SUPPORTING INFORMATION

<u>Title:</u> Iron—Palladium Association in the Preparation of Indoles and One-Pot Synthesis of Bis(indolyl)methanes <u>Author(s):</u> Vincent Terrasson, Julien Michaux, Anne Gaucher, Johny Wehbe, Sylvain Marque, Damien Prim,* Jean-

Marc Campagne* *Ref. No.:* O200700831

General Remarks: Reactions were carried out in round bottom flasks equiped with a magnetic stirring bar and capped with a septum. DCE and dioxane was distilled over CaH₂ and Na respectively. TLC analyses were performed on Merck silica gel 60 F₂₅₄ TLC plates. FT-IR spectra were recorded with a Perkin Elmer Spectrum BX spectrometer and 1H and 13C spectra were recorded with Bruker 200, Avance-300 and 500 spectrometers and referenced to CDCl₃ unless otherwise noted. Mass spectra were obtained from the mass spectrometry facilities operated by the Institut de Chimie des Substances Naturelles. 5-Chloro-2-iodoaniline, ¹ 2-iodo-4-methylaniline, ² 4-methyl-2-(phenylethynyl)aniline, ³ 5-methoxy-2-(phenylethynyl)aniline, ³ 2-ethynylaniline, ⁴ 2-((4-nitrophenyl)ethynyl)aniline, ⁵ 2-((4-methoxyphenyl)ethynyl)aniline and (2-thienylthynyl)aniline have been prepared according to previously reported literature.

Preparation of 2-iodo-5-nitroaniline

$$O_2N$$
 NH_2

ICl (6.5 g, 40 mmol) in solution in acetic acid (20 mL) was added dropwise to a suspension of 3-nitroaniline (5 g, 36 mmol) in acetic acid (30 mL). The reaction mixture was heated at 80°C overnight. After cooling to 0°C, the reaction mixture was basified using 1M aqueous solution of sodium hydroxide and then extracted with EtOAc (3 times). The combined organic extracts were washed with brine, dried over MgSO₄. The resulting yellow solution was concentrated in vacuo and the residue purified by flash chromatography (silica gel, EtOAc/heptane 2/8) to provide 2-iodo-5-nitroaniline 5 (4.0 g, 42%) as a yellow solid: R_f 0.68 (CH₂Cl₂); mp 156°C (Lit.⁷ 160°C); ¹H NMR (CDCl₃, 500 MHz) δ (*ppm*) : 4.46 (br s, 2H), 7.30 (dd, J = 2.5, 8.6 Hz, 1H), 7.54 (d, J = 2.5 Hz, 1H), 7.80 (d, J = 8.6 Hz, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ (*ppm*) : 91.2, 108.1, 113.8, 139.8, 147.8, 149.4; IR (neat) ν (*cm*⁻¹) 3426, 3309, 2359, 1739, 1615, 1504, 1469, 1330; MS (EI) m/z 264 ([M]⁺, 24%), 91 (100%), 90 (49%).

General procedure for the Sonogashira couplings:⁸

The aryl iodide (1 equiv.), CuI (5%) and PdCl₂(PPh₃)₂ (5%) were suspended in THF (5 mL/1 mmol of iodide) under argon. Et₃N (3 equiv.) and alkyne (1.3 equiv.) were successively added and the reaction mixture was stirred at rt for 2h. The reaction mixture was diluted with Et₂O, filtered through Celite and washed sequentially with water, NH₄Cl and NaCl. After evaporation of the solvents, the crude product was purified by column chromatography on silica gel.

5-chloro-2-(phenylethynyl)aniline

The reaction was carried out according to general procedure for Sonogashira coupling with 5-chloro-2-iodoaniline (254 mg, 1 mmol), phenylactylene (143 μ L, 1.3 mmol), CuI (7 mg, 0.05 mmol), PdCl₂(PPh₃)₂ (35 mg, 0.05 mmol), Et₃N (420 μ L, 3 mmol) in THF (5 mL). Purification by flash column chromatography (silica gel, EtOAc/heptane 1/9) provided 5-chloro-2-(phenylethynyl)aniline (233 mg, 95%) as a light brown solid. mp 104-105°C; ¹H NMR (CDCl₃, 300 MHz) δ (*ppm*) : 4.37 (br s, 2H), 6.72 (m, 2H), 7.31 (d, *J* = 7.9 Hz, 1H), 7.35-7.41 (m, 3H), 7.55 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ (*ppm*) : 84.8, 95.3, 106.4, 114.0, 118.1, 122.9, 128.4 (3C), 131.4 (2C), 133.0, 135.2, 148.6; IR (neat) v (*cm*⁻¹) 3489, 3388, 1606, 1424, 1308, 1254; HRMS (ESI) calcd. for C₁₄H₉CIN [M-H]⁻ 226.0424, found 226.0419.

