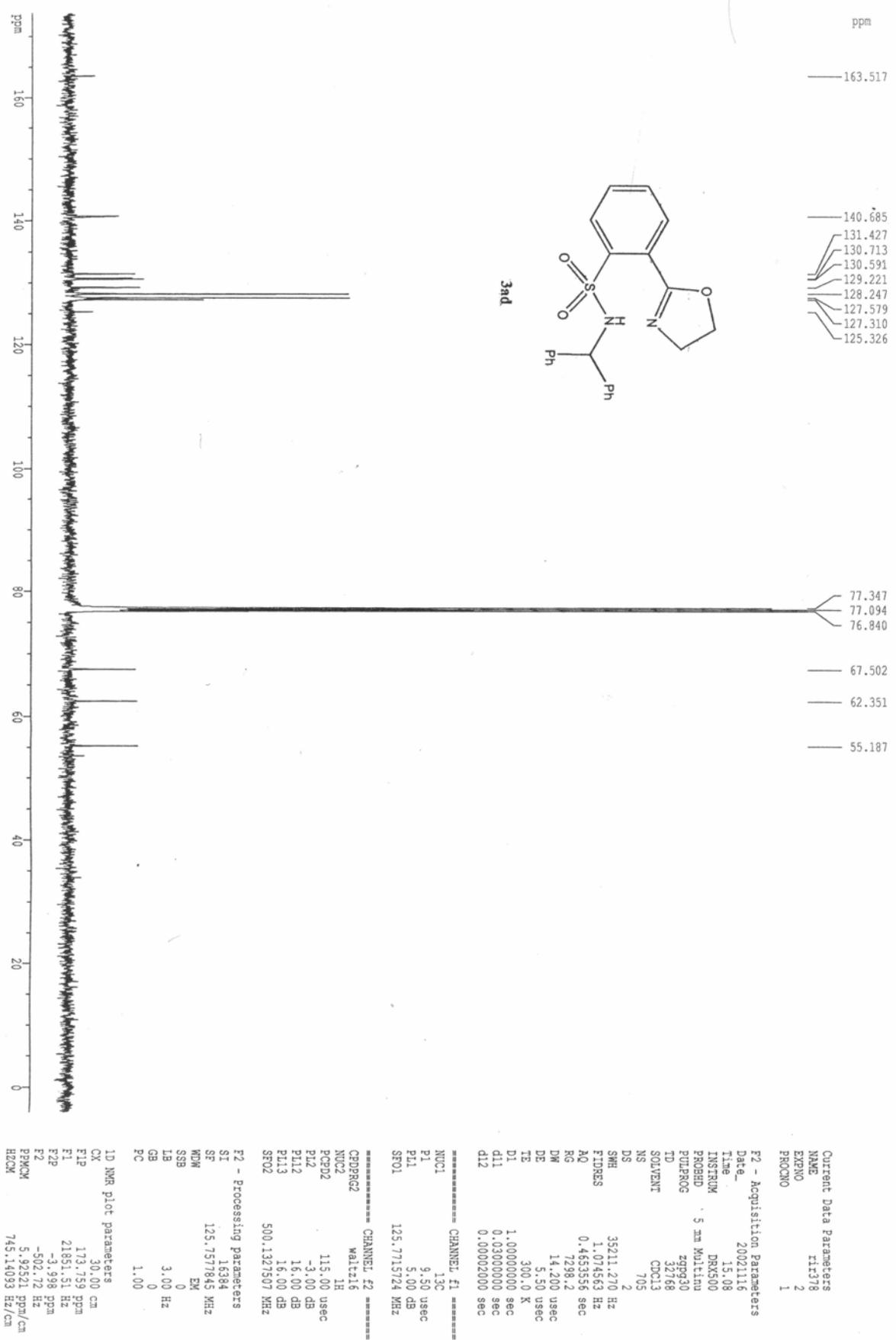
Prepared from **4ce** (0.35 g, 0.91 mmol), triphenylphosphine (0.24 g, 0.92 mmol) and carbon tetrachloride (6 mL, 62.0 mmol) in MeCN (6 mL), stirring for 48 h. Purification by flash chromatography gave **13ce** (0.32 g, 71 %) as a viscous oil. R_f 0.35 (CH_2Cl_2). $[\alpha]_D = -11.5$ [c 0.7, CHCl_3]. ^1H (400 MHz, CD_3OD): $\delta = 7.54$ (dd, $J = 8.0, 1.0$ Hz, 1H, Ar), 7.46-7.43 (m, 2H, Ar), 7.28 (dt, $J = 8.0, 1.0$ Hz, 1H, Ar), 7.16-7.14 (m, 2H, Ar), 7.09-7.06 (m, 3H, Ar), 6.54 (d, $J = 8.3$ Hz, 1H, SO_2NH), 6.13 (d, $J = 9.0$ Hz, 1H, CONH), 4.57 (dq, $J = 9.0, 7.1$ Hz, 1H, $\text{CH}(\text{Me})\text{Ph}$), 4.18-4.12 (m, 1H, NCH), 3.90 (dd, $J = 11.5, 3.7$ Hz, 1H, $\text{CH}_{2\alpha}\text{Cl}$), 3.83 (dd, $J = 11.5, 3.8$ Hz, 1H, $\text{CH}_{2\beta}\text{Cl}$), 2.10

(octet, $J = 6.9$ Hz, 1H, $CHMe_2$), 1.44 (d, $J = 7.1$ Hz, 3H, $CHMe$), 1.10 (d, $J = 6.9$ Hz, 3H, Me), 1.08 (d, $J = 6.9$ Hz, 3H, Me) ppm. ^{13}C (100 MHz, $CDCl_3$): $\delta = 169.8, 141.9, 139.4, 134.5, 131.9, 130.1, 128.8, 128.2, 127.4, 127.2, 126.3, 55.9, 54.8, 46.2, 29.1, 23.9, 19.4, 19.0$ ppm. IR (solid state): $\nu = 1643, 1551, 1437, 1333, 1266, 1171, 1118, 1070, 721, 695$ cm^{-1} . MS (Cl+): m/z Found $[M+H]^+$ 411.1307, $C_{20}H_{26}^{37}ClN_2O_3S$ requires 411.1323.

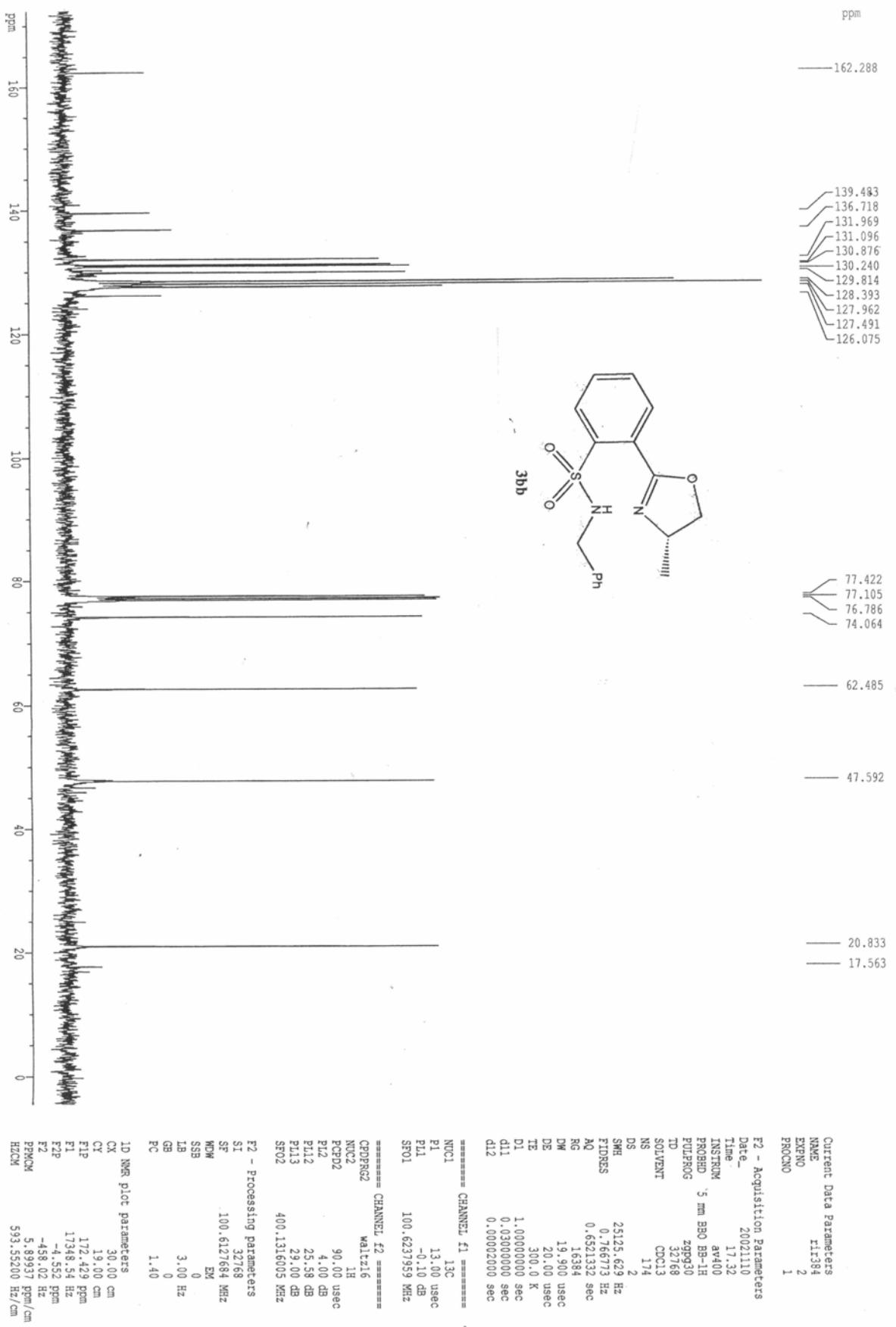
N-[(1S)-1-(chloromethyl)-2-methylpropyl]-2-[(propylamino)sulfonyl]benzamide(13cg):

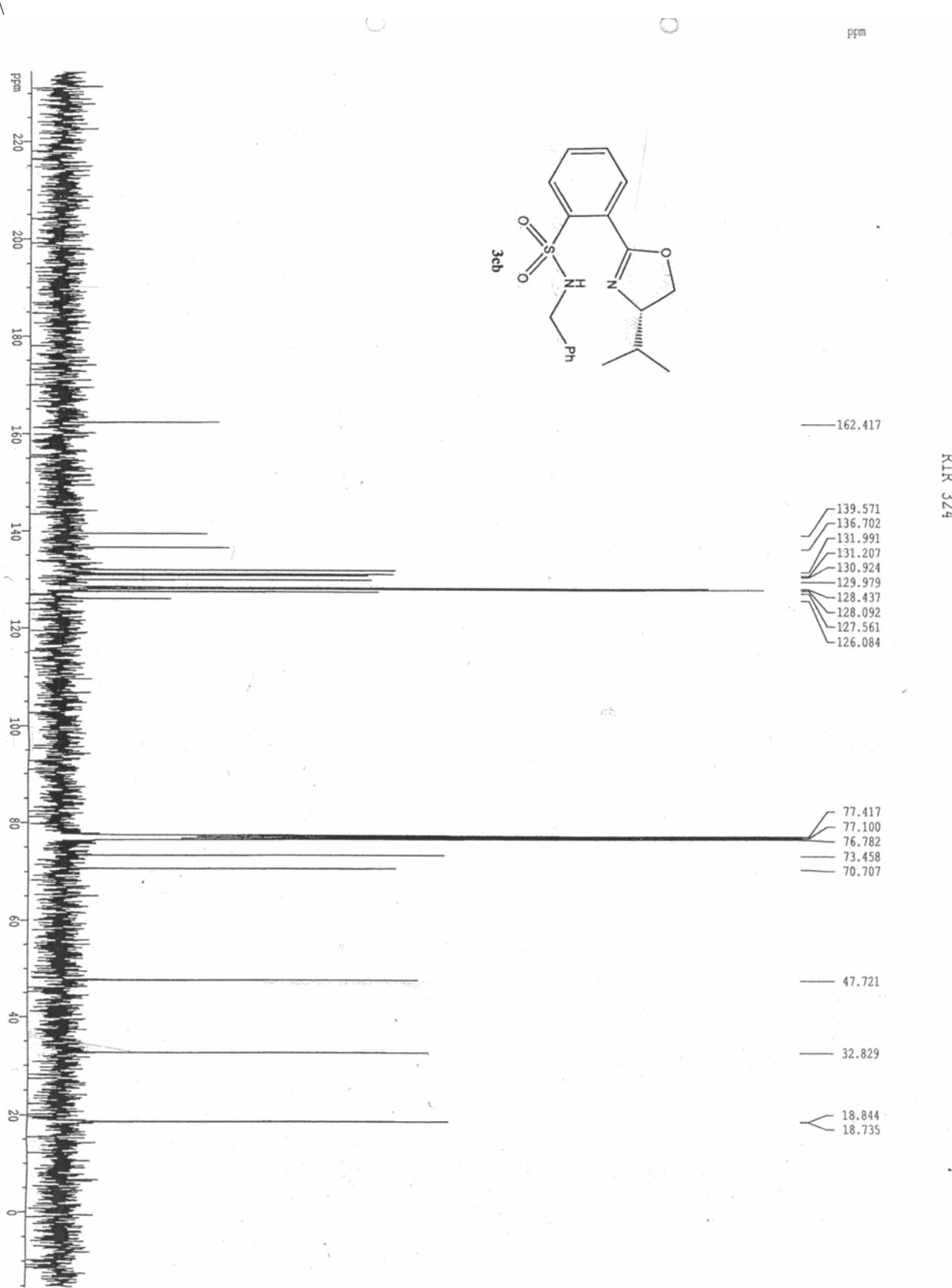
Prepared from **4cg** (0.97 g, 2.96 mmol), triphenylphosphine (0.85 g, 3.25 mmol) and carbon tetrachloride (3 mL, 31.0 mmol) in MeCN (5 mL), stirring for 24 h. Purification by flash chromatography gave **13cg** (0.67 g, 67 %), as a viscous oil which solidified upon prolonged drying to a white solid. R_f 0.15 (CH_2Cl_2). Mp. 122 – 124 °C. $[\alpha]_D = -11.3$ [c 1.2, EtOH]. 1H (400 MHz, $CDCl_3$): $\delta = 8.01$ (dd, $J = 8.0, 1.0$ Hz, 1H, Ar), 7.62-7.50 (m, 3H, Ar), 6.14 (d, $J = 8.9$ Hz, 1H, CONH), 5.95 (t, $J = 6.9$ Hz, 1H, SO_2NH), 4.15-4.11 (m, 1H, NCH), 3.90 (dd, $J = 11.5, 3.8$ Hz, 1H, $CH_{2\alpha}Cl$), 3.86 (dd, $J = 11.5, 4.1$ Hz, 1H, $CH_{2\beta}Cl$), 2.95 (apparent q, $J = 6.9$ Hz, 2H, $NHCH_2Et$), 2.06 (octet, $J = 6.9$ Hz, 1H, $CHMe_2$), 1.57-1.42 (m, 2H, CH_2CH_2Me), 1.11 (d, $J = 6.9$ Hz, 3H, $CHMe$), 1.09 (d, $J = 6.9$ Hz, 3H, $CHMe$), 0.87 (t, $J = 6.7$ Hz, 3H, CH_2Me) ppm. ^{13}C (100 MHz, $CDCl_3$): $\delta = 169.5, 138.4, 135.5, 132.6, 130.4, 129.6, 128.2, 56.0, 46.4, 45.6, 29.4, 22.9, 19.4, 19.0, 11.3$ ppm. IR (CH_2Cl_2 solution): $\nu = 3414, 3256, 2876, 1660, 1595, 1573, 1524, 1342, 1175, 1126, 1069$, MS (EI+): m/z Found $[M+H]^+$ 347.1196, $C_{15}H_{24}^{37}ClN_2O_3S$ requires 347.1191.

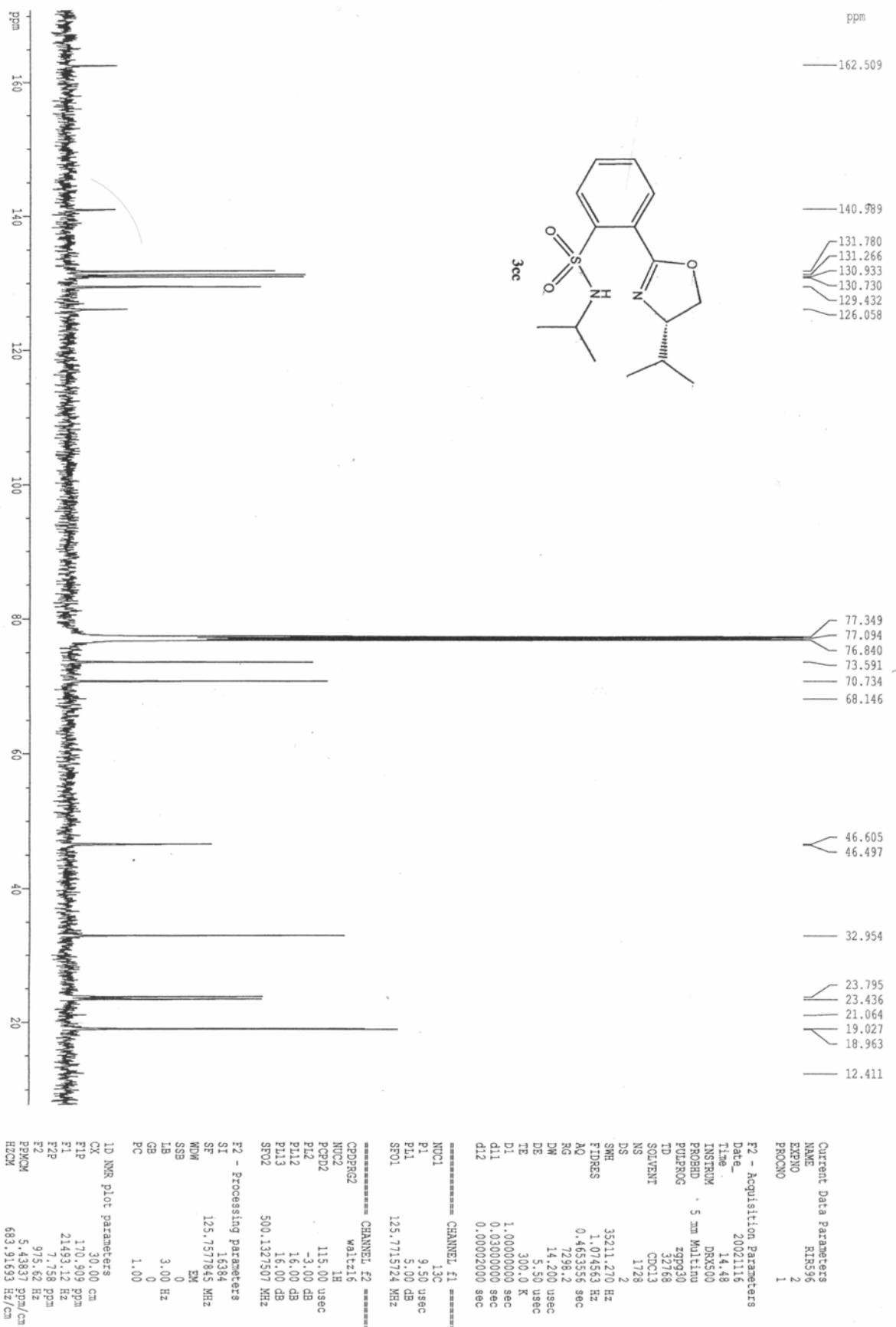

N-[(1S)-1-(chloromethyl)-2-methylpropyl]-2-[(tert-butylamino)sulfonyl]benzamide(13ch):

