SUPPORTING INFORMATION

<u>Title:</u> Synthesis of New β-Hydroxy Nitrate Esters as Potential Glycomimetics or Vasodilators

Author(s): Huseyin Cavdar and Nurullah Saracoglu*

Ref. No.: O200800481

Contents

General methods

Calculation methods

Typical procedure for the ß-hydroxy nitrates

trans-(1S(R),8S(R),Z)-8-hydroxycyclooct-4-enyl nitrate (9)

Bromination of trans-(1S(R),8S(R),Z)-8-hydroxycyclooct-4-enyl nitrate (9)

(1S(R),2S(R),5R(S),6R(S))-5-bromo-9-oxabicyclo[4.2.1] nonan-2-yl nitrate (10)

(1S(R),2S(R),5S(R),6S(R))-1,2,5,6-tetrabromocyclooctane (11):

(2Z,4Z)-9-oxabicyclo[4.2.1]nona-2,4-diene (12)

trans-(1S(R),6S(R))-6-hydroxycyclohex-3-enyl nitrate (18)

trans-(2S(R),3S(R))-3-hydroxy-1,2,3,4-tetrahydronaphthalen-2-yl nitrate (19)

The reaction of 1,4-cyclohexadiene with m-CPBA

syn-1,4-Cyclohexadiene bisepoxide (20)

anti-1,4-Cyclohexadiene bisepoxide (21)

(1R(S),2R(S),4R(S),5R(S))-2,5-dihydroxycyclohexane-1,4-diyl dinitrate (24)

(1S(R),3S(R),4S(R),6S(R))-4,6-dihydroxycyclohexane-1,3-diyl dinitrate (25)

(1R(S),2R(S),5R(S),6R(S))-2,6-dihydroxycyclooctane-1,5-diyl dinitrate (31)

(1R(S), 2R(S), 3S(R), 4S(R)) - 2, 3-dihydroxycyclohexane-1,4-diyl dinitrate (34)

The reaction of norbornene-epoxide (35) with Bi(NO₃)₃·5H₂O

(2R(S),7R(S))-7-hydroxybicyclo[2.2.1]heptan-2-yl nitrate (36)

(2S(R),7R(S))-7-hydroxybicyclo[2.2.1] heptan-2-yl nitrate (37)

9(R(S))-hydroxy-1,2,3,4-tetrahydro-1,4-methano-naphthalen-2(R(S)-yl nitrate (44)

¹H and ¹³C NMR Spectra

General methods

Melting points were determined on Buchi 539 capillary melting apparatus and uncorrected. Infrared spectra were recorded on a Mattson 1000 FT-IR spectrophotometer. 1 H NMR and 13 C NMR spectra were recorded on 200 (50) and 400 (100)-MHz Varian spectrometer and are reported in δ units with SiMe₄ as internal standard. Elemental analyses were carried out with a Leco CHNS-932 instrument.

Calculation methods

All calculations were performed by using SPARTAN04 software for windows, version 1.0.0 on a personal computer. [26] Energies were refined using the semi-emprical AM1, PM3.

Typical procedure for the ß-hydroxy nitrates: To a solution of epoxide (1 mmol) in 1 mL of CH_2Cl_2 was added $Bi(NO_3)_3$ - $5H_2O$ (1 mmol) at room temperature. The reaction was completed in 5 min-18 h as verified by TLC. Then, the reaction mixture was filtered over filter paper and the solvent was concentrated under reduced pressure. The crude product was purified by column chromatography or crystallization.

trans-(1S(R),8S(R),Z)-8-hydroxycyclooct-4-enyl nitrate (9):

9

The product **9** was obtained from **8** (250 mg, 2.02 mmol) and Bi(NO₃)₃·5H₂O (978 mg, 2.02 mmol) as described above by typical procedure for 16 h. After the filtration, the residue was submitted to column chromatography (silica gel, 30 g) eluting with ethyl acetate/hexane (15:85). The elution gave the product **9** as colourless oil (280 mg, 74%). ¹H NMR (400 MHz, CDCl₃): δ 5.71 (ddd, J = 17.3, 11.2, 7.3 Hz, A part of AB system, =CH, 1H), 5.62 (ddd, J = 17.3, 11.2, 7.3 Hz, B part of AB system, =CH, 1H), 5.18 (ddd, J = 13.0, 8.8, 3.9 Hz, CHONO₂, 1H), 3.96 (ddd, J = 13.0, 8.8, 3.9 Hz, CHOH, 1H), 2.48–2.37 (m, CH₂, 2H), 2.28–2.08 (m, CH₂, 4H), 1.84–1.23 (m, CH₂, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 130.2, 128.5, 86.0, 71.8, 33.2, 28.6, 23.0, 22.7; IR (CH₂Cl₂): $\tilde{\nu}$ = 3418, 3018, 2937, 2867, 1722, 1629, 1576, 1482, 1467, 1449, 1318, 1283, 1209, 1138, 1122, 1059, 1014, 973, 863, 737. C₈H₁₃NO₄ (187.19): calcd. C, 51.33; H, 7.00; N, 7.48; found: C, 51.02; H, 7.18; N, 7.60.

Bromination of trans-(1S(R),8S(R),Z)-8-hydroxycyclooct-4-enyl nitrate (9): To a solution of 9 (500 mg, 2.67 mmol) in CH₂Cl₂ (7 mL) was added dropwise a solution of Br₂ (427 mg, 2.67 mmol) in CH₂Cl₂ (5 mL) at -30 °C and the mixture was stirred for 1 h. After the reaction mixture was allowed to warm to room temperature, the solvent of the mixture was removed under pressure. The residue was submitted to column chromatography (silica gel, 30 g) eluting with ethyl acetate/hexane (3:97). The first elution gave the tetrabromide 11 (350 mg, 30%). The second fraction provided the 10 (485 mg, 68%).