5-nitro-2-(phenylethynyl)aniline

$$O_2N$$
 NH_2

The reaction was carried out according to general procedure for Sonogashira coupling with 2-iodo-5-nitroaniline (264 mg, 1 mmol), phenylactylene (143 μ L, 1.3 mmol), CuI (7 mg, 0.05 mmol), PdCl₂(PPh₃)₂ (35 mg, 0.05 mmol), Et₃N (420 μ L, 3 mmol) in THF (5 mL). Purification by flash column chromatography (silica gel, EtOAc/heptane 1/9) yielded 5-nitro-2-(phenylethynyl)aniline (230 mg, 93%) as a red solid. mp 125-126°C; ¹H NMR (CDCl₃, 300 MHz) δ (*ppm*) : 4.64 (br s, 2H), 7.37-7.60 (m, 8H); ¹³C NMR (CDCl₃, 75 MHz) δ (*ppm*) :

84.1, 98.9, 108.3, 112.4, 113.9, 122.1, 128.5 (2C), 129.1, 131.6 (2C), 132.5, 148.1 (2C); IR (neat) v (cm^{-1}) 3467, 3374, 1618, 1598, 1495, 1332; HRMS (ESI) calcd. for C₁₄H₉N₂O₂ [M-H]⁻ 237.664, found 237.0663.

General procedure for the indole synthesis:

A solution of ethynylaniline, FeCl₃.6H₂O (2%) and PdCl₂ (1%) was heated in DCE (1mL/0.15mmol) at 80°C for 4h. After cooling to room temperature, the reaction mixture was diluted with water. The aqueous layers were extracted with DCM, and the combined organic phases were dried over MgSO₄. The solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography.

2-phenyl-1*H*-indole

The reaction was carried out according to above mentioned general procedure for indole synthesis. Purification by flash column chromatography (silica gel, EtOAc/hexane 1/9) yielded 2-phenyl-1*H*-indole as a yellow solid. mp 89-90°C (Lit.⁸ 89-90°C). 1H NMR (CDCl3, 300 MHz) δ (*ppm*) : 7.58–7.51 (m, 2H), 7.42–7.32 (m, 4H), 7.18–7.11 (m, 1H), 6.77–6.69 (m, 2H), 4.22 (s, br, 2H). 13C NMR (CDCl3, 75 MHz) δ (*ppm*) : 147.8, 132.1, 131.4, 129.7, 128.4, 128.2, 123.3, 118.0, 114.3, 107.9, 94.7, 85.9.

Data are in accordance with previously reported data.8

6-chloro-2-phenyl-1*H*-indole

The reaction was carried out according to above mentioned general procedure for indole synthesis. Purification by flash column chromatography (silica gel, EtOAc/heptane 2/8) yielded 6-chloro-2-phenyl-1*H*-indole (85 mg, 83%) as a white solid. mp 186-187°C (Lit. 180-181°C); 1 H NMR (CDCl₃, 300 MHz) δ (*ppm*) : 6.81 (dd, J = 0.8, 2.2 Hz, 1H), 7.11 (dd, J = 1.9, 8.5 Hz, 1H), 7.32-7.50 (m, 4H), 7.54 (d, J = 8.4 Hz, 1H), 7.64-7.69 (m, 2H), 8.34 (br s, 1H); 13 C NMR (CDCl₃, 75 MHz) δ (*ppm*) : 99.9, 110.8, 121.0, 121.4, 125.1 (2C), 127.8, 128.0 129.1 (3C), 131.9, 137.1, 138.6