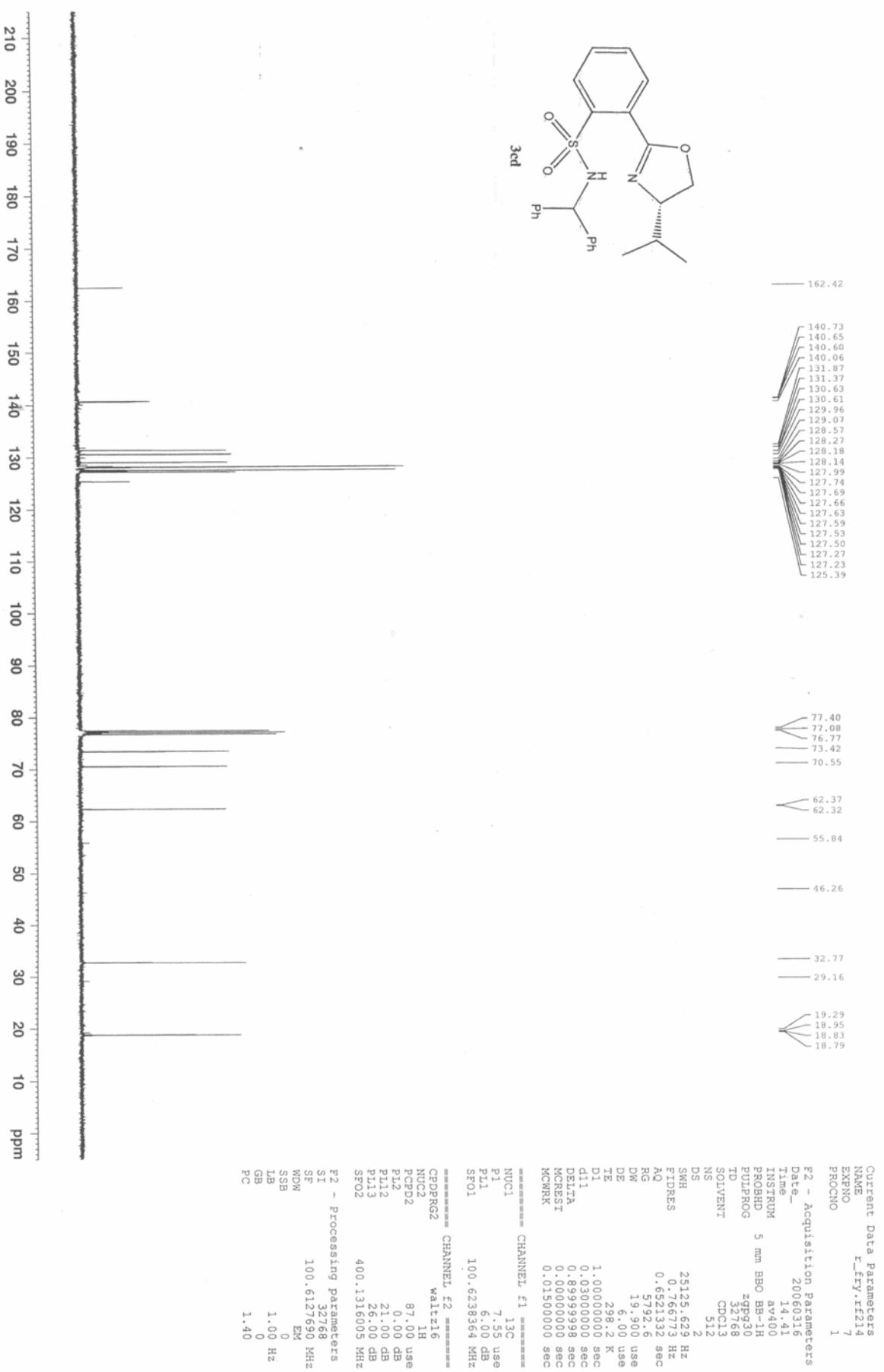

Prepared from **4ch** (0.14 g, 0.4 mmol), triphenylphosphine (0.11 g, 0.4 mmol) and carbon tetrachloride (3 mL, 31.0 mmol) in MeCN (5 mL), stirring for 24 h. Purification by flash chromatography gave **13ch** (0.09 g, 61 %) as a white solid. R_f 0.22 (CH_2Cl_2). $[\alpha]_D = -3.8$ [c 1.2, EtOH]. 1H (400 MHz, $CDCl_3$): $\delta = 8.05$ (dd, $J = 8.0, 1.0$ Hz, 1H, Ar), 7.59-7.54 (m, 3H, Ar), 6.21 (d, $J = 9.1$ Hz, 1H, CONH), 6.10 (s, 1H, SO_2NH), 4.17-4.09 (m, 1H, NCH), 3.86 (dd, $J = 11.5, 3.7$ Hz, 1H, $CH_{2\alpha}Cl$), 3.80 (dd, $J = 11.5, 4.1$ Hz, 1H, $CH_{2\beta}Cl$), 2.04 (octet, $J = 6.7$, 1H, $CHMe_2$), 1.25 (s, 9H, 3Bu), 1.07 (d, $J = 6.7$ Hz, 3H, $CHMe$), 1.05 (d, $J = 6.7$, 3H, $CHMe$) ppm. ^{13}C (100 MHz, $CDCl_3$): $\delta = 169.7, 142.0, 135.0, 132.1, 130.5, 128.6, 128.2, 56.0, 55.0, 46.4, 30.2, 29.3, 19.3, 19.0$ ppm. IR (solid state): $\nu = 3365, 1645, 1336, 1472, 1443, 1392, 1364, 1313, 1198, 1154, 1128, 1071, 985, 790, 764, 731, 681$ cm^{-1} . MS (Cl+): m/z Found $[M+H]^+$ 361.1300, $C_{16}H_{26}^{37}ClN_2O_3S$ requires 361.1292.

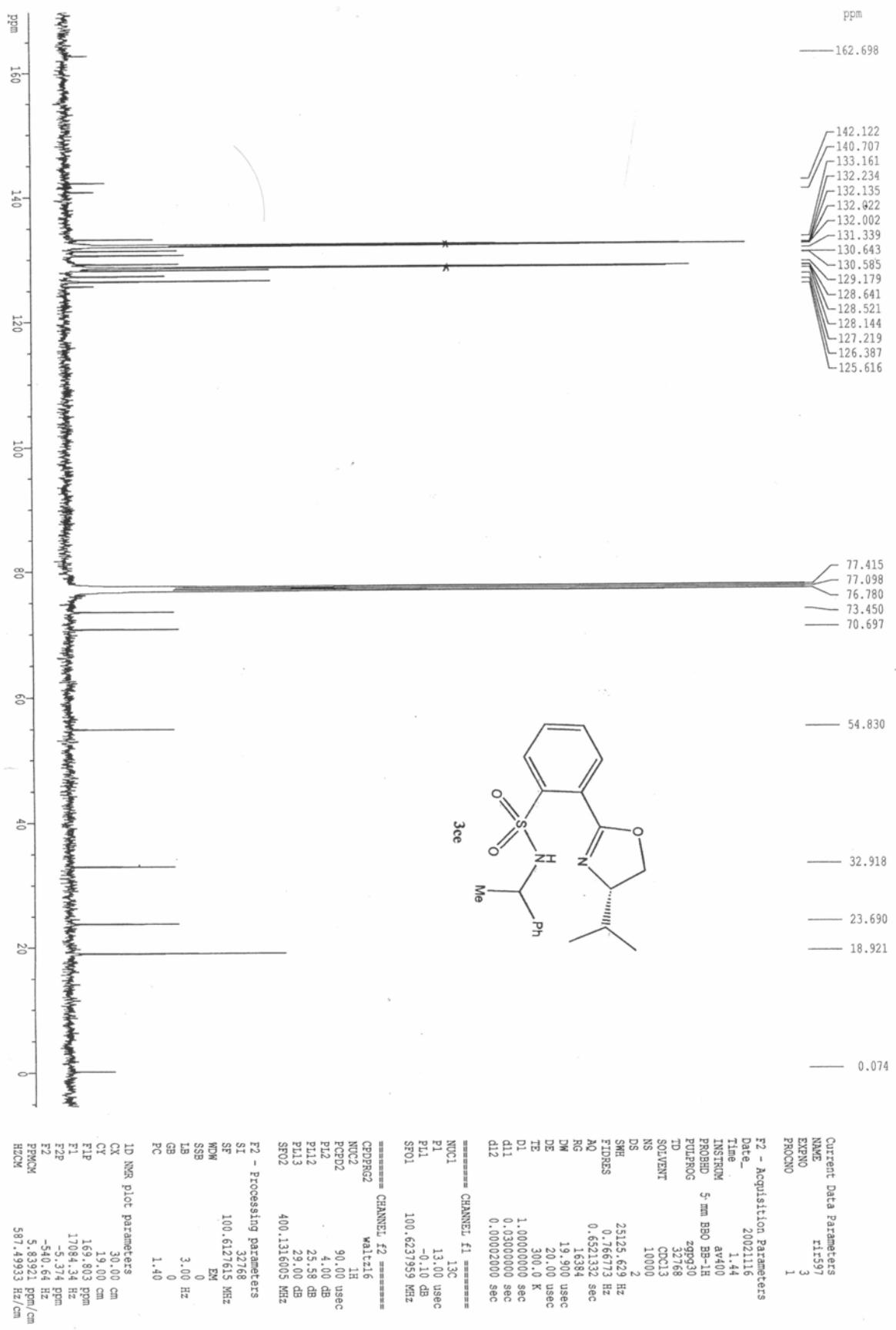
***N*-(1*S*)-1-benzyl-2-chloroethyl]- 2-[(benzylamino)sulfonyl]benzamide (13db):**

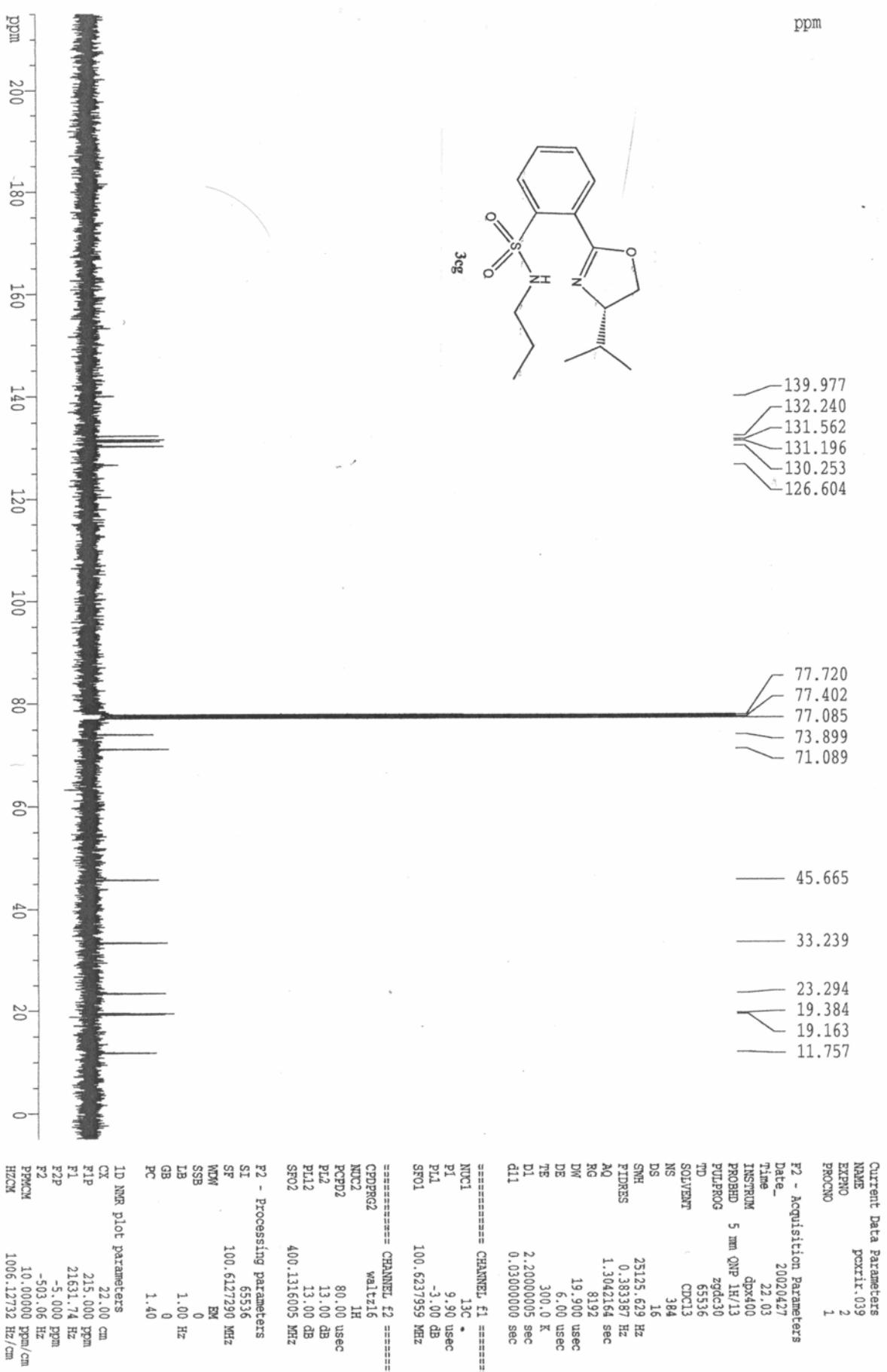

Prepared from **4db** (2.47 g, 5.8 mmol), triphenylphosphine (1.57 g, 6.0 mmol) and carbon tetrachloride (3 mL, 31.0 mmol) in MeCN (20 mL), stirring for 12 h. Purification by flash chromatography gave **13db** (1.83 g, 71 %) as a foamy white solid. R_f 0.23 (CH₂Cl₂). Mp. 48-50 °C. $[\alpha]_D = -14.9$ [c 1.0, EtOH]. ¹H (400 MHz, CDCl₃): δ = 7.90 (dd, *J* = 8.0, 1.0, 1H, Ar), 7.57-7.47 (m, 2H, Ar), 7.38 (dd, *J* = 8.0, 1.0 Hz, 1H, Ar), 7.33-7.20 (m, 11H, Ar), 6.38 (t, *J* = 6.4 Hz, 1H, SO₂NH), 6.24 (d, *J* = 8.6 Hz, 1H, CONH), 4.62 (m, 1H, NCH), 4.14 (dd, *J* = 14.0, 6.4 Hz, 1H, NCH₂Ph), *overlapped by* 4.13 (dd, *J* = 14.0, 6.4 Hz, 1H, NCH₂Ph), 3.76 (dd, *J* = 11.3, 4.4 Hz, 1H, CH₂Cl), 3.60 (dd, *J* = 11.3, 3.5 Hz, 1H, CH₂Cl), 3.08 (dd, *J* = 13.7, 6.3, 1H, CH₂Ph), 3.03 (dd, *J* = 13.7, 8.3 Hz, 1H, CH₂Ph) ppm. ¹³C (100 MHz, CDCl₃): δ = 169.2, 138.3, 136.6, 136.3, 135.0, 132.6, 130.4, 129.5, 129.4, 128.9, 128.6, 128.0, 128.0, 127.7, 127.2, 51.5, 47.8, 46.1, 37.1 ppm. IR (solid state): ν = 1649, 1526, 1497, 1455, 1438, 1331, 1164, 1129, 1064, 1029, 741, 698 cm⁻¹. MS (FAB+): *m/z* Found [M+H]⁺ 443.1160, C₂₃H₂₄ClN₂O₃S requires 443.1196. Anal. Calc. for C₂₃H₂₃ClN₂O₃S: C, 62.4; H, 5.2; N, 6.3 %. Found: C, 62.1; H, 5.2; N, 6.2 %.


CCDC - 604476-604480 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: (internat.) +44-1223/336-033; E-mail: deposit@ccdc.cam.ac.uk].

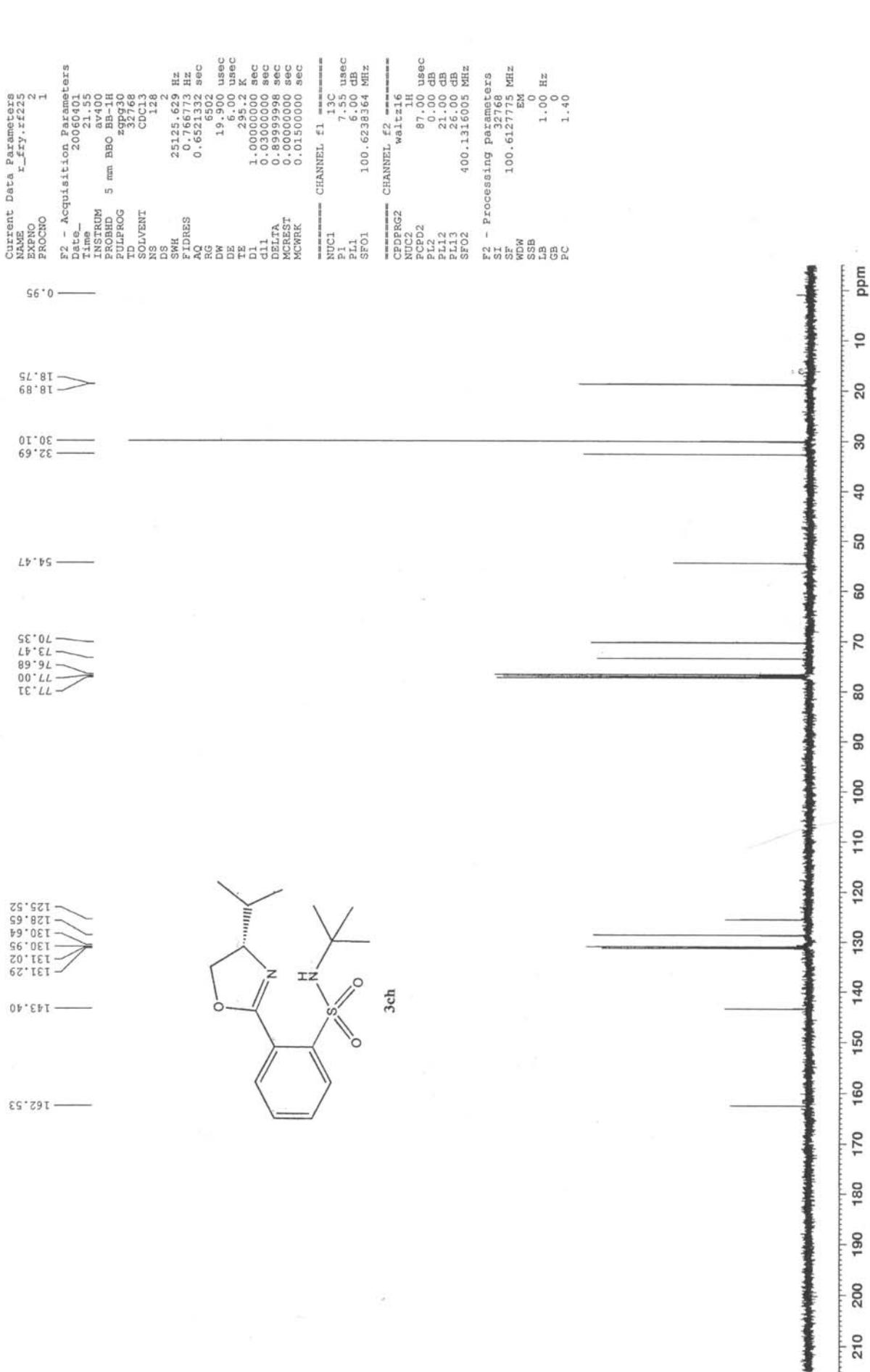



RIR 384





UserID r_fry SampleID rf214 SupervisorID swood LabPhone No. 13538 Slot Number 51



User/Group Robinson/Pfaltz
RIR 446

UserID r_fry SampleID rf225 SupervisorID swood Lab Phone No. 13538 Slot Number 1

Carbon:RIR 360

ppm

Current Data Parameters
NAME rir360
EXPNO 2
PROCNO 1

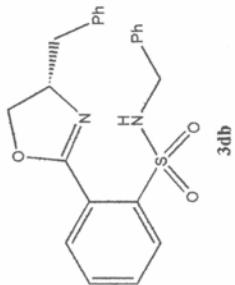
F2 - Acquisition Parameters

Date 20020116
Time 14:28
INSTRUM DRA500
PROBID 5 mm Multinu
PULPROG zgrg930
TD 32768
SOLVENT CDCl3
NS 89
DS 2
SWH 35211.210 Hz
FIDRES 1.074563 Hz
AQ 0.165356 sec
RG 7298.2
DW 14.200 usec
DE 5.50 usec
TE 300.0 K
D1 1.000000 sec
d11 0.000000 sec
d12 0.00002000 sec

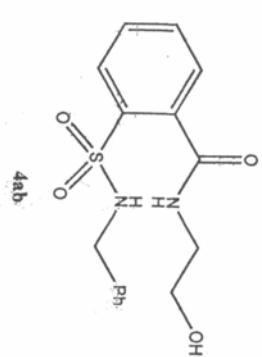
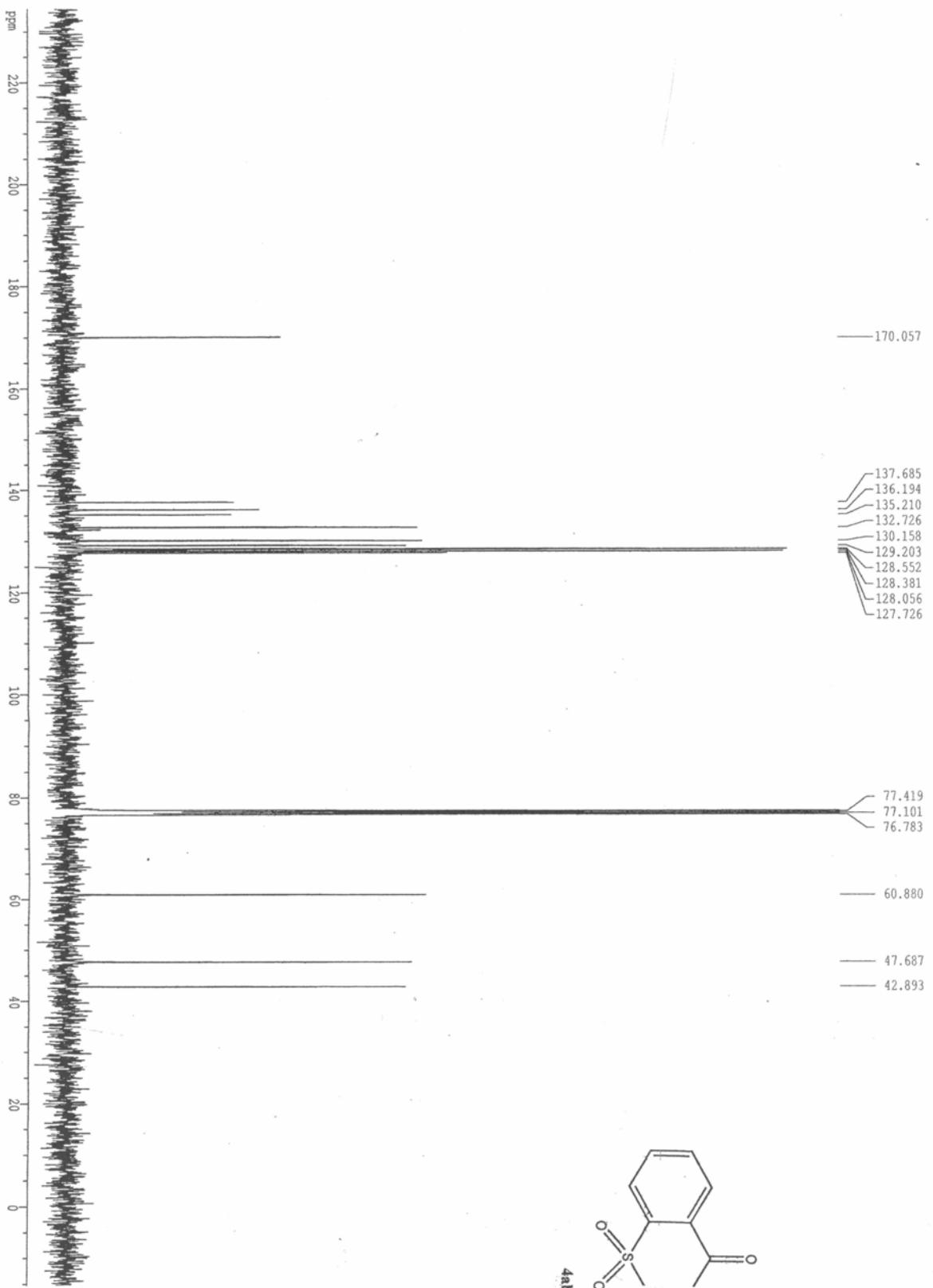
===== CHANNEL f1 =====