(1S(R),2S(R),5R(S),6R(S))-5-bromo-9-oxabicyclo[4.2.1] nonan-2-yl nitrate (10):

(360 mg, 51%, recrystallized from CH₂Cl₂/hexane as white crystals, M.p. 61–62 $^{\circ}$ C). ¹H NMR (200 MHz, CDCl₃) δ 5.38–5.31 (m, CHONO₂, 1H), 4.83–4.75 (m, OCH, 1H), 4.64–4.61 (m, CHBr, 1H), 4.20–4.10 (m, OCH, 1H), 2.30–1.90 (m, CH₂, 8H); ¹³C NMR (50 MHz, CDCl₃) δ 85.10, 84.11, 79.34, 54.59, 31.50, 30.12, 28.22, 27.66; IR (CH₂Cl₂): $\tilde{\nu}$ = 2958, 1630, 1280, 1062, 936, 857. C₈H₁₂BrNO₄: calcd. C, 36.11; H, 4.55; N, 5.26; found. C, 35.99; H, 4.52; N, 5.25.

(1S(R),2S(R),5S(R),6S(R))-1,2,5,6-tetrabromocyclooctane (11):

(260 mg, 22%, recrystallized from CH_2CI_2 /hexane as white crystals, M.p. 129–130 °C). ¹H NMR (200 MHz, CDCI₃): δ 4.78–4.75 (m, CHBr, 4H), 2.86–2.79 (m, CH₂, 4H), 2.15–2.08 (m, CH₂, 4H); ¹³C NMR (50 MHz, CDCI₃): δ 59.2, 28.8; IR (CH₂CI₂): $\tilde{\nu}$ = 2922, 1426, 1217, 1065, 994, 762. $C_8H_{12}Br_4$ (427.80): calcd. C, 22.46; H, 2.83; found. C, 22.68; H, 2.59.

(2Z,4Z)-9-oxabicyclo[4.2.1]nona-2,4-diene (12):

12

To a solution of **10** (100 mg, 0.38 mmol) in 3 mL of toluene was added DBU (1.15 g, 7.57 mmol) and the mixture was refluxed for 3 h. After cooling, H_2O was added to the reaction mixture and the mixture was extracted with ether. The organic layer was washed with water, dried over MgSO₄. After removal of solvent in vacuo, the residue was purified by silica gel thin-layer chromatography. Elution with ether/hexane (25:75) gave **12** (40 mg, 87%, oil at room temperature). ¹H NMR (200 MHz, CDCl₃): δ 6.14–6.06 (m, AA' part of AA'BB' system, =CH, 2H), 5.85–5.75 (m, BB' part of AA'BB' system, =CH, 2H), 4.71–4.63 (m, OCH, 2H), 2.24–2.12 (m, CH₂, 4H); ¹³C NMR (50 MHz, CDCl₃): δ 140.6, 126.4, 80.1, 41.9; IR (CH₂Cl₂): $\tilde{\nu}$ = 2925, 1732, 1633, 1067, 913, 744. $C_8H_{10}O$ (122.16): calcd. C, 78.65; H, 8.25; found. C, 79.01; H, 8.08.

trans-(1S(R),6S(R))-6-hydroxycyclohex-3-enyl nitrate (18):

Reaction was performed as described above by typical procedure for 20 min by starting from **16** (200 mg, 2.08 mmol) and Bi(NO₃)₃·5H₂O (1.01 g, 2.09 mmol). After the mixture was filtered, the residue was submitted to column chromatography (silica gel, 30 g) eluting with ethyl acetate/hexane (5:95). The elution gave the product **18** as colourless oil (280 mg, 85%). ¹H NMR (200 MHz, CDCl₃): δ 5.65–5.49 (m, =CH, 2H), 5.10 (ddd, J = 15.3, 8.9, 6.3 Hz, CHONO₂, 1H), 3.98 (ddd, J = 15.3, 8.9, 6.3 Hz, CHOH, 1H), 2.78–2.50 (m, CH₂, 2H), 2.30–2.03 (m, CH₂, 2H); ¹³C NMR (50 MHz, CDCl₃): δ 126.4, 124.9, 85.2, 69.1, 35.0, 31.1; IR (CH₂Cl₂): $\vec{\nu}$ = 3570, 3392, 3040, 2908, 2854, 1631, 1557, 1441, 1422, 1348, 1314, 1278, 1213, 1159, 1100, 1070, 1040, 997, 973, 867, 792, 755. C₆H₉NO₄ (159.14): calcd. C, 45.28; H, 5.70; N, 8.80; found. C, 44.93; H, 5.53; N, 8.70.

trans-(2S(R),3S(R))-3-hydroxy-1,2,3,4-tetrahydronaphthalen-2-yl nitrate (19):

Reaction was performed as described above by typical procedure for 16 h by starting from **17** (140 mg, 0.96 mmol) and Bi(NO₃)₃·5H₂O (465 mg, 0.96 mmol). The product **19** was recrystallized from CH₂Cl₂/hexane as yellow crystals (145 mg, 73%, M.p. 54–55 °C). ¹H NMR (400 MHz, CDCl₃): δ 7.26–7.20, (m, aryl, 2H), 7.19–7.07 (m, aryl, 2H), 5.27 (ddd, J = 12.9, 8.3, 5.4 Hz, CHONO₂, 1H), 4.16 (ddd, J = 12.9, 8.3, 5.4 Hz, CHOH, 1H), 3.25 (dd, J = 16.8, 5.4 Hz, A part of AB system, CH₂, 1H), 2.97 (dd, J = 16.8, 8.3 Hz, A part of AB system, CH₂, 1H), 2.92–1.30 (m, CH₂, 2H), 2.82 (m, OH, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 132.9, 132.0, 129.2, 129.0, 127.2, 127.0, 83.4, 67.7, 36.3, 32.4; IR (CH₂Cl₂): $\vec{\nu}$ = 3565, 3402, 3066, 3025, 2908, 2853, 1717, 1635, 1585, 1496, 1455, 1440, 1423, 131, 1321, 1276, 1217, 1161, 1111, 1059, 983, 953, 871, 749. C₁₀H₁₁NO₄ (209.20): calcd. C, 57.41; H, 5.30; N, 6.70; found. C, 57.51; H, 5.08; N, 6.63.