Data are in accordance with previously reported data.⁹

6-nitro-2-phenyl-1*H*-indole

$$O_2N$$
 N N H

The reaction was carried out according to above mentioned general procedure for indole synthesis. Purification by flash column chromatography (silica gel, EtOAc/heptane 2/8) yielded 6-nitro-2-phenyl-1*H*-indole (88 mg, 82%) as a yellow solid. mp 213-214°C (Lit. 10 215-216°C); 1 H NMR (d_{6} -DMSO, 300 MHz) δ (ppm) : 7.13 (d, J = 1.1 Hz, 1H), 7.42 (t, J = 7.4 Hz, 1H), 7.53 (t, J = 7.4 Hz, 1H), 7.69 (d, J = 8.8 Hz, 1H), 7.87-7.96 (m, 3H), 8.29 (d, J = 1.5 Hz, 1H), 12.31 (br s, 1H); 13 C NMR (d_{6} -DMSO, 75 MHz) δ (ppm) : 99.8, 107.8, 114.8, 120.1, 125.7 (2C), 128.9, 129.1 (2C), 130.8, 133.7, 135.4, 141.9, 144.1

Data are in accordance with previously reported data. 10

5-methyl-2-phenyl-1*H*-indole

The reaction was carried out according to above mentioned general procedure for indole synthesis. Purification by flash column chromatography (silica gel, EtOAc/heptane 2/8) yielded 5-methyl-2-phenyl-1*H*-indole (74 mg, 80%) as a white solid. mp 218-219°C (Lit.³ 218-219°C); ¹H NMR (CDCl₃, 300 MHz) δ (*ppm*) : 2.48 (s, 3H), 6.78 (d, *J* = 1.6 Hz, 1H), 7.05 (dd, *J* = 1.1, 8.3 Hz, 1H), 7.26-7.37 (m, 2H), 7.41-7.49 (m, 3H), 7.64-7.69 (m, 2H), 8.22 (br s, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ (*ppm*) : 21.5, 100.0, 110.5, 120.3, 124.0, 125.0 (2C), 127.6, 129.0 (2C), 129.5, 129.5, 132.5, 135.2, 137.9

Data are in accordance with previously reported data.³

2-(4-nitrophenyl)-1H-indole

The reaction was carried out according to above mentioned general procedure for indole synthesis. Purification by flash column chromatography (silica gel, EtOAc/heptane 2/8) yielded 2-(4-nitrophenyl)-1H-indole (29 mg, 40%) as a yellow solid. mp 250-251°C (Lit. 11 250-251°C); 1 H NMR (d_{6} -DMSO, 300 MHz) δ (ppm) : 7.05 (t, J = 7.4 Hz, 1H), 7.19 (m, 2H), 7.45 (d, J = 8.2 Hz, 1H), 7.60 (d, J = 7.9 Hz, 1H), 8.12 (d, J = 8.9 Hz, 2H), 8.31 (d, J = 8.9 Hz, 2H), 11.83 (br s, 1H); 13 C NMR (d_{6} -DMSO, 75 MHz) δ (ppm) : 102.4 , 111.7 , 119.9 , 120.8 , 123.1 , 124.2 (2C), 125.4 (2C), 128.4 , 135.2 , 137.9 , 138.5 , 145.8 Data are in accordance with previously reported data. 11

2-(4-methoxyphenyl)-1H-indole

The reaction was carried out according to general procedure for indole synthesis with 2-((4-methoxyphenyl)ethynyl)aniline (67 mg, 0.30 mmol) and FeCl₃.6H₂O (1.6 mg, 2%) in DCE (2 mL). Purification by flash column chromatography (silica gel, EtOAc/heptane 2/8) yielded 2-(4-methoxyphenyl)-1H-indole (51 mg, 76%) as a white solid. mp 230-231°C (Lit. 224-227°C); H NMR (d_6 -DMSO, 300 MHz) δ (ppm): 3.80 (s, 3H), 6.75 (s, 1H), 6.96-7.10 (m, 4H), 7.35 (d, J = 8.0 Hz, 1H), 7.50 (d, J = 7.7 Hz, 1H), 7.79 (d, J = 8.6 Hz, 2H), 11.41 (br s, 1H); 13 C NMR (d_6 -DMSO, 75 MHz) δ (ppm): 55.1, 97.3, 111.0, 114.3 (2C), 119.2, 119.7, 121.0, 124.9, 126.3 (2C), 128.8, 136.9, 137.8, 158.8

Data are in accordance with previously reported data. 12

2-thienyl-1*H*-indole

The reaction was carried out according to above mentioned general procedure for indole synthesis. Purification by flash column chromatography (silica gel, cyclohexane/diethylether 9/1) yielded 2-thienyl-1H-indole (50%) as yellow solid. 1 H NMR (CDCl₃, 300 MHz) δ (ppm) : 6.63 (d, J = 1.2 Hz, 1H), 7.23–6.96 (m, 6H), 7.50 (d, J = 7.5 Hz, 1H), 8.07 (s, br, 1H). 13 C NMR (CDCl₃, 75 MHz) δ (ppm) : 136.9, 136.0, 132.8, 129.5, 128.3, 125.0, 124.4, 123.0, 121.0, 120.9, 111.2, 100.9.