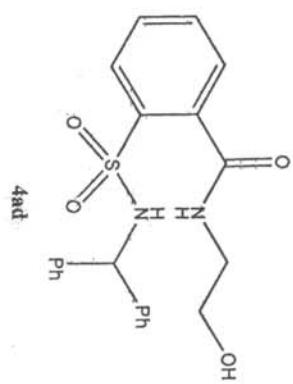
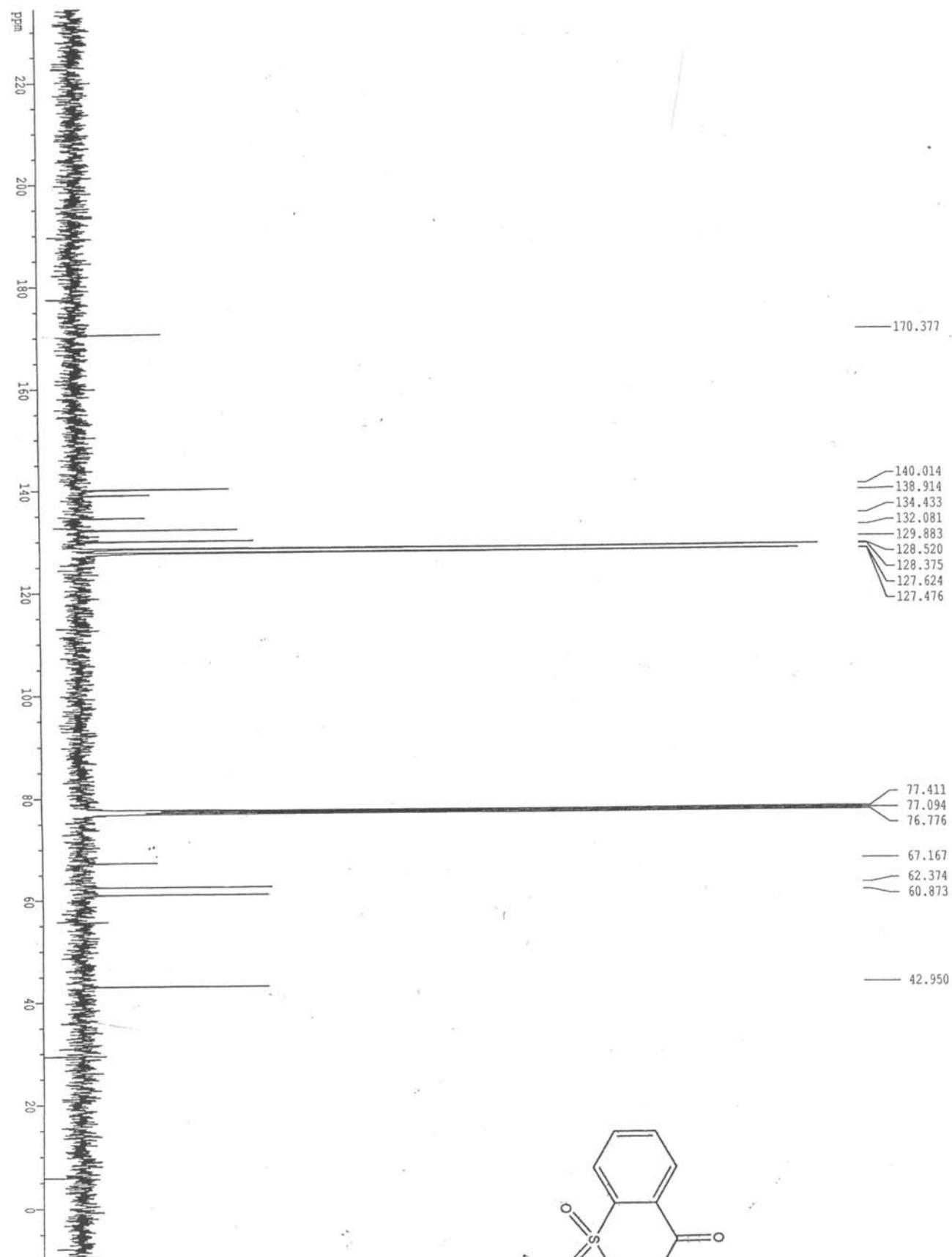
NUC1 13C
P1 9.50 usec
PL1 5.00 dB
SF01 125.7715724 MHz

===== CHANNEL f2 =====

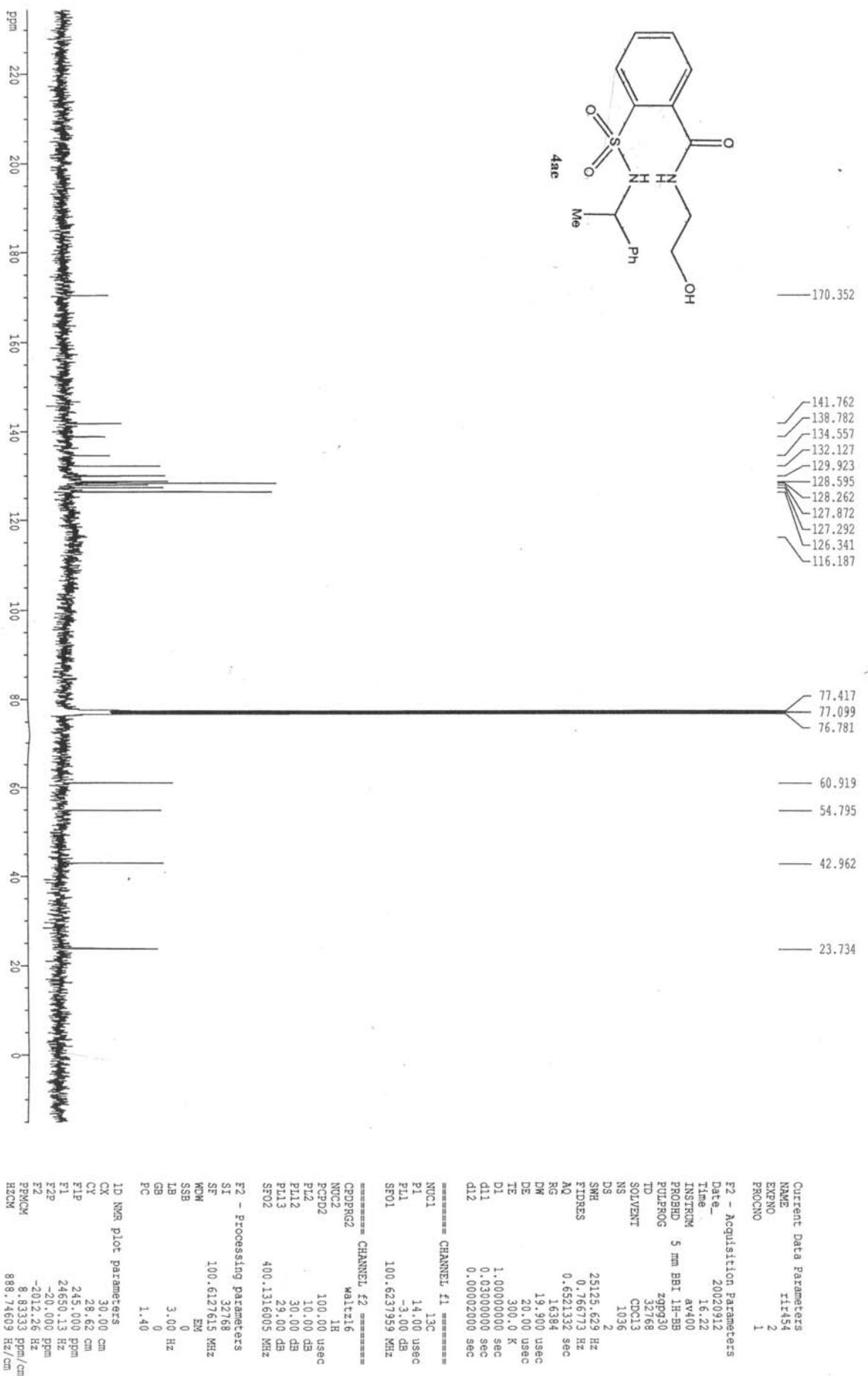

CDPRG2
NUC2 1H
P1 115.00 usec
P12 -3.00 dB
P112 16.00 dB
P113 16.00 dB
SF02 500.1327507 MHz

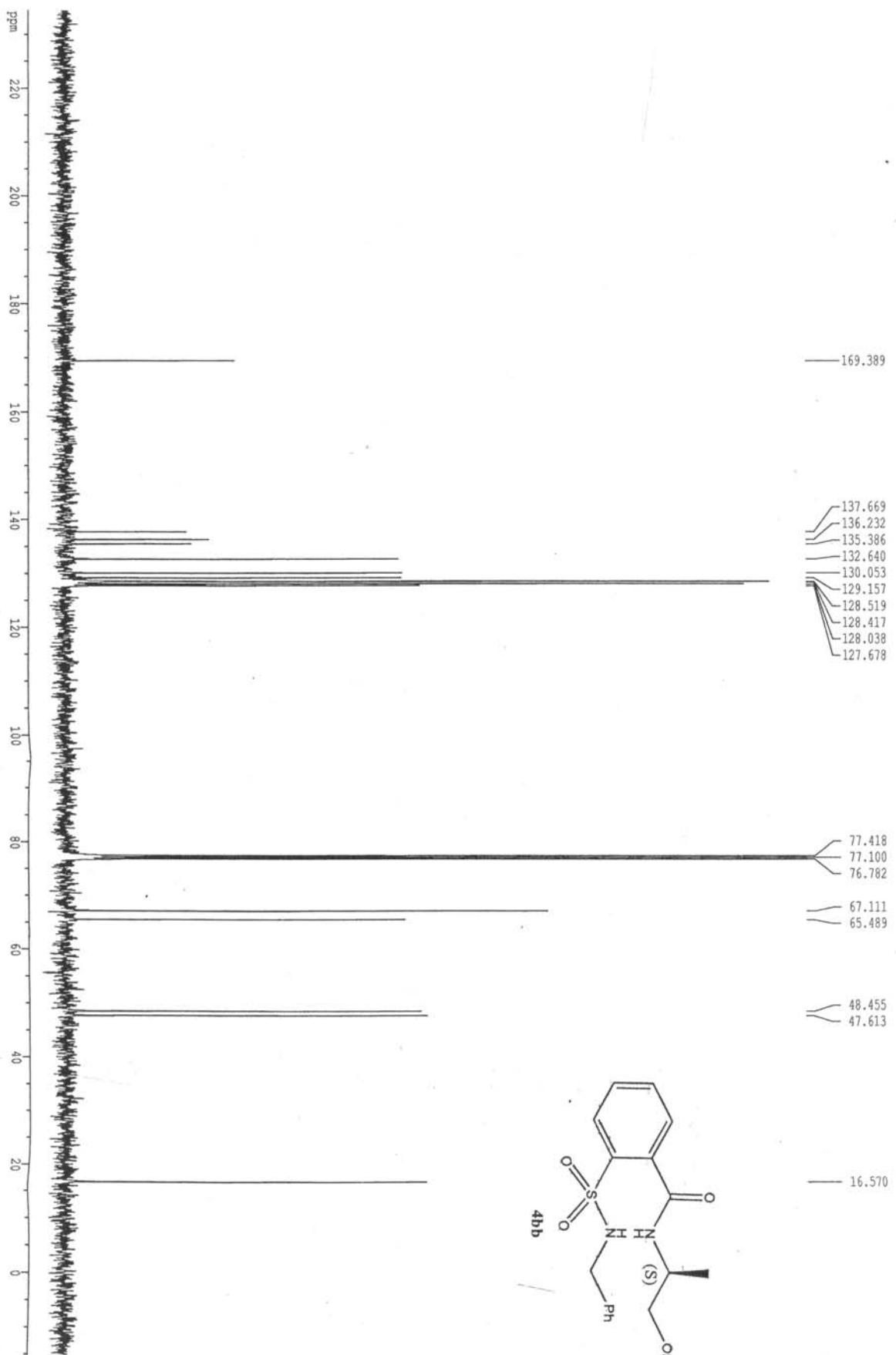
F2 - Processing parameters



SI 16384
SF 125.7715745 MHz
MW EM
SSB 0
LB 3.00 Hz
GB 0
PC 1.00

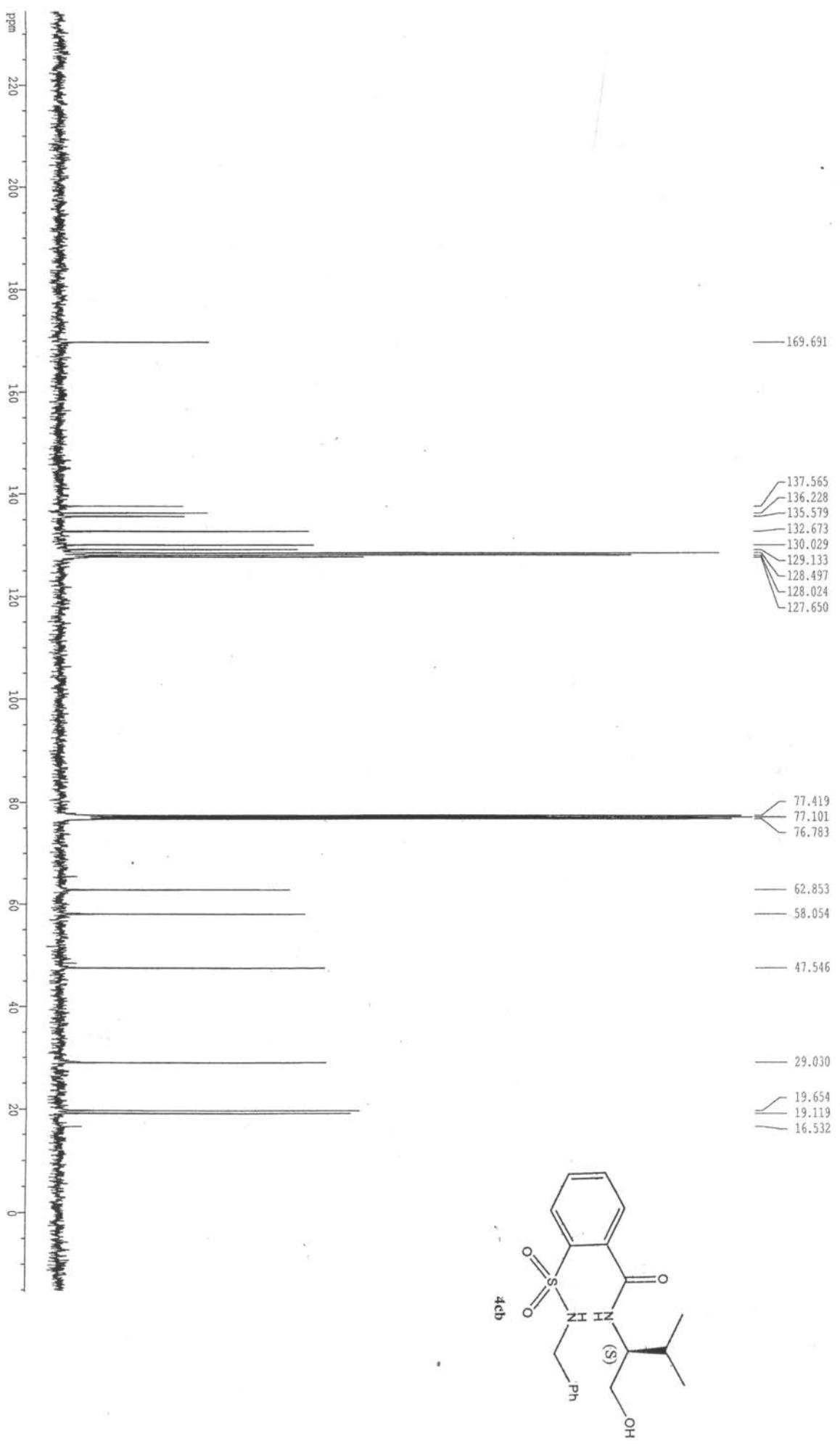


1D NMR Plot parameters

CX 30.00 ppm
F1P 245.000 ppm
F1 30810.66 Hz
F2P -20.000 ppm
F2 -2515.16 Hz
PPMCM 8.83333 ppm/cm
HZCM 1110.86035 Hz/cm