The reaction of 1,4-cyclohexadiene with *m*-CPBA: A mixture of 1,4-cyclohexadiene (2.50 g, 31.25 mmol) and *m*-CPBA (15.54 g (70%), 62.50 mmol) in dichloromethane (100 mL) was colled by salt-ice bath and stirred for 2 h. After dichloromethane (50 mL) was added and the reaction mixture washed with 10% NaOH (3 x 100 mL) and water (50 mL), dried over MgSO₄, filtered and the solvent removed under reduced pressure. The residue (3.42 g) was subjected to silica gel chromatography using ethyl acetate/hexane (10:90). The first fraction gave **21** (2.35 g, 67%). Then, the column was eluted by CH₂Cl₂ to give **20** (850 mg, 24%).

syn-1,4-Cyclohexadiene bisepoxide (20):

20

(625 mg, 18%, colourless crystals from CH₂Cl₂/hexane, M.p. 61–62 °C). ¹H NMR (200 MHz, CDCl₃): δ 3.02 (d, J = 1.4, Hz, OCH, 4H), 2.68 (d, J = 16.5 Hz, A part of AB system, CH₂, 2H), 2.24 (dd, J = 16.5, 1.4, Hz, B part of AB system, CH₂, 2H); ¹³C NMR (50 MHz, CDCl₃): δ 51.1, 25.5; IR (CH₂Cl₂): $\vec{\nu}$ = 3009, 2990, 2929, 1470, 1424, 1353, 1279, 1266, 1095, 1023, 933, 897, 835, 810, 788, 771. C₆H₈O₂ (112.13): calcd.C, 64.27; H, 7.19; found. C, 64.01; H, 6.99.

anti-1,4-Cyclohexadiene bisepoxide (21):

(1.95 g, 56%, colourless crystals from CH₂Cl₂/hexane, M.p. 181–182 °C). ¹H NMR (200 MHz, CDCl₃): δ 3.07–3.05 (m, OCH, 4H), 232–2.30 (m, CH₂, 4H); ¹³C NMR (50 MHz, CDCl₃) δ 50.9, 25.9; IR (CH₂Cl₂): $\tilde{\nu}$ = 2925, 2854, 1729, 1464, 127, 1074, 750. C₆H₈O₂ (112.13): calcd. C, 64.27; H, 7.19; found. C, 64.30; H, 7.38.

(1R(S),2R(S),4R(S),5R(S))-2,5-dihydroxycyclohexane-1,4-diyl dinitrate (24):

$$O_2NO$$
 OH

The product **24** was prepared as described above by typical procedure for 20 min by starting from **20** (250 mg, 2.23 mmol) and Bi(NO₃)₃•5H₂O (2.18 g, 4.46 mmol). The product **24** was recrystallized from CH₂Cl₂/hexane as white crystals (395 mg, 74%, M.p. 113–114 °C). ¹H NMR (200 MHz, CD₃COCD₃): δ 5.25 (ddd, J = 10.7, 7.1, 4.0 Hz, CHONO₂, 2H), 5.86 (d, J = 4.0 Hz, OH, 2H), 4.05 (ddd, J = 10.7, 7.1, 4.0 Hz, CHOH, 2H), 2.25 (ddd, J = 10.7, 7.1, 4.0 Hz, B part of AB system, CH₂, 2H); ¹³C NMR (50 MHz, CD₃COCD₃): δ 84.8, 68.6, 34.3; IR (CH₂Cl₂): $\vec{\nu}$ = 3398, 2925, 2856, 1716, 1635, 1442, 1276, 1181, 1067, 1015, 961, 854, 751. C₆H₁₀N₂O₈ (238.15): calcd. C, 30.26; H, 4.23; N, 11.76; found. C, 30.50; H, 4.08; N, 11.67.

(1S(R),3S(R),4S(R),6S(R))-4,6-dihydroxycyclohexane-1,3-diyl dinitrate (25):

The product **25** was prepared as described above by typical procedure for 20 min by starting from **21** (850 mg, 7.59 mmol) and Bi(NO₃)₃·5H₂O (7.36 g, 15.18 mmol). The product **25** was recrystallized from CH₂Cl₂/hexane as white crystals (1.29 g, 71%, M.p. 172–173 °C). ¹H NMR (200 MHz, CDCl₃): δ 5.10 (q, J = 5.8 Hz, CHONO₂, 2H), 4.18 (q, J = 5.8 Hz, CHOH, 2H), 2.31 (t, J = 5.8 Hz, CH₂, 2H), 2.07 (t, J = 5.8 Hz, CH₂, 2H); ¹³C NMR (50 MHz,

CDCl₃): δ 83.1, 67.7, 37.7, 29.2; IR (CH₂Cl₂): $\vec{\nu}$ = 3753, 3378, 2931, 1638, 1441, 1326, 1279, 1181, 1090, 1069, 1015, 950, 862, 752. C₆H₁₀N₂O₈ (238.15): calcd. C, 30.26; H, 4.23; N, 11.76; found. C, 30.41; H, 4.20; N, 11.70.

(1R(S),2R(S),5R(S),6R(S))-2,6-dihydroxycyclooctane-1,5-diyl dinitrate (31):

The product **31** was prepared as described above by typical procedure for 16 h by starting from **30** (600 mg, 4.29 mmol) and Bi(NO₃)₃·5H₂O (4.16 g, 8.57 mmol). The residue was submitted to column chromatography (silica gel, 30 g) eluting with ethyl acetate/hexane (40:60). The elution gave the product **31** (800 mg, 70%, recrystallized from CH₂Cl₂/hexane as white crystals, M.p. 91–92 °C). ¹H NMR (400 MHz, CD₃OD): δ 5.05 (ddd, J = 10.5, 8.0, 2.3 Hz, CHONO₂, 2H), 3.79 (ddd, J = 10.5, 8.0, 2.3 Hz, CHOH, 2H), 2.12–2.00 (m, CH₂, 4H), 1.98–1.84 (m, CH₂, 4H); ¹³C NMR (100 MHz, CD₃OD): δ 87.9, 70.8, 28.5, 24.3; IR (CH₂Cl₂): $\tilde{\nu}$ = 3386, 2941, 1629, 1365, 1278, 1086, 1008, 977, 860, 755. C₈H₁₄N₂O₈ (266.21): calcd. C, 36.09; H, 5.30; N, 10.52; found. C, 35.99; H, 5.38; N, 10.65.