Data are in accordance with previously reported data.8

General procedure for the bis(indolyl)methane synthesis:

A solution of ethynylaniline, aldehyde derivative (0.5 eq.), FeCl₃.6H₂O (2%) and PdCl₂ (1%) was heated in DCE (1mL/0.15mmol) at 80°C for 4h. After cooling to room temperature, the reaction mixture was diluted with water. The aqueous layers were extracted with DCM, and the combined organic phases were dried over MgSO₄. The solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography.

Bis(indolyl)methane 10

The reaction was carried out according to above mentioned general procedure for bisindolylmethane synthesis. Purification by flash column chromatography (silica gel, DCM) yielded bis(indolyl)methane **10** (59%) as purple solid. 1 H NMR (CDCl₃, 300 MHz) δ (*ppm*): 6.07 (s, 1H); 6.87 (m, 2H); 7.09 (m, 2H); 7.19 (m, 16H); 7.34 (d, 2H, J = 8.0Hz); 8.07 (s, 2H). 13 C-NMR (CDCl₃, 100 MHz) δ (*ppm*): 143.0; 136.0; 135.7; 132.9; 130.6; 128.6; 128.5; 128.3; 128.2; 127.6; 121.8; 121.6; 119.1; 115.0; 110.7; 39.5.

Data are in accordance with previously reported data.

Bis(indolyl)methane 11

The reaction was carried out according to above mentioned general procedure for bisindolylmethane synthesis. Purification by flash column chromatography (silica gel, DCM) yielded bis(indolyl)methane **11** (42%) as yellow solid. mp. 190-193°C; 1 H-NMR (CDCl₃, 400 MHz) δ (*ppm*) : 5.98 (s, 1H); 6.72 (m, 4H); 7.10 (m, 10H); 7.19 (m, 6H); 7.23 (m, 2H, J = 1.5Hz); 7.96 (s, 1H). 13 C-NMR (CDCl₃, 100 MHz) δ (*ppm*) : 144.7; 136.2; 132.4; 129.11; 128.4; 128.1; 127.8; 127.6; 127.2; 126.4; 122.2; 120.4; 115.3; 110.5; 39.7.

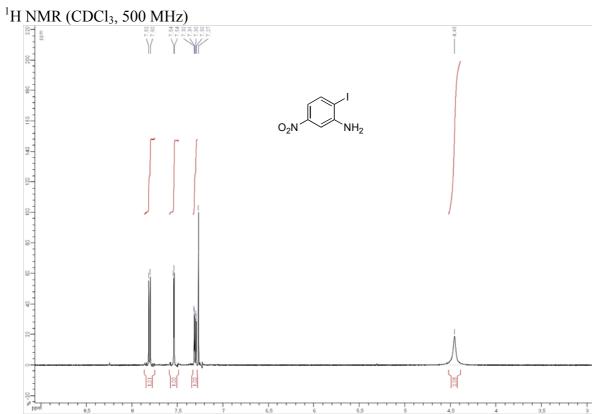
Bis(indolyl)methane 12

The reaction was carried out according to above mentioned general procedure for bisindolylmethane synthesis. Purification by flash column chromatography (silica gel, DCM) yielded bis(indolyl)methane **12** (40%) as yellow solid. mp. 250-253°C; 1 H-NMR (CDCl₃, 400 MHz) δ (ppm) : 6.14 (s, 1H); 6.79 (d, 2H, J = 8.9Hz);7.13 (m, 4H, J = 1.7Hz, J=8.6Hz); 7.20 (m, 4H); 7.30 (m, 7H); 7.74 (dd, 2H, J = 2.1Hz, J = 9.0Hz); 8.28 (d, 2H, J = 2.0Hz); 8.49 (s, 1H). 13 C-NMR (CDCl₃, 100 MHz) δ (ppm) : 142.8; 141.7; 134.1; 133.09; 131.3; 129.0; 128.8; 128.6; 128.2; 127.1; 120.7; 115.9; 115.4; 107.6; 39.7.