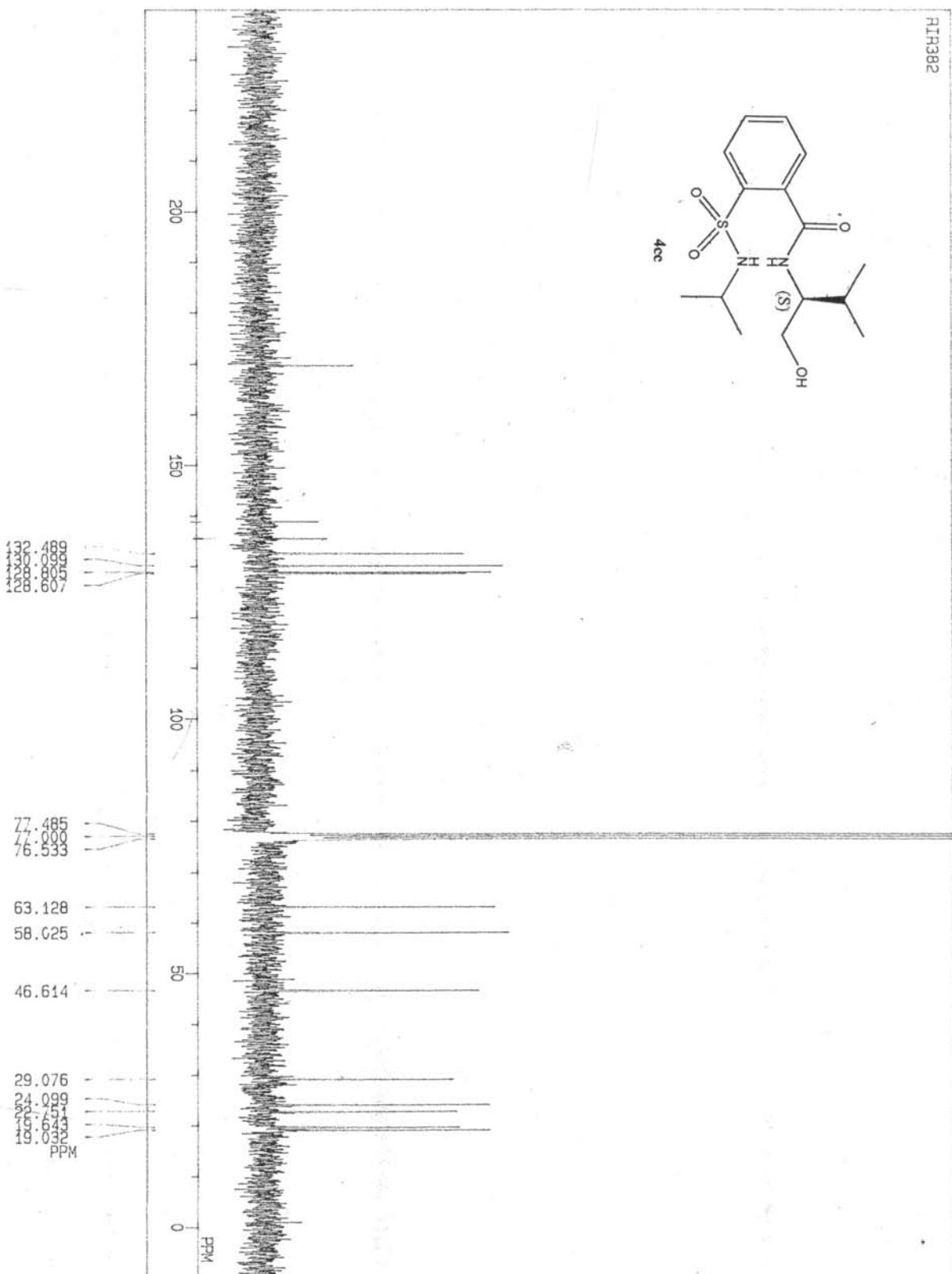

RIR 312

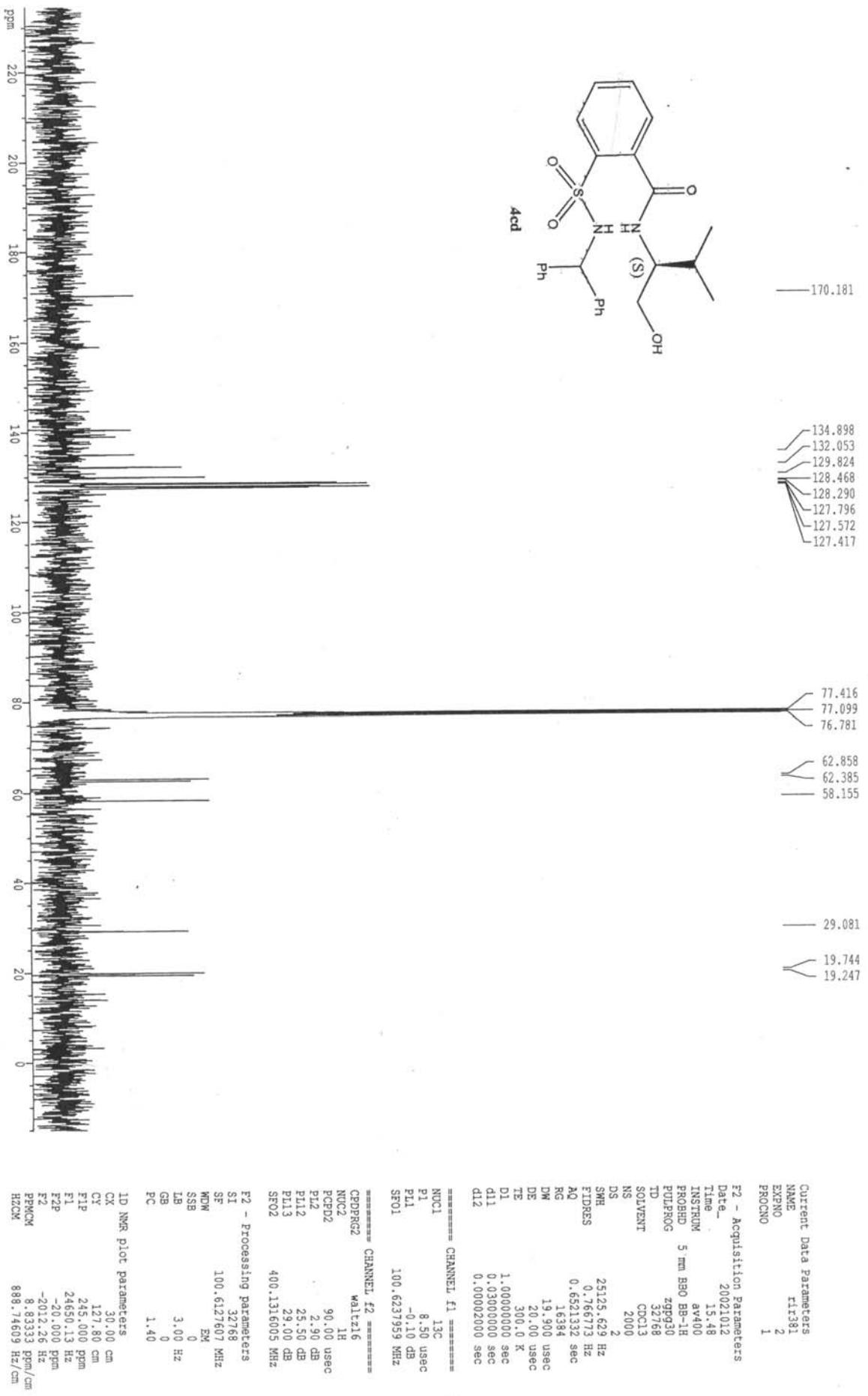


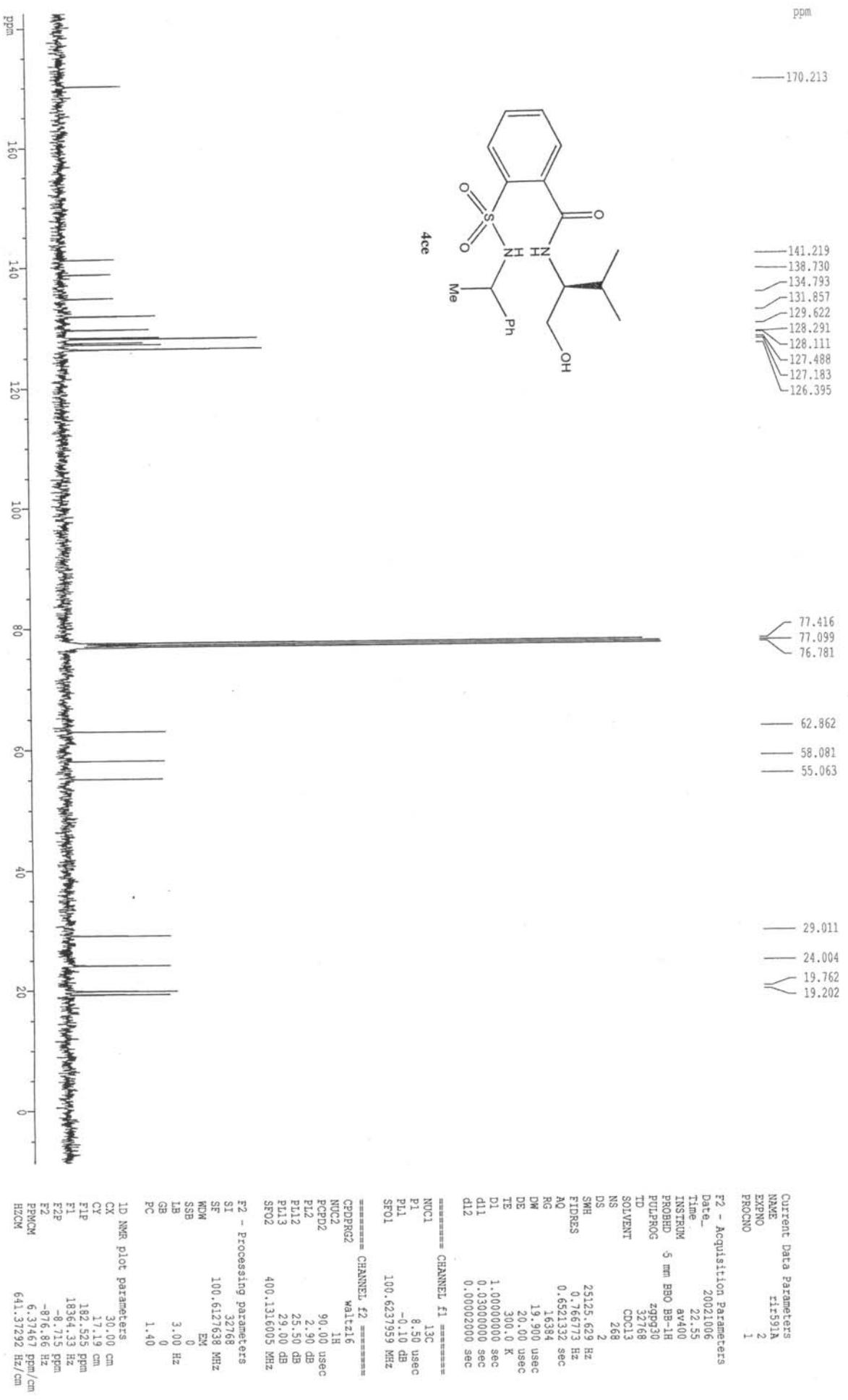
RIR 358

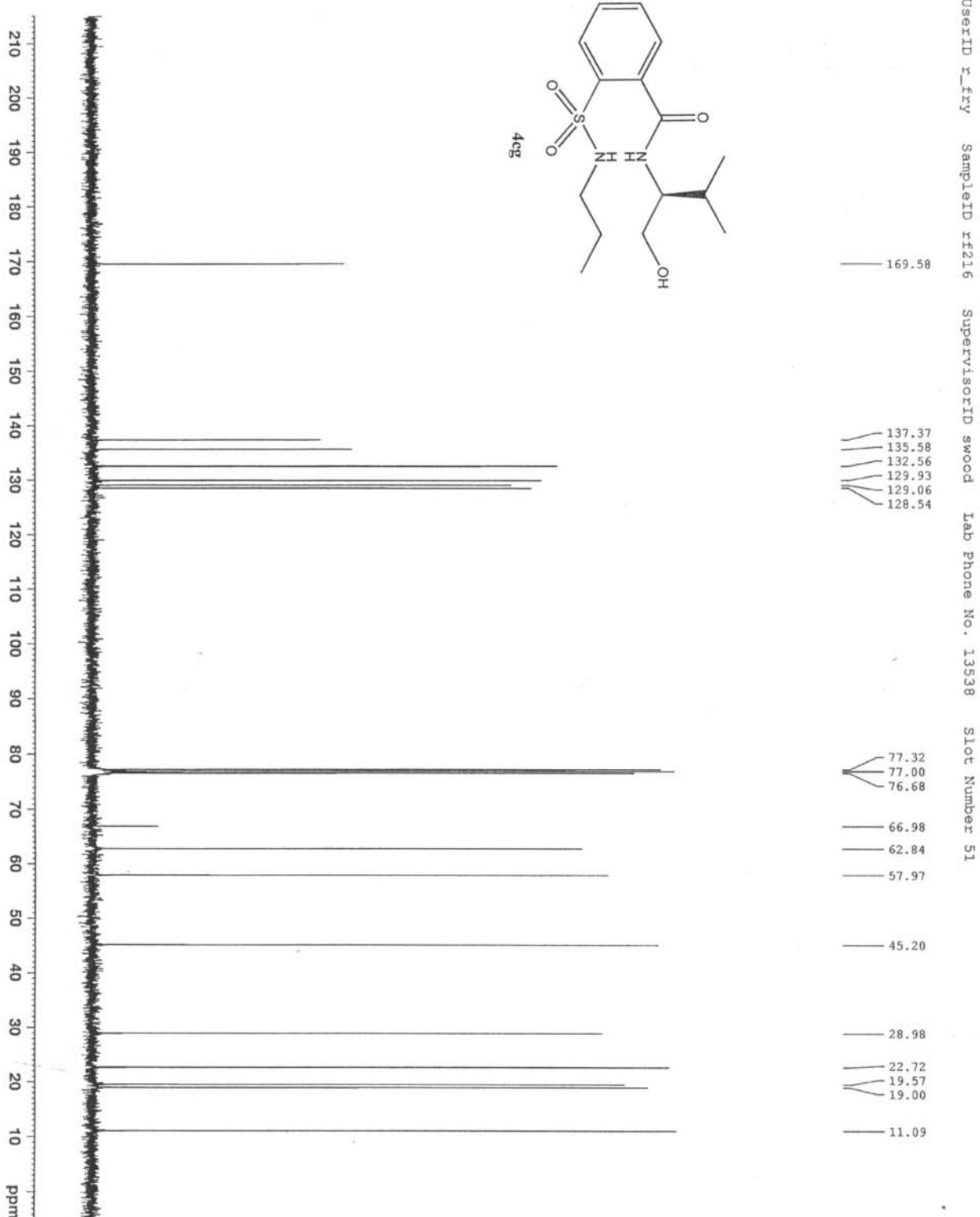

RIR 454

RIR 351


RIR 317 fr 24-34


RIR382

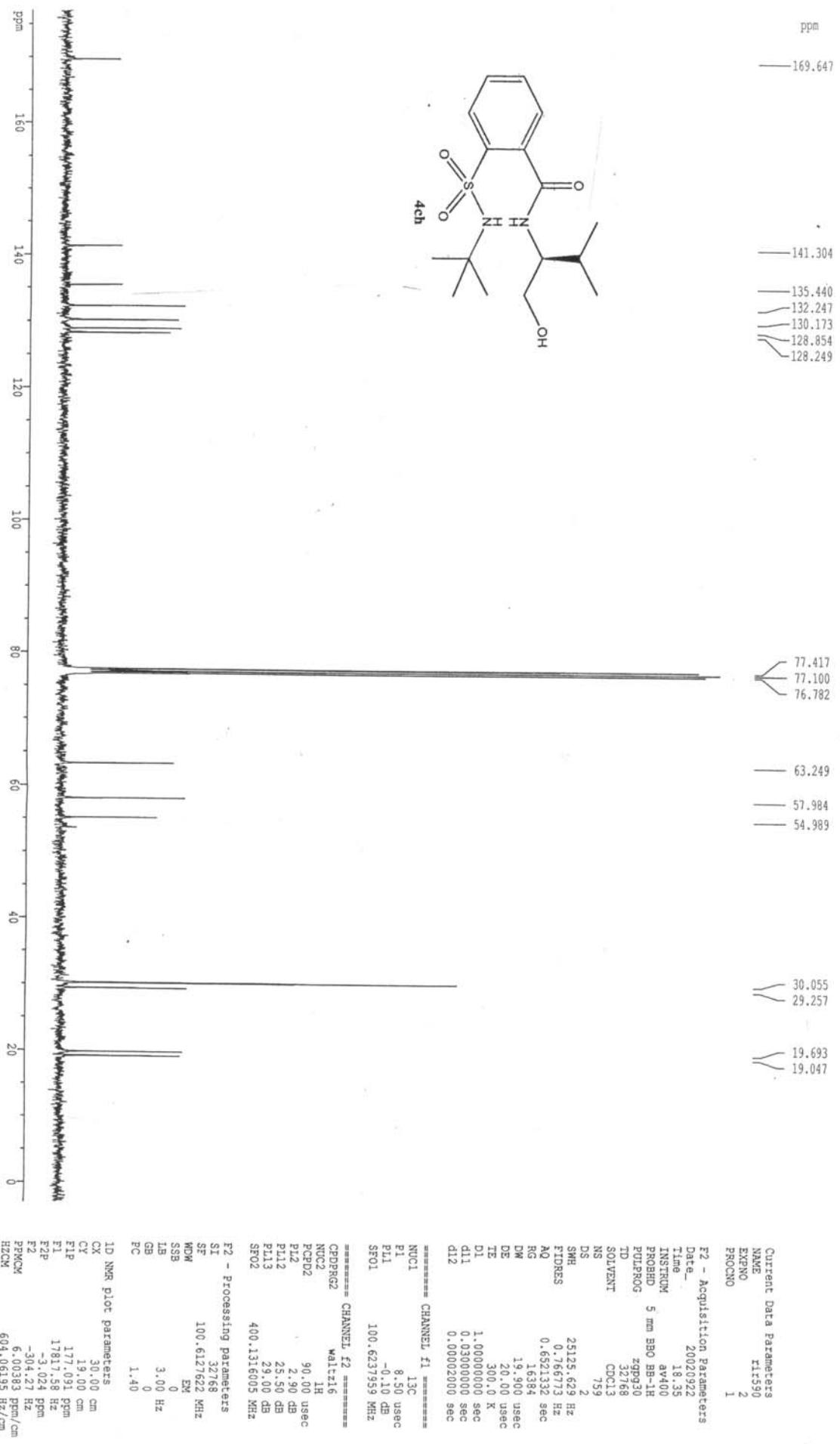

1170


13-OCT-02 20:39:15

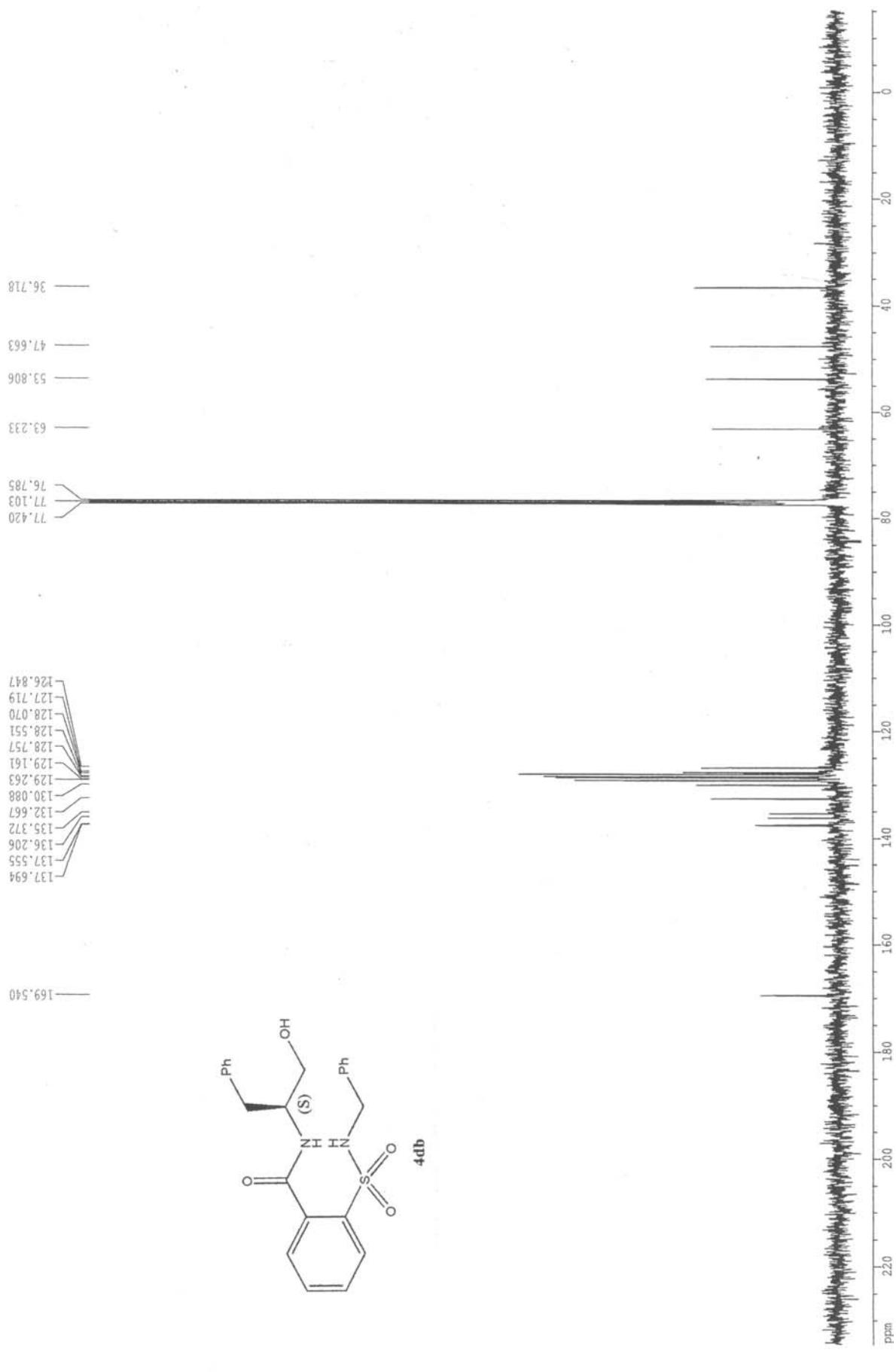
OFR	67.80	MHz
OBSET	135.00	KHz
OBFIN	5200.0	Hz
POINT	32768	
FREQJ	20000.0	Hz
SCANS	1197	
ACQTM	0.819	sec
PC	1.181	sec
PM1	3.5	us
IRNUC	1H	
SLVNT	CDCL3	
EXREF	77.00	ppm
BF	1.50	Hz
RGAIN	28	
OPERATOR	:	

Current Data Parameters

NAME


r_firy_rf216

EXPNO


1

PROCHD

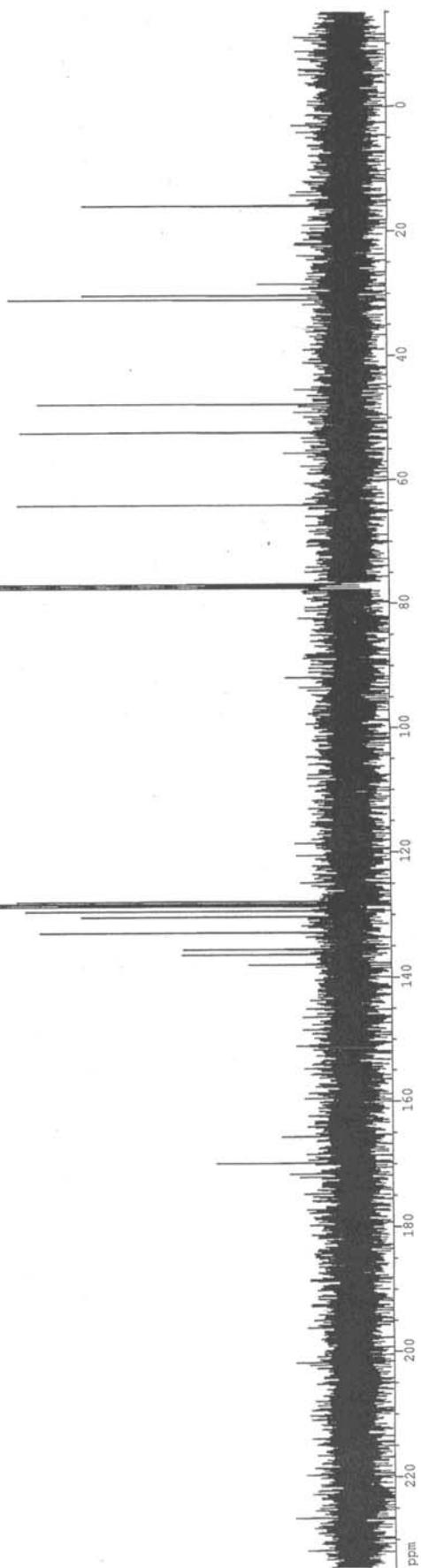
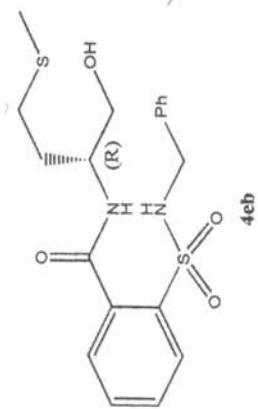
RIR 590