(1R(S),2R(S),3S(R),4S(R))-2,3-dihydroxycyclohexane-1,4-diyl dinitrate (34):

The product **34** was prepared as described above by typical procedure for 30 min by starting from **33** (500 mg, 4.46 mmol) and Bi(NO₃)₃·5H₂O (4.34 g, 8.94 mmol). The product **34** was recrystallized from CH₂Cl₂/hexane as white crystals (900 mg, 85%, M.p. 88–89 °C). ¹H NMR (200 MHz, CDCl₃): δ 5.30–5.19 (m, CHONO₂, 2H), 4.04 (d, J = 5.6 Hz, CHOH, 2H), 3.04–2.91 (m, OH, 2H), 2.22–2.03 (m, AA' part of AA'BB' system, CH₂, 2H), 1.97–1.26 (m, BB' part of AA'BB' system, CH₂, 2H); ¹³C NMR (50 MHz, CDCl₃): δ 82.4, 71.6, 24.7; IR (CH₂Cl₂): $\tilde{\nu}$ = 3403, 2940, 1634, 1440, 1315, 1276, 1068, 996, 853, 755. C₆H₁₀N₂O₈ (238.04): calcd. C, 30.26; H, 4.23; N, 11.76; found. C, 30.03; H, 4.40; N, 11.75.

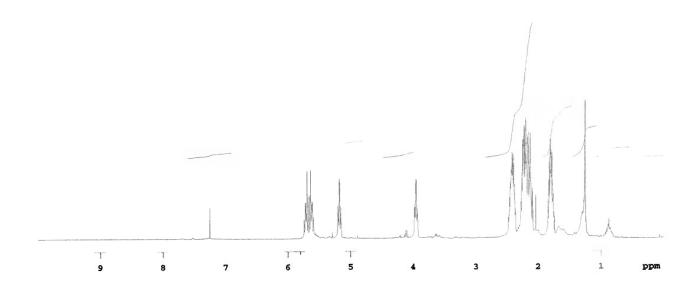
The reaction of norbornene-epoxide (35) with $Bi(NO_3)_3 \cdot 5H_2O$: Reaction was performed as described above by typical procedure for 30min by starting from 35 (800 mg, 7.27 mmol) and $Bi(NO_3)_3 \cdot 5H_2O$ (3.53 g, 7.27 mmol). After the mixture was filtered, the residue was submitted to column chromatography (silica gel, 30 g) eluting with ethyl acetate/hexane (5:95). The first elution gave the product 36 as colourless oil (380 mg, 30%). Then, the column was eluted by ethyl acetate/hexane (7:93) to give 37 (850 mg, 68%).

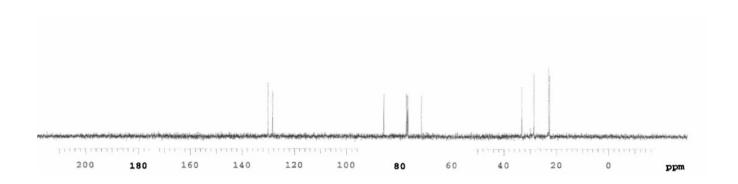
(2R(S),7R(S))-7-hydroxybicyclo[2.2.1]heptan-2-yl nitrate (36):

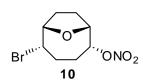
¹H NMR (200 MHz, CDCl₃): δ 4.78 (dd, J = 7.9, 2.9 Hz, CHONO₂, 1H), 4.25 (m, CHOH, 1H), 2.31–2.29 (m, CH, 1H), 2.18–2.13 (m, CH, 1H), 2.05–1.95 (m, CH₂, 2H), 1.87 (dd, J = 14.5, 7.9 Hz, A part of AB system, CH₂, 1H), 1.69–1.53 (m, CH₂, 1H), 1.27–1.20 (m, CH₂, 2H); ¹³C NMR (50 MHz, CDCl₃): δ 86.5, 78.7, 46.6, 41.2, 37.2, 26.8, 23.6; IR (CH₂Cl₂): $\tilde{\nu} = 3375$, 2967, 2882, 1618, 1282, 1148, 1037, 1005, 935, 867, 758. C₇H₁₁NO₄ (173.17): calcd. C, 48.55; H, 6.40; N, 8.09; found. C, 48.82; H, 6.55; N, 8.45.

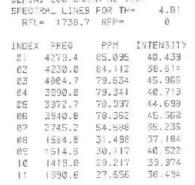

(2S(R),7R(S))-7-hydroxybicyclo[2.2.1] heptan-2-yl nitrate (37):

(730 mg, 58%, colourless crystals from CH₂Cl₂/hexane, M.p. 47–48 °C). ¹H NMR (200 MHz, CDCl₃): δ 4.98 (ddd, J = 7.1, 3.6, 2.8 Hz, CHONO₂, 1H), 4.05 (bs, CHOH, 1H), 2.35 (d, J = 4.4 Hz, CH, 1H), 2.26–2.20 (m, CH, 1H), 2.14–2.11 (m, CH₂, 1H), 2.03 (dd, J = 13.9, 7.1 Hz, A part of AB system, CH₂, 1H), 1.98–1.54 (m, CH₂, 2H), 1.28–1.16 (m, CH₂, 2H); ¹³C NMR (50 MHz, CDCl₃): δ 88.7, 81.3, 46.4, 42.6, 37.4, 26.7, 24.4; IR (CH₂Cl₂): $\tilde{\nu} = 3343$, 2965, 2925, 1625, 1279, 1157, 1085, 1068, 966, 865, 757. C₇H₁₁NO₄ (173.17): calcd. C, 48.55; H, 6.40; N, 8.09; found. C, 48.77; H, 6.35; N, 8.23.

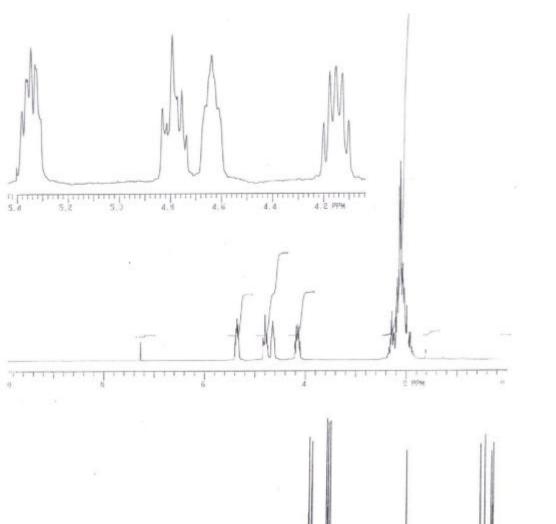

9(R(S))-hydroxy-1,2,3,4-tetrahydro-1,4-methano-naphthalen-2(R(S)-yl nitrate (44):