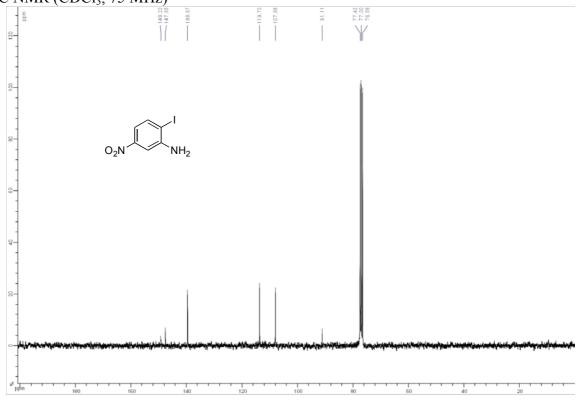
Bis(indolyl)methane 13

The reaction was carried out according to above mentioned general procedure for bisindolylmethane synthesis. Purification by flash column chromatography (silica gel, DCM) yielded bis(indolyl)methane **13** (51%) as yellow solid. mp. 263-265°C (Lit. ¹⁴ 262-263°C); ¹H-NMR (CDCl₃, 400 MHz) δ (*ppm*): 6.12 (s, 1H); 6.83 (ddd, 2H, J = 0.9Hz, J = 7.1Hz, J = 8.1Hz); 7.00 (d, 2H, J = 8.0Hz); 7.10 (m, 3H); 7.17 (m, 6H); 7.22 (m, 6H); 7.33 (m, 4H); 8.05 (s, 2H)

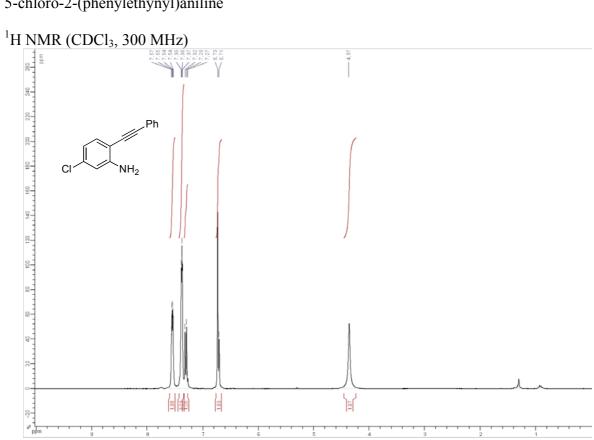
¹³C-NMR (CDCl₃, 100 MHz) δ (*ppm*): 144.8; 135.7; 135.5; 133.0; 129.2; 128.8; 128.3; 128.2; 128.2; 127.4; 126.0; 121.8; 121.7; 119.5; 115.6; 110.6; 40.03.