RIR 318

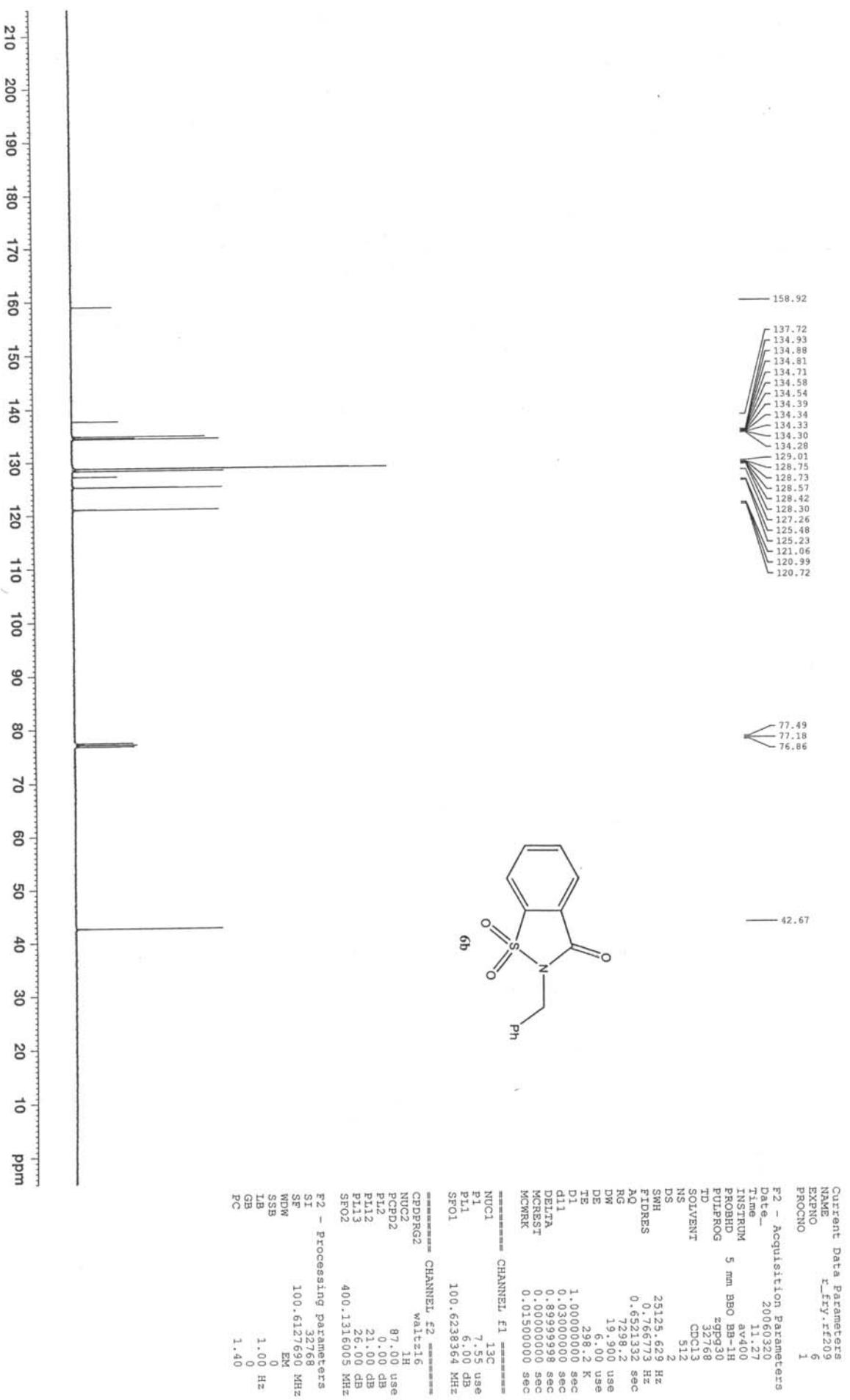
RIR 452

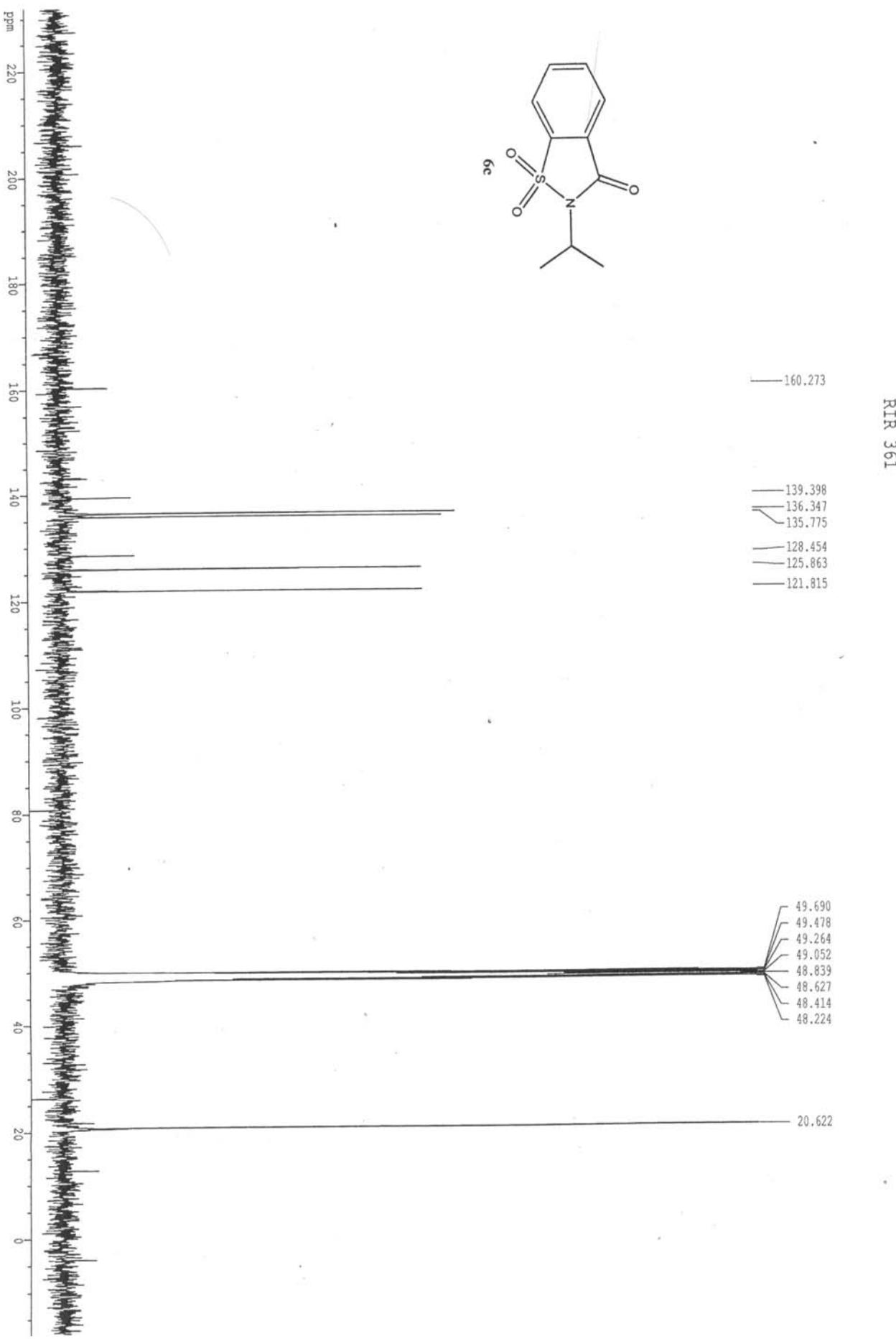
ppm

169.775

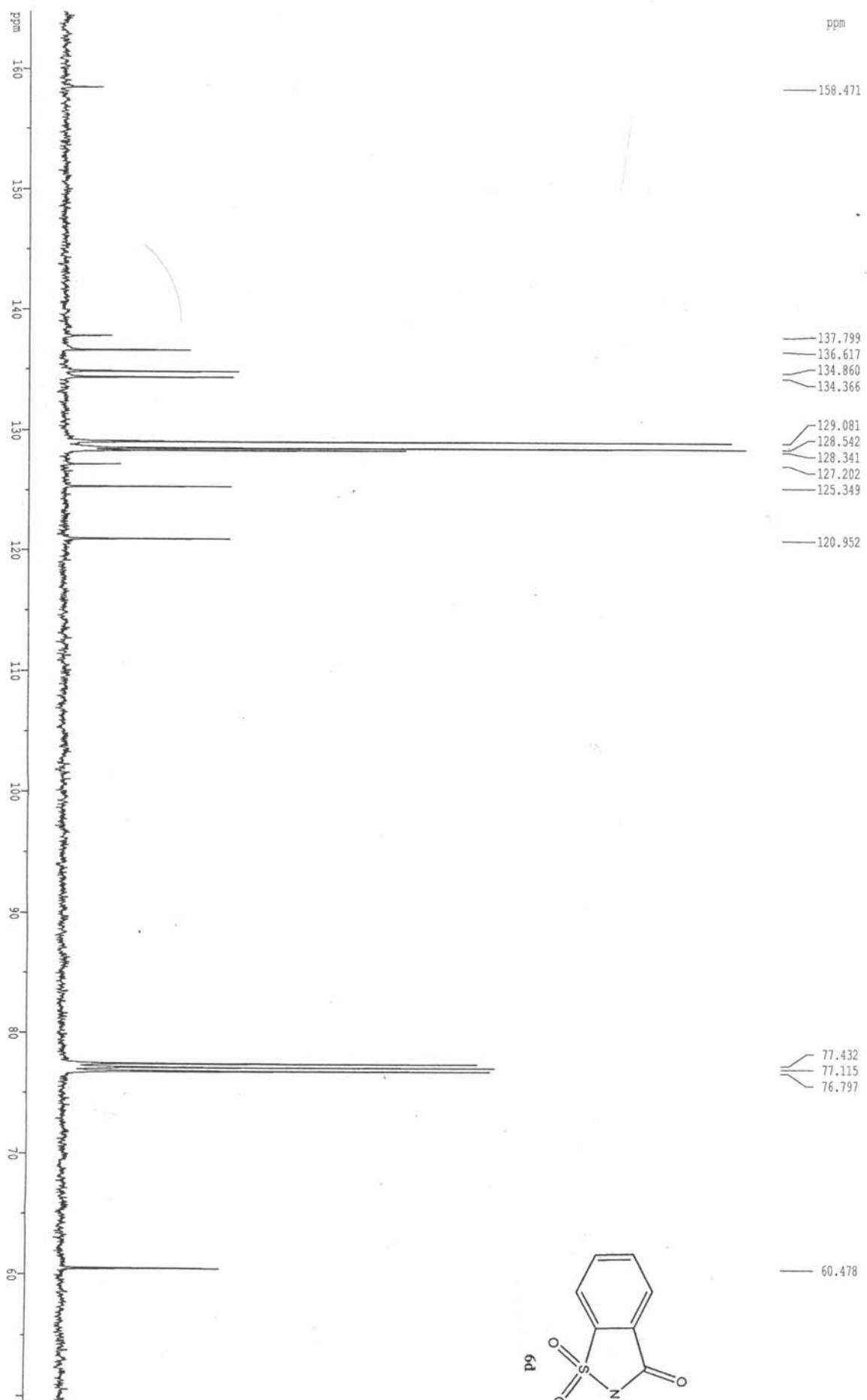


137.839

136.217
135.401
132.695
130.206
129.296
128.572
128.230
128.101
127.742

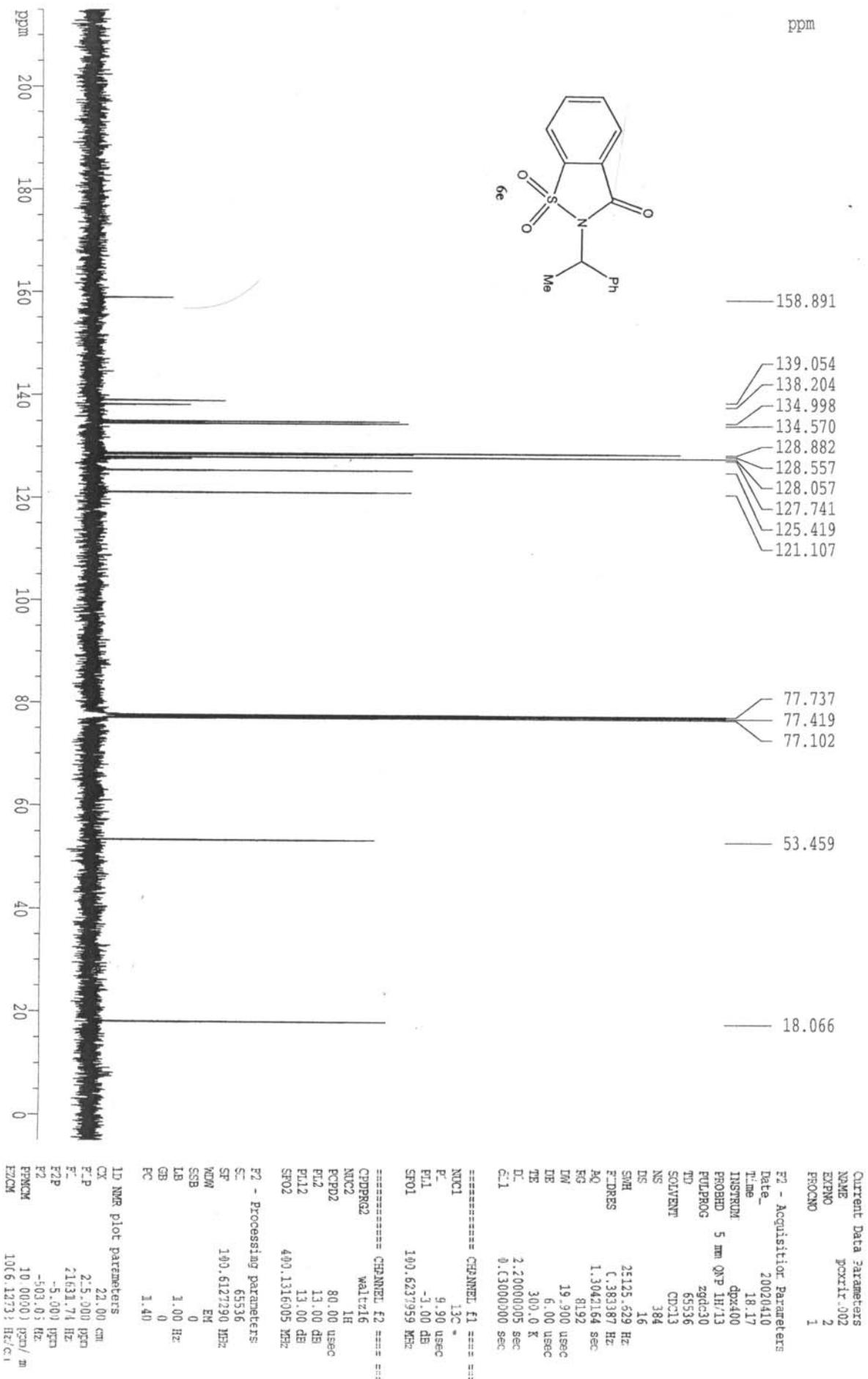

77.419
77.101
76.784


30.864
30.130
28.320

15.712



UserID r_fry SampleID rf209 SupervisorID swood Lab Phone No. 13538 Slot Number 1



RIR 353

User/Group Robinson/Pfaltz

UserID r_fry SampleID rf017 SupervisorID swood Lab Phone No. 13538 Slot Number 54

Current Data Parameters
NAME r_fry_rf017
EXPTO 10
PRONO 1

F2 - Acquisition Parameters

Date 20060216

Time 10:42

INSTRUM av00

PROBHD 5 mm BBO BB-1H

PULPROG zgpp30

TD 32768

SOLVENT CDCl3

NS 512

DS 2

SWH 25125.639 Hz

TDRES 0.766713 Hz

AQ 0.622132 sec

RG 10321.3

DW 19.900 usec

DE 6.00 usec

TE 1.00000082 K

D1 0.0300000 sec

DL 0.8999998 sec

DELTA 0.0000000 sec

MCRST 0.0150000 sec

MCRK 0.0150000 sec

NUCL 13C

CHANNEL f1

P1 7.55 usec

P11 6.00 dB

P111 100.623836 MHz

CPDPRG2 CHANNEL f2

NUC2 1H

CPDPD2 87.00 usec

P12 0.00 dB

P112 21.00 dB

P113 26.00 dB

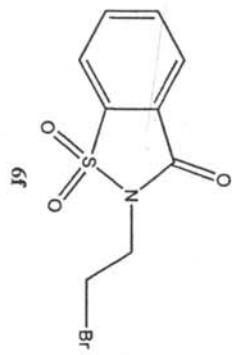
FO2 400.1316005 MHz

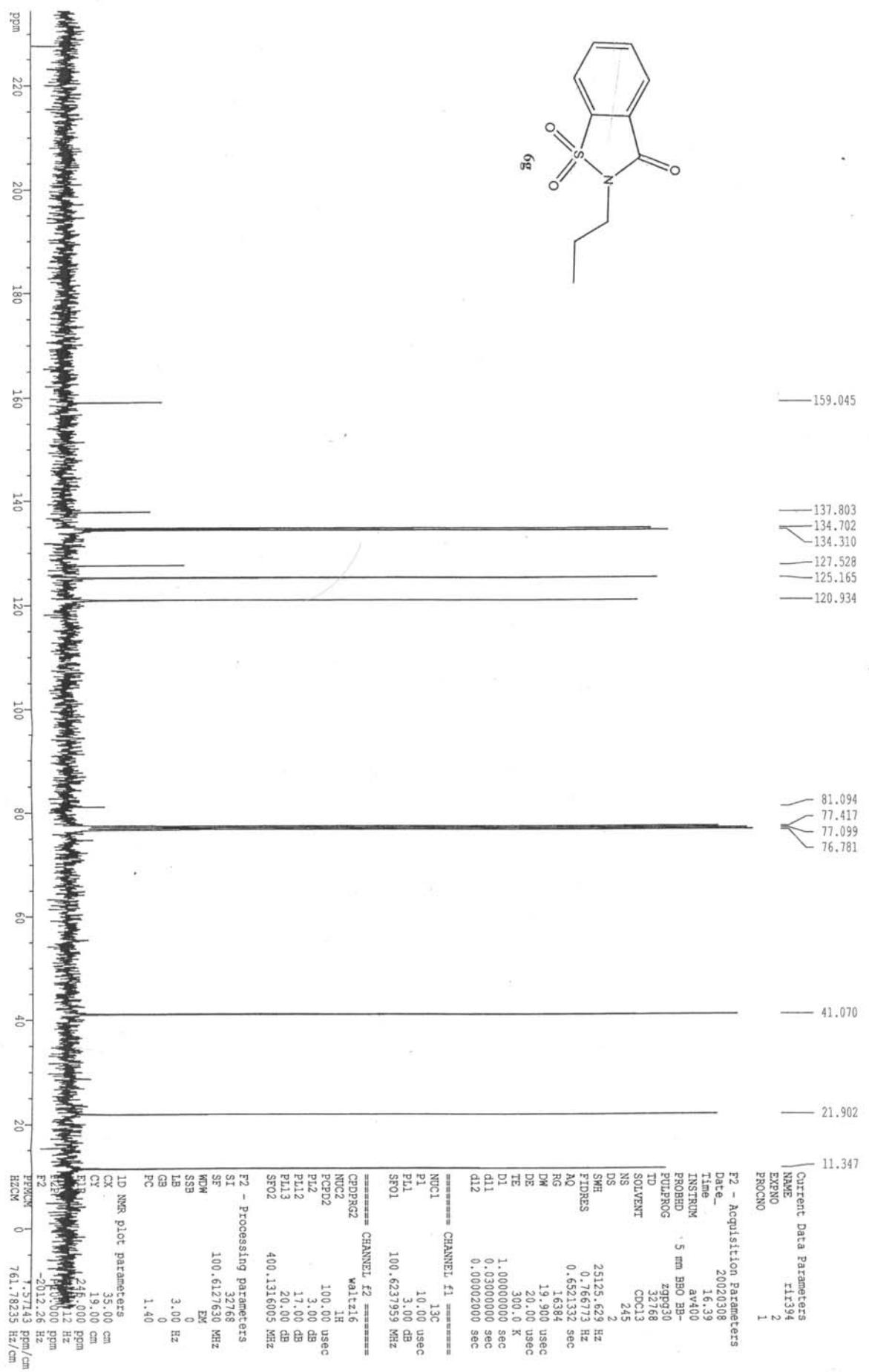
F2 - Processing parameters

SI 32768

SP 100.612778 MHz

WDM 0


EM 0


SSB 1.00 Hz

ZB 1.00

GB 1.40

PC

RIAR5908

13C NMR

25-SEP-02 18:23:50

DFILE: G3C

DBNUC: 13C

EXMOD: BCK

OFR: 67.80 MHz

OFFSET: 135.00 kHz

OBFIN: 5200.0 Hz

POINT: 32768

FREQU: 20000.0 Hz

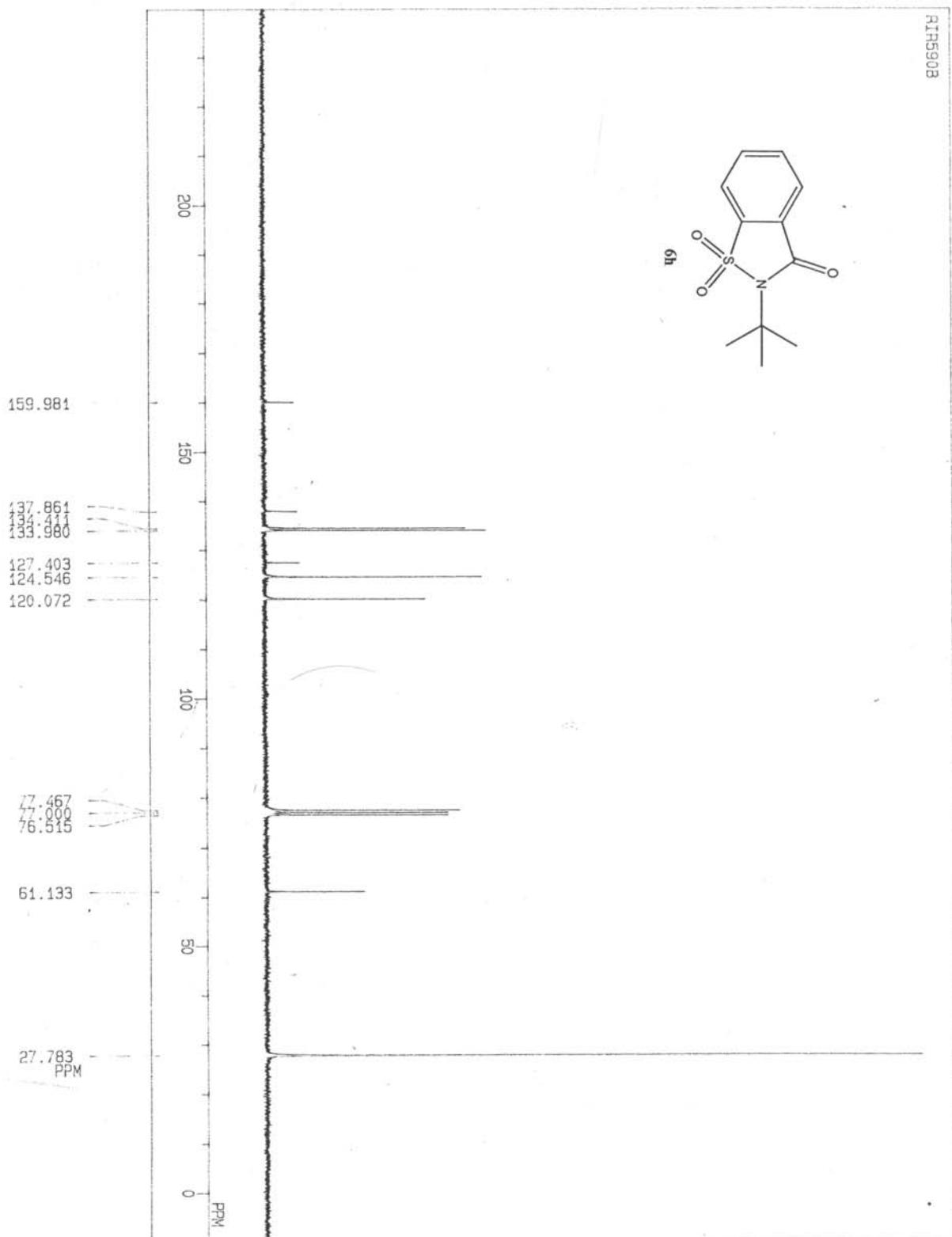
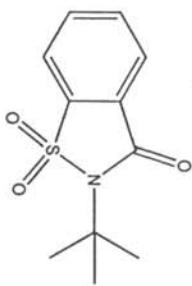
SCANS: 4807