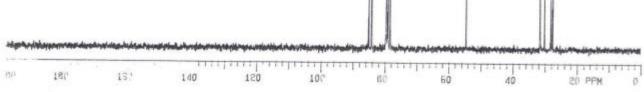

The product **44** was prepared as described above by typical procedure for 18 h by starting from **43** (400 mg, 2.53 mmol) and Bi(NO₃)₃·5H₂O (1.23 g, 2.53 mmol). The residue was submitted to column chromatography (silica gel, 10 g) eluting with ethyl acetate. The elution gave the product **44** (350 mg, 63%, recrystallized from CH₂Cl₂/hexane as white crystals, M.p. 102–103 °C). ¹H NMR (400 MHz, CDCl₃): δ 7.29–7.21 (m, aryl, 1H), 7.20–7.15 (m, aryl, 3H), 4.95 (dd, J = 7.3, 3.3 Hz, CHONO₂, 1H), 4.08 (m, CHOH, 1H), 3.53 (m, CH, 1H), 3.36–3.35 (m, CH, 1H), 2.35 (m, OH, 1H), 2.33 (ddd, J = 13.4, 7.3, 3.3 Hz, A part of AB system, CH₂, 1H), 2.12 (dd, J = 13.4, 7.3 Hz, B part of AB system, CH₂, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 145.0, 139.0, 128.0, 123.3, 122.4, 85.3, 83.8, 52.4, 48.2, 32.3; IR (CH₂Cl₂): $\tilde{\nu}$ = 3386, 2941, 1629, 1365, 1278, 1086, 1008, 977, 860, 755. C₁₁H₁₁NO₄ (221.21): calcd. C, 59.73; H, 5.01; N, 6.33.; found. C, 60.03; H, 4.82; N, 6.25.

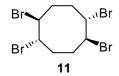

¹H and ¹³C NMR Spectra



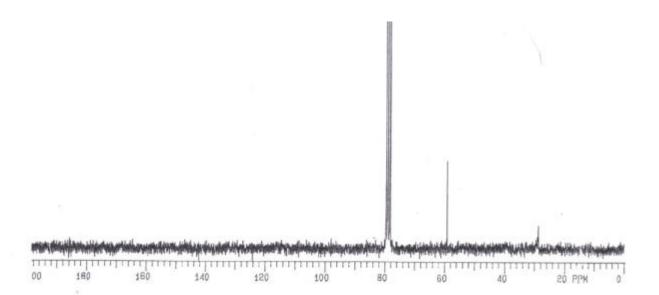
INDEX	FREQUENCY	PPM	HEIGHT
1	13083.302	130.154	20.8
2	12912.404	128.454	17.4
3	8648.335	86.035	16.4
4	7797.657	77.572	16.5
5	7765.614	77.253	15.7
6	7733.571	76.935	15.7
7	7220.875	71.834	15.9
8	3334.462	33.172	23.3
9	2872.120	28.572	24.5
10	2309.071	22.971	26.7
11	2279.316	22.675	23.8

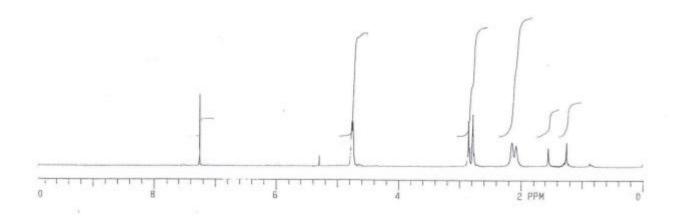






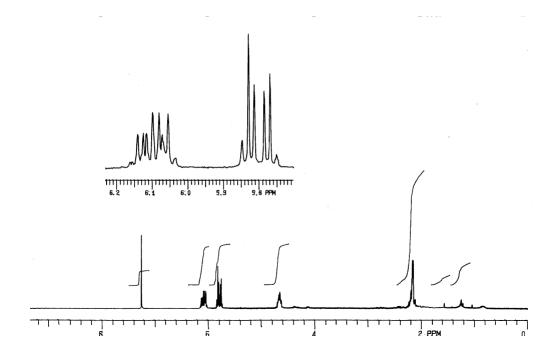
SEMINI-200 GAMMA H2 TEST

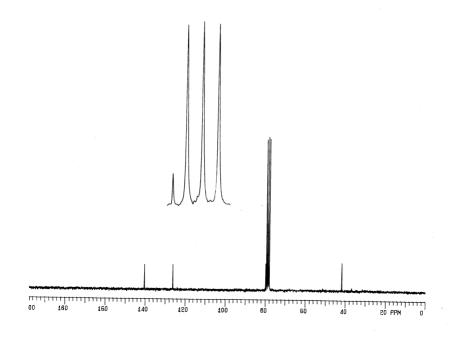




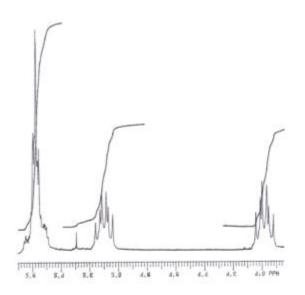
GEMINI-2	00 GAM	A H2 TEST	
SPECTRAL			7.72
RFL=			0

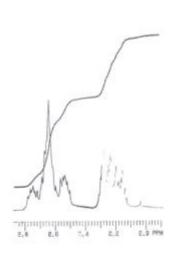
INDEX	FREO	PPM	INTENSITY
Ø1	4002.8	79.595	122.940
02	3970.9	78.960	125.503
03	3938.9	78.326	123.703
04	2978.8	59,233	34.322
05	1448.5	28.803	9,465

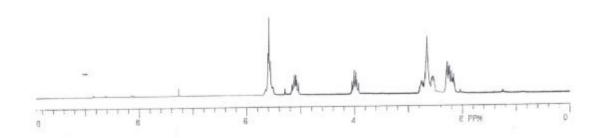


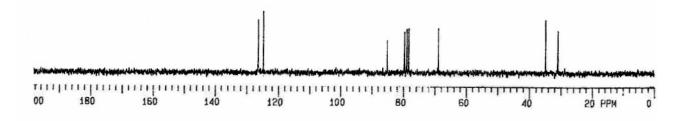


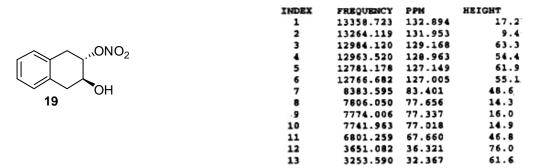
INDEX	FREQ	PPM	INTENSITY
01	7088.4	140,554	14.844
02	5358.7	126.493	14.744
93	4828,6	80.089	15.310
0.4	3999.0	78,520	88.055
25	3867.1	78,886	97.529
05	3935.1	79.249	88.484
07	2105 0	41 478	16,176

