Supporting Information

for

Advanced Materials, adma.200602851

© Wiley-VCH 2007

69451 Weinheim, Germany
Supporting Information

Template/VUV-assisted Fabrication of Ag Nanoparticle Array on Flexible and Rigid Substrates

By Dr. Jingze Li,† Prof. Dr. Kaori Kamata,†,§ Prof. Dr. Shigeru Watanabe,†,§ and Prof. Dr. Tomokazu Iyoda*,†,§

† Division of Integrated Molecular Engineering, Chemical Resources Laboratory, Tokyo Institute of Technology, R1-25 4259 Nagatsuta, Midori Ku, Yokohama 226-8503, Japan
‡ Department of Material Science, Faculty of Science, Kochi University, Kochi 780-8520, Japan
§ CREST, Japan Science and Technology Agency, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan

Figure S1. (Upper) AFM cross-sectional phase image of the as-annealed diblock copolymer film PEO272-b-PMA(Az)102 on Si wafer. (Bottom) Schematic illustration of the mapping of copolymer film’s cross-section. (This AFM characterization of the cross-section of polymer thin film on solid substrate has been recently developed in the authors’ laboratory and the detailed measurement will be reported elsewhere.)
Figure S2. AFM height and phase images of AgNO₃ loaded diblock copolymer PEO₂₇₂-b-PMA(Az)₁₀₂ film on Si wafer. Insets are the corresponding FFT images.

Figure S3. FE-SEM image of PEO₂₇₂-b-PMA(Az)₁₀₂ templated Ag nanoparticle array on PET, which was obtained after VUV irradiation of AgNO₃ loaded copolymer film for 30 min.
Figure S4. AFM height image of PEO_{272-b}-PMA(Az)_{102} templated Ag nanoparticle arrays on PET, which was obtained after VUV irradiation of AgNO_3 loaded copolymer film for 30 min.