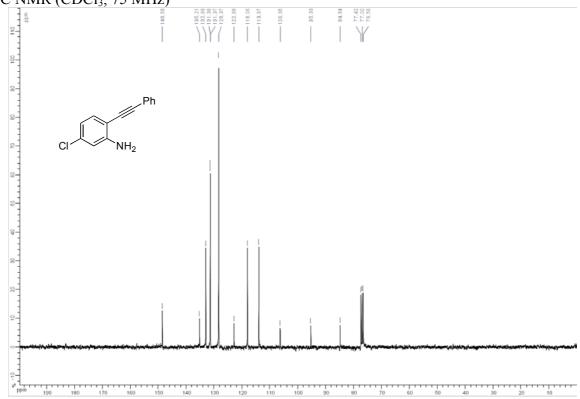

Data are in accordance with previously reported data.¹⁴

Trisubstituted indole 14

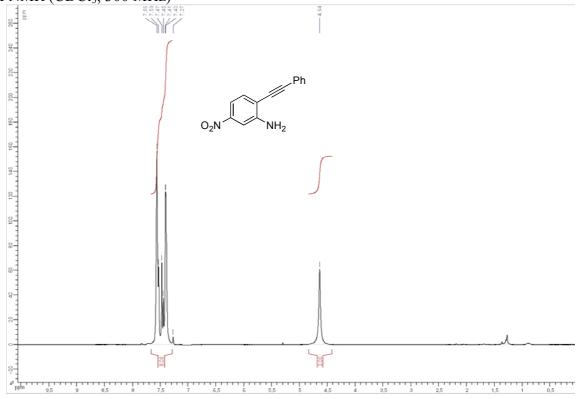

Purification by flash column chromatography (silica gel, DCM) yielded Trisubstituted indole **14** (80%); 1 H-NMR (CDCl₃, 400 MHz) δ (*ppm*) : 1.94 (s, 3H); 1.95 (s, 3H); 2.55 (dt, 4H, J = 3.9Hz, J = 7.5Hz); 2.83 (m, 2H); 4.16 (m, 2H); 7.04 (dd, 1H, J = 1.7Hz, J = 8.4Hz); 7.26 (m, 3H); 7.41 (m, 4H). 13 C-NMR (CDCl₃, 100 MHz) δ (*ppm*) : 208.3; 206.0; 138.1; 136.4; 131.2; 130.3; 128.8; 128.7; 127.9; 126.2; 120.2; 119.8; 112.8; 109.6; 44.6; 43.1; 38.4; 30.1; 29.9; 18.7.

2-iodo-5-nitroaniline



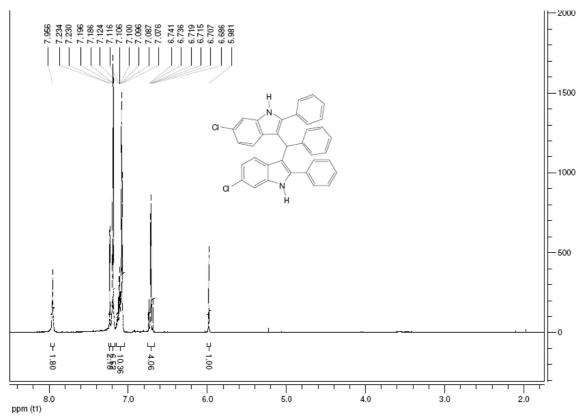


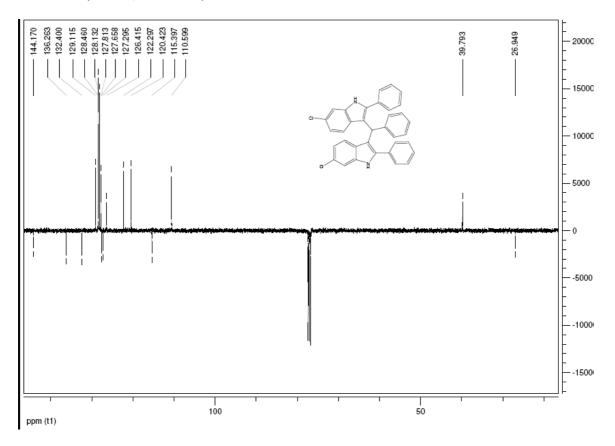
5-chloro-2-(phenylethynyl)aniline





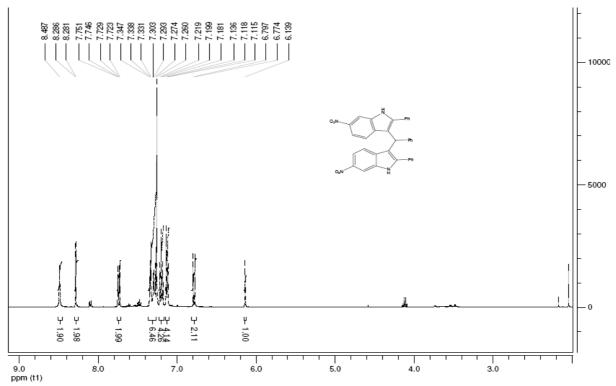
5-nitro-2-(phenylethynyl)aniline



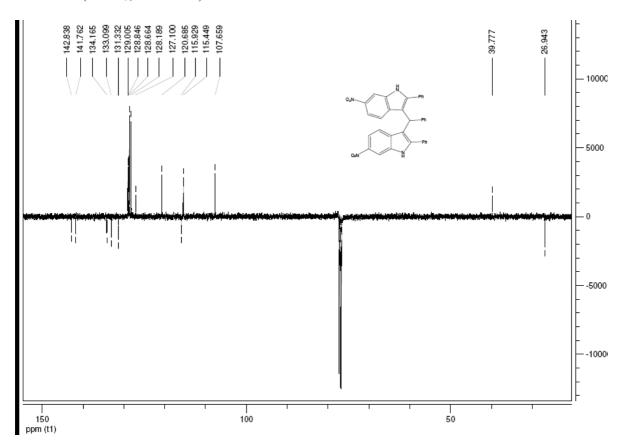


Bisindolylmethane 11

¹H NMR (CDCl₃, 400 MHz)