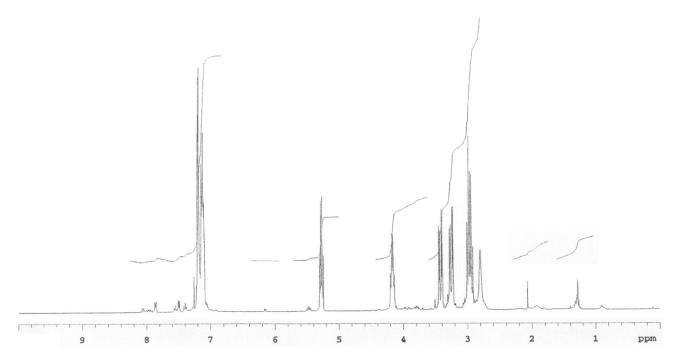


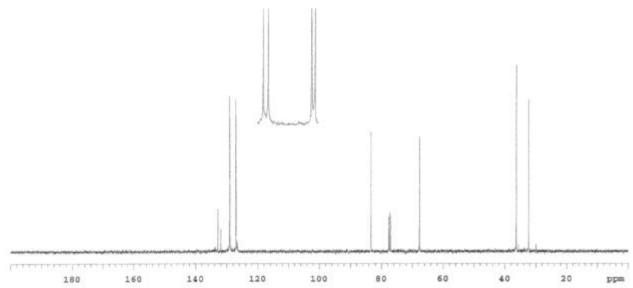


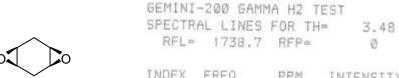

OH OH

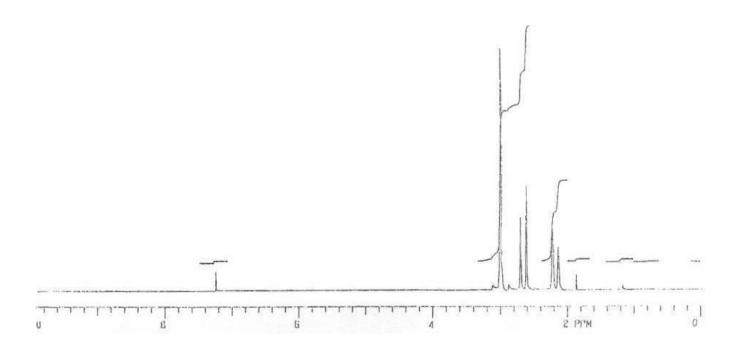

SEMINI-200	GAMMA H	2 TEST	
SPECTRAL LI	INES FOR	TH=	14.03
QEL = 177	20 7 05	D ==	Os.

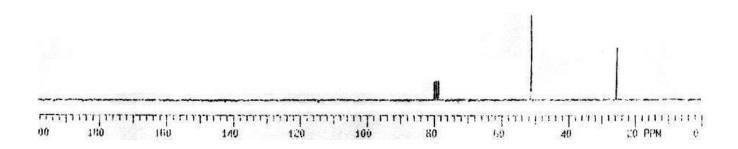

INDEX	FREQ	PPM	INTENSITY	
01	9354.6	126.360	86.754	
02	6280.5	124.888	39.968	
03	4282.1	85.149	54.540	
04	4008.1	79.700	67.475	
05	3976.0	79.062	71.905	
Ø6	3944.2	78,431	72.710	
67	3473.2	69.065	77.549	
08	1756.9	34.935	85.084	
09	1561.4	31.049	78.568	