ACQTM: 0.819 sec

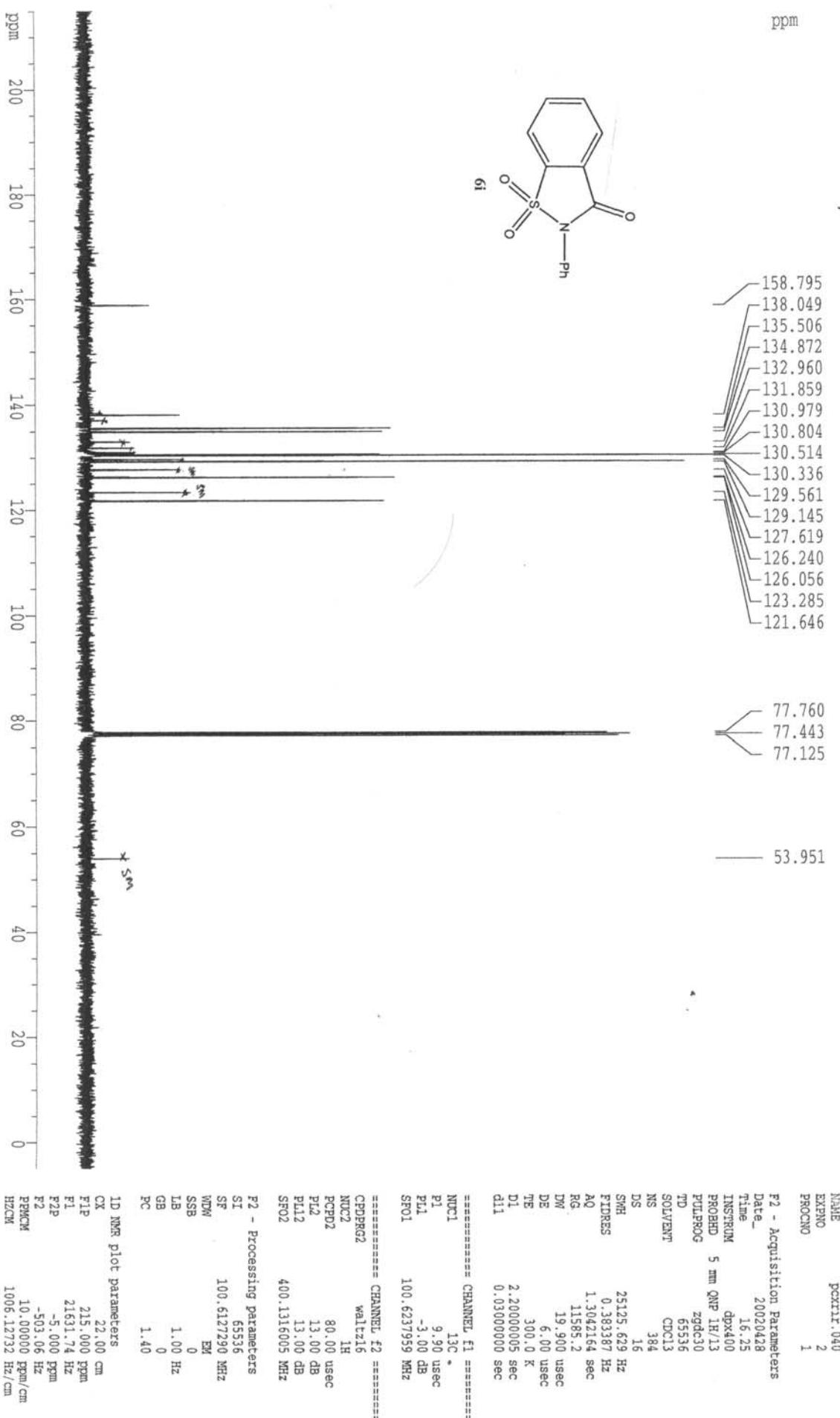
PD: 1.181 sec

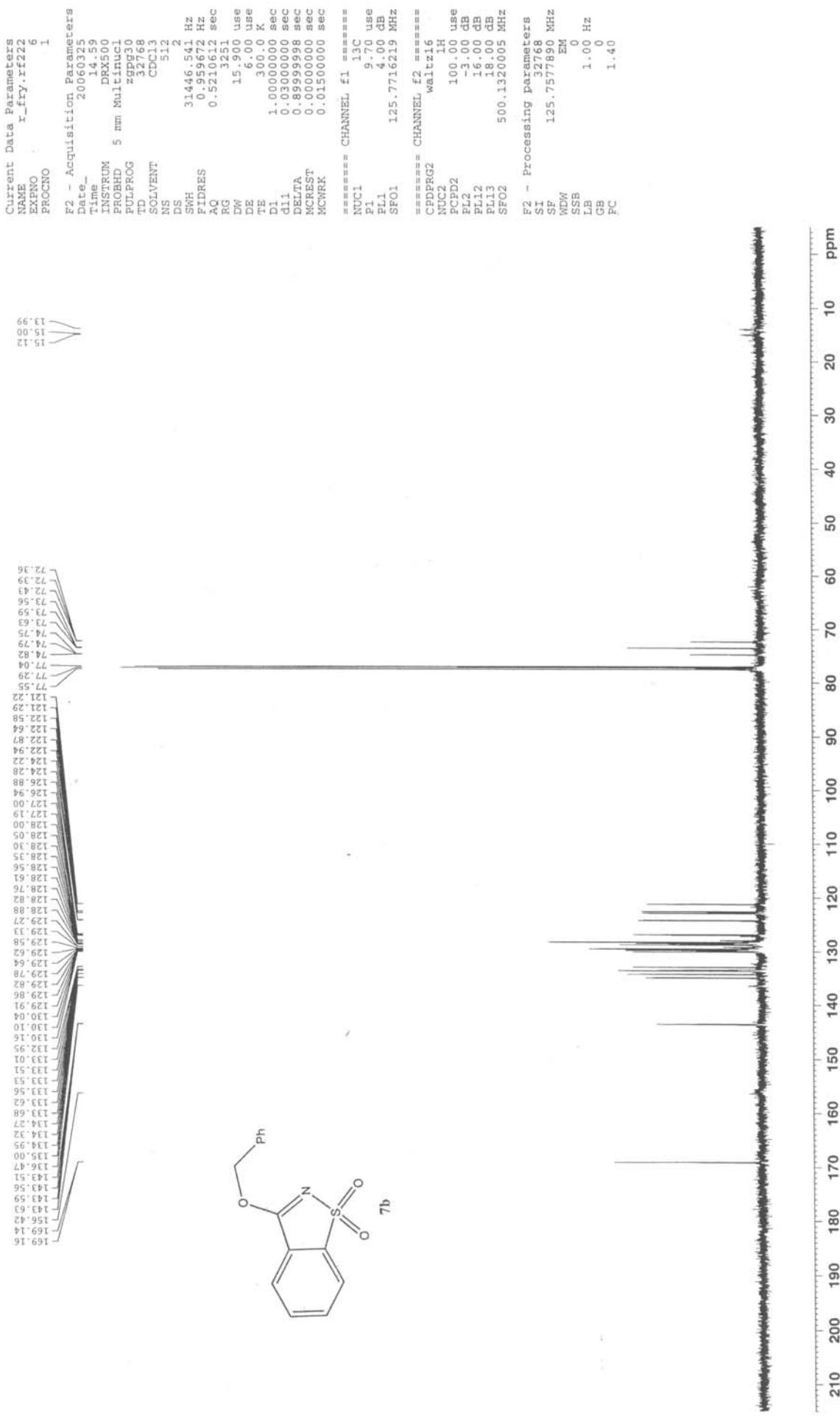
PMR: 3.5 us

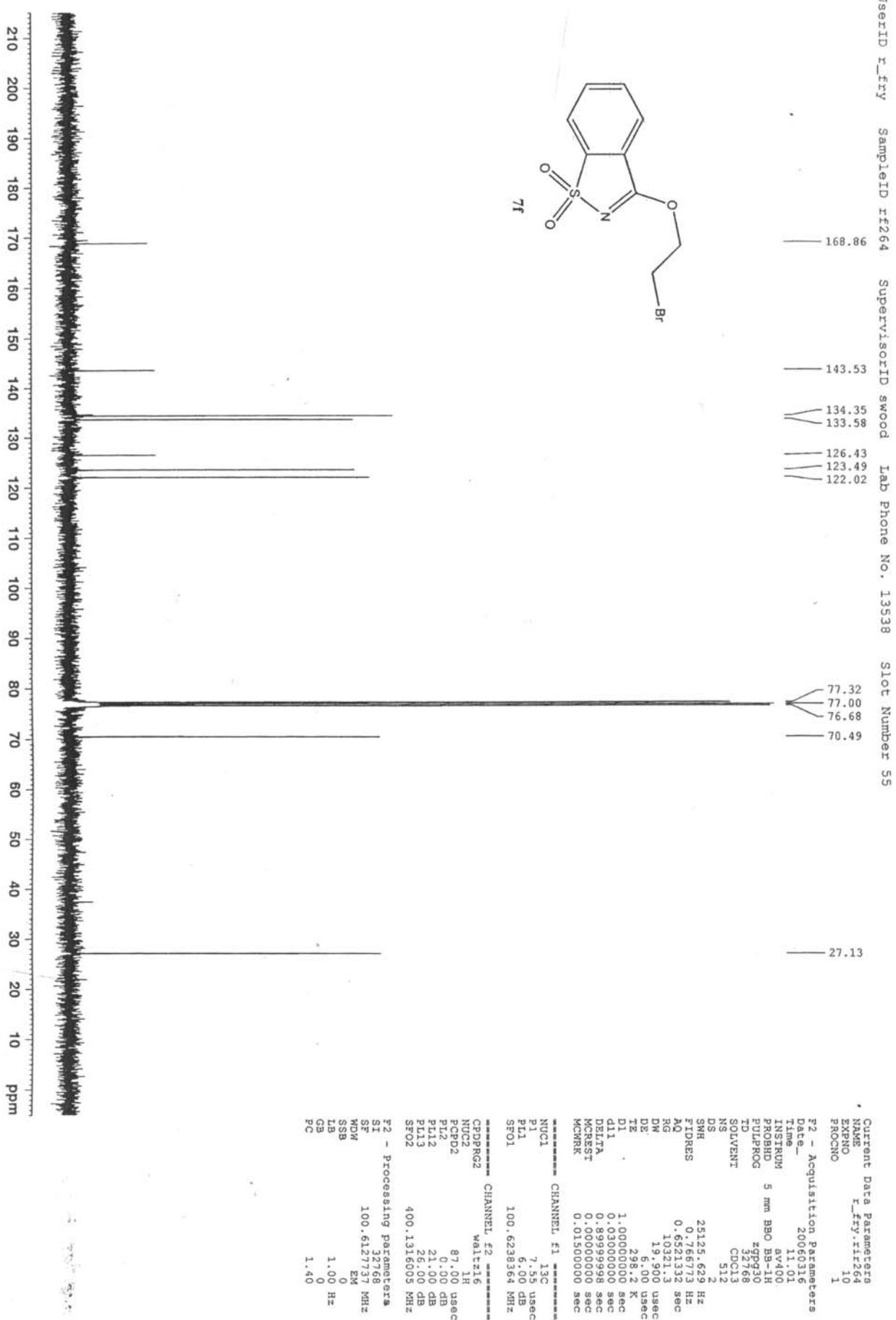
TRNUC: 1H

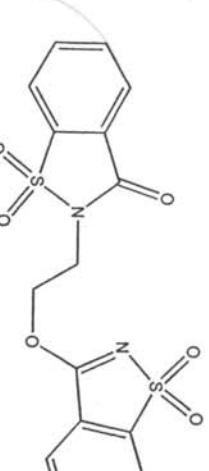
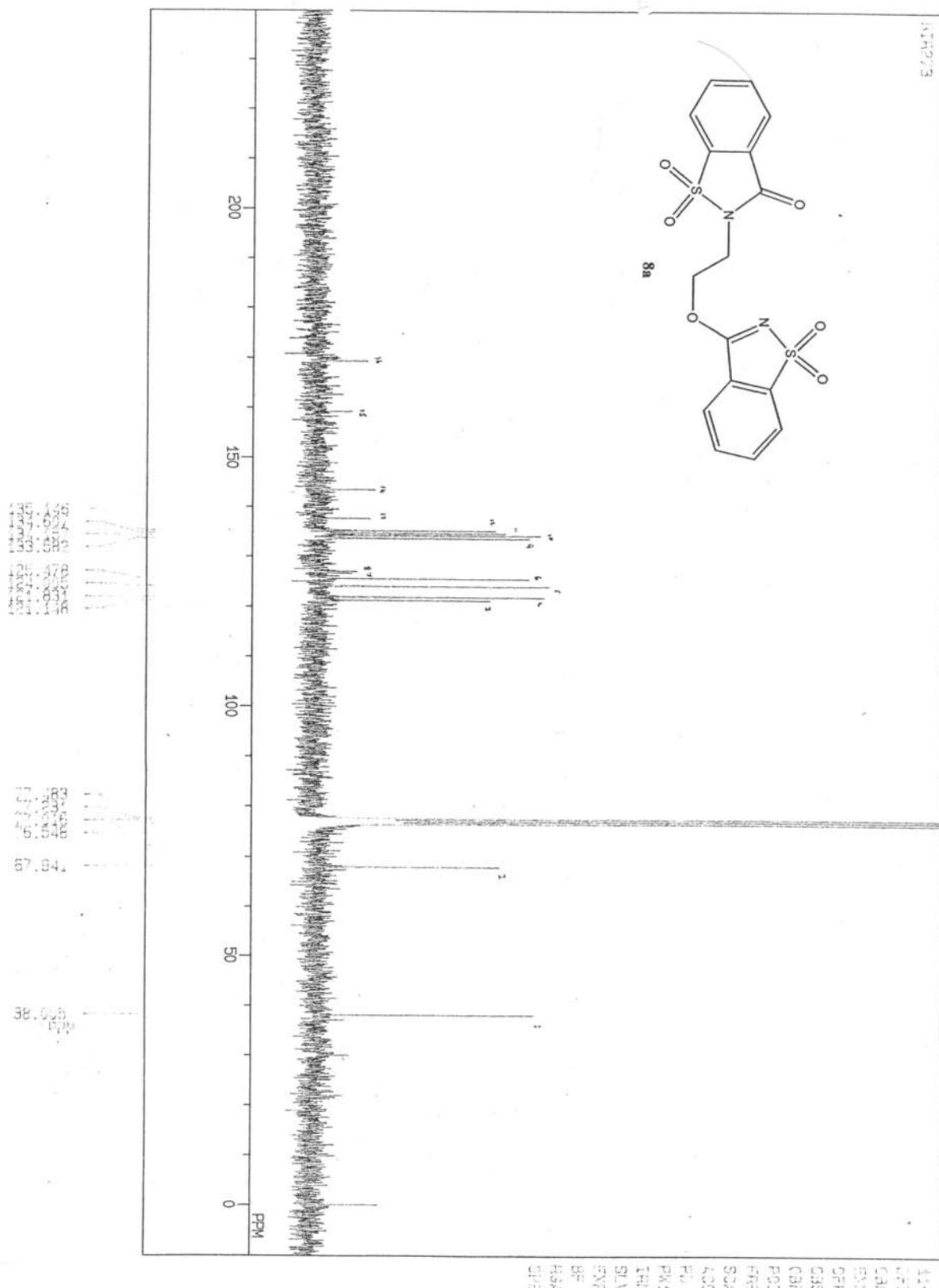