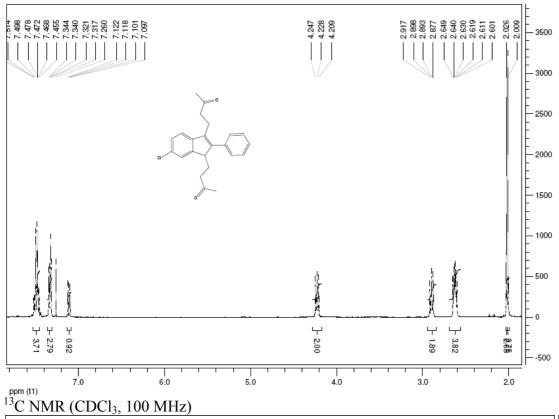


¹³C NMR (CDCl₃, 100 MHz)

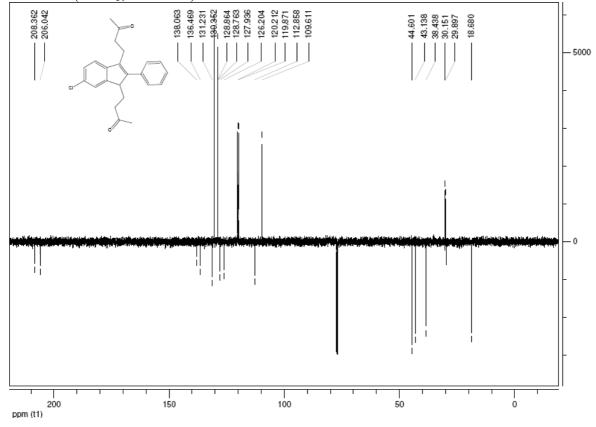


Bisindolylmethane 12

¹H NMR (CDCl₃, 400 MHz)



¹³C NMR (CDCl₃, 100 MHz)



trisubstituted indole 14

¹H NMR (CDCl₃, 400 MHz)

¹ Di Fabio, R.; Alvaro, G.; Bertani, B.; Giacobbe, S. *Can. J. Chem.* **2000**, *78*, 809.
² Xiao, W.-J.; Alper, H. *J. Org. Chem.* **1999**, *64*, 9646.
³ Hiroya, K.; Itoh, S.; Sakamoto, T. *J. Org. Chem.* **2004**, *69*, 1126.

⁴ Sakai, N.; Annaka, K.; Konahara, T. *J. Org. Chem.* **2006**, *71*, 3653.

⁵ Vasilevsky, S.F.; Tretyakov, E.V. *Liebigs Ann.* **1995**, *5*, 775.

Vasilevsky, S.F.; Tretyakov, E.V. *Liebigs Ann.* **1995**, *5*, 775.
 Cacchi, S.; Carnicelli, V.; Marinelli, F. *J. Organomet. Chem.* **1994**, *475*, 289.
 Fletcher, T. L.; Namkung, M. J.; Pan, H.-L.; Wetzel, W. H. *J. Org. Chem.* **1960**, *25*, 996.
 Koradin, C.; Dohle, W.; Rodriguez, A.L.; Schmid, B.; Knochel, P. *Tetrahedron* **2003**, *59*, 1571.
 Suzuki, N.; Yasaki, S.; Yasuhara, A.; Sakamoto, T. *Chem. Pharm. Bull.* **2003**, *51*, 1170.
 Moskalev, N.; Barbasiewicz, M.; Makosza, M. *Tetrahedron* **2004**, *60*, 347.
 Sakamoto, T.; Kondo, Y.; Takazawa, N.; Yamanaka, H. *J. Chem. Soc., Perkin Trans. 1* **1996**, *1*, 1927.
 Bellina, F.; Cauteruccio, S.; Rossi, R. *Eur. J. Org. Chem.* **2006**, *6*, 1379.
 D. Chen, L. Yu, P. G. Wang, *Tetrahedron Lett.* **1996**, *37*, 4467.
 Burr, G. O.; Gortner, R. A. *J. Am. Chem. Soc.*, **1924**, *46*, 1224.