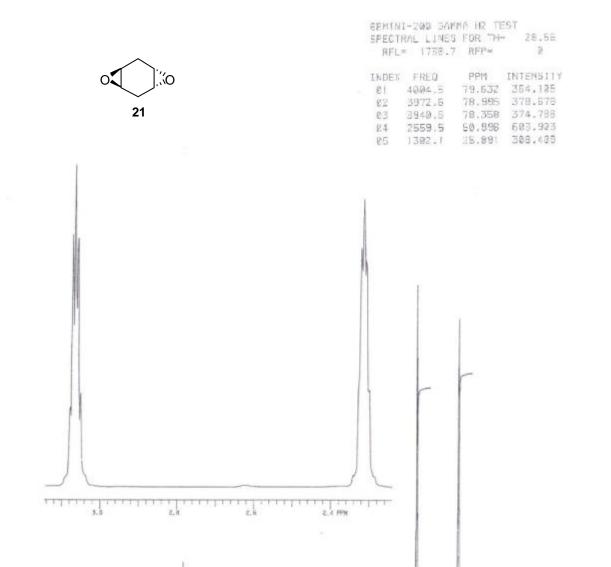


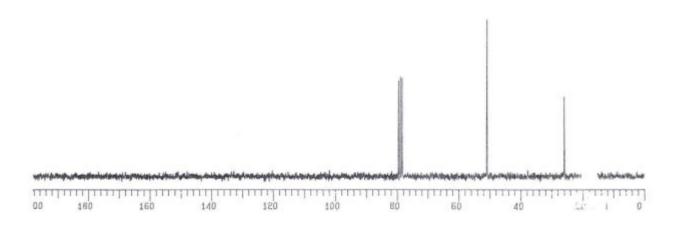




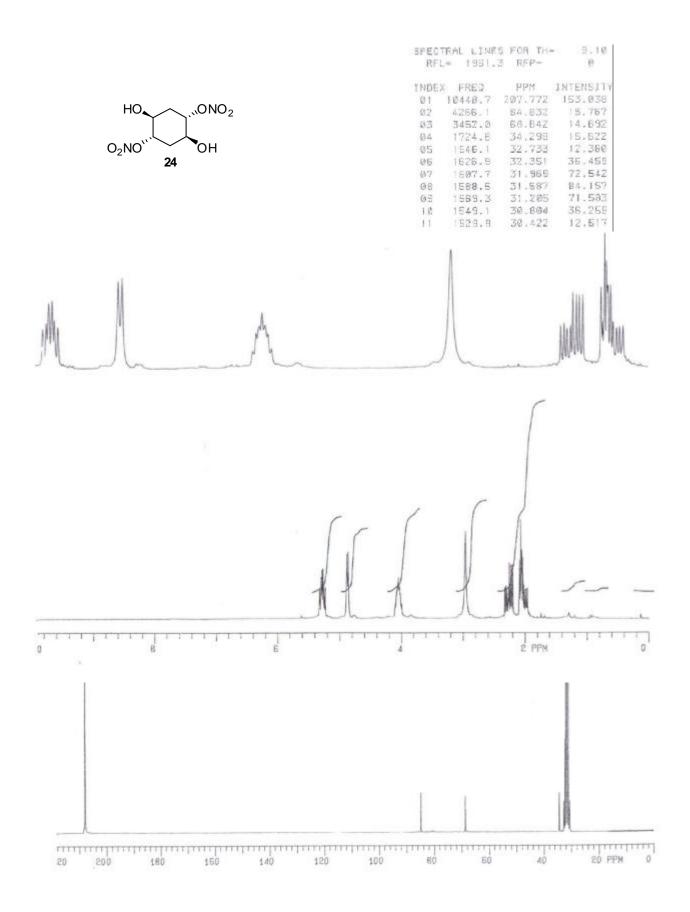


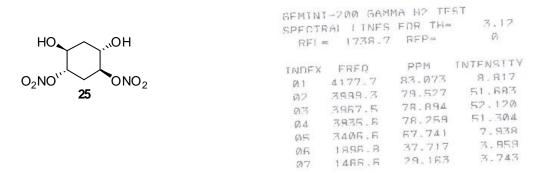


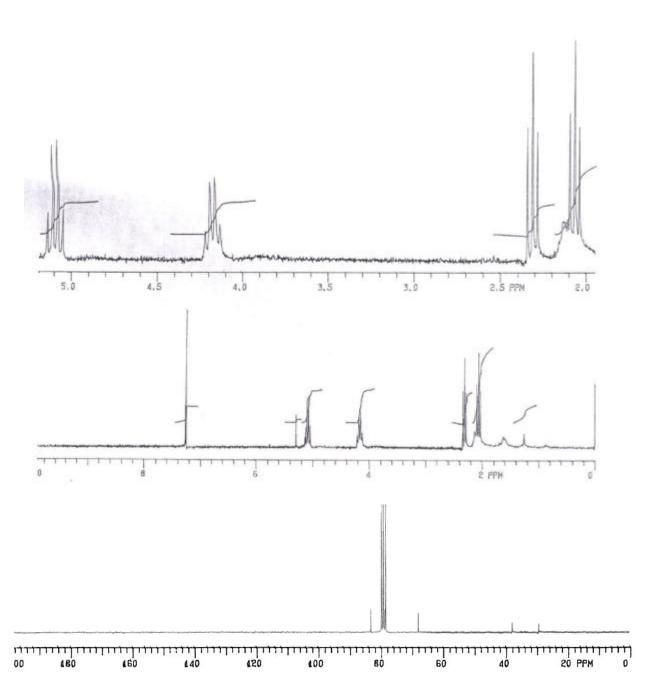


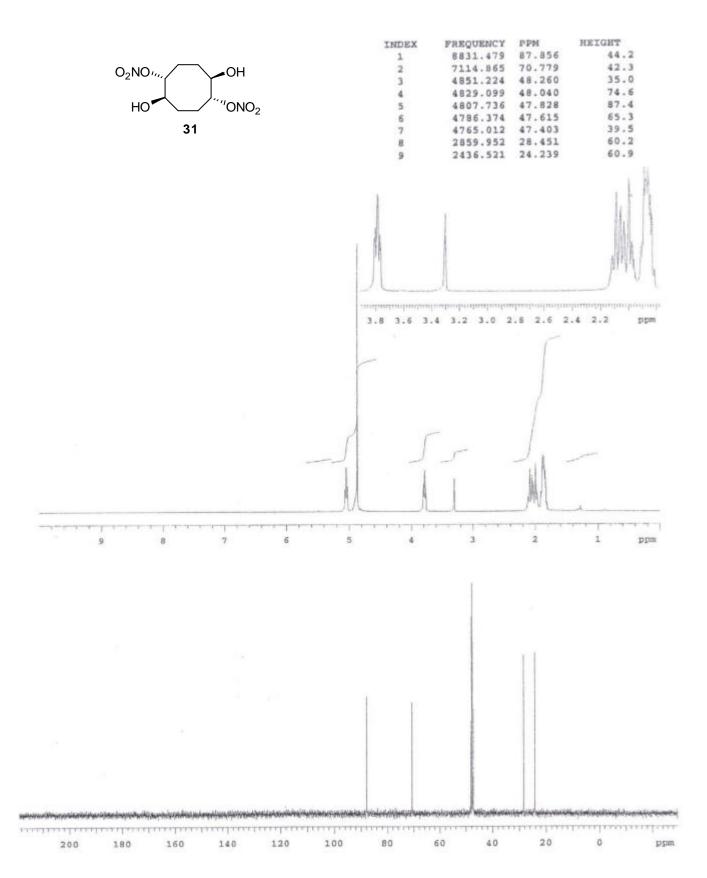


INDEX	FREQ	PPM	INTENSITY
01	4012.9	79.795	
02	3980.8	79.159	
03	3948.8	78.522	6.782
04	2569.9	51.103	
05	1279.6	25.445	17.946