SWVNT: C6C3

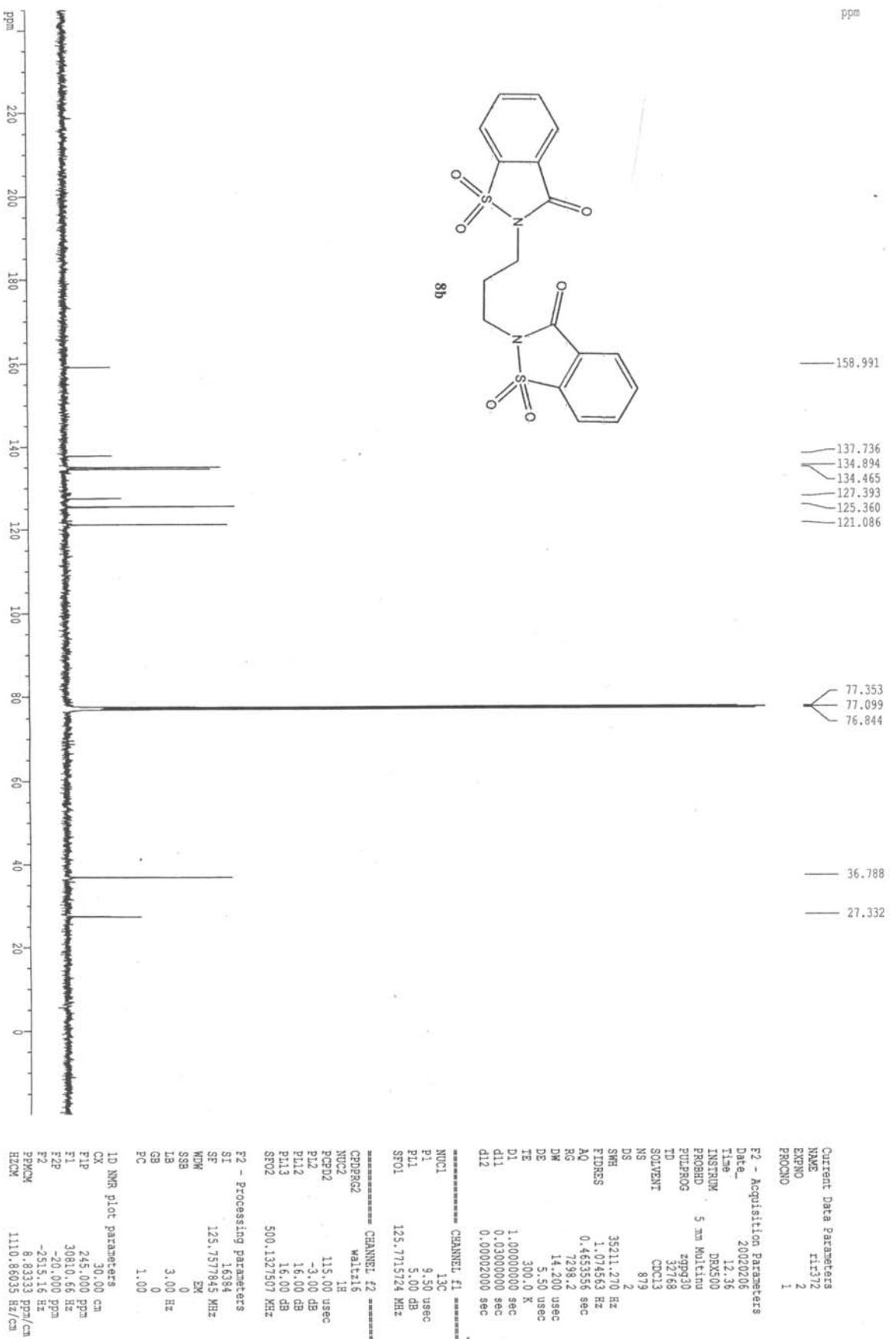
EWREF: 77.00 ppm

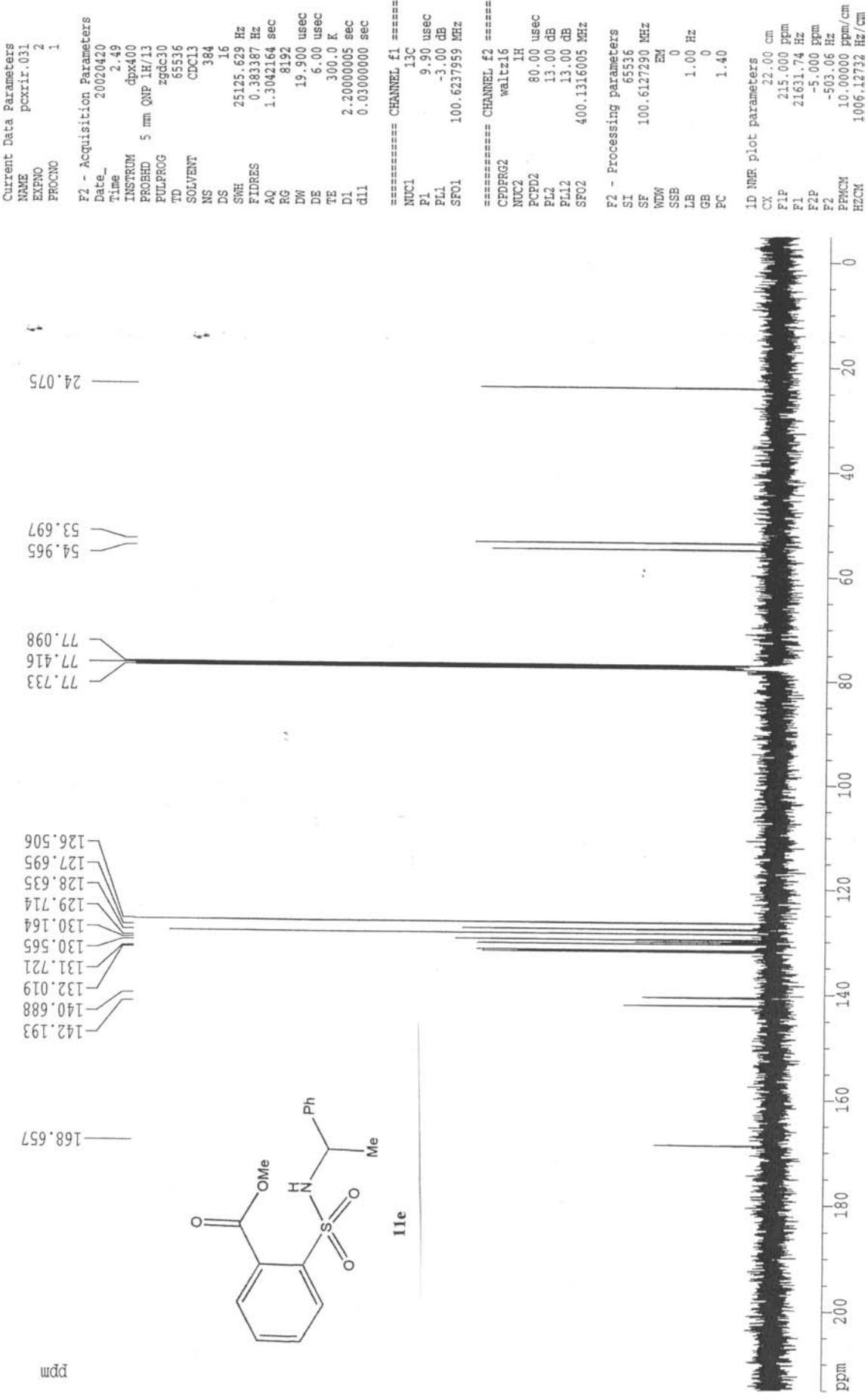

BF: 4.50 Hz

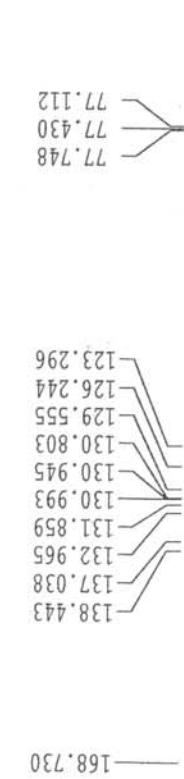

AGAIN: 28


OPERATOR: _____


User/Group Robinson/Pfaltz
RIR 443 ETOH recryst.



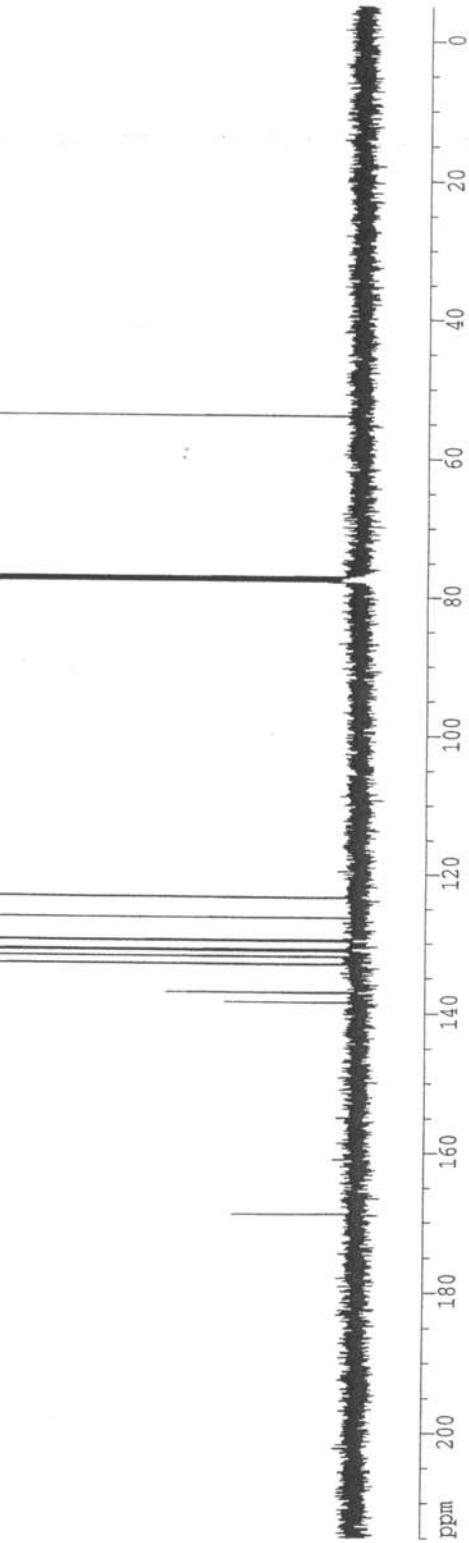


User/Group Robinson/Pfaltz
RIR 440C

ppm

```

Current Data Parameters
NAME      pxrrix.028
EXPNO     2
PROCNO    1


F2 - Acquisition Parameters
Date_     20200419
Time      22:40
INSTRUM  qpx400
PROBHD  5 mm QNP 1H/13
PULPROG  zg3d30
TD       65536
SOLVENT  CDCl3
NS        384
DW       8192
RG       19,900
DE       6.00 usec
TE       300.0 K
D1      2.2000005 sec
d11     0.0300000 sec

===== CHANNEL f1 =====
NUC1     13C
P1       9.90 usec
PL1     -3.00 dB
SPE1    100.6237959 MHz

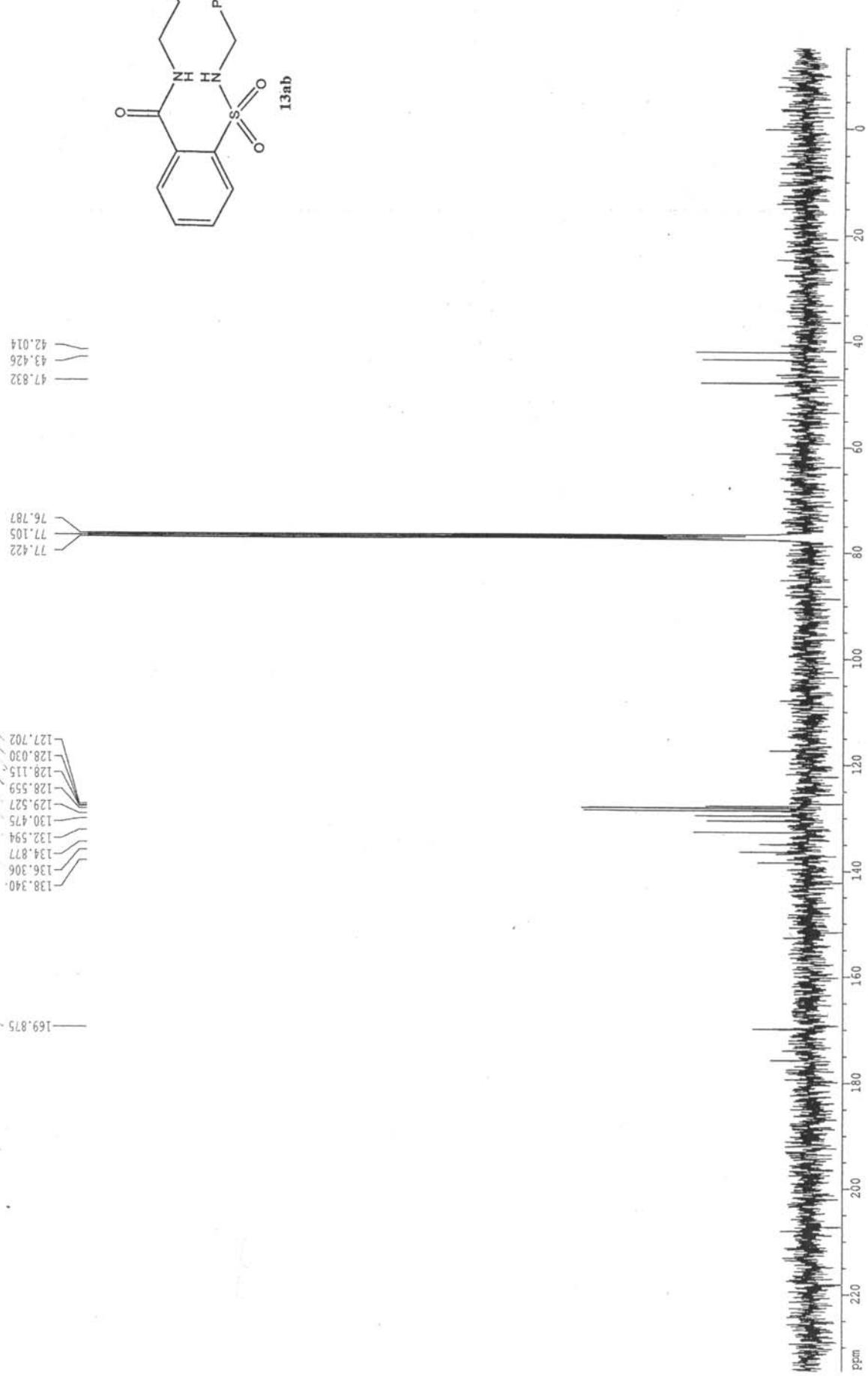
===== CHANNEL f2 =====
CPDPRG2  waltz16
NUC2     1H
PCPD2    80.00 usec
PL2      13.00 dB
PL12    13.00 dB
SF02    400.1316005 MHz

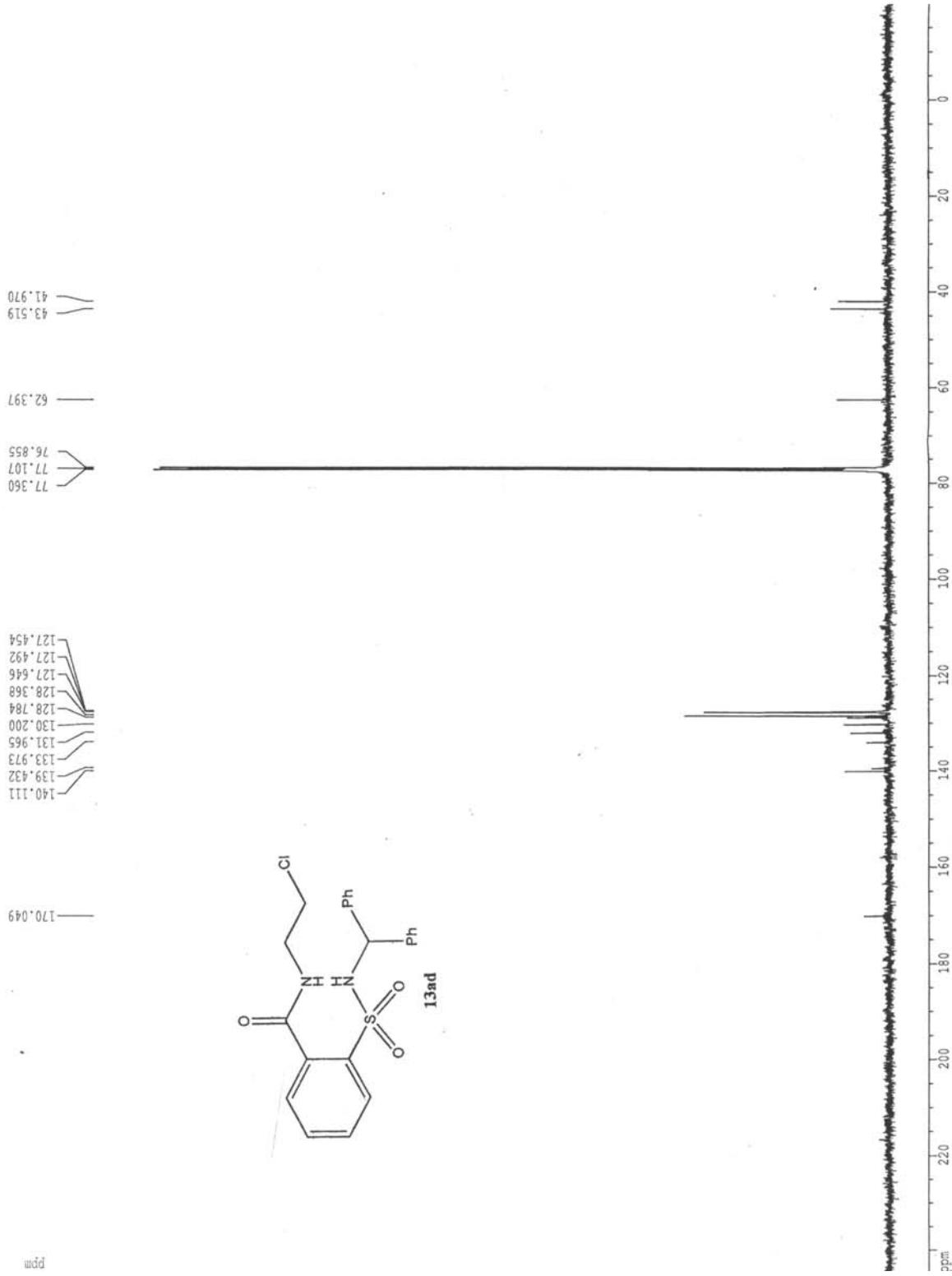
F2 - Processing parameters
SI       65536
SF      100.6127250 MHz
WDW    EM
SSB      0
LB      1.00 Hz
GB      0
PC      1.40

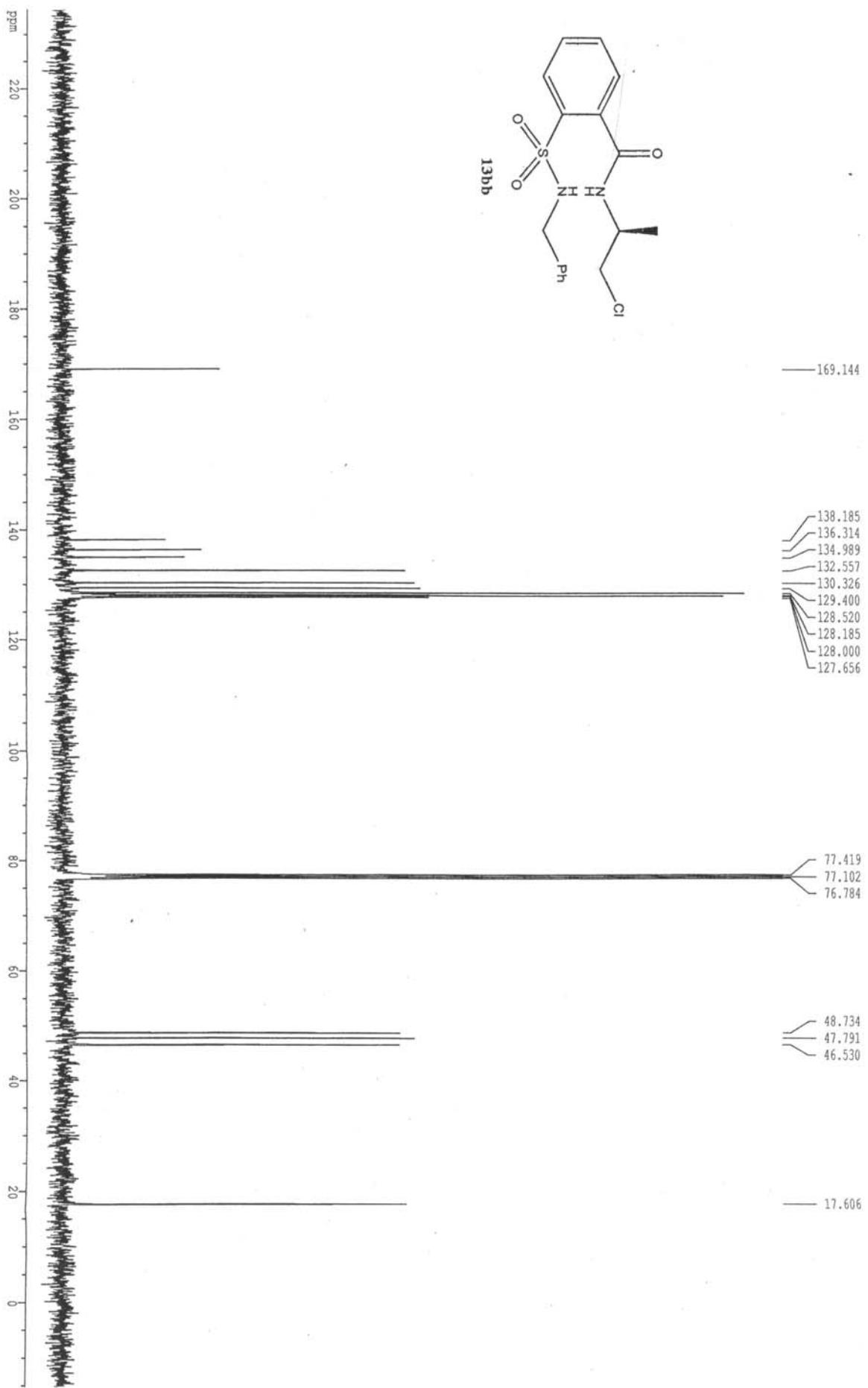
```

