Supporting Information

Nanowire Waveguides and Ultraviolet Lasers Based on Small Organic Molecules

Yong Sheng Zhao, Aidong Peng, Hongbing Fu, Ying Ma and Jiannian Yao*

Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China, and Graduate School, Chinese Academy of Sciences, Beijing, 100039, China.
Figure S1. The instrument used for the preparation of the TPI nanowires
Figure S2 (A) AFM images of some TPI nanowires; (B) The cross section along the gray line in (A).
Figure S3 The FT-IR spectra of (A) TPI powder and (B) TPI nanowires
Figure S4 The ESI-MS mass spectra of (A) TPI powder and (B) TPI nanowires
Figure S5 UV-visible diffuse reflection absorption spectrum (violet) and PL spectrum (blue) of TPI powder.
Figure S6 UV-visible absorption spectra of TPI nanowires with different widths deposited onto quartz wafers: (A) 40 nm, (B) 120 nm, (C) 300 nm, (D) 500 nm. (m) The spectrum of TPI monomers.
Figure S7 Refractive index dispersion with wavelength derived from a Kramers-Kronig transform of the nanowire absorption spectrum.
Figure S8 Power-dependent emission spectra recorded on the tip of a TPI wire with 400 nm in width and 5 μm in length. From bottom up, the excitation energies are 25, 50, 100 nJ, respectively.