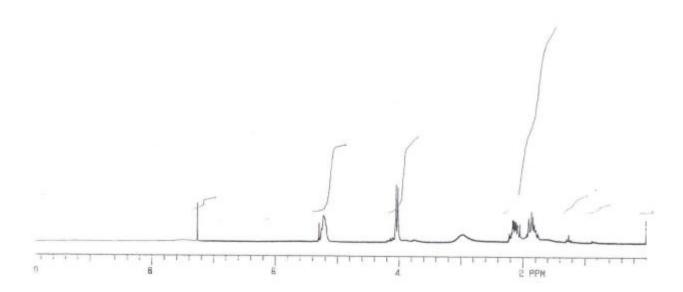


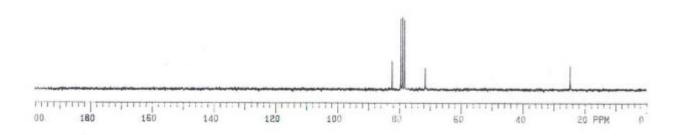


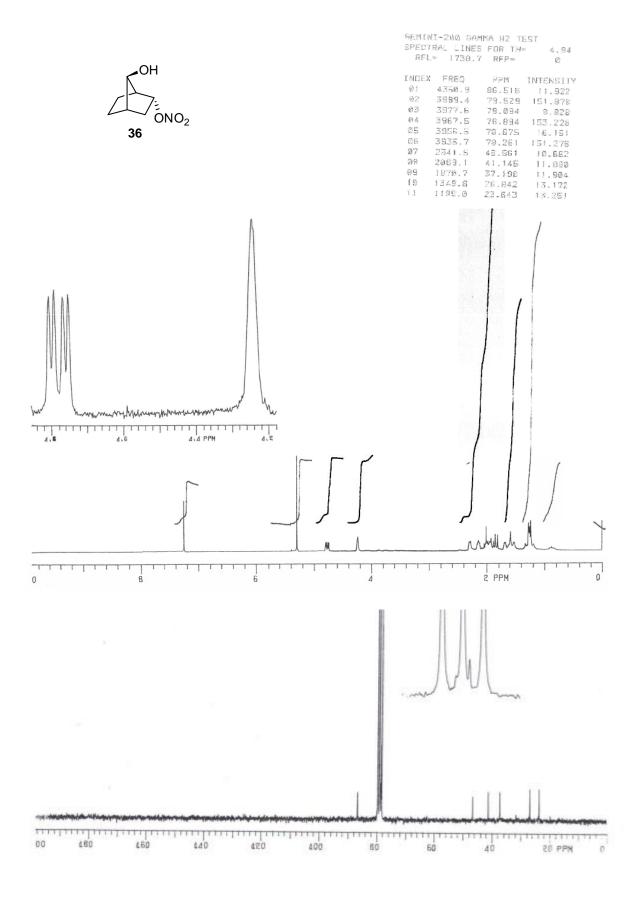


2 PPM

ONO₂
HO
ONO₂
ONO₂
34

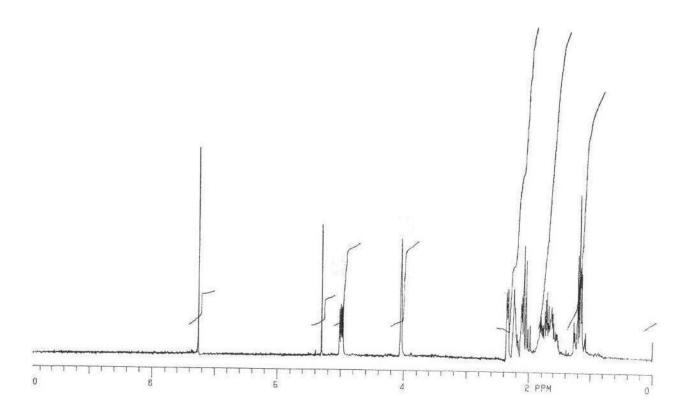

GEMINI-200 BANMA H2 TEST SPECTRAL LINES FOR TH# 5.95 RFL- 1738,7 RFP= INCEX FREQ PPM INTENSITY 01 4145.4 92.430 10.921 4003.7 02 79.613 25.684 03 3971.8 78.979 27.455 24 3339.9 78,344 26.523 05 3600.8 71.621 8.418

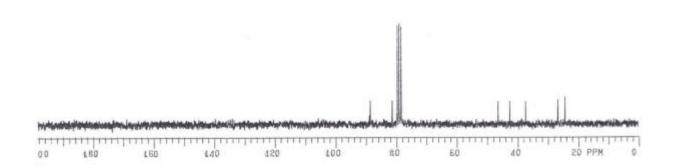

24,721

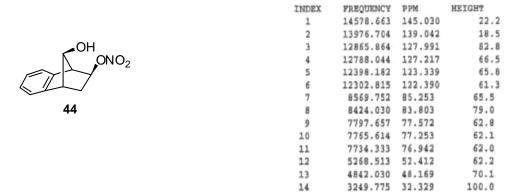

9.728

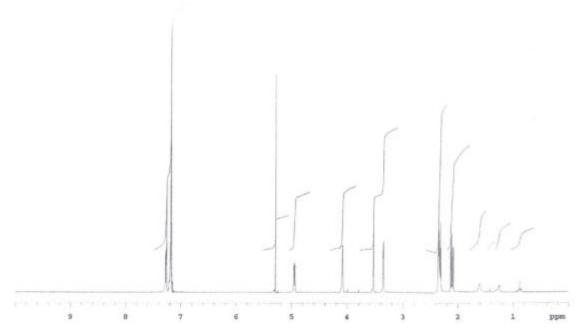
06

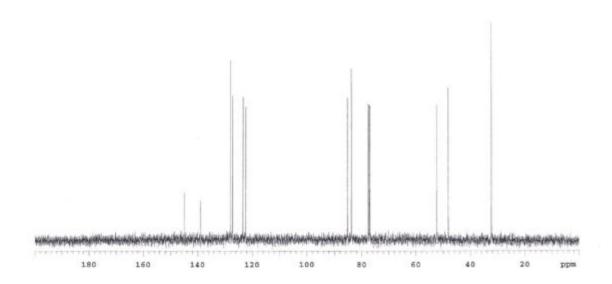
1243.2




OH ONO₂


37


GEMINI-2	00 GAMI	1A H2	TEST	
SPECTRAL	LINES	FOR	TH≕	13.59
RFL=	738.7	REP	211	Ø


INDEX	FREQ	PPM	INTENSITY
Ø1	4459.5	88.578	24.170
02	4088.3	81.296	26.586
ØЗ	4003.2	79.603	103.512
04	3971.4	78.971	102.916
05	3939.5	78.336	98.714
ØB	2333.8	46.408	23.950
07	2141.4	42.582	23.057
08	1878.7	37.358	22.987
Ø9	1340.7	25.660	24.825
10	1224.5	24.349	27.291