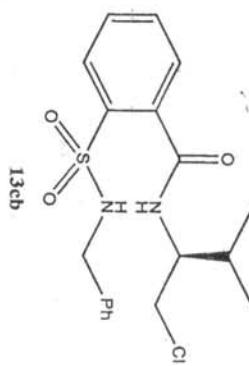
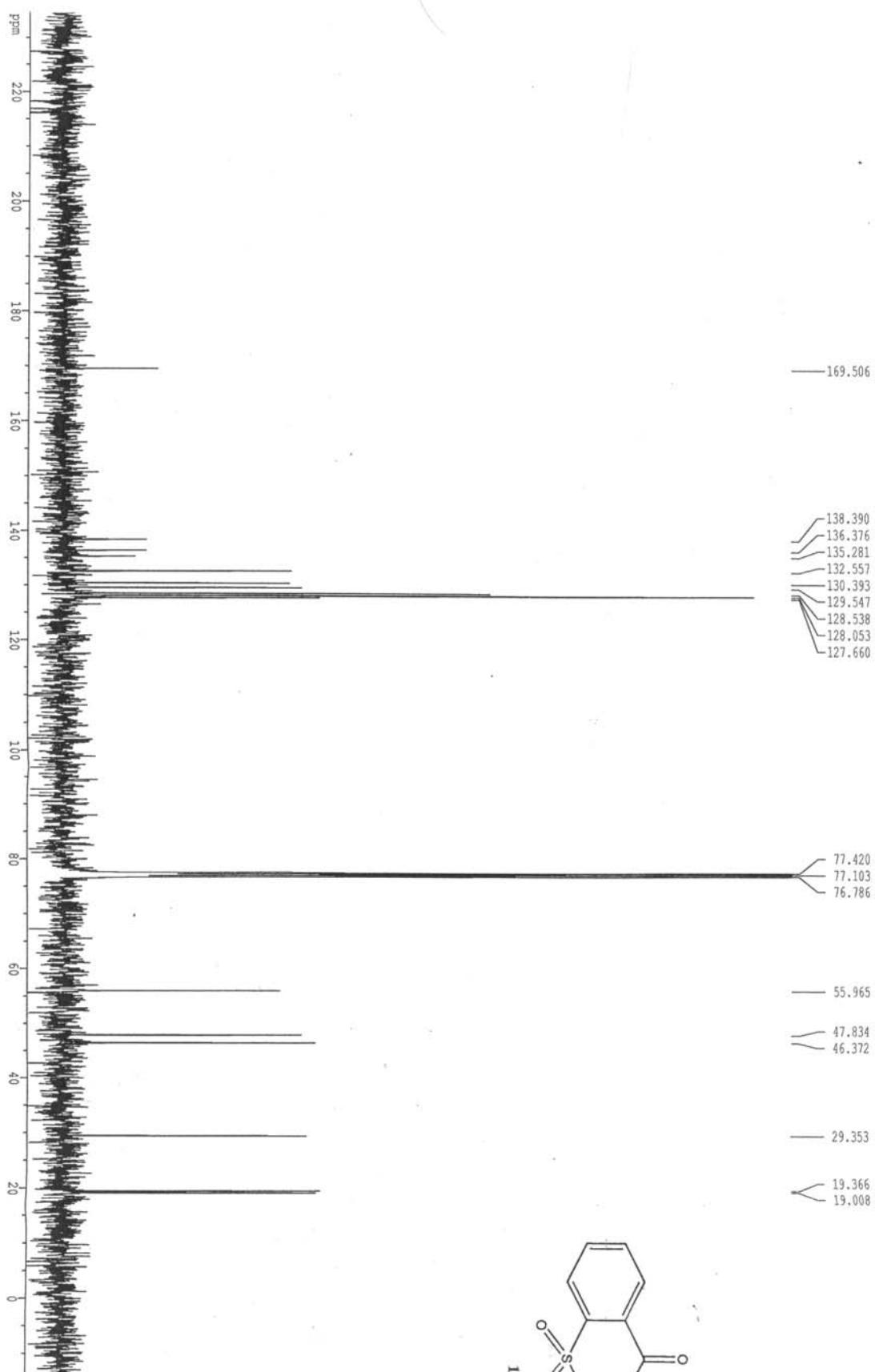


```

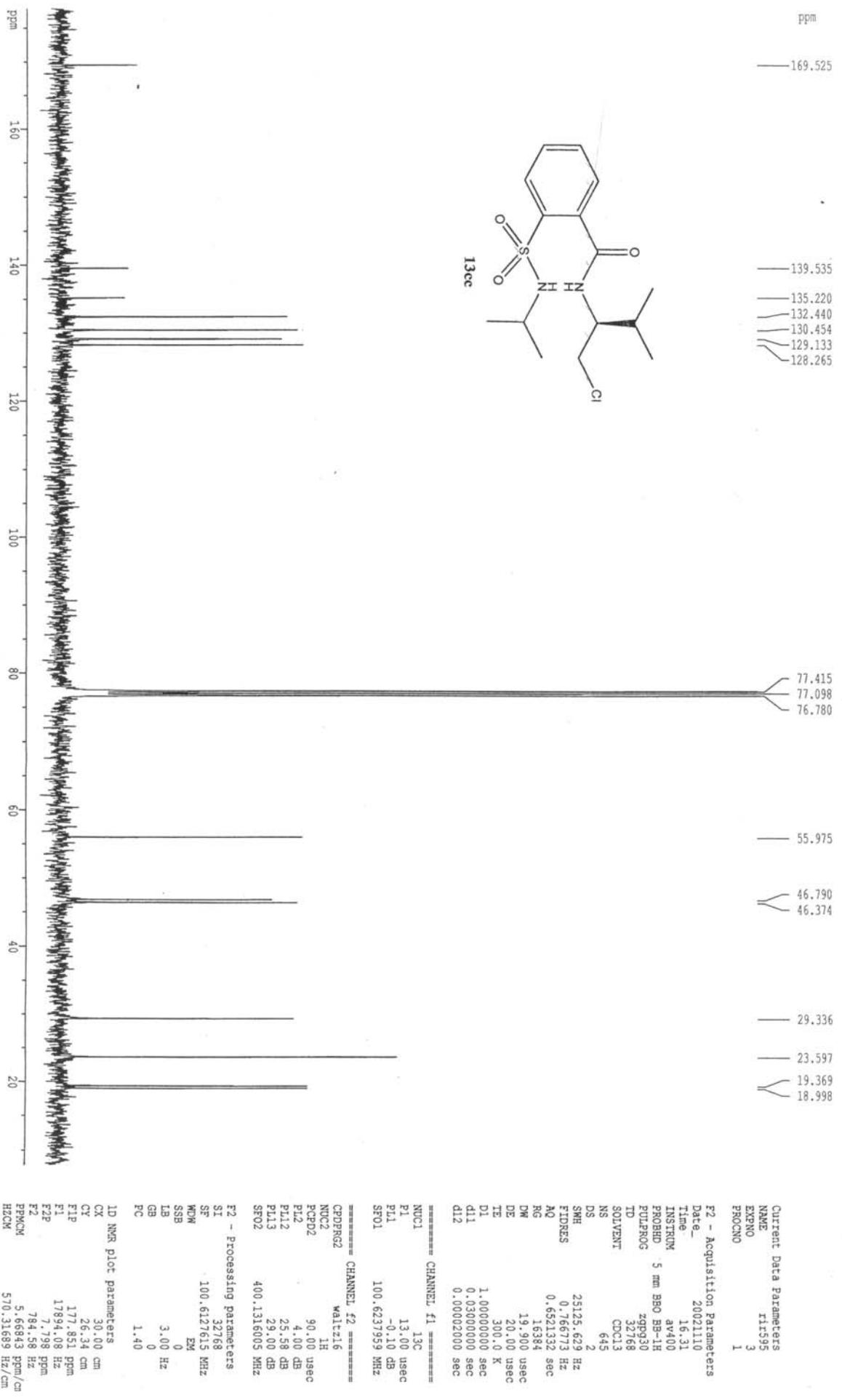

=====
F2 - Acquisition Parameters
Date_     20200419
Time      22:40
INSTRUM  qpx400
PROBHD  5 mm QNP 1H/13
PULPROG  zg3d30
TD       65536
SOLVENT  CDCl3
NS        384
DW       8192
RG       19,900
DE       6.00 usec
TE       300.0 K
D1      2.2000005 sec
d11     0.0300000 sec


===== CHANNEL f1 =====
NUC1     13C
P1       9.90 usec
PL1     -3.00 dB
SPE1    100.6237959 MHz


===== CHANNEL f2 =====
CPDPRG2  waltz16
NUC2     1H
PCPD2    80.00 usec
PL2      13.00 dB
PL12    13.00 dB
SF02    400.1316005 MHz



F2 - Processing parameters
SI       65536
SF      100.6127250 MHz
WDW    EM
SSB      0
LB      1.00 Hz
GB      0
PC      1.40

```





RIR 341

RIR 390

Current Data Parameters
NAME: rir390
EXPT: 2
PROCNO: 1

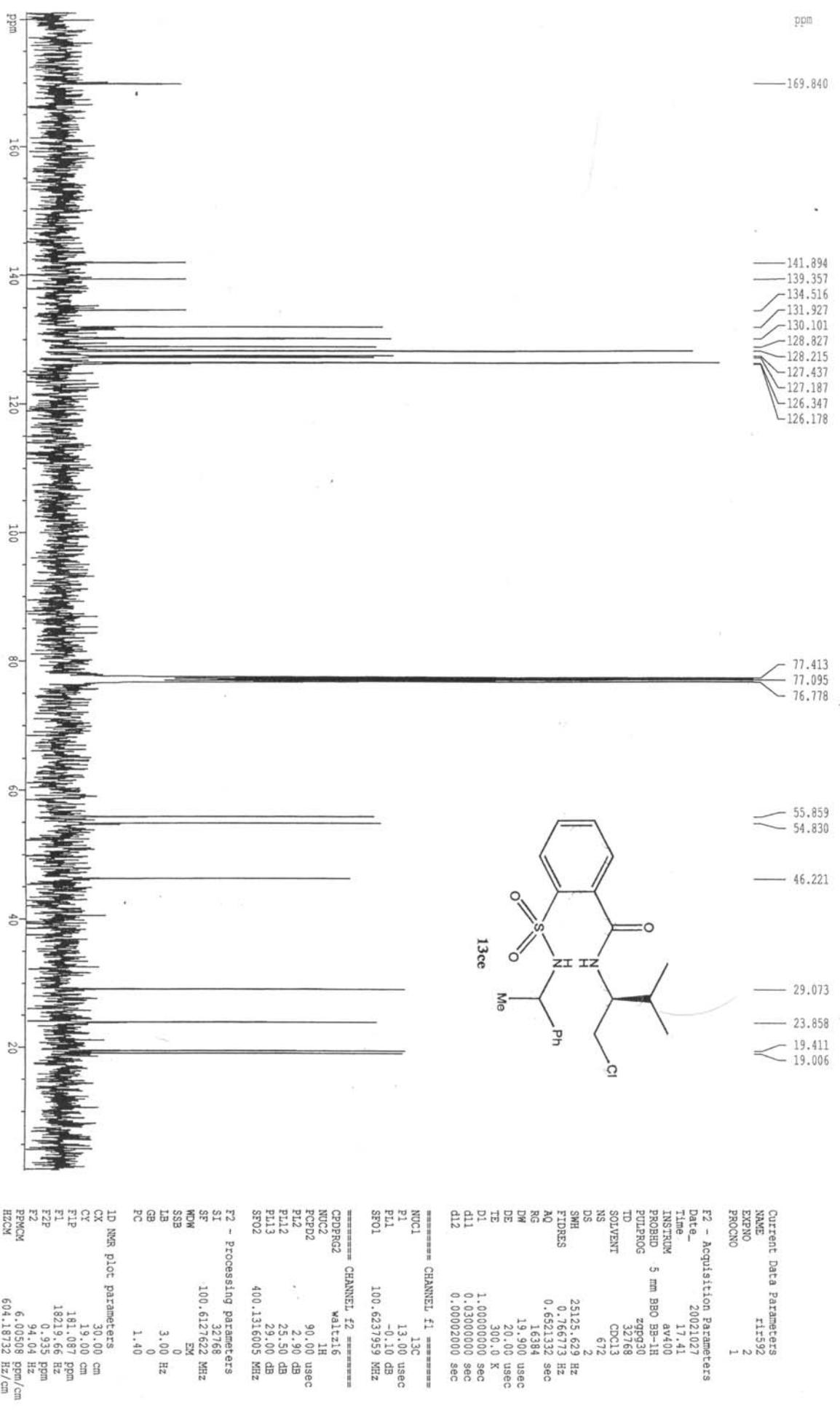
F2 - Acquisition Parameters

Date: 20020228
Time: 18:23
INSTRUM: DRX300
PROBHD: 5 mm Multinu
PULPROG: gpp30
TD: 32768
SOlVENT: CDCl3
NS: 1370
DS: 2
SWR: 35211.270 Hz
FIDRES: 1.07453 Hz
AQ: 0.463356 sec
RG: 6502
DW: 14.200 usec
DE: 5.50 usec
TE: 300.0 K
D1: 1.0000000 sec
D11: 0.0300000 sec
D12: 0.0002000 sec

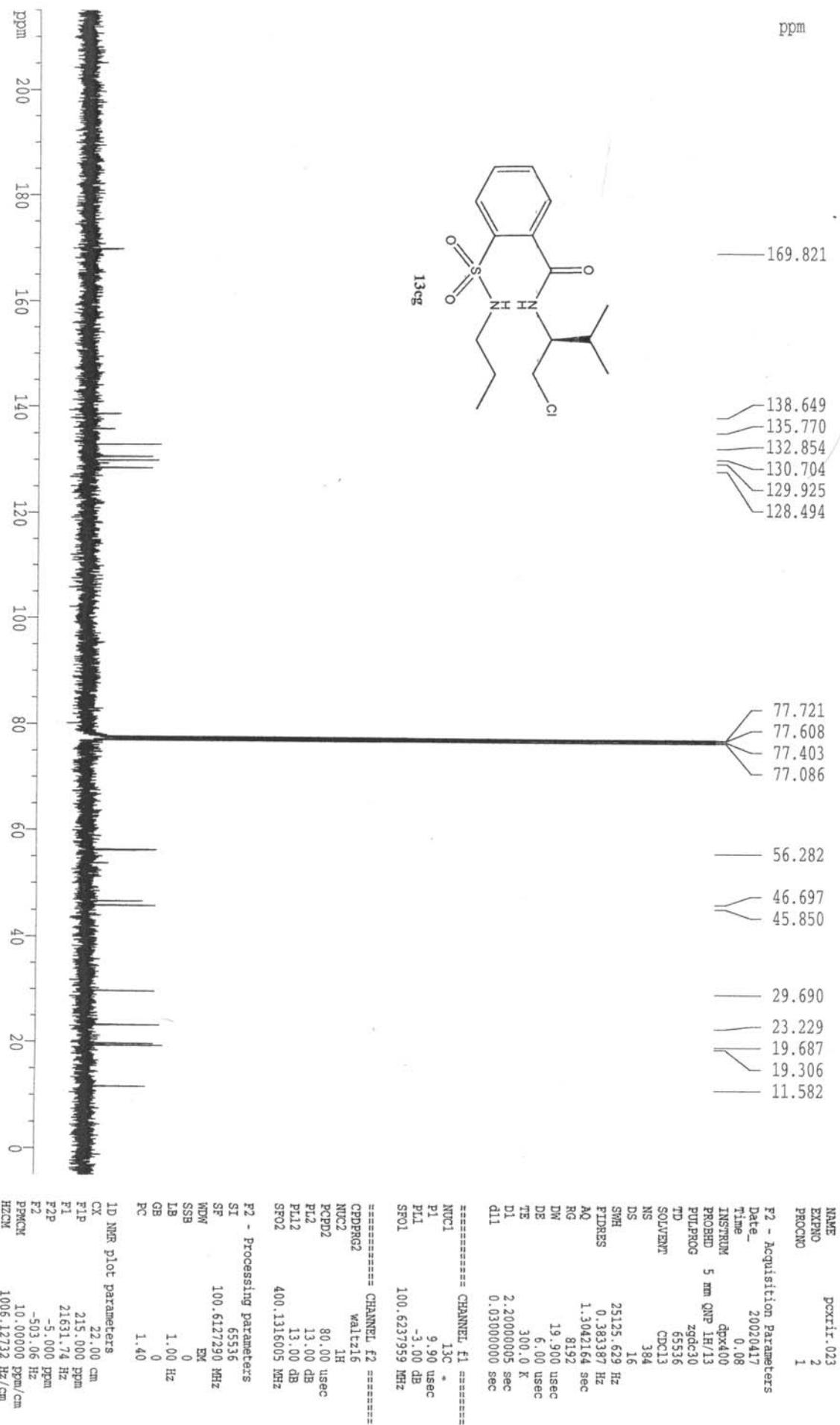
===== CHANNEL f1 =====

NUC1: 13C
CPDPRG2: Waltz16
NUC2: 1H
PCPQ2: 115.00 usec
PL1: -3.00 dB
PL12: 16.00 dB
PL13: 16.00 dB
SF01: 125.715724 MHz

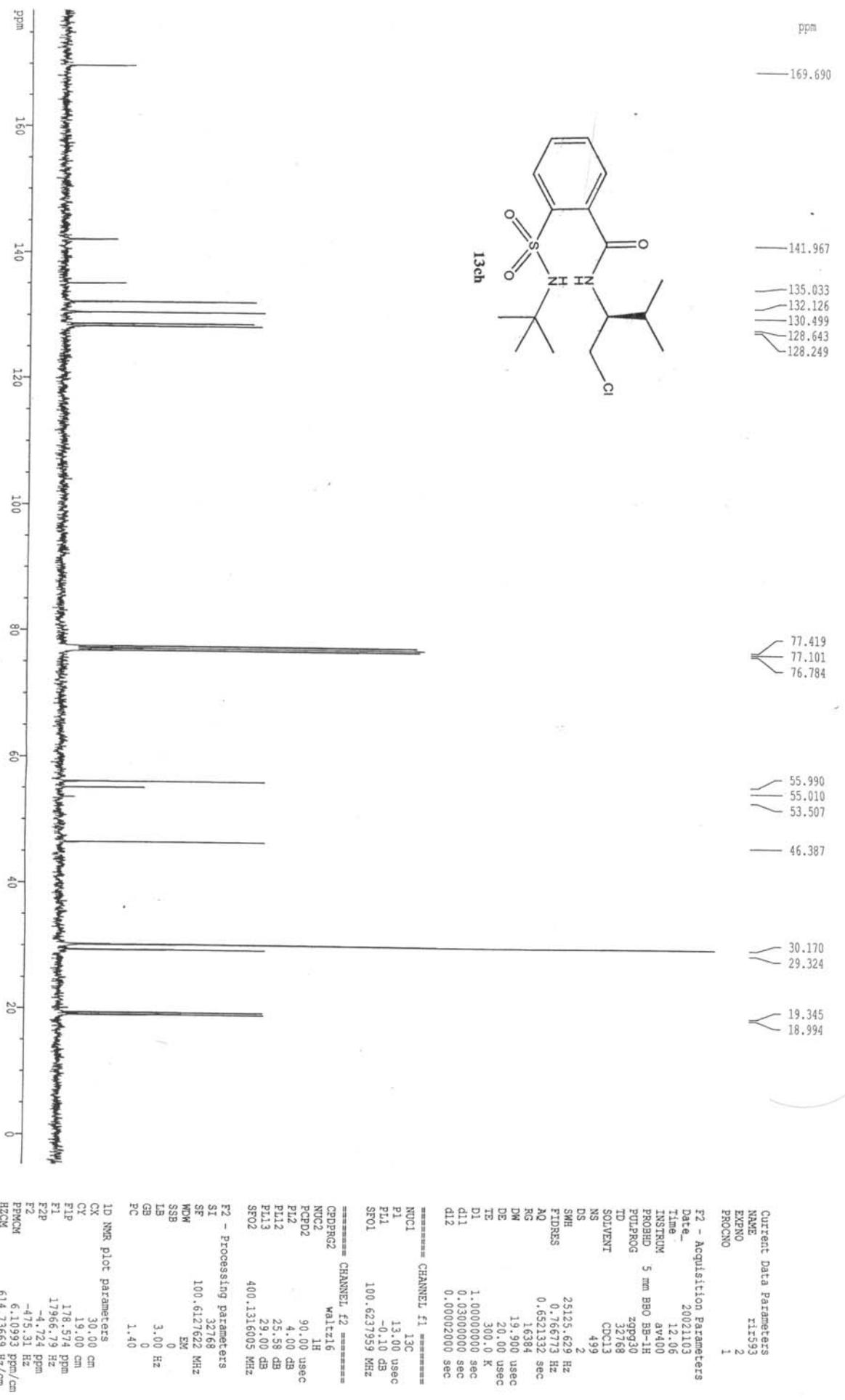
===== CHANNEL f2 =====

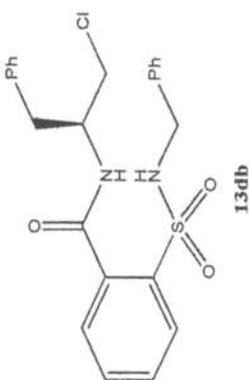

NUC1: 13C
CPDPRG2: Waltz16
NUC2: 1H
PCPQ2: 115.00 usec
PL1: -3.00 dB
PL12: 16.00 dB
PL13: 16.00 dB
SF01: 500.1327507 MHz

F2 - Processing parameters


ST: 16384
SF: 125.7157845 MHz
WDW: EM
SSB: 0
LB: 3.00 Hz
GB: 0
PC: 1.00

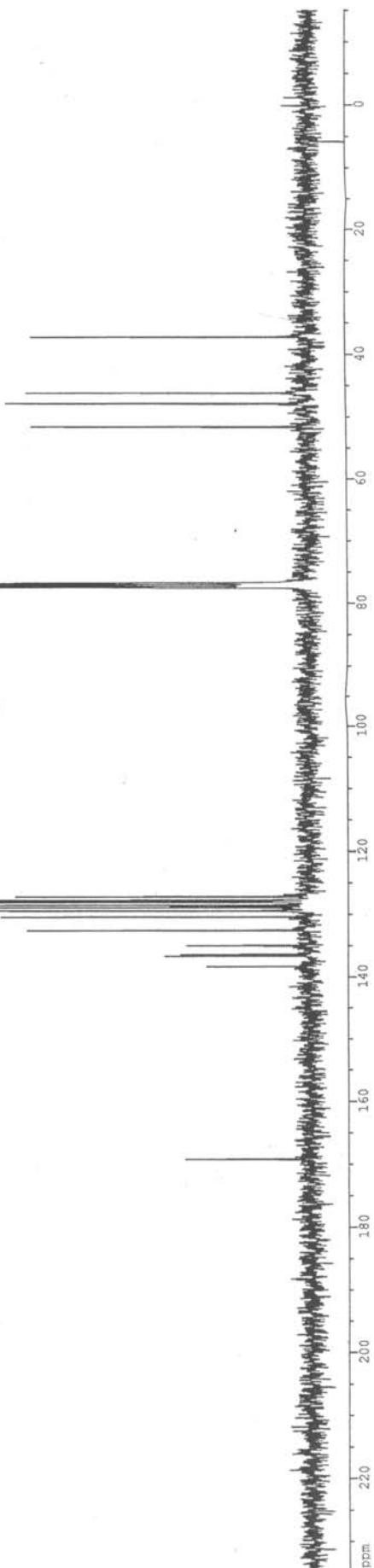
1D NMR plot parameters
CX: 30.00 cm
F1P: 245.000 ppm
F1: 30810.65 Hz
F2P: -20.000 ppm
F2: -515.16 Hz
PPM: 8.8333 ppm/cm
HCM: 1110.88035 Hz/cm


RIR 592


User/Group Robinson/Pfaltz
RIR 426

RIR 593

—169.209



ppm

—37.106

 /—
 46.140
 /—
 47.812
 /—
 51.542

 /—
 76.783
 /—
 77.101
 /—
 77.418

 /—
 127.153
 /—
 127.681
 /—
 128.041
 /—
 128.566
 /—
 128.922
 /—
 129.397
 /—
 129.489
 /—
 130.410
 /—
 132.556
 /—
 134.966
 /—
 136.349
 /—
 136.601
 /—
 138.342

References

- ¹ H. Normant, T. Cuvigny, *Bull. Chem. Soc. Fr.*, **1965**, 1866-1870.
- ² S. Abe, *Chem. Abstr.*, **1956**, 1779.
- ³ K. Yoneyama, N. Ichizen, H. Omokawa, Y. Takeuchi, M. Konnai, *Agric. Biol. Chem.*, **1984**, *48*, 491-498.
- ⁴ L. L. Meritt, S. Levey, H. B. Cutter, *J. Am. Chem. Soc.*, **1939**, *61*, 15-16.
- ⁵ E. W. McClelland, L.A. Warren, J. H. Jackson, *J. Chem. Soc.*, **1929**, 1585.
- ⁶ K. F. Burri, *Helv. Chim. Acta.*, **1990**, *73*, 69-80.
- ⁷ H. Togo, Y. Hoshina, T. Muraki, H. Nakayama, Y. Masataka, *J. Org. Chem.*, **1998**, *63* (15), 5193-5200.
- ⁸ A. F. Brigas, P. M. Goncalves, R. A. W. Johnstone, *J. Chem. Soc., Perkin Trans. 1*, **1997**, 2603
- ⁹ G. von Braun, M. Lemke, *Chem. Ber.*, **1922**, *55*, 3535.